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AN AXIOMATIC APPROACH TO A COINCIDENCE INDEX
FOR NONCOMPACT FUNCTION PAIRS

Martin Väth

Abstract. We prove that there is a coincidence index for the inclusion

F (x) ∈ Φ(x) when Φ is convex-valued and satisfies certain compactness

assumptions on countable sets. For F we assume only that it provides
a coincidence index for single-valued finite-dimensional maps (e.g. F is a

Vietoris map). For the special case F = id, the obtained fixed point index

is defined if Φ is countably condensing; the assumptions in this case are
even weaker than in [36].

Introduction

There are two essentially different approaches to the fixed point theory of
multivalued maps: one is applicable for maps with convex values, and the other
is applicable for maps with acyclic values. While the assumptions for the two
approaches are similar from the viewpoint of applications, the methods applied
are essentially different: the first approach uses certain approximations by single-
valued maps (see e.g. [26]) while the second approach reduces the problem to a
certain coincidence equation which then is attacked by methods from algebraic
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topology [10], [13], [14], [23]. For surveys which also explain the historical de-
velopment, we refer to [2], [4], see also [17]. In this paper, we propose a general
unifying theory which combines these approaches to the coincidence inclusion

(1) F (x) ∈ Φ(x)

where, roughly speaking, Φ may be approximated by single-valued maps (e.g. Φ
attains convex values), and F is such that F−1({y}) is acyclic for each y. For
F = id, one arrives at the first approach described above, and for single-valued
functions Φ, one is led to the second approach. For F = id and single-valued Φ,
one arrives at the classical fixed point theory. For single-valued ϕ, a coincidence
index for the equation

(2) F (x) = ϕ(x)

for compact ϕ was introduced in [24] and further developed in [16]; this index
is used in [21] to obtain an index for multivalued acyclic maps. Meanwhile, a
general index theory for the coincidence problem (2) is known, at least in the
compact case [14] (see also [23]). This index was generalized for the inclusion (1)
in [5], but under the rather artificial assumption that x be taken from a finite-
dimensional space.
By our approach, x can be taken from an arbitrary metric space. Moreover,

we do not restrict our attention to maps F for which F−1({x}) is acyclic. Instead,
we just assume that F is given such that a coincidence index for the equation (2)
exists which satisfies certain axioms and which is applicable for compact (or
even just finite-dimensional) functions ϕ. In Section 2, we then extend this
index to the more general inclusion (1) for compact multi-valued maps Φ, and
in Section 3, we extend that index in turn to (single- or) multi-valued maps Φ
which only satisfy certain “a priori” compactness assumptions.
In other words: We provide a general scheme which allows to extend any

coincidence index (in finite dimensions and for single-valued maps) to the mul-
tivalued and, more important, to the noncompact case. The basic ideas of such
an extension scheme are of course well-known:
In the case F = id, this scheme corresponds to the extension of the classical

Brouwer degree to the Schauder (resp. the Nussbaum-Sadovskĭı) degree [29], [32]
(in case of single-valued maps) and to e.g. the degree from [26] (resp. [11], [31])
(in case of multi-valued maps).
However, in the case F 6= id, some technical difficulties arise, and it appears

that no attempts have been made so far to overcome them systematically (certain
special cases have been studied already [14], [16]).
Moreover, we add some refinements to the “known” scheme so that even in

the case F = id, we gain new results: The fixed point index obtained by our
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scheme in this case requires less restrictive compactness assumptions than the
fixed point indices considered in literature so far (even in the single-valued case).
Note that for this special case, we need besides some elementary arguments only
the “standard” fixed point index on convex finite-dimensional sets which can be
obtained immediately from the Brouwer degree by a simple retraction argument.

The main idea for the noncompact case is to consider only those maps Φ
for which it is possible to find a certain set (a so-called fundamental set) which
contains all information of Φ which is important for coincidence points, and such
that Φ ◦ F−1 is compact on this set. For F = id, the concept of fundamental
sets was apparently first introduced in [38] (see also [22]) and later developed
by V. V. Obukhovskĭı and others, even in the context of multivalued maps [2],
[4]; for acyclic multivalued maps, see also [3], [21], [30], [39]. The class of maps
Φ which are admissible for this theory (the so-called fundamentally restrictible
maps) contains in particular the so-called condensing maps. Actually, the so-
called ultimate range introduced by Sadovskĭı [32] (see also [1]) as a tool for the
degree theory of condensing maps (for the multivalued case, see e.g. [11], [31])
is nothing else but a special fundamental set. A new point in our concept is
that we do not require the existence of a fundamental set on the whole domain
of definition but only on a certain subset. This generalization is technical and
appears artificial, but it has an important advantage:

For applications to equations containing integrals or derivatives of vector
functions, one can usually estimate measures of noncompactness only for count-
able sets (see e.g. [28], [37]). For this reason, it is of interest to have a theory also
for countably condensing maps. The first results in this direction were given in
[6], [7], [19], [27], [33]. In [36], a fixed point index for countably condensing maps
was introduced which was based on fundamental sets. However, the assumptions
needed in [36] to define this index appear not very natural (although they are
sufficiently general for most purposes). In Section 4, we will see that our index
(for F = id) actually generalizes the index from [36] and requires in contrast to
the latter only “natural” assumptions on countable sets.

The most basic coincidence/fixed point theorems obtained by our index are
presented in Section 5.

2. Compact multivalued maps

Let X be a metric space, Y be a closed convex subset of some locally con-
vex Hausdorff vector space Z, and F : X → Y be continuous and proper (i.e.
preimages of compact sets are compact).

We call a triple (ϕ,Ω,K) finitely F -admissible, if K ⊆ Y is compact and
convex and contained in a finite-dimensional subspace of Z, Ω ⊆ K is open
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in K, and ϕ : X → K is continuous and such that F (x) = ϕ(x) ∈ Ω implies
F (x) ∈ Ω.

Definition 2.1. We say that F provides the coincidence index indF (on Y ),
if there is a map indF from the system of finitely F -admissible triples into a ring
with 1 (typically Z, Q, or Z2) such that for any finitely F -admissible triple
(ϕ,Ω,K) the following holds:

(i) (Coincidence point property) If indF (ϕ,Ω,K) 6= 0, then the coincidence
equation F (x) = ϕ(x) ∈ Ω has a solution.

(ii) (Normalization) If ϕ(x) ≡ c ∈ Ω, then indF (ϕ,Ω,K) = 1.
(iii) (Homotopy invariance) If H : [0, 1] × X → K is continuous and the
triple (H(λ, · ),Ω,K) is finitely F -admissible for each λ ∈ [0, 1], then

(3) indF (H(0, · ),Ω,K) = indF (H(1, · ),Ω,K).

(iv) (Permanence) If K0 ⊆ K is closed and convex with ϕ(X) ⊆ K0, then

(4) indF (ϕ,Ω,K) = indF (ϕ,Ω ∩K0,K0).
We say that indF satisfies the excision property, if additionally for each

finitely F -admissible triple (ϕ,Ω,K) the following holds:

(v) (Excision) If Ω0 ⊆ Ω is open in K and such that F (x) = ϕ(x) ∈ Ω
implies F (x) ∈ Ω0, then

indF (ϕ,Ω,K) = indF (ϕ,Ω0,K).

We call indF additive, if additionally the following property is satisfied for
each finitely F -admissible triple (ϕ,Ω,K):

(vi) (Additivity) If Ω1,Ω2 ⊆ Ω are disjoint and open in K and such that
F (x) = ϕ(x) ∈ Ω implies F (x) ∈ Ω1 ∪ Ω2, then

indF (ϕ,Ω,K) = indF (ϕ,Ω1,K) + indF (ϕ,Ω2,K).

Of course, the excision property is the special case of the additivity with
Ω2 = ∅. Observe that the normalization implies in view of the coincidence point
property that F : X → Y is surjective.
We separated the excision property/additivity from the other axioms, since

we conjecture that there are examples of coincidence point indices which fail to
have this property (because they are e.g. obtained by homotopic instead of ho-
mologic methods); a hint in this direction is given by the class of 0-epi maps [12]
(see also [18]) which might be considered as a “homotopic” analogue to degree
theory but for which the excision property does not hold in general (however, if
one tries to define an index in Z2 analogous to the definition of 0-epi maps, one
also runs into problems in connection with the permanence property, so we can
not provide a particular example up to now).
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Example 2.1. If X = Y = Z is a locally convex metric space, and F = id,
it is well-known that an unique additive index with values in Z with the above
properties exists: This is the classical fixed point index of ϕ (sometimes also
called degree of id− ϕ) on Ω relative to K.

Example 2.1 is generalized by the following result which is essentially a re-
formulation of a special case of [14, Theorem (47.8)].
Recall that a continuous proper surjection F : X → Y is called Vietoris, if

for each y ∈ Y the set F−1({y}) is acyclic with respect to the Čech cohomology
with coefficients in Q.

Theorem 2.1 (Górniewicz). Let X be a metric space, Z be a locally convex
metric vector space, and Y ⊆ Z be closed and convex. Then any Vietoris map
F : X → Y provides an additive coincidence index with values in Z.

Proof. Let a finitely F -admissible triple (ϕ,Ω,K) be given. Using the nota-
tion of [14, Theorem (47.8)], the triple (K,Ω,Φ) belongs to the class B, where Φ
is the morphism determined by the pair (F,ϕ) (roughly speaking: Φ = ϕ ◦F−1;
note that F−1 is upper semicontinuous, since Y is metrizable [13]). We may
thus define indF (ϕ,Ω,K) as the index from [14, Theorem (47.8)] for the triple
(K,Ω,Φ). The desired properties of our index follow from the properties of the
latter index (the coincidence point property corresponds to the “existence” prop-
erty from [14], and the permanence property corresponds to the “contraction”
property from [14]). �

Remark 2.1. In the proof of Theorem 2.1, we employed that the solutions
of (2) correspond to the fixed points of the multivalued map Φ = ϕ◦F−1. We re-
call that, conversely, given an upper semicontinuous compact (finite-dimensional)
multivalued map Φ with nonempty acyclic values, one may define X as the
graph of Φ, and let F and ϕ be the projection on the first and second compo-
nent, respectively; then F is a Vietoris map, ϕ is continuous and compact (resp.
finite-dimensional), and Φ = ϕ ◦ F−1. See [25] for a further discussion on the
connection of fixed points of multivalued maps and coincidence points.

We emphasize once more that we do not restrict our attention to Vietoris
maps: By our approach, any extension of Theorem 2.1 to some (non-Vietoris)
function F will immediately lead to a corresponding index for the more general
equation (1) (for certain noncompact maps Φ) for that function F . More gen-
eral classes of functions F which provide a coincidence index can be found e.g.
by considering the fixed point index of so-called decompositions, see [13, Theo-
rem (51.10)]. However, the case of Vietoris maps is the most important example
for our theory (and the obtained results are new in this case, even for F = id).
For a set A in a metric space and r > 0, we use the notation Br(A) = {x :

dist(x,A) < r} and Br(x) = Br({x}).
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For a multivalued map Φ : D → 2Z and A ⊆ D, we use the convenient
notation Φ(A) :=

⋃
{Φ(x) : x ∈ A}.

Let Φ : D → 2Z be some multivalued map where D is a metric space.
Let O ⊆ Z be some neighbourhood of 0, and ε > 0. We call a single-valued
continuous map ϕ : D → Z an (ε,O)-approximation for Φ, if the inclusion ϕ(x) ∈
Φ(Bε(x)) +O holds for all x ∈ D. If additionally the range of ϕ is contained in
a finite-dimensional subspace of Z, we call ϕ a finite (ε,O)-approximation.
The following lemma is one of the main reasons why we will restrict ourselves

to the case of convex-valued maps: The corresponding result in [15] for e.g. maps
with Rδ-values requires that D be an ANR and, moreover, it is not clear whether
a “simultaneous approximation” as in the following lemma is possible. Parts of
the proof of this lemma are inspired by the proof of [8, Theorem 24.2].
For M ⊆ Z, let C(M) denote the system of all nonempty closed and convex

subsets of M .

Lemma 2.1. Let D be a compact metric space, and Φ : D → C(Z) be upper
semicontinuous. Let D1, . . . , Dn ⊆ D be closed subsets such that for each pair
j 6= k one of the relations Dj ∩ Dk = ∅, Dj ⊆ Dk, or Dk ⊆ Dj holds. Then
for each ε > 0, and each neighbourhood O ⊆ Z of 0, there is some finite (ε,O)-
approximation ϕ : D → conv(Φ(D)) for Φ such that simultaneously ϕ|Dj : Dj →
conv(Φ(Dj)) is a finite (ε,O)-approximation for Φ|Dj (j = 1, . . . , n).

Proof. Since Z is locally convex, we may assume that O is convex. Choose
open sets Uj ⊇ Dj such that Uj ∩Dk = ∅ whenever Dj ∩Dk = ∅.
Let r(x) > 0 be the supremum of all numbers ρ ∈ (0, ε] such that Φ(B2ρ(x)) ⊆

Φ(x)+O (here we used that Φ is upper semicontinuous). Without loss of gener-
ality, we may assume Dn = D and that the sets Dj are ordered such that j < k

implies Dj ⊆ Dk or Dj ∩Dk = ∅. Now we define by induction on k = 0, . . . , n
finite sets Pk ⊆ D and open sets Bk ⊆ D as follows: Put P0 = B0 = ∅. If Pj
and Bj are already defined for j < k, then Ak = Dk \

⋃
{Bj : j < k} is compact.

Hence, we find a finite set Pk ⊆ Ak such that Bk =
⋃
{Br(z)(z) ∩ Uk : z ∈ Pk}

contains Ak.
We have Dk ⊆

⋃
{Bj : j ≤ k}, because any element from Dk either belongs

to Ak ⊆ Bk or to
⋃
{Bj : j < k}. Put Ok = Bk \

⋃
{Dj : j < k}. By what we

just proved it follows on the one hand that Ok ⊇ Bk \
⋃
{Bj : j < k}, and then

on the other hand that
⋃
Ok ⊇

⋃
Bk ⊇ Dn = D. We may conclude that the

sets Vk,z = Br(z)(z) ∩ Uk \
⋃
{Dj : j < k} (z ∈ Pk, k = 1, . . . , n) constitute a

(finite) open cover of D. Let ϕk,z be a partition of unity with suppϕk,z ⊆ Vk,z.
For each k and each z ∈ Pk choose some yk,z ∈ Φ(z). We claim that

ϕ(x) =
n∑
k=1

∑
z∈Pk

ϕk,z(x)yk,z
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has the desired properties. Given x ∈ Dj , the set I = {(k, z) : ϕk,z(x) 6= 0} is
contained in {1, . . . , n}×Dj . Indeed, since x ∈ suppϕk,z ⊆ Vk,z and Vk,z∩Dj =
∅ for j < k, we must have j ≥ k. Moreover, since x ∈ Uk ∩Dj , our choice of Uk
implies that Dk ∩ Dj 6= ∅, and so in view of our order that Dj ⊇ Dk. Hence,
z ∈ Pk ⊆ Ak ⊆ Dk ⊆ Dj , as claimed.
It readily follows that ϕ(x) ∈ conv({yk,z : (k, z) ∈ I}) ⊆ conv(Φ(Dj)).
Fix some (k0, z0) ∈ I with r(z0) = max{r(z) : (k, z) ∈ I}. Then we have

for any (k, z) ∈ I in view of x ∈ Vk,z ∩ Vk0,z0 the estimate d(z, z0) ≤ d(z, x) +
d(x, z0) ≤ 2r(z0), and so yk,z ∈ Φ(B2r(z0)(z0)) ⊆ Φ(z0) + O. Since Φ(z0) + O is
convex (recall that O is convex), we thus find ϕ(x) ∈ conv({yk,z : (k, z) ∈ I}) ⊆
Φ(z0) + O. Since z0 ∈ Dj (as we have proved above) and z0 ∈ Bε(x) (because
r(z0) ≤ ε), it follows that ϕ|Dj is an (ε,O)-approximation for Φ|Dj . �

The following lemma implies that convex-valued maps are appropriate in the
sense of [15] (even if D is not necessarily an ANR).

Lemma 2.2. Let D be a compact metric space, Φ : D → C(Z) be upper
semicontinuous, O0 ⊆ Z be some neighbourhood of 0, and δ > 0. Then there is
some neighbourhood O ⊆ Z of 0 and some ε > 0 such that whenever ϕ,ψ are
two finite (ε,O)-approximations for Φ, then the homotopy h(λ, x) = λϕ(x) +
(1 − λ)ψ(x) has the property that h(λ, · ) is a δ-approximation for Φ for each
λ ∈ [0, 1].

Proof. We may assume that O0 is convex. Let O ⊆ Z be some neighbour-
hood of 0 with O + O ⊆ O0. Let r(x) > 0 be the supremum of all numbers
ρ ∈ (0, δ] such that Φ(Bρ(x)) ⊆ Φ(x) + O. Let ε > 0 be the Lebesgue number
of the covering (Br(x)(x))x of the compact set D, i.e. we find for any x ∈ D

some x0 ∈ D with Bε(x) ⊆ Br(x0)(x0), and so Φ(Bε(x)) ⊆ Φ(x0) + O. If ϕ,ψ
are two finite (ε,O)-approximations for Φ, and λ ∈ [0, 1], then ϕ(x), ψ(x) ∈
Φ(Bε(x)) + O ⊆ Φ(x0) + O + O ⊆ Φ(x0) + O0. Since Φ(x0) + O0 is con-
vex, we have h(λ, x) ∈ conv({ϕ(x), ψ(x)}) ⊆ Φ(x0) + O0. Note now that
d(x, x0) < r(x0) ≤ δ. �

If Z is metrizable, the following result is easily proved by contradiction and a
sequential argument. One could try to prove the general case similarly by using
nets. However, the following proof avoids the axiom of choice:

Lemma 2.3. Let I be a compact metric space, Ω ⊆ Y , D = F−1(Ω), and
H : I × D → 2Z be upper semicontinuous with closed values. Let M ⊆ Z

be compact such that the inclusion F (x) ∈ H(I × {x}) ∩ M has no solution.
Then there is some neighbourhood O ⊆ Z of 0 and some ε > 0 such that for
any (ε,O)-approximation h for H the inclusion F (x) ∈ h(I × {x}) ∩M has no
solution.
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Proof. We consider the compact metric space A = I × F−1(M). Given
(λ, x) ∈ A, the set H(λ, x) ∩M is closed and does not contain F (x). Hence, we
find some neighbohrood O0 ⊆ Z of 0 with F (x) /∈ H(λ, x) + O0. Let O ⊆ Z be
some neighbourhood of 0 with O+O−O ⊆ O0. SinceH is upper semicontinuous,
we find some ρ ∈ (0, 1) such that H(Bρ(λ, x)) ⊆ H(λ, x) + O. Since F is
continuous, we may assume that the relation (λ0, x0) ∈ Bρ(λ, x) implies F (x0) ∈
F (x) +O.
This proves that for each (λ, x) ∈ A we find some ρ ∈ (0, 1) with the property

that there is some neighbourhood O ⊆ Z of 0 with F (x0) /∈ H(Bρ(λ, x)) + O
whenever (λ0, x0) ∈ Bρ(λ, x). Let r(λ, x) denote the half of the supremum
of all those numbers ρ. Then A is covered by the sets Br(λ,x)(λ, x). Choose
a finite subcovering B1 = Br(λ1,x1)(λ1, x1), . . . , Bn = Br(λn,xn)(λn, xn). For
i = 1, . . . , n, we find an open neighbourhood Oi ⊆ Z of 0 such that the relation
(λ, x) ∈ Bi implies F (x) /∈ H(Bi) + Oi. Let ε > 0 be the Lebesgue number of
the cover (Bi)i, and put O = O1 ∩ · · · ∩On.
Now if h is some (ε,O)-approximation h for H, we can not have F (x) =

h(λ, x) ∈ M : Otherwise, we find some i with Bε(λ, x) ⊆ Bi. Then h(λ, x) =
F (x) /∈ H(Bi) + O ⊇ H(Bε(λ, x)) + O which contradicts the fact that h is an
(ε,O)-approximation for H. �

If Z is metrizable (and I = [0, 1]), the following lemma is essentially [15,
(4.3)]. We assume in this lemma that the space I × D is equipped with the
metric d((λ, x), (λ0, x0)) = max{d(λ, λ0), d(x, x0)}.

Lemma 2.4. Let I be some metric space, D some compact metric space, and
H : I ×D → 2Z be upper semicontinuous. Let O ⊆ Z be a neighbourhood of 0,
ε > 0, and λ0 ∈ I. Then there is some neighbourhood O1 ⊆ Z of 0 and some
ε1 > 0 such that if h : I × D → Z is an (ε1, O1)-approximation for H, then
h(λ0, · ) is an (ε,O)-approximation for H(λ0, · ).

Proof. Let O1 ⊆ Z be a neighbourhood of 0 with O1 + O1 ⊆ O. Since
H is upper semicontinuous, we may define for each λ ∈ D the value r(x) as
the supremum of all ρ ∈ (0, ε] with H(Bρ(λ0, x)) ⊆ H(λ0, x) + O1. Then the
open sets Br(x)(x) cover the compact set D. Let Br(x1)(x1), . . . , Br(xn)(xn)
be a finite subcover, and ε1 ≤ min{r(x1), . . . , r(xn)} be smaller than the cor-
responding Lebesgue number. Then we find for each x ∈ D some k with
Bε1(x) ⊆ Br(xk)(xk). If h is an (ε1, O1)-approximation of H, we find points
(λ, z) ∈ Bε1(λ0, x) with h(λ0, x) ∈ H(λ, z) + O1. By definition of the metric
in I × D, we have z ∈ Bε1(x) ⊆ Br(xk)(xk) and d(λ, λ0) < ε1 ≤ r(xk), and so
(λ, z) ∈ Br(xk)(λ0, xk). Thus, H(λ, z) ∈ H(Br(xk)(λ0, xk)) ⊆ H(λ0, xk) + O1,
and so h(λ0, x) ∈ H(λ0, xk)+O1+O1 ⊆ H(λ0, xk)+O. Since d(x, xk) < r(xk) ≤
ε, the claim follows. �
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Definition 2.2. Let I be some metric space, K ⊆ Y closed and convex,
Ω ⊆ K open in K, and D0 = F−1(Ω) ⊆ D ⊆ X. Let H : I ×D → 2Z such that
H : I×D0 → C(K) is upper semicontinuous and conv (H(I×D0)) is compact. If
the relation F (x) ∈ H(I×{x})∩Ω implies F (x) ∈ Ω, we call the triple (H,Ω,K)
compactly F -admissible.

We emphasize that we do not require that Ω be bounded (however, H(I×D0)
must be bounded, of course).

If no confusion arises, we identify functions Φ : D → 2Z with H : I×D → 2Z

where e.g. I = {0} and H(0, x) = Φ(x). Similarly, we identify as usual single-
valued functions ϕ with the corresponding multivalued function Φ(x) = {ϕ(x)}.
In this sense, each finitely F -admissible triple is compactly F -admissible.

Theorem 2.2. Let F : X → Y be continuous and proper and provide a
coincidence index indF (for single-valued maps). Then indF has an extension
to a coincidence index indF for multivalued maps defined on all compactly F -
admissible triples. This index has the following properties. If (Φ,Ω,K) is a
compactly F -admissible triple, then we have:

(i) (Localization) If Ψ : D0 → 2Z with F−1(Ω) ⊆ D0 ⊆ X and Ψ|F−1(Ω) =
Φ|F−1(Ω), then (Ψ,Ω,K) is compactly F -admissible, and

indF (Φ,Ω,K) = indF (Ψ,Ω,K).

(ii) (Coincidence point property) If indF (Φ,Ω,K) 6= 0, then the inclusion
F (x) ∈ Φ(x) ∩ Ω has a solution.

(iii) (Normalization) If Φ(x) ≡ {c} with c ∈ Ω, then indF (Φ,Ω,K) = 1.
(iv) (Homotopy invariance) If H : [0, 1]×D → 2Z is such that (H,Ω,K) is
compactly F -admissible, then (H(λ, · ),Ω,K) is compactly F -admissible
for 0 ≤ λ ≤ 1, and

indF (H(0, · ),Ω,K) = indF (H(1, · ),Ω,K).

(v) (Permanence) If K0 ⊆ K is closed and convex with Φ(F−1(Ω)) ⊆ K0,
then (Φ,Ω ∩K0,K0) is compactly F -admissible, and

indF (Φ,Ω,K) = indF (Φ,Ω ∩K0,K0).

If the given index satisfies the excision property, then we have also:

(vi) (Excision) If Ω0 ⊆ Ω is open in K and such that F (x) ∈ Φ(x) ∩ Ω
implies F (x) ∈ Ω0, then (Φ,Ω0,K) is compactly F -admissible, and

indF (Φ,Ω,K) = indF (Φ,Ω0,K).
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If the given index is additive, then we have also:

(vii) (Additivity) If Ω1,Ω2 ⊆ Ω are disjoint and open in K and such that
F (x) ∈ Φ(x)∩Ω implies F (x) ∈ Ω1∪Ω2, then (Φ,Ω1,K) and (Φ,Ω2,K)
are compactly F -admissible, and

indF (Φ,Ω,K) = indF (Φ,Ω1,K) + indF (Φ,Ω2,K).

Proof. The definition of the index for a compactly F -admissible triple
(Φ,Ω,K) is as follows: Let K0 ⊆ K be some compact and convex set which
contains conv (Φ(F−1(Ω))). Then D = F−1(K0 ∩ Ω) is compact, and Φ|D :
D → C(K) is upper semicontinuous. Apply Lemma 2.3 with M = (Ω ∩K0) \ Ω
to find some δ > 0 and some neighbourhood O0 ⊆ Z of 0 such that for any
(δ,O0)-approximation ϕ for Φ|D the equation F (x) = ϕ(x) ∈M has no solution.
Applying Lemma 2.2, we find some neighbourhood O ⊆ Z of 0 and some ε > 0
such that whenever ϕ,ψ are two finite (ε,O)-approximation for Φ|D with values
in K0, then the homotopy h(λ, x) = (1 − λ)ϕ(x) + λψ(x) is such that for each
λ ∈ [0, 1] the map h(λ, · ) is a (δ,O0)-approximation for Φ|D. By Lemma 2.1,
there exists some finite (ε,O)-approximation ϕ : D → K0 for Φ|D. Then we
extend ϕ to some continuous function ϕ : X → K0 with values in some finite-
dimensional subspace S: Since ϕ attains its values in a finite-dimensional space,
such an extension exists by the Tietze–Urysohn theorem (which in contrast to
Dugundji’s extension theorem [9] does not require the (uncountable) axiom of
coice). Now we put

(5) indF (Φ,Ω,K) := indF (ϕ,Ω ∩K0 ∩ S,K0 ∩ S).

This is well-defined: Note first that Ω∩K0 ∩ S is in fact open in the closed and
convex set K0 ∩ S. Moreover, since ϕ is in particular a (δ,O0)-approximation,
the relation F (x) = ϕ(x) ∈ Ω ∩K0 ∩ S implies (since F (x) /∈ M by our choice
of δ and O0) that F (x) ∈ Ω ∩K0 ∩ S. Hence, (ϕ,Ω ∩K0 ∩ S,K0 ∩ S) is in fact
finitely F -admissible.
The above definition is independent of the particular choice of S: If we let

S0 denote the linear hull of the range of ϕ, we have K0 ∩ S0 ⊆ K ∩ S, and the
permanence property implies

indF (ϕ,Ω ∩K0 ∩ S,K0 ∩ S) = indF (ϕ,Ω ∩K0 ∩ S0,K0 ∩ S0).

But the right-hand side is independent of S. Moreover, the above definition is
independent of the particular choice of ϕ: If ψ is another finite (ε,O)-approxi-
mation for Φ on D with values in K0, extend ψ to a continuous map ψ : X → K0
with values in a finite-dimensional space, and put h(λ, x) = λϕ(x)+(1−λ)ψ(x).
Then h : X → K0 ∩ S for some finite-dimensional space S ⊆ Z. Since by our
choice of ε and O the map h(λ, · )|D is a (δ,O0)-approximation for Φ, the same
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argument as above shows that the triple (h(λ, · ),Ω ∩K0 ∩ S,K0 ∩ S) is finitely
F -admissible. The homotopy invariance thus implies

indF (ϕ,Ω ∩K0 ∩ S,K0 ∩ S) = indF (ψ,Ω ∩K0 ∩ S,K0 ∩ S),

and the independence of our definition from the choice of ϕ is established. Note
now that each (ε,O)-approximation is also an (ε′, O′)-approximation for 0 < ε′ <

ε and neighbourhoods O′ ⊆ O of 0 and that we also find (ε′, O′)-approximations
ϕ′ by Lemma 2.1.

It remains to prove that our definition is independent from the particular
choice of K0. To see this, we show that we get the same value for indF (Φ,Ω,K)
if we make for K0 the particular choice K ′0 = conv (Φ(F

−1(Ω))): Denote the
corresponding sizes constructed above by D′, δ′, ε′, O′, and O′0. It follows
from the definition that K ′0 ⊆ K0, and so D′ ⊆ D. Applying Lemma 2.1 with
ε̃ = min{ε, ε′} and Õ = O ∩ O′, we find some finite (ε,O)-approximation ϕ :
D → K ′0 for Φ|D such that ϕ|D′ is simultaneously a finite (ε′, O′)-approximation
for Φ|D′ . Extend ϕ to a continuous function ϕ : X → K ′0 with values in some
finite-dimensional subspace S ⊆ Z. The permanence property implies

indF (ϕ,Ω,K) = indF (ϕ,Ω ∩K0 ∩ S,K0 ∩ S) = indF (ϕ,Ω ∩K ′0 ∩ S,K ′0 ∩ S),

and the independence of our definition from the set K0 is proved.

The localization property follows immediately from the fact that our def-
inition of the index depends only on the restriction of Φ to the set F−1(Ω).
Moreover, our newly defined index is an extension of the given index, and so in
particular, the normalization property is satisfied. Indeed, if Φ(x) = {ϕ(x)} is
single-valued and (ϕ,Ω,K) is finitely F -admissible, we may choose K0 = K and
S = span(K0) in our above definition, and then find

indF (Φ,Ω,K) = indF (ϕ,Ω ∩K0 ∩ S,K0 ∩ S) = indF (ϕ,Ω,K),

where the last equality holds by the permanence property.

The fixed point property follows from Lemma 2.3: Let (Φ,Ω,K) be com-
pactly admissible and such that the inclusion F (x) ∈ Φ(x) ∩ Ω has no solu-
tion. Choose K0, D, ε and O as in the above definition of the index. Applying
Lemma 2.3 withM0 = K0∩Ω, we may assume that for any (ε,O)-approximation
ϕ for Φ|D the equation F (x) = ϕ(x) ∈ M0 has no solution. Hence, if ϕ and S
is as in the above definition of the index, the fixed point property of the given
index implies that the right-hand side of (5) vanishes.

To prove the homotopy invariance, let H : [0, 1]×D → 2Z with D = F−1(Ω)
be such that (H,Ω,K) is compactly F -admissible. PutK0 = conv (H([0, 1]×D)),
and D0 = F−1(K0 ∩Ω). By our definition of the index, there is some ε > 0 and
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some neighbourhood O ⊆ Z of 0 such that

(6) indF (H(λ, · ),Ω,K) = indF (ϕλ,Ω ∩K0 ∩ Sλ,K0 ∩ Sλ) (λ = 0, 1)

holds whenever ϕλ : D → K0 is continuous with values in a finite dimensional
space Sλ ⊆ Z such that the restriction ϕλ|D0 is a finite (ε,O)-approximation
for H(λ, · )|D0 . By Lemma 2.4, we find some ε1 > 0 and some neighbourhood
O1 ⊆ Z of 0 such that for any (ε1, O1)-approximation h for H|[0,1]×D0 the func-
tion h(λ, · ) is a finite (ε,O)-approximation for H(λ, · )|D0 (λ = 0, 1). Applying
Lemma 2.3 with M = (Ω \ Ω) ∩K0, we find some ε2 > 0 and some neighbour-
hood O2 ⊆ Z of 0 such that for any (ε2, O2)-approximation h for H|[0,1]×D0 the
inclusion F (x) ∈ h([0, 1] × {x}) ∩M has no solution. By Lemma 2.1, we find
some finite (min{ε1, ε2}, O1 ∩ O2)-approximation h for H|[0,1]×D0 . Extend h to
a continuous function h : [0, 1]×X → K0 with values in some finite-dimensional
subspace S ⊆ Z. Then (6) implies

indF (H(λ, · ),Ω,K) = indF (h(λ, · ),Ω ∩K0 ∩ S,K0 ∩ S) (λ = 0, 1).

Moreover, the relation F (x) ∈ h([0, 1]×{x})∩ (Ω ∩K0 ∩ S) implies first F (x) /∈
M and then by definition of M also F (x) ∈ Ω ∩ K0 ∩ S. Hence, the triple
(h(λ, · ),Ω ∩K0 ∩ S,K0 ∩ S) is finitely F -admissible for 0 ≤ λ ≤ 1, and so the
homotopy invariance of the given index implies

indF (h(0, · ),Ω ∩K0 ∩ S,K0 ∩ S) = indF (h(1, · ),Ω ∩K0 ∩ S,K0 ∩ S).

Now (4) follows.
Concerning the permanence property, let (Φ,Ω,K) be compactly F -admissi-

ble, and K1 ⊆ K be closed and convex with K0 = conv (Φ(F−1(Ω))) ⊆ K1.
Choose D, δ, ε, O0, O, ϕ, and S as in the above definition of the index. Then (5)
holds. Moreover, since K0 ⊆ K1, we may choose the same values δ, ε, O0, O, ϕ,
and S in the above definition if we replace Ω by Ω ∩K1. Hence,

indF (Φ,Ω ∩K1,K1) = indF (ϕ,Ω ∩K0 ∩ S,K0 ∩ S),

which in view of (5) implies the permanence property.
Now we prove the additivity (the excision property follows analogously with

the choice Ω2 = ∅): Let (Φ,Ω0,K) be compactly F -admissible, and Ω1,Ω2 ⊆ Ω0
be disjoint and open inK and such that F (x) ∈ Φ(x)∩Ω0 implies F (x) ∈ Ω1∪Ω2.
Put K0 = conv (Φ(F−1(Ω0))). Choose Di, δi, εi, O0,i and Oi as in the above
definition of the index for the triple (Φ,Ωi,K) (i = 0, 1, 2). Applying Lemma 2.3
with M = K0 ∩ Ω0 \ (Ω1 ∪ Ω2), we find some neighbourhood O ⊆ Z of 0 and
some ε > 0 such that the relation F (x) = ϕ(x) ∈ M has no solution for each
(ε,O)-approximation ϕ for Φ|D0 . We may assume that O ⊆ Oi and ε ≤ εi
(i = 0, 1, 2). In view of Lemma 2.1, we find some function ϕ such that ϕ|Di is
a finite (ε,O)-approximation for Φ|Di (i = 0, 1, 2). Extend ϕ to a continuous
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function ϕ : X → K0 with values in some finite-dimensional subspace S ⊆ Z.
Then our definition of the index implies

indF (Φ,Ωi,K) = indF (ϕ,Ωi ∩K0 ∩ S,K0 ∩ S) (i = 0, 1, 2).

Since the relation F (x) = ϕ(x) ∈ Ω0 ∩K0 ∩ S implies F (x) = (Ω1∪Ω2)∩K0∩S,
the additivity of the given index implies

indF (Φ,Ω0,K) = indF (ϕ,Ω1 ∩K0 ∩ S,K0 ∩ S) + indF (ϕ,Ω2 ∩K0 ∩ S,K0 ∩ S),

and the additivity of our new index follows. �

3. Weakly admissible maps

In the following, we shall need a stronger form of the permanence property:

Lemma 3.1. The index indF from Theorem 2.2 has the following stronger
permanence property: Let (Φ,Ω,K) be compactly F -admissible, and K0 ⊆ K

be compact and convex with Φ(F−1(Ω ∩ K0)) ⊆ K0 and such that F (x) ∈ Ω ∩
conv(Φ(x) ∪ K0) implies F (x) ∈ K0. Then (Φ,Ω ∩ K0,K0) is compactly F -
admissible, and (3) holds.

Proof. We have Φ : D → Y with F−1(Ω) ⊆ D ⊆ Y . By definition, K0
contains the set S = {F (x) : F (x) ∈ Φ(x) ∩ Ω}. Hence, if K0 = ∅, we have
S = ∅, and so both sides of (3) vanish by the coincidence point property. Thus,
we have only to consider the case K0 6= ∅. Put D0 = F−1(Ω ∩K0), and let Φ0
denote the restriction of Φ to D0. Then Φ0 : D0 → C(K0) is semicontinuous, and
so we may extend Φ0 to an upper semiconitinuous map Φ0 : D → C(K0): Since
K0 is nonempty, compact, and convex, and D0 ⊆ D is closed, this is possible by
Ma’s extension theorem [26, Theorem 2.1].
Consider now the upper semicontinuous mapH(λ, x) = λΦ0(x)+(1−λ)Φ(x).

Note that Φ(x),Φ0(x) ∈ C(K0) implies H(λ, x) ∈ C(K0). We show now that
(H(λ, · ),Ω,K) is compactly F -admissible for 0 ≤ λ ≤ 1. Indeed, assume that
F (x) ∈ H([0, 1]×{x})∩Ω. Then F (x) ∈ Ω∩ conv(Φ({x})∪K0), and so the as-
sumption implies F (x) ∈ K0. Hence, x ∈ D0 which in turn implies Φ0(x) = Φ(x),
and so F (x) ∈ H([0, 1]× {x}) ∩ Ω = Φ(x) ∩ Ω which implies F (x) ∈ Ω, because
(Φ,Ω,K) is F -admissible. Moreover, conv (H([0, 1]×D)) = conv (Φ(D)∪K0) =
conv (Φ(D)) is compact. The homotopy invariance thus implies

indF (Φ,Ω,K) = indF (H(0, · ),Ω,K) = indF (H(1, · ),Ω,K) = indF (Φ0,Ω,K),

where all sizes are defined. Since Φ0(D) ⊆ K0, we find in view of the permanence
property and the localization property that

indF (Φ0,Ω,K) = indF (Φ0,Ω ∩K0,K0) = indF (Φ,Ω ∩K0,K0).

Combining the above equations, we find (3). �
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In the situation of Example 2.1 (F = id), the proof of Lemma 3.1 is well-
known in principle and is implicitly used in all definitions of a fixed point index for
noncompact maps in one form or another. However, we never found an explicit
formulation of Lemma 3.1 even for this special case. In the case F = id, the sets
K0 satisfying the assumption of Lemma 3.1 are usually called fundamental for
Φ. For reasons that will become clear later, we are interested in a generalization
of this definition when we replace Ω by some other set.

Definition 3.1. Let Ω ⊆ Z, and H : I×D → 2Z where I is some nonempty
set, and F−1(Ω) ⊆ D ⊆ X. Let K ⊆ Y be closed and convex with H(I ×
F−1(Ω)) ⊆ K. Given V ⊆ K, we say that a set U ⊆ K is V -fundamental for H
on O ⊆ Ω (with respect to F and K), if
(i) convU = U ⊇ V ,
(ii) H(I × (F−1(O ∩ U))) ⊆ U , and
(iii) Whenever (λ, x) ∈ I ×D satisfies F (x) ∈ O ∩ conv(H(λ, x) ∪ U), then

F (x) ∈ U .
We call H fundamentally V -restrictible on O (to U), if there is some V -funda-
mental set U such that conv (H(I × (F−1(O ∩ U))) ∪ V ) is compact.
In case V = ∅, we call U fundamental for H, resp. we call H fundamentally

restrictible.

As before, we identify functions Φ : D → 2Z with functions H : I ×D → 2Z .
The most important case in the previous definition is V = ∅. However, to

verify that a given function is fundamentally restrictible, it is sometimes conve-
nient to consider also other sets V in view of the following observations:

Lemma 3.2. The intersection U0 of any nonempty family U of V -fundamen-
tal sets (on O) is V -fundamental. Moreover, if U1 is V -fundamental on O, then

U2 = conv (H(I × (F−1(O ∩ U1)))) ∪ V )

is V -fundamental on O and satisfies U2 ⊆ U1.

Proof. Clearly, U0 = convU0 ⊇ V . We have for any U ∈ U in view of
U0 ⊆ U that H(I × (F−1(O ∩ U0))) ⊆ H(I × (F−1(O ∩ U))) ⊆ U . Hence,
H(I × (F−1(O ∩ U0))) ⊆ U0. Moreover, if F (x) ∈ O ∩ conv(H(λ, x) ∪ U0),
then we have for any U ∈ U that F (x) ∈ O ∩ conv(H(λ, x) ∪ U), which implies
F (x) ∈ U . Hence, F (x) ∈ U0.
Since U1 is V -fundamental on O, we have H(I × (F−1(O ∩ U1))) ⊆ U1 and

U1 = convU1 ⊇ V . This implies U2 ⊆ U1. Hence, H(I × (F−1(O ∩ U2))) ⊆
H(I × (F−1(O ∩ U1))) = U2. Moreover, if F (x) ∈ O ∩ conv(H(λ, x) ∪ U2), then
F (x) ∈ O∩conv(H(λ, x)∪U1), and so F (x) ∈ U1. Consequently, F (x) ∈ O∩U1,
i.e. x ∈ F−1(O ∩ U1) which in turn implies F (x) ∈ O ∩ conv(H(I × F−1(O ∩
U1)) ∪ U2) ⊆ O ∩ conv(U2 ∪ U2) ⊆ U2, as desired. �
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Proposition 3.1. For each V ⊆ K and each O ⊆ Ω there is a smallest
V -fundamental set UV on O (for H). This set satisfies

(7) UV = conv (H(I × (F−1(O ∩ UV ))) ∪ V ).

The function H is V -fundamentally restrictible if and only if UV is compact, i.e.
if and only if there is some compact V -fundamental set U .

Proof. Let U denote the family of all V -fundamental sets. Since K ∈ U,
we have U 6= ∅, and so Lemma 3.2 implies that UV =

⋂
U is the smallest

V -fundamental set. Lemma 3.2 implies also that the set U2 = conv (H(I ×
(F−1(Ω ∩ UV ))) ∪ V ) is V -fundamental and satisfies U2 ⊆ UV . Since UV is the
smallest V -fundamental set, we also have the converse inclusion UV ⊆ U2. The
second statement is an immediate consequence of (7). �

Definition 3.2. Let I be some metric space, K ⊆ Y closed and convex,
Ω ⊆ K open in K, and H : I × D → 2Z with D0 = F−1(Ω) ⊆ D ⊆ X

such that the restriction H : I × D0 → C(Y ) is upper semicontinuous, and
H(I×D0) ⊆ K. Then we call the triple (H,Ω,K) weakly F -admissible, if there is
some set Ω0 ⊆ Ω which is open in K such that the relation F (x) ∈ H(I×{x})∩Ω
implies F (x) ∈ Ω0 and such that H is fundamentally restrictible on Ω0. If even
the choice Ω0 = Ω is possible, then (H,Ω,K) is called F -admissible.

We point out that Ω and Ω0 may also be unbounded.
Clearly, each compactly F -admissible triple is F -admissible, and each F -

admissible triple is weakly F -admissible.
In the classical situation F = id of Example 2.1, the novelty of weakly id-

admissible triples lies in the fact that we do not require that H is fundamentally
restrictible on Ω but only on the possibly smaller set Ω0 (which is of course a
weaker condition). We will see in the proof of Theorems 4.1 and 4.3, how one
can take advantage of this fact.
Now we are in a position to formulate our main result. We note that the

strong permanence property proved below contains Lemma 3.1 as a special case.
Moreover, this property implies that the set K0 in Lemma 3.1 need actually not
be compact.

Theorem 3.1. Assume that F : X → Y is continuous and proper and pro-
vides a coincidence index indF (resp. a coincidence index which satisfies the
excision property). Then indF has an extension to a coincidence index indF de-
fined on all (weakly) F -admissible triples such that for each (weakly) F -admissible
triple (Φ,Ω,K) the following properties are satisfied:

(i) (Localization) If Ψ : D0 → 2Z with F−1(Ω) ⊆ D0 ⊆ X and Ψ|F−1(Ω) =
Φ|F−1(Ω), then (Ψ,Ω,K) is F -admissible, and

indF (Φ,Ω,K) = indF (Ψ,Ω,K).
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(ii) (Coincidence point property) If indF (Φ,Ω,K) 6= 0, then the inclusion
F (x) ∈ Φ(x) ∩ Ω has a solution.

(iii) (Normalization) If Φ(x) ≡ {c} ∈ Ω, then indF (Φ,Ω,K) = 1.
(iv) (Homotopy invariance) If (H,Ω,K) is (weakly) F -admissible, then, for
0 ≤ λ ≤ 1, (H(λ, · ),Ω,K) is (weakly) F -admissible and

(8) indF (H(0, · ),Ω,K) = indF (H(1, · ),Ω,K).

(v) (Strong permanence) If K0 ⊆ K is fundamental for Φ on Ω, then (Φ,Ω∩
K0,K0) is (weakly) F -admissible, and

(9) indF (Φ,Ω,K) = indF (Φ,Ω ∩K0,K0).

If indF satisfies the excision property, we may consider throughout weakly F -
admissible triples, and indF also has the following properties in this case:

(vi) (Extended permanence) If there are sets K0 ⊆ K and Ω0 ⊆ Ω such
that Ω0 is open in K, the relation F (x) ∈ Φ(x) ∩ Ω implies F (x) ∈ Ω0,
and if K0 is fundamental for Φ on Ω0 and Φ(F−1(Ω ∩K0)) ⊆ K0, then
(Φ,Ω ∩K0,K0) is weakly F -admissible, and (9) holds.

(vii) (Excision) If (Φ,Ω,K) is weakly F -admissible and Ω0 ⊆ K is open in
K and such that F (x) ∈ Φ(x) ∩ Ω implies F (x) ∈ Ω0, then (Φ,Ω0,K)
is weakly F -admissible, and

indF (Φ,Ω,K) = indF (Φ,Ω0,K).

If the given index indF is even additive, we also have:

(viii) (Additivity) If Ω1,Ω2 ⊆ K are disjoint and open in K and such that
F (x) ∈ Φ(x)∩Ω implies F (x) ∈ Ω1∪Ω2, then (Φ,Ω1,K) and (Φ,Ω2,K)
are weakly F -admissible, and

(10) indF (Φ,Ω,K) = indF (Φ,Ω1,K) + indF (Φ,Ω2,K).

Proof. The index for a (weakly) F -admissible triple (Φ,Ω,K) is defined
as follows: Put S = {F (x) : F (x) ∈ Φ(x) ∩ Ω}. By assumption, we find some
Ω0 ⊆ Ω which is open in K such that Ω0 ⊇ S and such that Φ is fundmantally
restrictible on Ω0 to some set U . If indF does not satisfy the excision property
(and thus we consider only F -admissible triples), we require Ω0 = Ω.
There exists some convex and compact set K0 ⊆ K with K0 ⊇ Φ(F−1(Ω0 ∩

U)) such that Φ(F−1(Ω0 ∩ K0)) ⊆ K0. Indeed, one possible choice is K0 =
conv (Φ(F−1(Ω0 ∩U))), because Lemma 3.2 implies for this choice K0 ⊆ U . For
such a set K0, we define

indF (Φ,Ω,K) := indF (Φ,Ω0 ∩K0,K0)(11)

= indF (Φ|F−1(Ω0∩K0),Ω0 ∩K0,K0),
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where the index on the right-hand side is the index for compactly F -admissible
triples from Theorem 2.2. Note that the triple (Φ|F−1(Ω0∩K0),Ω0 ∩ K0,K0) is
in fact compactly F -admissible (and so the second equality in (11) holds by the
localization property). Indeed, Ω1 := Ω0 ∩K0 is open in K0, and the range of
the function Ψ = Φ|F−1(Ω0∩K0) is contained in Φ(F

−1(Ω0 ∩ K0)) ⊆ K0 (note

that K0 is compact and convex). Finally, the relation F (x) ∈ Ψ(x)∩Ω1 implies
F (x) ∈ S ∩ Ω1 ⊆ Ω0 ∩K0 = Ω1.
The above definition is independent of the particular choice of Ω0, U , and

K0. Let Ω1, U1, and K1 be some (possibly different) sets with open Ω1 ⊆ K,
S ⊆ Ω1 ⊆ Ω such that U1 is fundamental for Φ on Ω1, K1 ⊆ Y is convex and
compact with K1 ⊇ Φ(F−1(Ω1 ∩ U1)) and Φ(F−1(Ω1 ∩ K1)) ⊆ K1 (assume
Ω1 = Ω if indF does not satisfy the excision property).
The set Ω2 = Ω0 ∩ Ω1 is open in K with S ⊆ Ω2. The excision property of

indF thus implies

(12) indF (Φ,Ωi ∩Ki,Ki) = indF (Φ,Ω2 ∩Ki,Ki) (i = 0, 1).

If indF does not satisfy the excision property, we have Ωi = Ω2, and so (12)
holds also. Put U2 = U ∩ U1. Since Ω2 ⊆ Ω0 ∩ Ω1, the sets U and U1 are
both fundamental on Ω2. Lemma 3.2 thus implies that U2 and then also K2 =
conv (Φ(F−1(Ω2 ∩ U2))) is fundamental on Ω2. The latter implies in particular
Φ(F−1((Ω2 ∩Ki) ∩K2)) ⊆ Φ(F−1(Ω2 ∩K2)) ⊆ K2 (i = 0, 1), and the relation
F (x) ∈ (Ω2 ∩Ki) ∩ conv(Φ({x}) ∪ K2) implies F (x) ∈ Ω2 ∩ conv(Φ({x}) ∪
K2) which in turn implies F (x) ∈ K2. Since (Φ,Ω2 ∩ Ki,Ki) is compactly
F -admissible (recall (12)), we find by Lemma 3.1 that

(13) indF (Φ,Ω2 ∩Ki,Ki) = indF (Φ, (Ω2 ∩Ki) ∩K2,Ki ∩K2) (i = 0, 1).

Note that K2 ⊆ conv (Φ(F−1(Ω0 ∩ U ∩ Ω1 ∩ U1))) ⊆ K0 ∩ K1. Hence, (12)
and (13) together imply

indF (Φ,Ω0 ∩K0,K0) = indF (Φ,Ω2 ∩K2,K2) = indF (Φ,Ω1 ∩K1,K1).

This shows that the definition of the index is in fact independent of the particular
choice of the sets Ω0, U , and K0.
The localization property of the newly defined index follows immediately

from the definition. Moreover, if (Φ,Ω,K) is compactly F -admissible, we may
choose Ω0 = Ω, U = K, and K0 = conv (Φ(Ω)); by the above definition, we have

indF (Φ,Ω,K) = indF (Φ,Ω ∩K0,K0),

and the permanence property thus shows that our newly defined index indF is
in fact an extension of the given index (i.e. with the same values for compactly
F -admissible triples). In particular, the use of the same symbol indF for the new
index is justified, and indF satisfies the normalization property. The coincidence
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point property is almost trivial: If indF (Φ,Ω,K) 6= 0, choose Ω0 ⊆ Ω and K0 as
in the definition of the index above. Then (11) implies indF (Φ,Ω0∩K0,K0) 6= 0,
and by the coincidence point property for compactly F -admissible triples, the
equation F (x) ∈ Φ(x)∩(Ω0 ∩K0) has a solution, and thus also F (x) ∈ Φ(x)∩Ω.
To see the homotopy invariance, let H be a homotopy such that (H,Ω,K)

is weakly F -admissible (resp. F -admissible if indF does not satisfy the excision
property). By assumption, we find some Ω0 ⊆ Ω which is open in K and which
contains S = {F (x) : F (x) ∈ H([0, 1]× {x}) ∩ Ω} such that H is fundamentally
restrictible on Ω0 to some set U (if indF does not satisfy the excision property, put
Ω0 = Ω). Lemma 3.2 implies that K0 = conv (H([0, 1]×(F−1(Ω0∩U)))) satisfies
K0 ⊆ U . Thus, we have for fixed λ ∈ [0, 1] that conv (H({λ}×(F−1(Ω0∩K0)))) ⊆
K0. Since additionally Ω0 ⊆ Ω contains {F (x) : F (x) ∈ H(λ, x) ∩ Ω} and U is
fundamental for each H(λ, · ) on Ω0, we thus find by our definition of indF that

indF (H(λ, · ),Ω,K) = indF (H(λ, · ),Ω0 ∩K0,K0),

where the triple (H(λ, · ),Ω0 ∩K0,K0) is compactly F -admissible. In particu-
lar, H([0, 1] × F−1(Ω0 ∩K0)) ⊆ K0, and since K0 is compact and convex, the
homotopy invariance for compactly F -admissible triples implies

indF (H(0, · ),Ω0 ∩K0,K0) = indF (H(1, · ),Ω0 ∩K0,K0).

Hence, (8) follows.
Now we prove the strong permanence property (and the extended perma-

nence property if indF satisfies the excision property): Let (Φ,Ω,K) be (weakly)
F -admissible, and Ω0 ⊆ Ω be open in K and contain S = {F (x) : F (x) ∈
Φ(x) ∩ Ω} (if indF does not satisfy the excision property, assume Ω0 = Ω).
Moreover, assume that K0 ⊆ K is fundamental for Φ on Ω0 and satisfies
Φ(F−1(Ω ∩K0)) ⊆ K0.
Since (Φ,Ω,K) is (weakly) F -admissible, there is some Ω1 ⊆ Ω which is

open in K and contains S such that Φ is fundamentally restrictible to some set
U1 (assume Ω1 = Ω if indF does not satisfy the excision property). Putting
K1 = conv (Φ(F−1(Ω1 ∩ U1))), we find by the definition of the index that

(14) indF (Φ,Ω,K) = indF (Φ,Ω1 ∩K1,K1).

The set Ω2 = Ω0 ∩ Ω1 is open in K, and we have S ⊆ Ω2. In particular, the
relation F (x) ∈ Φ(x)∩(Ω1 ∩K1) implies F (x) ∈ Ω2∩K1. The excision property
of the index for compactly F -admissible triples thus implies

(15) indF (Φ,Ω1 ∩K1,K1) = indF (Φ,Ω2 ∩K1,K1)

(if indF does not satisfy the excision property, this equality is trivial, since then
Ω1 = Ω2). Let us now prove that the triple (Φ,Ω ∩ K0,K0) is (weakly) F -
admissible. Recall first that by assumption Φ(F−1(Ω ∩K0)) ⊆ K0. Moreover,
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the relation F (x) ∈ Φ(x)∩ (Ω ∩K0) implies F (x) ∈ S ∩K0 ⊆ Ω2 ∩K0. The sets
U1 andK0 are both fundamental on Ω2 ∩K0 ⊆ Ω0∩Ω1, and so Lemma 3.2 shows
that U2 = U1 ∩K0 is fundamental on Ω2 ∩K0. Finally, since U2 ⊆ U0 ∩ U1, the
set K2 = conv (Φ(F−1(Ω2 ∩U2))) is contained in K0 ∩K1 and thus in particular
compact. Hence, the triple (Φ,Ω ∩ K0,K0) is in fact (weakly) F -admissible.
Moreover, the definition of the index implies

(16) indF (Φ,Ω ∩K0,K0) = indF (Φ,Ω2 ∩K2,K2).

The triple (Φ,Ω2 ∩K1,K1) is compactly F -admissible (recall (15)). Since U2 is
fundamental on Ω2, Lemma 3.2 implies that also K2 is fundamental on Ω2. In
particular, K2 is fundamental on Ω2 ∩K1 ⊆ Ω2. Lemma 3.1 thus implies

(17) indF (Φ,Ω2 ∩K1,K1) = indF (Φ,Ω2 ∩K2,K2).

Combining the above equations (14)–(17), we find (9).
Now we prove the additivity of the index (the proof of the excision property

is analogous with Ω2 = ∅ in the following arguments): Let (Φ,Ω,K) be weakly
F -admissible. Put S = {F (x) : F (x) ∈ Φ(x)∩Ω}. By assumption, we find some
Ω0 ⊆ Ω which is open in K such that Ω0 ⊇ S and such that Φ is fundamantally
restrictible on Ω0 to some set U . By the definition of the index, we find some
convex and compact set K0 ⊆ K with K0 ⊇ Φ(F−1(Ω0 ∩ U)) and Φ(F−1(Ω0 ∩
K0)) ⊆ K0, and then (11) holds. Let Ω1,Ω2 ⊆ K be disjoint and open in K
with S ⊆ Ω1 ∪ Ω2. For i = 1, 2, we have then (Ω1 ∪ Ω2) ∩ Ωi ⊆ Ωi. The set
Ωi,0 = Ωi∩Ω0 is open in K, and S∩Ωi ⊆ (Ω0∩ (Ω1∪Ω2))∩Ωi ⊆ Ω0∩Ωi = Ω0,i.
Since Ω0,i ⊆ Ω0, the function Φ is fundamentally restrictible on Ω0,i to U ,
and so the triple (Φ,Ωi,K) is F -admissible. Moreover, Ω0,i ⊆ Ω0 also implies
K0 ⊇ Φ(F−1(Ωi,0 ∩ U)) and Φ(F−1(Ωi,0 ∩ K0)) ⊆ K0. The definition of the
index thus shows that

indF (Φ,Ωi,K) = indF (Φ,Ωi,0 ∩K0,K0) (i = 1, 2).

The sets Ωi,1 = Ωi,0 ∩ K0 are open in K0. Moreover, the relation F (x) ∈
Φ(x)∩(Ω0 ∩K0) implies F (x) ∈ S∩K0 ⊆ (S∩(Ω1∪Ω2)∩Ω0)∩K0 ⊆ Ω1,1∪Ω2,1.
Hence, the additivity of the index for compactly F -admissible triples implies

indF (Φ,Ω0 ∩K0,K0) = indF (Φ,Ω1,1,K0) + indF (Φ,Ω2,1,K0).

In view of (11), the above equalities imply (10). �

Remark 3.1. Our proof actually shows the following extension of Theo-
rems 2.2 and 3.1: Let O be a system of subsets of Y with the following proper-
ties

(i) If Ω1,Ω2 ∈ O, then Ω1 ∩ Ω2 ∈ O.
(ii) If K ⊆ Y is closed and convex and Ω∩K is open in K, then Ω∩K ∈ O.
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For example, O may be the system of all convex subsets of Y or, more general,
the system of finite unions of convex subsets of Y . For many natural functions
F , the set F−1(Ω) is then always an ANR for Ω ∈ O (recall the remarks in front
of Lemma 2.1).
Call a finitely F -admissible triple (ϕ,Ω,K) finitely (F,O)-admissible, if Ω ∈

O. Similarly, call a compactly F -admissible triple (Φ,Ω,K) compactly (F,O)-
admissible, if Ω ∈ O, and a (weakly) F -admissible triple (Φ,Ω,K) (weakly)
(F,O)-admissible, if Ω ∈ O and additionally the set Ω0 ⊆ Ω in Definition 3.2
may be chosen such that Ω0 ∈ O.
Assume that the index from Definition 2.1 is only defined for finitely (F,O)-

admissible triples (of course, the additivity, resp. the excision property, is then
required only for sets Ωi ∈ O). Then Theorem 2.2 still holds for compactly
(F,O)-admissible triples, and Theorem 3.1 holds for (weakly) (F,O)-admissible
triples (for the extended permanence property and for the additivity, resp. exci-
sion property, we require additionally that Ωi ∈ O).

Remark 3.2. Drop for a moment the general axiom of choice, and consider
instead a weaker form, the axiom of dependent choices [20], which allows count-
ably many recursive or nonrecursive choices. Then all results in this paper still
hold if we assume in addition that Y has the following “continuous extension
property” (which is required in the proof of Lemma 3.1 to drop Ma’s extension
theorem):
If D0 ⊆ X is compact, and Φ : D0 → C(Y ) is upper semicontinuous and

K0 ⊆ Y is nonempty, compact and convex with Φ(D0) ⊆ K0, then Φ has an
extension to an upper semicontinuous function Φ : X → C(K0).
If Z is metrizable, this property is always satisfied [34] (observe that D0 is

separable and K0 is complete). This is the reason why we formulated Lemma 3.1
only for compact fundamental sets K0. It is somewhat surprising that the strong
permanence property in Theorem 3.1 then implies that actually Lemma 3.1 is
valid even if K0 is not compact.
If one is only interested in a coincidence index for single-valued functions Φ,

one could replace the above “continuous extension property” by the requirement
that for each nonempty convex and compact set K0 ⊆ Y there exists a retraction
ρ : Y → K0 onto K0. In fact, for single-valued Φ we can then in the proof
Lemma 3.1 just put Φ0 = ρ ◦ Φ (because then Φ0|D0 = Φ|D0). Note that this
argument fails for multivalued Φ, because it is not clear whether ρ ◦ Φ attains
convex values.

4. Countable compactness conditions

We provide now some convenient tests which allow to verify that a given
triple (H,Ω,K) is (weakly) F -admissible:
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We consider the following situation: Let X be some metric space, Z some
locally convex metrizable space, Y ⊆ X closed and convex, and assume that
F : X → Y is continuous and proper and provides some coincidence index. Let
K ⊆ Y be closed and convex, Ω ⊆ K open in K, and I be a compact metric
space. Let H : I × D → K(K) be upper semicontinuous where K(K) denotes
the system of all nonempty convex compact subsets of K.
The following result is the most important test for weak F -admissibility if

V = ∅ and U = K:

Theorem 4.1. Consider the above situation. Suppose that the relation F (x)
∈ H(I × {x}) ∩ Ω implies F (x) ∈ Ω.
Let V ⊆ K be such that convV is compact, and assume there is some set

U ⊆ K which is V -fundamental on Ω with the following property: For any
countable C ⊆ F−1(U ∩ Ω) the relation

(18) F (C) = conv(H(I × C) ∪ V ) ∩ Ω

implies that conv (H(I × C)) is compact. Then the triple (H,Ω,K) is weakly
F -admissible. If Z is even a Fréchet space (i.e. complete), one may alternatively
assume that (18) implies that C is compact.

If we want to conclude that (H,Ω,K) is even F -admissible, we have to re-
place (18) by a less natural inclusion; moreover, we have to consider subsets C of
F−1(U ∩Ω) (and not only of F−1(U ∩Ω)). This is the price we have to pay if we
do not want to use the more technical condition of weakly F -admissible triples
in our general theory of Section 3 (we are forced to do so if the index does not
satisfy the excision property):

Theorem 4.2. Consider the situation described at the beginning of this sec-
tion. Suppose that the relation F (x) ∈ H(I × {x}) ∩ Ω implies F (x) ∈ Ω. Let
V ⊆ K be such that convV is compact, and assume there is some set U ⊆ K

which is V -fundamental for H on Ω with the following property: For any count-
able C ⊆ F−1(U ∩ Ω) the relation

(19) conv(H(I × C) ∪ V ) ∩ Ω ⊆ F (C) ⊆ conv (H(I × C) ∪ V ) ∩ Ω

implies that conv (H(I×C)) is compact. Then the triple (H,Ω,K) is F -admissi-
ble. If Z is even a Fréchet space, one may alternatively assume that (19) implies
that C is compact.

We note that Theorem 4.2 is sharp in the sense that if (H,Ω,K) is F -
admissible, then Proposition 3.1 implies that there is a fundamental set U for
which conv (H(I × F−1(U ∩ Ω))) = U is compact, and so the compactness as-
sumptions of Theorem 4.2 are trivially satisfied.
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Roughly speaking, one might interpret the conditions of the previous results
as conditions on the map F−1 ◦ H. One may also formulate the conditions in
terms of the map H(I × F−1( · )). This is somewhat more technical. In the
following result, one should think of only a small number of different sets Gi,
say G1 = Y and possibly G2 = Ω, G3 = Ω.

Theorem 4.3. Consider the situation described at the beginning of this sec-
tion. Suppose that the relation F (x) ∈ H(I × {x}) ∩ Ω implies F (x) ∈ Ω. Let
V ⊆ K be precompact, and assume there is some set U ⊆ K which is V -fun-
damental on Ω with the following property: There are sets G1, G2, . . . ⊆ Y such
that Gn ∩H(I × (F−1({u}) ∩M)) is separable and such that for any countable
C ⊆ U the relations

C ⊆ conv (H(I × (F−1(C ∩ Ω))) ∪ V ),(20)

Gn ∩ conv(H(I × (F−1(C ∩ Ω))) ∪ V ) ⊆ Gn ∩ C (n = 1, 2, . . . )(21)

imply that C is compact. Then (H,Ω,K) is weakly F -admissible. If Z is even
a Fréchet space, one may alternatively assume that (20) and (21) imply that
F−1(C ∩ Ω) is compact.

The analogous result for F -admissible triples reads as follows:

Theorem 4.4. Consider the situation described at the beginning of this sec-
tion. Suppose that the relation F (x) ∈ H(I × {x}) ∩ Ω implies F (x) ∈ Ω. Let
V ⊆ K be precompact, and assume there is some set U ⊆ K which is V -fun-
damental on Ω with the following property: There are sets G1, G2, . . . ⊆ Y such
that Gn ∩H(I × (F−1({u}) ∩M)) is separable for each u ∈ U and each n and
such that for any countable C ⊆ U the relations

C ⊆ conv (H(I × (F−1(C ∩ Ω))) ∪ V ),(22)

Gn ∩ conv(H(I × (F−1(C ∩ Ω))) ∪ V ) ⊆ Gn ∩ C (n = 1, 2, . . . )(23)

imply that C is compact. Then (H,Ω,K) is F -admissible. If Z is even a Fréchet
space, one may alternatively assume that (22) and (23) imply that F−1(C ∩ Ω)
is compact.

For F = id and in Fréchet spaces, Theorems 4.2 and 4.4 reduce to the main
results from [36].
For applications, the second inclusion from (19) is the most important one.

To understand this, let us formulate the condition from Theorems 4.1 and 4.2 in
terms of measures of noncompactness: We call a function γ a monotone measure
of noncompactness on K (in the sense of [1], [32]) if γ associates to each A ⊆ K
a value γ(A) in some partially ordered set with the properties:

(i) γ(A) = γ(convA), and
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(ii) γ(A1) ≤ γ(A2) whenever A1 ⊆ A2.

We say that H is countably F -compact on O, if for each countable C ⊆ F−1(O)
which is not precompact there is some monotone measure of noncompactness
γ on K such that γ(H(I × C)) 6≥ γ(F (C)). Roughly speaking, this condition
means that H is “more compact than F is proper”. For example, in the situation
of Example 2.1 (i.e. F = id), this condition is satisfied if O is bounded and H
is countably condensing with respect to the family of monotone measures of
noncompactness (in the sense of [36]).

Corollary 4.1. Consider the situation described at the beginning of this
section with a Fréchet space Z. Suppose that the relation F (x) ∈ H(I×{x})∩Ω
implies F (x) ∈ Ω. Then we have:

(i) If H is countably F -compact on Ω, then (H,Ω,K) is weakly F -admissi-
ble.

(ii) If H is countably F -compact on Ω, then (H,Ω,K) is F -admissible.

Proof. Apply Theorem 4.1 (resp. Theorem 4.2) with V = ∅. Let a count-
able set C ⊆ F−1(Ω) (resp. F−1(Ω)) satisfy (18) (resp. (19)). Then we have
F (C) ⊆ conv (H(I ×C)), and so we have for any monotone measure of noncom-
pactness γ that

γ(F (C)) ≤ γ(conv (H(I × C))) = γ(H(I × C)).

Since H is countably F -compact, this implies that C is precompact, and so C is
compact, as desired. �

To prove Theorems 4.1–4.4, we prove some “more general” results which are
of independent interest (we will use them also in some other papers).
We call a subset M of a (not necessarily complete) metric space precompact

if its completion is compact, i.e. if any sequence in M contains a Cauchy subse-
quence. If even M is compact, i.e. if any sequence in M contains a convergent
subsequence, we call M relatively compact.
A modification of the following result has been implicitly proved in [34]. For

the reader’s convenience, we recall the proof.
We use the notation F−1(M) = {x : F (x) ∈ M}, even if the set M is not

necessarily contained in the range of F .

Proposition 4.1. Let X be a metric space, Z a locally convex metric space,
and F : X → Z. Let I be some set, D ⊆ X, and H : I × D → 2Z such that
any H(I × {x}) is separable. Let V ⊆ Z be separable, and M,N ⊆ X with
M ∩N ⊆ D satisfy

(24) F−1(conv (H(I × (M ∩N)) ∪ V )) =M.
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Moreover, assume that for any countable C ⊆M ∩N the relation

(25) conv(H(I × C) ∪ V ) ∩ F (N) ⊆ F (C) ⊆ conv (H(I × C) ∪ V ) ∩ F (N)

implies that conv (H(I × C) ∪ V ) is compact (resp. C is precompact, relatively
compact). Then conv (H(I × (M ∩N))) is compact (resp. M ∩N is precompact,
relatively compact).

Proof. Assume that conv (H(I × (M ∩N)) is not compact. Then this set
contains a sequence y1, y2, . . . without a convergent subsequence. Since each
yn is the limit of a sequence of (finite) convex combinations of elements from
H(I × (M ∩N)), we find some countable set C0 ⊆M ∩N such that y1, y2, . . . ∈
H(I×C0). Similarly, ifM ∩N is not precompact (resp. not relatively compact),
we find some countable C0 ⊆ M ∩ N which is not precompact (resp. relatively
compact). The statement follows in all cases, if we can show that there is a
countable set C ⊇ C0 which is contained inM∩N and additionally satisfies (25).
To construct this set C, we define by induction on n = 0, 1, . . . countable sets
Cn according to the following conditions:

Cn ⊆ Cn+1 ⊆M ∩N,(26)

F (Cn) ⊆ conv (H(I × Cn+1) ∪ V ),(27)

conv (H(I × Cn) ∪ V ) ∩ F (N) ⊆ F (Cn+1).(28)

This is possible: If Cn is already defined, we have by (24) that Cn ⊆ M ⊆
F−1(conv (H(I × (M ∩N))∪ V )). Hence, F (Cn) ⊆ conv (H(I × (M ∩N))∪ V ).
Thus, any of the countable many elements from F (Cn) is the limit of a sequence
of (finite) convex combinations of elements from H(I × (M ∩N)) ∪ V . We thus
find a countable An ⊆ M ∩N such that F (Cn) ⊆ conv (H(I × An) ∪ V ). Note
that (24) implies in view of (26) that the set Hn = conv (H(I×Cn)∪V ) satisfies
F−1(Hn) ⊆M , and so Hn ∩F (N) ⊆ F (M ∩N). Since Hn ∩F (N) is separable,
we thus find a countable Bn ⊆M ∩N such that F (Bn) is dense in Hn ∩ F (N).
Now the set Cn+1 = An ∪Bn ∪ Cn satisfies (26)–(28).
The set C =

⋃
Cn contains C0 by construction and satisfies (25), as desired.

Indeed, (27) implies in view of C ⊆ N that for any n the relation

F (Cn) ⊆ conv (H(I × C) ∪ V ) ∩ F (N)

holds which implies the second inclusion in (25). For the first inclusion, note
that Hn = conv (H(I×Cn)∪V ) is by (26) an increasing sequence of convex sets.
Hence

⋃
Hn is convex, and so we have by (28) that

conv
(⋃

Hn

)
∩F (N) =

⋃
Hn∩F (N) =

⋃
(Hn∩F (N)) ⊆

⋃
F (Cn+1) ⊆ F (C),

and the first inclusion of (26) is proved. �
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Also the following observation is essentially from [34].

Corollary 4.2. Consider the situation of Proposition 4.1. If conv (H(I ×
(M ∩N)) ∪ V ) \ F (N) is closed, one may equivalently replace (25) by the single
equality

(29) F (C) = conv(H(I × C) ∪ V ) ∩ F (N).

Proof. For C ⊆ M ∩N the relation (25) and (29) are actually equivalent.
Indeed, put K0 = conv (H(I × (M ∩N))∪V ) and A = conv(H(I ×C)∪V ). We
have A ⊆ (A ∩ F (N)) ∪ (K0 \ F (N)). Since K0 \ F (N) is closed, this implies
A ⊆ (A ∩ F (N)) ∪ (K0 \ F (N)), and so A ∩ F (N) ⊆ A ∩ F (N). It follows that
A ∩ F (N) = A ∩ F (N), and so (25) implies (29); the converse is trivial. �

Proposition 4.2. Let X be a metric space, Z a locally convex metric space,
and F : X → Z. Let I be some compact metric space, D ⊆ X, and H :
I ×D → 2Z be upper semicontinuous with compact values H(λ, x). Let V ⊆ Z

be precompact, and U,O ⊆ Z be such that F−1(O ∩ U) ⊆ D and

(30) U = conv (H(I × F−1(O ∩ U)) ∪ V )

holds. Assume that for any countable C ⊆ F−1(O ∩ U) the relation
(31)
conv(H(I × C) ∪ V ) ∩O ∩ F (X) ⊆ F (C) ⊆ conv (H(I × C) ∪ V ) ∩O ∩ F (X)

implies that conv (H(I × C) ∪ V ) is compact (resp. C is compact). Then U is
compact (resp. F−1(O ∩ U) is compact). If F−1(O ∩ U) ⊆ D and U is complete,
then U is compact in both cases.

Proof. Apply Proposition 4.1 with M = F−1(U) and N = F−1(O). Note
first that H(I×{x}) is separable for each x ∈ D, since an upper semicontinuous
map in metric spaces with separable values sends separable sets into separable
sets [36]. Since M ∩N = F−1(O∩U), we have U = conv (H(I × (M ∩N))∪V ),
and so F−1(conv (H(I × (M ∩ N)) ∪ V )) = F−1(U) = M . Hence, (24) holds.
Note that (25) is equivalent to (31), since F (N) = O ∩ F (X). Proposition 4.2
thus implies that conv (H(I × (M ∩ N))) = conv (H(I × F−1(O ∩ U))) = U is
compact (resp. M ∩N = F−1(O ∩ U) is compact). If D0 = F−1(O ∩ U) ⊆ D,
then H(I × D0) is compact since upper semicontinuous maps with compact
values send compact sets into compact sets. Consequently, H(I×F−1(O∩U)) is
relatively compact and in particular precompact. It follows that U = conv (H(I×
F−1(O ∩ U)) ∪ V ) is precompact; if U is complete, it must be compact. �

In view of Corollary 4.2 we find:
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Corollary 4.3. Consider the situation of Proposition 4.2. If F (X) ∩O is
open in K, one may equivalently replace (31) by the single equality

(32) F (C) = conv(H(I × C) ∪ V ) ∩O ∩ F (X).

The previous results imply Theorems 4.1 and 4.2, as we will see. Before we
give the proofs, let us show the “dual” versions of these results which will imply
Theorems 4.3 and 4.4.
For a multivalued map F : X → 2Z , we use the notation F−1(M) = {x :

F (x) ⊆M}.

Proposition 4.3. Let X be a metric space, Z a locally convex metric space,
and F : X → 2Z . Let I be some set, M ⊆ X, and H : I × M → 2Z . Let
U, V ⊆ Z be such that (30) holds, and let G1, G2, . . . ⊆ Z be such that Gn ∩
(H(I × (F−1({u}) ∩M)) ∪ V ) is separable for each u ∈ U and each n. Then U
is compact if for any countable C ⊆ U satisfying

C ⊆ conv (H(I × (F−1(C) ∩M)) ∪ V ),(33)

Gn ∩ conv(H(I × (F−1(C) ∩M)) ∪ V ) ⊆ Gn ∩ C (n = 1, 2, . . . ),(34)

the set C is compact. Similarly, F−1(U) ∩ M is precompact (resp. relatively
compact) if for any countable C ⊆ U satisfying (33) and (34) the set F−1(C)∩M
is precompact (resp. relatively compact).

Proof. Assume that U is not compact (resp. F−1(U)∩M is not precompact,
relatively compact). Choose some countable C0 ⊆ U such that C0 is not compact
(resp. F−1(C0) ∩ M is not compact, relatively compact). As in the proof of
Proposition 4.1, we will define a countable set C ⊇ C0 which satisfies C ⊆ U , (33)
and (34). To this end, we define recursively countable sets Cn satisfying the
inclusions

Cn ⊆ Cn+1 ⊆ U,(35)

Cn ⊆ conv (H(I × (F−1(Cn+1) ∩M)) ∪ V ),(36)

and, with the shortcut Hn = conv (H(I × (F−1(Cn) ∩M)) ∪ V ),

Gk ∩Hn ⊆ Gk ∩ Cn+1 (k = 1, 2, . . . ).(37)

This is possible: If Cn is already defined, we have Cn ⊆ U ⊆ conv (H(I ×
(F−1(U)∩M))∪V ) by (30). Hence, any of the countable many elements from Cn
may be approximated by a sequence of (finite) convex combinations of elements
from H(I × (F−1(U) ∩M))∪ V , i.e. we find some countable An ⊆ U with Cn ⊆
conv (H(I × (F−1(An) ∩M)) ∪ V ). Since Gk ∩Hn is separable by assumption,
we find countable sets Bn,k ⊆ Gk ∩Hn which are dense in Gk ∩Hn. Since (30)
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implies Hn ⊆ conv (H(I× (F−1(Cn)∩M))∪V ) ⊆ U , we have Bn,k ⊆ U . Hence,
the countable set Cn+1 = An ∪

⋃
k Bn,k ∪ Cn satisfies (35), and the relations

Cn+1 ⊇ An and Cn+1 ⊇ Bn,k imply (36) and (37).
The set C =

⋃
Cn is countable. We have by (36) that for each n

Cn ⊆ conv (H(I × (F−1(C) ∩M)) ∪ V ),

and so (33) holds. Moreover, (35) implies that Hn is an increasing sequence of
convex sets, and so

⋃
Hn is convex. For fixed k, the relation (37) thus implies

Gk ∩ conv

( ∞⋃
n=1

Hn

)
= Gk ∩

∞⋃
n=1

Hn

=
∞⋃
n=1

(Gk ∩Hn) ⊆
∞⋃
n=1

(Gk ∩ Cn+1) ⊆ Gk ∩ C,

and so C satisfies also (34). �

For Fréchet spaces Z the following observation follows from Mazur’s lemma.
However, we need this also if Z is not necessarily complete:

Lemma 4.1. Let Z be a topological (Hausdorff) vector space, and A,B ⊆ Z
be compact and convex. Then conv (A∪B) = conv(A∪B) is compact and convex.

Proof. Consider the continuous map f : A × B × [0, 1] → Y , defined by
f(a, b, λ) = λa+(1−λ)b. Since A and B are convex, the range of the continuous
function f contains (and thus is equal to) conv(A ∪ B). We point out that the
compactness of a finite product A×B × [0, 1] of compact spaces can be proved
without appealing to the axiom of choice [35] (although the proof is much more
cumbersome with this restriction than other proofs of Tychonoff’s theorem). �

The tests for F -admissible triples follow now immediately from our previous
results:

Proof of Theorem 4.2. We prove that H is fundamentally V -restrictible
on Ω. In view of Proposition 3.1, we have to prove to this end that the smallest
V -fundamental set UV is compact. Replacing U by UV if necessary, it is no loss
of generality to assume U = UV . Hence (7) holds which implies (30) with O = Ω.
Now the compactness of U follows from Proposition 4.2. Here we used the fact
that O ∩ F (X) = Ω ∩ Y = Ω and that the compactness of A = conv (H(I ×C))
implies the compactness of conv (H(I × C) ∪ V ) ⊆ conv (A ∪ convV ) in view of
Lemma 4.1. For the second statement note that the continuity of F implies that
F−1(Ω) is closed, and so F−1(O ∩ U) ⊆ F−1(Ω) ⊆ D. �

Proof of Theorem 4.4. The proof of the first statement is analogous to
the proof of Theorem 4.2. The only difference is that we apply now Propo-
sition 4.3. Under the assumptions of the second statement, Proposition 4.3
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implies that D0 = F−1(U ∩ Ω) is compact. As in the proof of Theorem 4.2,
we have D0 ⊆ D, and so (30) implies that U is contained in the compact set
conv (H(I ×D0) ∪ V ). �

For the proof of the corresponding results for weakly F -admissible triples, we
need an additional observation.

Lemma 4.2. Let X,Y be metric spaces, and F : X → Y be continuous and
proper. Let I be a compact metric space, C ⊆ Y be closed, and H : I×F−1(C)→
2Y be upper semicontinuous with closed values. Then the set S = {F (x) : F (x) ∈
H(I × {x}) ∩ C} is closed.

Proof. Let yn ∈ S converge to some y. We find (λn, xn) ∈ I×F−1(C) such
that yn = F (xn) ∈ H(λn, xn). Since F is proper and {y, y1, y2 . . . } is compact,
the sequence xn contains a convergent subsequence. Passing to this subsequence,
we may assume that xn → x converges. Similarly, we may assume that λn → λ

converges. The continuity of F implies that F (x) = y and that F−1(C) is closed.
In particular, we must have F (x) ∈ C. We claim that F (x) ∈ H(λ, x) which
then implies y = F (x) ∈ S. But if F (x) /∈ H(λ, x), we find, since H(λ, x) is
closed, disjoint neighbourhoods U, V of y = F (x) and H(λ, x). Since H is upper
semicontinuous and yn ∈ U and H(λn, xn) ⊆ V for sufficiently large n, we have
yn = F (xn) /∈ H(λn, xn) for sufficiently large n, a contradiction. �

Proof of Theorems 4.1 and 4.3. The same arguments as in the proof of
Theorem 4.2 (resp. Theorem 4.4) show that H is V -fundamentally restrictible
to Ω (for Theorem 4.1 recall Corollary 4.3).

This observation already implies the statements: Indeed, by Lemma 4.2, the
set S = {F (x) : F (x) ∈ H(I × {x}) ∩ Ω} is closed, and by assumption S ⊆ Ω.
Consequently, S ⊆ Ω, and since K is a normal space, we find some Ω0 ⊇ S which
is open in K and satisfies the inclusion Ω0 ⊆ Ω. Since H is V -fundamentally
restrictible to Ω, this inclusion implies that H is V -fundamentally restrictible to
Ω0, and so (H,Ω,K) is weakly F -admissible. �

5. Coincidence point theorems

Theorem 5.1. Let Z be a locally convex metric space, K ⊆ Y ⊆ Z be
closed and convex subsets, and Ω ⊆ K nonempty and open in K. Let X be a
metric space, and F : X → Y continuous and proper and provide a coincidence
point index with the excision property (e.g. F is Vietoris). Suppose that H :
[0, 1]× F−1(Ω)→ K(K) is upper semicontinuous with the following properties:

(i) The range of H(0, · ) is contained in a compact convex subset V0 ⊆ Ω.
(ii) Whenever F (x) ∈ ∂Ω := Ω \ Ω, we have F (x) /∈ H([0, 1]× {x}).
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(iii) There is some set V ⊆ K with compact convV such that for any count-
able C ⊆ Ω the relation

F (C) = conv(H(I × C) ∪ V ) ∩ Ω

implies that conv (H(I × C)) is compact.

Then, for Φ = H(1, · ), the inclusion F (x) ∈ Φ(x) has a solution x ∈ Ω. More-
over, (Φ,Ω,K) is weakly F -admissible, and for the index from Theorem 3.1 we
have indF (Φ,Ω,K) = 1.

Proof. By Theorem 4.1, the triple (H,Ω,K) is weakly F -admissible. In
view of the homotopy invariance and the coincidence point property we thus
only have to prove that indF (Ψ,Ω,K) = 1 where Ψ = H(0, · ). In view of the
(strong) permanence property, we have

(38) indF (Ψ,Ω,K) = indF (Ψ,Ω ∩ V0, V0).

Let Ψ0 denote the restriction of Ψ to D = F−1(V0). Note that V0 and thus D
are compact sets. In particular, D is separable, and V0 is convex and complete,
and so we may extend Ψ0 to an upper semicontinuous map Ψ0 : X → K(V0)
(the general axiom of choice is not required for this, recall Remark 3.2). Note
that the relation F (x) ∈ Ψ0(x) implies F (x) ∈ V0 and thus x ∈ D which in
turn implies F (x) ∈ V0 ∩ Ψ0(x) = Ω ∩ Ψ(x), and so F (x) ∈ Ω by (ii), and thus
even F (x) ∈ Ω ∩ V0. Putting Ω1 = V0, we thus have proved that the triple
(Ψ0,Ω1, V0) is compactly F -admissible, and that in view of the excision and
localization properties the equalities

indF (Ψ0,Ω1, V0) = indF (Ψ0,Ω ∩ V0, V0) = indF (Ψ,Ω ∩ V0, V0)

hold. Fix some y0 ∈ V0 and consider the convex homotopy H0(λ, x) = λy0 +
(1− λ)Ψ0(x) with values in K(V0). Since Ω1 = V0 is closed, the relation F (x) ∈
Ω1 ∩ H0(λ, x) trivially implies F (x) ∈ Ω1, and so (H,Ω1, V0) is compactly F -
admissible. The homotopy invariance and normalization property thus show

indF (Ψ0,Ω1, V0) = ind(H(1, · ),Ω1, V0) = 1.

Combining the previous formulas, we find indF (Ψ,Ω,K) = 1, as desired. �

One could simplify the proof of Theorem 5.1 dramatically, if one would re-
quire V0 ⊆ Ω and not only V0 ⊆ Ω: In the former case, the statement fol-
lows immediately from (38) by considering the compact homotopy H0(λ, x) =
λy0 + (1 − λ)Ψ(x) with fixed y0 ∈ V0. However, if V0 ∩ ∂Ω 6= ∅ this homotopy
may fail to be compactly F -admissible.
For F = id (i.e. when we start with the “classical” fixed point index indF ),

Theorem 5.1 generalizes the main fixed point theorem from [36].
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Corollary 5.1. Let Z be a locally convex metric space, K ⊆ Y ⊆ Z be
closed and convex subsets, and Ω ⊆ K be open in K. Let X be a metric space,
and F : X → Y provide a coincidence index with the excision property (e.g. F
is Vietoris). Let Φ : F−1(Ω) → K(K) be upper semicontinuous. Assume there
is some x0 ∈ Ω with the following properties:

(i) The Leray–Schauder boundary condition holds on ∂Ω := Ω \ Ω:

Φ(x)− x0 63 λ(F (x)− x0) (F (x) ∈ ∂Ω, λ ≥ 1).

(ii) If C ⊆ Ω is countable and satisfies

(39) F (C) = conv(Φ(C) ∪ {x0}) ∩ Ω

then conv (Φ(C)) is compact.

Then the inclusion F (x) ∈ Φ(x) has a solution in Ω. Moreover, (Φ,Ω,K) is
weakly F -admissible, and we have indF (Φ,Ω,K) = 1 for the index from Theo-
rem 3.1.

Proof. Put V = {x0} and H(λ, x) = λΦ(x)+(1−λ)x0 in Theorem 5.1, and
observe that conv(H([0, 1]×C)) = conv(Φ(C)∪{x0}) for each C ⊆ Ω. Note that
the compactness of A = conv (Φ(C)) implies the compactness of conv (H([0, 1]×
C)) ⊆ conv (A ∪ {x0}) in view of Lemma 4.1. �

For the case that F is a Vietoris map (recall Theorem 2.1), Corollary 5.1
generalizes the main coincidence theorems from [16]. For F = id, Corollary 5.1
contains the two (single-valued) fixed point theorems from [27] (see also [8, The-
orem 18.1 and Theorem 18.2]) both as special cases. Moreover, Corollary 5.1
generalizes also a result from [36] (for F = id) where equation (39) was replaced
by

(40) Ω ∩ conv(Φ(C) ∪ {x0}) ⊆ C ⊆ Ω ∩ conv (Φ(C) ∪ {x0})

which is more restrictive and not so “natural”. The deeper reason for this dis-
crepancy is that with (40) the assumptions imply even the id-admissibility of
the triple (H,Ω,K) in the proof while (39) implies only the weak F -admissibility
which is apparently a new concept.
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Topological methods in the fixed-point theory of multi-valued maps, Uspekhi Mat. Nauk
35 (1980), 59–126 (Russian); English transl. in Russian Math. Surveys 35 (1980), 65–
143.



Coincidence Index for Noncompact Function Pairs 337

[3] , Multivalued maps, Itogi Nauki – Seriya “Matematika” (Progress in Science –
Mathematical Series) 19 (1982), 127–230 (Russian); English transl. in J. Soviet Math.
24 (1984), 719–791.

[4] , Multivalued analysis and operator inclusions, Itogi Nauki – Seriya “Matem-
atika” (Progress in Science – Mathematical Series) 29 (1986), 151–211 (Russian); English
transl. in J. Soviet Math. 39 (1987), 2772–2811.

[5] S.-S. Chang and J.-W. Song, Coincidence indices for set-valued compact mapping
pairs, J. Math. Anal. Appl. 148 (1990), 469–488.

[6] S. J. Daher, On a fixed point principle of Sadovskĭı, Nonlinear Anal. 2 (1978), 643–645.
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