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CONLEY INDEX CONTINUATION
AND THIN DOMAIN PROBLEMS

Maria C. Carbinatto — Krzysztof P. Rybakowski

Abstract. Given ε > 0 and a bounded Lipschitz domain Ω in RM × RN

let Ωε := {(x, εy) | (x, y) ∈ Ω} be the ε-squeezed domain. Consider the

reaction-diffusion equation

( eEε) ut = ∆u + f(u)

on Ωε with Neumann boundary condition. Here f is an appropriate non-

linearity such that ( eEε) generates a (local) semiflow eπε on H1(Ωε). It was
proved by Prizzi and Rybakowski (J. Differential Equations, to appear),

generalizing some previous results of Hale and Raugel, that there are a

closed subspace H1
s (Ω) of H1(Ω), a closed subspace L2

s(Ω) of L2(Ω) and a
sectorial operator A0 on L2

s(Ω) such that the semiflow π0 defined on H1
s (Ω)

by the abstract equation

u̇ + A0u = bf(u)

is the limit of the semiflows eπε as ε → 0+.

In this paper we prove a singular Conley index continuation princi-
ple stating that every isolated invariant set K0 of π0 can be continued to

a nearby family eKε of isolated invariant sets of eπε with the same Con-

ley index. We present various applications of this result to problems like
connection lifting or resonance bifurcation.
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1. Introduction

Let M and N be positive integers and Ω be an arbitrary nonempty smooth
bounded domain in RM × RN . Write (x, y) for a generic point of RM × RN .
Given ε > 0 squeeze Ω by the factor ε in the y-direction to obtain the squeezed
domain Ωε. More precisely, let Tε : RM × RN → RM × RN , (x, y) 7→ (x, εy),
be the squeezing operator and define Ωε := {(x, εy) | (x, y) ∈ Ω}. Consider the
following reaction-diffusion equation on Ωε:

(Ẽε)
ut = ∆u+ f(u), t > 0, (x, y) ∈ Ωε,
∂νεu = 0, t > 0, (x, y) ∈ ∂Ωε,

where νε is the exterior normal vector field on ∂Ωε and f : R → R is a C1-
nonlinearity of appropriate polynomial growth which ensures that (Ẽε) generates
a (local) semiflow π̃ε on H1(Ωε).
If f is dissipative in the sense that

lim sup
|s|→∞

f(s)/s ≤ −δ0 for some δ0 > 0

then the semiflow π̃ε possesses a global attractor Ãε.
As ε → 0 the thin domain Ωε degenerates to an M -dimensional open set.

One may therefore ask what happens in the limit to the family (π̃ε)ε>0 of semi-
flows and to the family (Ãε)ε>0 of attractors. Is there a limit semiflow and a
corresponding limit attractor?
This problem was first considered by Hale and Raugel in [21] for the case

when N = 1, U is a bounded domain in RM and the domain Ω is the ordinate
set of a smooth positive function g defined on clU , i.e.

Ω = {(x, y) | x ∈ U and 0 < y < g(x)}.

The authors prove that, in this case, there exists a limit semiflow π̃0, which is
defined by the Neumann boundary value problem

(HR0)
ut = (1/g)

M∑
i=1

(guxi)xi + f(u), t > 0, x ∈ U,

∂νu = 0, t > 0, x ∈ ∂U.

Moreover, if f is dissipative, then π̃0 has a global attractor Ã0 and, in some
sense, the family (Ãε)ε≥0 is upper-semicontinuous at ε = 0.
Hale and Raugel also prove that one can modify the nonlinearity f in such

a way that each modified semiflow π̃′ε possesses an invariant C
1-manifold M̃ε of

some fixed dimension ν which includes the attractor Ãε of the original semiflow
π̃ε. The semiflows π̃ε and π̃′ε coincide on the attractor Ãε and, as ε → 0, the
reduced flow on M̃ε converges in the C1-sense to the reduced flow on M̃0.
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If the domain Ω is not the ordinate set of some function (e.g. if Ω has holes
or different horizontal branches) then an equation of the form (HR0) cannot be
a limiting equation for the family (Ẽε), ε > 0. Nevertheless, as it was proved
by Prizzi and Rybakowski in [33] the family π̃ε, ε > 0 still has a limit semiflow.
Moreover, if f is dissipative then there exists a limit global attractor and the
upper-semicontinuity result continues to hold.
In order to describe the main results of [33] we first transfer the family (Ẽε)

to boundary value problems on the fixed domain Ω. More explicitly, we use the
linear isomorphism Φε : H1(Ωε) → H1(Ω), u 7→ u ◦ Tε, to transform problem
(Ẽε) to the equivalent problem

(Eε)
ut = ∆xu+ (1/ε2)∆yu+ f(u), t > 0, (x, y) ∈ Ω,
ν1 · ∇xu+ (1/ε2)ν2 · ∇yu = 0, t > 0, (x, y) ∈ ∂Ω.

Here, ν = (ν1, ν2) is the exterior normal vector field on ∂Ω.
Note that equation (Eε) can be written in the abstract form

u̇+Aεu = f̂(u)

where f̂ : H1(Ω) → L2(Ω) is the Nemitskĭı operator generated by the function
f and Aε is the linear operator defined by

Aεu = −∆xu−
1
ε2
∆yu ∈ L2(Ω)

for u ∈ H2(Ω) with ν1 · ∇xu+
1
ε2
ν2 · ∇yu = 0 on ∂Ω.

Equation (Eε) defines a semiflow πε on H1(Ω) which is conjugated to π̃ε via the
isomorphism Φε. Therefore, whatever property we prove about the transformed
semiflow πε translates into a corresponding property about the original semiflow
π̃ε, and vice versa. In particular, if f is dissipative then πε has the global
attractor Aε := Φε(Ãε), consisting of the orbits of all full bounded solutions
of (Eε).
The operator Aε is, in the usual way, induced by the following bilinear form

aε(u, v) :=
∫
Ω

(
∇xu · ∇xv +

1
ε2
∇yu · ∇yv

)
dx dy, u, v ∈ H1(Ω).

Notice that, for every fixed ε > 0 and u ∈ H1(Ω), the formula

|u|ε = (aε(u, u) + |u|2L2(Ω))
1/2

defines a norm on H1(Ω) which is equivalent to | · |H1(Ω). However, |u|ε →∞ as
ε→ 0+ whenever ∇yu 6= 0 in L2(Ω).
In fact, we see that for u ∈ H1(Ω)

lim
ε→0+

aε(u, u) =

{ ∫
Ω
∇xu · ∇xu dx dy if ∇yu = 0,

∞ otherwise.
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Thus the family aε(u, u), ε > 0, of real numbers has a finite limit (as ε → 0) if
and only if u ∈ H1s (Ω), where we define

H1s (Ω) := {u ∈ H1(Ω) | ∇yu = 0}.

This is a closed linear subspace of H1(Ω).
The corresponding limit bilinear form is given by the formula:

a0(u, v) :=
∫
Ω
∇xu · ∇xv dx dy for u, v ∈ H1s (Ω).

The form a0 uniquely determines a densely defined selfadjoint linear operator

A0 : D(A0) ⊂ H1s (Ω)→ L2s(Ω)

by the usual formula

a0(u, v) = 〈A0u, v〉L2(Ω), for u ∈ D(A0) and v ∈ H1s (Ω).

Here, L2s(Ω) is the closure of H
1
s (Ω) in the L

2-norm, so L2s(Ω) is a closed linear
subspace of L2(Ω).
It follows that the Nemitskĭı operator f̂ maps the space H1s (Ω) into L

2
s(Ω).

Consequently the abstract parabolic equation

(E0) u̇ = −A0u+ f̂(u)

defines a semiflow π0 on the space H1s (Ω). This is the limit semiflow of the
family πε. In the ordinate set case considered by Hale and Raugel, equation
(E0) reduces to their equation (HR0) stated above. For a large class of two-
dimensional domains (called nicely decomposed) equation (E0) is equivalent to a
parabolic equation defined on a finite one-dimensional graph. For general higher
dimensional domains andM ≥ 2 it does not seem possible to give a more explicit
expression for equation (E0). Nevertheless, many qualitative properties of the
limit semiflow π0 may be deduced from the abstract equation (E0).
For example, if f is dissipative then the semiflow π0 has a global attractor

A0 and the family of attractors (Aε)ε≥0 is upper-semicontinuous at ε = 0. More
precisely, we have the following result:

Theorem (Upper semicontinuity of attractors [33, Theorem 5.10]). The
family of attractors (Aε)ε∈[0,1] is upper-semicontinuous at ε = 0 with respect
to the family | · |ε of norms, i.e.

lim
ε→0+

sup
u∈Aε

inf
v∈A0
|u− v|ε = 0.

Notice that each attractor Aε for ε ≥ 0 is a compact isolated πε-invariant set
with Conley index h(πε,Aε) ≡ Σ0. Therefore the above theorem implies that
the invariant set A0 can be continued to a family of invariant sets with the same
Conley index.
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We will prove in this paper that the latter statement holds true for an arbi-
trary isolated invariant set of the limit semiflow:

Theorem (Conley index continuation theorem). Let K0 ⊂ H1s (Ω) be a com-
pact isolated invariant set of the limit semiflow π0. Then there is an ε0 > 0 and
for each ε ∈ ]0, ε0] there is a compact isolated invariant set Kε ⊂ H1(Ω) of
the semiflow πε such that h(πε,Kε) ≡ h(π0,K0) and the family (Kε)ε∈[0,ε0] is
upper-semicontinuous at ε = 0 with respect to the family | · |ε of norms, i.e.

lim
ε→0+

sup
u∈Kε

inf
v∈K0
|u− v|ε = 0.

Note that in this theorem the function f need not be dissipative and it may
depend not only on u but also on ε, x, y and ∇u. For a precise statement see
Theorem 3.5 and its Corollary 3.7 in Section 3 below.
The reader should notice that our Conley index continuation Theorem 3.5 is

not a direct consequence of the classical continuation principle in Conley index
theory. In fact, we are dealing here with a singular perturbation problem and the
limiting semiflow (unlike in the regular perturbation case) lives in the Banach
space H1s (Ω) which is different from the Banach space H

1(Ω) on which the
approximating semiflows are defined. Thus, although the proof of Theorem 3.5
follows the lines of the classical Conley continuation principle for admissible
semiflows (as given in [37], [39]) several new ideas are required to cope with the
present, more difficult situation (see Section 3 and the Appendix for details).
For the proof of Theorem 3.5 we need some convergence results, as ε → 0,

of the semiflows πε and the linear semigroups generated by the operators Aε.
These results, presented in Section 2, strengthen and extend the convergence
results previously obtained in [33].
In Section 4 we present various applications of Theorem 3.5. First we show

in Subsection 4.1 that, under appropriate assumptions, an orbit σ0 connecting
equilibria u′0 and u

′′
0 of the limit semiflow π0 can be continued, for all ε > 0 small

enough, to a “nearby” family σε of orbits connecting ‘nearby’ equilibria u′ε and
u′′ε of πε.
This is then applied to a specific connection problem in parabolic equations

on an interval, considered by Fiedler and Rocha [14].
We then prove that, generically in the domain, the family of the j-th eigen-

values λε,j of the operators Aε is strictly monotone decreasing in ε > 0, for
j ≥ 2 (Subsection 4.2). Using this, together with Theorem 3.5 and the Conley
index product formula we obtain, under suitable resonance hypotheses for the
limit semiflow π0, the existence of nontrivial equilibria of πε bifurcating from
the trivial equilibrium 0 of π0 (Subsection 4.3). Finally, we show that these res-
onance hypotheses are satisfied for very simple two-dimensional domains (Sub-
section 4.3).
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After the completion of this work we became aware of the preprint [25] of Q.
Huang, in which the author proves an analogue of our Theorem 3.5 for ordinate
set domains with g ≡ 1, i.e. domains Ω of the type Ω = U × ]0, 1[, where U is a
bounded domain in RM with M = 1 or 2. The corresponding squeezed domain
Ωε is then of the form Ωε = U × ]0, ε[. (See Theorem 6.1 in [25].) In the case
M = 1 such domains are just rectangles.
The author obtains his result as an application of an abstract Conley index

continuation theorem (see Theorem A in [25]). One could use that theorem,
together with the convergence results established in Section 2 of the present paper
and some additional estimates to give an alternative proof of our Theorem 3.5.
On the other hand, our proof of Theorem 3.5 uses only some general proper-

ties of the family πε of semiflows and the family Qε of projectors (cf. Section 2
and the Appendix below). By abstracting these properties one can establish
a Conley index continuation result which is more general than Theorem A of
[25]. In fact, we can replace the compactness condition (C) of [25] by a weaker
admissibility assumption of the type introduced in [37]. Details are given in the
paper [7]. Let us only remark here that this more general abstract result, unlike
the results of [25], can be applied to singular perturbation problems for semi-
flows generated by damped wave equations (cf. [20], [22], [8]), neutral functional
differential equations or infinite delay equations. The solution operators of such
semiflows are not compact and yet the admissibility condition is satisfied.
Let us also remark that it is possible to formulate a general continuation

principle for the Conley connection matrix in singular perturbation problems.
See the forthcoming paper [9] for details.
For more results on the squeezed domain problems see the paper [34], which,

among other things, contains an existence theorem for inertial manifolds con-
taining the attractors Aε of πε, improving and generalizing to arbitrary domains
the results of Hale and Raugel mentioned above. Some other papers on thin
domain problems are contained in the References, although the list is far from
being complete.
The Reference section also lists a few papers on the theory and applications

of various versions of the Conley index.

2. Squeezed domains

In this section we will prove various convergence results for linear semigroups
and nonlinear semiflows generated by reaction-diffusion equations on squeezed
domains. These results, of interest in their own right, play an essential role in
establishing the Conley index continuation principle of Section 3.
Let us first recall some definitions and basic results about squeezed domains

proved in [33], [34], referring the reader to those papers and to the paper [21] of



Conley Index Continuation and Thin Domain Problems 207

Hale and Raugel for more details on the subject. In this paper all vector spaces
are over the real numbers.

Definition 2.1. Let H be a vector space and V be a linear subspace of H.
Let a : V × V → R be a bilinear form on V and b : H × H → R be a bilinear
form on H. If λ ∈ R, u ∈ V \ {0} satisfy

a(u, v) = λb(u, v) for all v ∈ V

then we say that λ is an eigenvalue of the pair (a, b) and u is an eigenvector of
the pair (a, b), corresponding to λ. The dimension of the span of all eigenvectors
of (a, b) corresponding to λ is called the multiplicity of λ. If the set of eigenvalues
of (a, b) is countably infinite, contains a smallest element and if each eigenvalue
has finite multiplicity then the repeated sequence of the eigenvalues of (a, b) is
the uniquely determined nondecreasing sequence (λn)n∈N which contains exactly
the eigenvalues of (a, b) and the number of occurrences of each eigenvalue in this
sequence is equal to its multiplicity.
Given a and b as above define R = R(a, b) to be the set of all pairs (u,w) ∈

V ×H such that a(u, v) = b(w, v) for all v ∈ V . We call R the operator relation
generated by the pair (a, b). If R is the graph of a mapping A : D(A)→ H, then
this map is called the operator generated by the pair (a, b).

The following properties are obvious:

Proposition 2.2. Let H, V , a, b and R be as in Definition 2.1. Then R is
a linear subspace of V × H. Moreover, (λ, u) is an eigenvalue-eigenvector pair
of (a, b) if and only if λ ∈ R, u ∈ V , u 6= 0 and (u, λu) ∈ R. Thus if R is the
graph of a map A, then A is linear and (λ, u) is an eigenvalue-eigenvector pair
of (a, b) if and only if (λ, u) is an eigenvalue-eigenvector pair of A.

The following proposition is well-known:

Proposition 2.3. Let V , H be two infinite dimensional Hilbert spaces. Sup-
pose V ⊂ H with compact inclusion, and V is dense in H. Let ‖ · ‖ and | · |
denote the norms of V and H respectively, and b be the inner product of H.
Let a : V × V → R be a symmetric bilinear form on V . Assume that there are
constants d, C, α ∈ R, α > 0, such that, for all u, v ∈ V ,

|a(u, v)| ≤ C‖u‖‖v‖, a(u, u) ≥ α‖u‖2 − d|u|2.

Then the set of eigenvalues of (a, b) is countably infinite, it has a smallest element
and each eigenvalue has finite multiplicity. Let (λn)n∈N be the repeated sequence
of the eigenvalues of (a, b). Then the following properties are satisfied:

(1) There exists an H-orthogonal sequence (un)n∈N such that for every k ∈
N, uk is an eigenvector of (a, b) corresponding to λk.
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(2) Whenever (un)n∈N is an H-orthogonal sequence such that for every k ∈
N, uk is an eigenvector of (a, b) corresponding to λk, then (un)n∈N is
H-complete. Moreover, the space V is characterized in the following
way:

V =
{
v ∈ H

∣∣∣∣ ∞∑
n=1

λn|〈v, un〉|2/|un|2 <∞
}
.

Moreover, the operator relation generated by (a, b) is the graph of a linear self-
adjoint operator A on (H, 〈 · , · 〉) with compact resolvent.

Let Ω be an arbitrary nonempty bounded domain in RM×RN with Lipschitz
boundary and let ε > 0 be arbitrary. Write (x, y) for a generic point of RM×RN .
As in the Introduction, let Tε : RM × RN → RM × RN , (x, y) 7→ (x, εy), be
the squeezing operator and Ωε := Tε(Ω) be the squeezed domain. Define the
symmetric bilinear forms

ãε : H1(Ωε)×H1(Ωε)→ R

by

ãε(u, v) :=
∫
Ωε
∇u · ∇v dx dy

and

aε : H1(Ω)×H1(Ω)→ R

by

aε(u, v) :=
∫
Ω

(
∇xu · ∇xv +

1
ε2
∇yu · ∇yv

)
dx dy.

Note that the assignment

Φε : u 7→ u ◦ Tε
restricts to linear isomorphisms L2(Ωε)→ L2(Ω) and H1(Ωε)→ H1(Ω).
Let b̃ε be the scalar product 〈 · , · 〉L2(Ωε) and let b be the scalar product

〈 · , · 〉L2(Ω).
It follows that a pair (λ, u) is an eigenvalue-eigenvector pair of (ãε, b̃ε) if and

only if the pair (λ,Φεu) is an eigenvalue-eigenvector pair of (aε, b). The linear
operators Ãε (respectively, Aε) generated by (ãε, b̃ε) (respectively, (aε, b)) satisfy
the following properties:

(1) D(Aε) = Φε(D(Ãε)),
(2) Aε(Φεu) = Φε(Ãεu) for u ∈ D(Ãε).

Proposition 2.3 implies that there exists a nondecreasing sequence (λε,j , wε,j)j∈N

of eigenvalue-eigenvector pairs of (aε, b) such that (wε,j)j∈N is a complete or-
thonormal system on L2(Ω). Moreover, λε,1 ≡ 0 and λε,j > 0 for all ε > 0 and
j ≥ 2. For convenience we set λε,0 := −∞.
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Now define the “limit” space H1s (Ω) by

H1s (Ω) = {u ∈ H1(Ω) | ∇yu = 0}.

Note that H1s (Ω) is a closed linear subspace of H
1(Ω). It can be proved that

H1s (Ω) has infinite dimension.
Let us also define the space L2s(Ω) to be the closure of the setH

1
s (Ω) in L

2(Ω).
It follows that L2s(Ω) is a Hilbert space under the scalar product of L

2(Ω).
Now let a0 : H1s (Ω)×H1s (Ω)→ R be the “limit” bilinear form defined by

a0(u, v) :=
∫
Ω
∇u · ∇v dx dy =

∫
Ω
∇xu · ∇xv dx dy.

The bilinear form a0 on H1s (Ω) together with the scalar product

b0(u, v) = 〈u, v〉L2s(Ω) :=
∫
Ω
uv dx dy on L2s(Ω)

satisfy the hypotheses of Proposition 2.3. Proposition 2.3 implies that there
exists a nondecreasing sequence (λ0,j , w0,j)j∈N of eigenvalue-eigenvector pairs of
(a0, b0) such that (w0,j)j∈N is a complete orthonormal system on L2s(Ω). More-
over, λ0,1 ≡ 0 and λ0,j > 0 for all j ≥ 2. For convenience we set λ0,0 := −∞.
Denote by A0 the operator generated by the pair (a0, b0).
Let us now recall the concept of a semiflow:
Let X be a topological space, let D be an open subset of [0,∞[ × X and

π : D → X be a continuous map. We write xπt := π(t, x) for (t, x) ∈ D. The
map π is called a local semiflow on X if the following properties are satisfied:

(1) For every x ∈ X there is a number ωx = ωπx ∈ ]0,∞] such that (t, x) ∈ D
if and only if 0 ≤ t < ωx.

(2) xπ0 = x for all x ∈ X.
(3) If (t, x) ∈ D and (s, xπt) ∈ D then (t+ s, x) ∈ D and

xπ(t+ s) = (xπt)πs.

If ωx =∞ for every x ∈ X, then π is called a global semiflow on X.
Let J be an arbitrary interval in R. A map σ : J → X is called a solution

of π if for all t ∈ J and s ∈ [0,∞[ for which t+ s ∈ J , it follows that σ(t)πs is
defined and σ(t)πs = σ(t+ s). If 0 ∈ J and σ(0) = x, we say that σ is a solution
through x. If J = R (respectively, J = ]−∞, 0]), then σ is called a full solution
(respectively, full left solution) relative to π.
Let π and π′ be local semiflows on the topological space X and Y be an

arbitrary subset of X. We say that π and π′ coincide on Y if whenever J is an
interval in R and σ : J → Y is a map then σ is a solution of π if and only if σ is
a solution of π′.
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Now let X and X ′ be topological spaces and let π (respectively, π′) be a
local semiflow on X (respectively, on X ′). We say that the map Φ : X → X ′

conjugates π with π′ if Φ is a homeomorphism and σ : J → X is a solution of π
if and only if Φ ◦ σ : J → X ′ is a solution of π′.

Example 2.4. Let X be a Banach space and A be a sectorial operator in
X generating the family Xβ , β ≥ 0, of fractional power spaces. Fix an α ∈ [0, 1[
and suppose U is an open set in Xα and f : U → X is a locally Lipschitzian
map. The equation

u̇ = −Au+ f(u)
defines, in the usual way, a local semiflow πA,f on Xα. (see [24] or [39]). If f is
globally Lipschitzian on U , then πA,f is a global semiflow.

Example 2.5. Let A and U be as in the Example 2.4. Moreover, let f :
U → X and f ′ : U → X be locally Lipschitzian maps. If Y is a subset of U
and f(u) = f ′(u) on Y , then πA,f coincides with πA,f ′ on Y . This easily follows
from the definition of the solution of parabolic equations (see [24] or [39]).

For every ε > 0 the operator Aε (respectively, Ãε) is sectorial on X = L2(Ω)
(respectively, on X = L2(Ωε)) and the corresponding fractional power space
Xα with α = 1/2 satisfies Xα = H1(Ω) (respectively, Xα = H1(Ωε)). If
fε : H1(Ω) → L2(Ω) (respectively, f̃ε : H1(Ωε) → L2(Ωε)) is a locally Lips-
chitzian map we thus obtain the corresponding local semiflow πε,fε := πAε,fε
(respectively, π̃ε, efε := π eAε, efε) on H

1(Ω) (respectively, on H1(Ωε)). Note that,

given a locally Lipschitzian map f̃ε : H1(Ωε)→ L2(Ωε), the map Φε(u) = u ◦ Tε
introduced above conjugates the semiflow π̃ε, efε with the semiflow πε,fε where

fε := Φε ◦ f̃ε ◦ Φε−1.
Now let gε : Ωε×R×RM ×RN → R be a given function and f̃ε := ĝε be the

Nemitskĭı operator generated by gε, i.e. for u : Ωε → R set

f̃ε(u)(x, y) := gε((x, y), u(x, y),∇xu(x, y),∇yu(x, y)) for (x, y) ∈ Ωε.

Suppose f̃ε restricts to a locally Lipschitzian map from H1(Ωε) to L2(Ωε). Then
the map fε := Φε ◦ f̃ε ◦ Φε−1 is clearly given by

(1) fε(u)(x, y) := gε

(
(x, εy), u(x, y),∇xu(x, y),

1
ε
∇yu(x, y)

)
for u ∈ H1(Ω) and (x, y) ∈ Ω.

Now note that the “limit” operator A0 is sectorial on X = L2s(Ω) and the
corresponding fractional power space Xα with α = 1/2 satisfies Xα = H1s (Ω). If
f0 : H1s (Ω)→ L2s(Ω) is a locally Lipschitzian map we thus obtain the correspond-
ing local semiflow π0,f0 := πA0,f0 on H

1
s (Ω). Again, if f0 is globally Lipschitzian,

then π0,f0 is a global semiflow.
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From now on, unless otherwise specified, we will work in a fixed bounded
domain Ω and will often write | · |H1 for | · |H1(Ω) and | · |L2 for | · |L2(Ω). Moreover,
we will write 〈u, v〉 to denote the scalar product in L2(Ω).
For every ε > 0 one can define on H1(Ω) the norm

|u|ε := (aε(u, u) + |u|2L2(Ω))
1/2.

This norm is equivalent to | · |H1(Ω) for every fixed ε > 0, but |u|ε → ∞ as
ε→ 0+ whenever ∇yu 6= 0 in L2(Ω). Note that |u|ε = |u|H1(Ω), whenever ε > 0
and u ∈ H1s (Ω). It is easily seen that for every u ∈ H1(Ω)

|u|2ε =
∞∑
j=1

(λε,j + 1)|〈u,wε,j〉L2(Ω)|2.

Moreover, for every u ∈ H1s (Ω),

|u|H1(Ω) =
∞∑
j=1

(λ0,j + 1)|〈u,w0,j〉L2(Ω)|2.

The following concept will play a crucial in the convergence results estab-
lished below.

Definition 2.6. Given ε0 with 0 < ε0 ≤ 1 we say that the family (fε)ε∈[0,ε0]
of maps satisfies hypothesis (A1) if the following properties are satisfied:

(1) fε : H1(Ω)→ L2(Ω) for every ε ∈ ]0, ε0] and f0 : H1s (Ω)→ L2s(Ω).
(2) limε→0+ |fε(u)− f0(u)|L2 = 0 for every u ∈ H1s (Ω).
(3) For every M ∈ [0,∞[ there is an L ∈ [0,∞[ such that

|fε(u)− fε(v)|L2 ≤ L|u− v|ε

for ε ∈ ]0, ε0] and u, v ∈ H1(Ω) satisfying |u|ε, |v|ε ≤M . Moreover,

|f0(u)− f0(v)|L2 ≤ L|u− v|H1

for u, v ∈ H1s (Ω) satisfying |u|H1 , |v|H1 ≤M .
We say that (fε)ε∈[0,ε0] satisfies hypothesis (A2) if the following properties are
satisfied:

(1) fε : H1(Ω)→ L2(Ω) for every ε ∈ ]0, ε0] and f0 : H1s (Ω)→ L2s(Ω).
(2) limε→0+ |fε(u)− f0(u)|L2 = 0 for every u ∈ H1s (Ω).
(3) There is an L ∈ [0,∞[ such that

|fε(u)− fε(v)|L2 ≤ L|u− v|ε

for ε ∈ ]0, ε0] and all u, v ∈ H1(Ω). Moreover,

|f0(u)− f0(v)|L2 ≤ L|u− v|H1

for all u, v ∈ H1s (Ω).
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The following proposition shows how we can obtain, in applications, families
of maps satisfying hypothesis (A1):

Proposition 2.7. Suppose the domain Ω satisfies the following condition:

(2) L2s(Ω) = {u ∈ L2(Ω) | ∇yu = 0}.

Let G : R× RM × RN × R× RM × RN → R, (ε, x, y, ξ, η, ζ) 7→ G(ε, x, y, ξ, η, ζ),
be a C1-function for which there are constants β, γ and C ∈ [0,∞[ such that for
all (ε, x, y, ξ, η, ζ) ∈ R × RM × RN × R × RM × RN the following estimates are
satisfied:

(1) |∂εG(ε, x, y, ξ, η, ζ)| ≤ C(1 + |ξ|β),
(2) |∇yG(ε, x, y, ξ, η, ζ)| ≤ C(1 + |ξ|β),
(3) |∂ξG(ε, x, y, ξ, η, ζ)| ≤ C(1 + |ξ|γ),
(4) |∇ηG(ε, x, y, ξ, η, ζ)|+ |∇ζG(ε, x, y, ξ, η, ζ)| ≤ C.

If n :=M+N > 2 then we also assume that β ≤ 2∗/2 and γ ≤ (2∗/2)−1, where
2∗ := 2n/(n− 2).
For ε > 0 define the function gε : Ωε × R× RM × RN → R by

gε((x, y), ξ, η, ζ) = G(ε, x, y, ξ, η, ζ) for ((x, y), ξ, η, ζ) ∈ Ωε × R× RM × RN .

Then the Nemitskĭı operator f̃ε := ĝε defined by the function gε is a well-defined
map from H1(Ωε) to L2(Ωε). Define fε : H1(Ω)→ L2(Ω) by fε = Φε ◦ f̃ε ◦Φε−1.
More specifically, fε is given by (1). Furthermore, for u ∈ H1s (Ω) define f0(u) :
Ω→ R by

f0(u)(x, y) := G(0, x, 0, u(x, y),∇xu(x, y), 0) for (x, y) ∈ Ω.

Then f0(u) ∈ L2s(Ω) and the family (fε)ε∈[0,ε0] satisfies hypothesis (A1).

Proof. Since H1(Ω) is continuously contained in Lσ(Ω) where σ ∈ [1,∞[
for n = 2 and σ ∈ [1, 2∗] for n > 2, it follows by an application of the mean-value
theorem and Hölder inequality, using estimates (1)–(4) above, that fε(H1(Ω)) ⊂
L2(Ω) for ε > 0 and conditions (2) and (3) in the definition of hypothesis (A1)
are satisfied. Let u ∈ H1s (Ω) be arbitrary and v := f0(u). Then an application
of Theorem 2.5 in [33] implies that ∇yv = 0. Now condition (2) implies that
v ∈ L2s(Ω). This shows that hypothesis (A1) is satisfied. The proof is complete.�

Remark 2.8. (1) Condition (2) is satisfied for domains Ω with connected
vertical sections, i.e. domains such that the set

Ωx := {y | (x, y) ∈ Ω}

is connected for all x ∈ RM . In fact in such cases functions u ∈ L2(Ω) with∇yu =
0 are actually functions depending only on the variables x. By appropriately
regularizing these functions with respect to these variables we can prove that



Conley Index Continuation and Thin Domain Problems 213

u ∈ L2s(Ω). Obvious details are omitted. In particular, condition (2) is satisfied
for domains Ω considered by Hale and Raugel. Condition (2) is also satisfied for
nicely decomposed domains. This follows from results in [34].
(2) If the function G is independent of the variables η and ζ, then condi-

tion (2) is superfluous. In fact, the proof that f0(H1s (Ω)) ⊂ L2s(Ω) is, in that
case, accomplished by a simple modification of the proof of Theorem 5.3 in [33].
(3) Without changing the proof we may relax the growth conditions (1)–

(3) in Proposition 2.7. In fact, we may allow factors involving certain positive
powers of |η| and |ζ|. We do not give a precise statement here since our main
interest is in functions G which do not depend on the variables η and ζ, so that
the resulting semiflows πε,fε are gradient-like.

Condition (A1) is stronger than condition (A2). However, in many cases,
one can modify a given family of maps satisfying (A1) in such a way as to obtain
a family satisfying (A2) and so that both families coincide on a given bounded
set. This is made more precise in the following result, which is obtained by a
simple calculation, using Example 2.5.

Proposition 2.9. Let 0 < ε0 ≤ 1 and (fε)ε∈[0,ε0] satisfy hypothesis (A1).
Let Y be the open ball in H1(Ω) at zero with radius r > 0. Choose a smooth
function h : R→ R such that

h(s) =

{
1 if |s| < r,
0 if |s| > 2r.

For every ε ∈ ]0, ε0] define the map f ′ε : H1(Ω)→ L2(Ω) by

f ′ε(u) = h(|u|ε)fε(u).

Moreover, define f ′0 : H
1(Ω)→ L2(Ω) by

f ′0(u) = h(|u|H1)f0(u).

Then the family (f ′ε)ε∈[0,ε0] satisfies hypothesis (A2). Moreover, fε(u) = f
′
ε(u)

for ε ∈ ]0, ε0] and u ∈ Y . Besides, f0(u) = f ′0(u) for u ∈ Y ∩ H1s (Ω). Con-
sequently, the local semiflows πε,fε and πε,f ′ε coincide on Yε := {u ∈ H

1(Ω) |
|u|ε < r} for ε ∈ ]0, ε0] and on Y ∩H1s (Ω) for ε = 0.

We can now state our first convergence result.

Theorem 2.10. Let (εn)n∈N and (tn)n∈N be arbitrary sequences of positive
numbers convergent to zero. Let u0 ∈ H1s (Ω) and (un)n∈N be a sequence in
H1(Ω) such that

|un − u0|εn → 0 as n→∞.
Then

|e−tnAεnun − u0|εn → 0 as n→∞.
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Proof. Given v ∈ H1(Ω), t > 0 and ε > 0 we have

|e−tAεv|2ε =
∞∑
j=1

(λε,j + 1)|〈e−tAεv, wε,j〉|2 =
∞∑
j=1

(e−tλε,j )2(λε,j + 1)|〈v, wε,j〉|2.

Since λε,j ≥ 0, it follows that |e−tAεv|ε ≤ |v|ε. Hence we obtain

|e−tnAεnun − u0|εn ≤ |e−tnAεn (un − u0)|εn + |e−tnAεnu0 − u0|εn
≤ |un − u0|εn + |e−tnAεnu0 − u0|εn .

Thus we only have to prove that

|e−tnAεnu0 − u0|εn → 0 as n→∞.

Let δ > 0 be arbitrary. It follows that

|u0|2H1 =
∞∑
j=1

(λ0,j + 1)|〈u0, w0,j〉|2 <∞.

Hence there is a k ∈ N such that

d0 :=
∞∑
j=k

(λ0,j + 1)|〈u0, w0,j〉|2 < δ.

Let Pn : L2(Ω) → L2(Ω) be the L2-orthogonal projection onto the span of the
vectors {wεn,1, . . . , wεn,k−1}. Then

|u0|2H1 = |u0|2ε =
∞∑
j=1

(λεn,j + 1)|〈u0, wεn,j〉|2 = cn + dn,

where

cn :=
k−1∑
j=1

(λεn,j + 1)|〈u0, wεn,j〉|2 and dn :=
∞∑
j=k

(λεn,j + 1)|〈u0, wεn,j〉|2.

Theorem 3.3 in [33] implies that for an appropriate choice of the eigenvectors
(w0,j)j∈N

cn →
k−1∑
j=1

(λ0n,j + 1)|〈u0, w0,j〉|2 =: c0 as n→∞.

Consequently, for n→∞, dn → |u0|2H1 − c0 = d0 < δ. Thus there is an n0 such
that 0 ≤ dn < δ for n ≥ n0. Now

|e−tnAεnu0 − u0|2εn =
∞∑
j=1

(e−tnλεn,j − 1)2(λεn,j + 1)|〈u0, wεn,j〉|2 = c′n + d′n,

where

c′n :=
k−1∑
j=1

(e−tnλεn,j − 1)2(λεn,j + 1)|〈u0, wεn,j〉|2
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and

d′n :=
∞∑
j=k

(e−tnλεn,j − 1)2(λεn,j + 1)|〈u0, wεn,j〉|2.

Now Theorem 3.3 in [33] implies that tnλεn,j → 0 · λ0,j as n→∞, so, again by
Theorem 3.3 in [33], c′n → 0 as n→∞, so there is an n1 ≥ n0 such that c′n < δ
for n ≥ n1. Furthermore, (e−tnλεn,j − 1)2 ≤ 1 so

d′n ≤
∞∑
j=k

(λεn,j + 1)|〈u0, wεn,j〉|2 = dn < δ.

Therefore |e−tnAεnu0 − u0|2εn < 2δ for n ≥ n1. Since δ is arbitrary, the theorem
is proved. �

Remark 2.11. Let (εn)n∈N and (tn)n∈N be arbitrary sequences of positive
numbers convergent to zero. Let u0 ∈ L2s(Ω) and (un)n∈N be a sequence in L2(Ω)
converging to u0 in L2(Ω). Then

|e−tnAεnun − u0|L2 → 0 as n→∞.

The proof of this assertion is completely analogous to (and easier than) the proof
of Theorem 2.10.

For the rest of this section let ε0 > 0 and (fε)ε∈[0,ε0] satisfy hypothesis (A2).
Write πε for πε,fε .

Before stating our next convergence result let us note that there is a positive
real constant C1 such that for all ε > 0, r > 0 and u ∈ L2(Ω)

(3) |e−Aεru|ε ≤ (C1r−1/2 + 1)|u|L2 .

Moreover, for all u ∈ L2s(Ω),

(4) |e−A0ru|ε ≤ (C1r−1/2 + 1)|u|L2 .

We will need these estimates in the proofs to follow.

We can now state our second convergence theorem.

Theorem 2.12. Let (εn)n∈N and (tn)n∈N be arbitrary sequences of positive
numbers convergent to zero. Moreover, let u0 ∈ H1s (Ω) and (un)n∈N be a sequence
in H1(Ω) such that

|un − u0|εn → 0 as n→∞.

Then

|unπεntn − u0|εn → 0 as n→∞.
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Proof. We may assume that tn ≤ 1 for all n ∈ N. For every t ∈ ]0, 1] we
have

unπεnt− u0 = e−tAεnun +
∫ t
0
e−(t−s)Aεn (fεn(unπεns)− fεn(u0)) ds

+
∫ t
0
e−(t−s)Aεn fεn(u0) ds− u0.

Therefore the estimate (3) implies that

|unπεnt− u0|εn ≤ |e−tAεnun|εn +
∫ t
0
C1L((t− s)−1/2 + 1)|unπεns− u0|εn ds

+
∫ t
0
C1((t− s)−1/2 + 1)|fεn(u0)|L2 ds+ |u0|εn .

By hypothesis (A2) we have that the sequence fεn(u0), n ∈ N, is bounded in
L2(Ω). Since the sequence (|un|εn)n∈N is bounded there is a positive real constant
C2 such that for all n ∈ N and every t ∈ ]0, 1]

|unπεnt− u0|εn ≤ C2 + C2
∫ t
0
(t− s)−1/2|unπεns− u0|εn ds.

Thus an application of Henry’s Inequality ([24, Lemma 7.1.1]) implies that

|unπεnt− u0|εn ≤ C2 + C2
∫ t
0
ρ(t− s) ds,

where

ρ(x) :=
∞∑
n=1

(C2Γ(β))n

Γ(nβ)
xnβ−1

with β := 1/2. The function ρ : ]0,∞[ → ]0,∞[ is well defined and continuous
on ]0,∞[ and it satisfies the estimate

ρ(x) ≤ C2x−1/2 + C3 for x ∈ ]0, 1],

where C3 is a constant. It follows that there is a constant M such that for all
n ∈ N and every t ∈ ]0, 1]

|unπεnt− u0|εn ≤M.

It follows that for all n ∈ N and every s with 0 < s ≤ 1

|fεn(unπεns)|L2 ≤ |fεn(unπεns)− fεn(u0)|L2 + |fεn(u0)|L2

≤ LM + |fεn(u0)|L2 ≤ C4

for some constant C4. Since

unπεntn − u0 = e−tnAεnun − u0 +
∫ tn
0
e−(tn−s)Aεn fεn(unπεns) ds
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we conclude that

|unπεntn − u0|εn ≤ |e−tnAεnun − u0|εn + C5
∫ tn
0
(tn − s)−1/2 ds

for some constant C5. Now an application of Theorem 2.10 completes the proof
of the theorem. �

Remark 2.13. Let (εn)n∈N and (tn)n∈N be arbitrary sequences of positive
numbers convergent to zero. Let u0 ∈ L2s(Ω) and (un)n∈N be a sequence in L2(Ω)
converging to u0 in L2(Ω). Then

|unπεntn − u0|L2(Ω) → 0 as n→∞.

The proof of this assertion is analogous to (and easier than) the proof of Theo-
rem 2.12.

We can also state the following generalization of Theorem 5.1 in [33].

Theorem 2.14. Let (εn)n∈N be an arbitrary sequence of positive numbers
convergent to zero. Moreover, let t ∈ ]0,∞[ and (tn)n∈N be a sequence in ]0,∞[
converging to t. Finally, let u0 ∈ H1s (Ω) and (un)n∈N be a sequence in H1(Ω)
such that

|un − u0|L2 → 0 as n→∞.
Then

|unπεntn − u0π0t|εn → 0 as n→∞.

Proof. We modify the initial part of proof of Theorem 5.1 in [33] and
therefore use the notation of that proof: write | · |n := | · |εn , An := Aεn , A := A0,
πn := πεn , π := π0 and u := u0. Let b ∈ [0,∞[ be arbitrary with tn ∈ ]0, b],
n ∈ N, and t ∈ ]0, b]. For every t ∈ [0, b] we have, by the variation-of-constants
formula,

unπnt− uπt = e−Antun − e−Atu

+
∫ t
0
e−An(t−s)(fεn(unπns)− fεn(uπs)) ds

+
∫ t
0
(e−An(t−s)fεn(uπs)− e−A(t−s)f0(uπs)) ds.

Define the function gn : [0, b]× [0, b]→ R as follows: if 0 < s < t then set

gn(t, s) = |e−An(t−s)fεn(uπs)− e−A(t−s)f0(uπs)|n

and set gn(t, s) = 0 otherwise. The function gn restricted to the set of (s, t) with
0 < s < t is continuous. Thus gn is measurable on [0, b] × [0, b]. By Fubini’s
theorem the function

cn(t) :=
∫ b
0
gn(t, s) ds =

∫ t
0
gn(t, s) ds
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is a.e. defined and measurable on [0, b]. Set

an(t) := |e−Antun − e−Atu|n + cn(t) for t ∈ ]0, b]

and an(0) := 0. It follows that an is measurable on [0, b]. Using the estimates (3)
and (4) we obtain

|gn(t, s)| ≤ 2C2(C1(t− s)−1/2 + 1) for 0 < s < t

where

C2 := max{ sup
s∈[0,b]

sup
n∈N
|fεn(uπs)|L2 , sup

s∈[0,b]
|f0(uπs)|L2}.

Note that, by hypothesis (A2),

|fεn(uπs)|L2 ≤ |fεn(uπs)−fεn(u)|L2+|fεn(u)|L2 ≤ L|uπs−u|n+|fεn(u)|L2 ≤M

for some constant M < ∞, independent of n ∈ N and s ∈ [0, b]. Similarly, we
may assume that

|f0(uπs)|L2 ≤M for s ∈ [0, b].

This shows that C2 <∞.
The remaining part of the proof is now almost identical to the corresponding

part of the proof of Theorem 5.1 in [33] and so we omit it here. �

We thus obtain the following corollary.

Corollary 2.15. Let (εn)n∈N be an arbitrary sequence of positive numbers
convergent to zero. Moreover let t ∈ [0,∞[ and (tn)n∈N be a sequence in [0,∞[
converging to t. Finally, let u0 ∈ H1s (Ω) and (un)n∈N be a sequence in H1(Ω)
such that

|un − u0|εn → 0 as n→∞.

Then

|unπεntn − u0π0t|εn → 0 as n→∞.

Proof. We may assume, of course, that all numbers tn are positive. If t = 0,
then the assertion follows from Theorem 2.12. If t > 0, the assertion follows from
Theorem 2.14. �

We also need the following

Proposition 2.16. Let (εn)n∈N be an arbitrary sequence of positive numbers
convergent to zero. Moreover, let (tn)n∈N be a sequence in [0,∞[ converging to
∞. For every n ∈ N let σn : [−tn, 0]→ H1(Ω) be a solution of πεn . Assume that
there is a C ∈ [0,∞[ such that

|σn(t)|εn ≤ C for all n ∈ N and t ∈ [−tn, 0].
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Then there exists a subsequence of (σn)n∈N, denoted by the same symbol (σn)n∈N,
and there is a full left solution σ : ]−∞, 0] → H1s (Ω) of π0, such that for every
t ∈ ]−∞, 0],

|σn(t)− σ(t)|εn → 0 as n→∞.

Remark 2.17. Note that for every t ∈ ]−∞, 0], there is some n0 with −tn ≤
t for all n ≥ n0, so the sequence (σn(t)) is well defined for n ≥ n0.

Proof. The proof of this result is completely analogous to that of Corol-
lary 5.2 in [33]. We therefore omit the details. �

Note that, for every fixed ε > 0, the space H1(Ω) is a Hilbert space under
the scalar product

(u, v)ε := aε(u, v) + 〈u, v〉, u, v ∈ H1(Ω).

Since H1s (Ω) is a closed subspace of H
1(Ω), there is a map Qε : H1(Ω)→ H1(Ω)

which is the orthogonal projector onto H1s (Ω) with respect to the scalar product
( · , · )ε. This projector will play a crucial role in the sequel. Note that, for every
u ∈ H1(Ω),

|u|2ε = |Qεu|2ε + |(I −Qε)u|2ε,
where, as usual, I is the identity map on H1(Ω).

Remark 2.18. If Ω is a product domain, i.e. if Ω = U × V with U ⊂ RM

and V ⊂ RN , and if κ denotes the measure of V then, as it is easily proved, the
projector Qε has the explicit form

(Qεu)(x) =
1
κ

∫
V

u(x, y) dy for u ∈ H1(Ω) and x ∈ U,

i.e. Qε is the mean-value operator with respect to the variable y ∈ V . No such
explicit form of Qε is known for general domains Ω.

Definition 2.19. Given a subset V of H1s (Ω), η > 0 and ε > 0, define the
“inflated” subsets ]V [ε,η and [V ]ε,η of H1(Ω) as follows:

]V [ε,η := {u ∈ H1(Ω) | Qεu ∈ V and |(I −Qε)u|ε < η},
[V ]ε,η := {u ∈ H1(Ω) | Qεu ∈ V and |(I −Qε)u|ε ≤ η}.

Lemma 2.20. Let V be a subset of H1s (Ω). Then for every ε > 0 and η > 0

clε ]V [ε,η = [clV ]ε,η .

Proof. Since [clV ]ε,η is closed in H1(Ω), we obtain clε ]V [ε,η ⊂ [clV ]ε,η.
Conversely, let u ∈ [clV ]ε,η. This implies that Qεu ∈ clV and |(I −Qε)u|ε ≤ η.
Therefore there exists a sequence (wn)n∈N, wn ∈ V , such that

|wn −Qεu|H1 → 0 as n→∞.
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Define

zn := (I −Qε)
n

n+ 1
u and vn := wn + zn.

It is clear that vn ∈ ]V [ε,η and |vn−u|ε → 0 for n→∞. The lemma is proved.�

The following result is an immediate consequence of Proposition 2.16 and
the proof of Corollary 5.2 in [33].

Lemma 2.21. Let S be a closed bounded set in H1s (Ω), η > 0 and (εn)n∈N

be a sequence of positive numbers converging to zero. For every n ∈ N let σn :
Jn → [S]εn,η be a solution of πεn . If Jn ≡ R for every n ∈ N (respectively, if
Jn = [−tn, 0], n ∈ N, where tn → ∞), then there is a subsequence of (σn)n∈N,
again denoted by (σn)n∈N and there is a solution σ : R → S (respectively, σ :
]−∞, 0]→ S) of π0 such that for every t ∈ R (respectively, every t ∈ ]−∞, 0])

|σn(t)− σ(t)|εn → 0 as n→∞

so |Qεnσn(t)− σ(t)|H1 → 0 and |(I −Qεn)σn(t)|εn → 0 as n→∞.

3. A Conley index continuation theorem

In this section, we will state our basic Conley index continuation theorem for
thin domain problems. The proof of this theorem will be given in the Appendix.

We will first review some basic definitions and results concerning the Conley
index theory for semiflows defined on a metric space. The reader is referred to
[37] or [39] for the proofs of several of the results stated below and for further
details on the subject.

Given a topological space Z and an arbitrary set Y , we define the quotient
space Z/Y as follows: fix an arbitrary p /∈ Z. Define the set Z/Y as

Z/Y := (Z \ Y ) ∪ {p}

and the map q : Z → Z/Y as

q(z) =

{
z if z ∈ Z \ Y ,
p otherwise.

We commonly write [z] instead of q(z). We also write [Y ] instead of p.

Call a subset V of Z/Y open in Z/Y if and only if q−1(V ) is open in Z.
This defines a (quotient) topology on Z/Y . Note that if Y ∩ Z 6= ∅, then q is a
(surjective) identification map. If Y ∩Z = ∅, then Z/Y = Z∪{p} and V ⊂ Z/Y
is open in Z/Y if and only if V ∩ Z is open in Z.
For the rest of this section, unless specified otherwise, let X be a metric space

and let π be a local semiflow on X.
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Suppose that Y is a subset of X. We define the following subsets of X:

A+π (Y ) := {u ∈ X | uπ [0, ωu[ ⊂ Y },
A−π (Y ) := {u ∈ X | there exists a solution σ : ]−∞, 0]→ X

through u with σ(]−∞, 0]) ⊂ Y },
Aπ(Y ) :=A+π (Y ) ∩A−π (Y ).

A subset Y of X is called invariant (positively invariant, negatively invariant)
relative to π if Y = Aπ(Y ) (respectively, Y = A+π (Y ), Y = A

−
π (Y )).

LetN be a closed subset ofX such thatK := Aπ(N) is closed andK ⊂ IntN .
Then N is called an isolating neighbourhood of K relative to π and K is called
an isolated invariant set relative to π.

Let B ⊂ X be a closed set and u ∈ ∂B. The point u is called a strict egress
(respectively strict ingress, respectively bounce-off) of B, if for every solution
σ : [−δ1, δ2] → X through u, with δ1 ≥ 0 and δ2 > 0, the following properties
hold:

(1) There exists an ε2 ∈ ]0, δ2[ such that σ(t) 6∈ B (respectively σ(t) ∈ IntB,
σ(t) 6∈ B), for t ∈ ]0, ε2].

(2) If δ1 > 0, then there exists an ε1 ∈ ]0, δ1[ such that σ(t) ∈ IntB
(respectively, σ(t) 6∈ B, σ(t) 6∈ B), for t ∈ [−ε1, 0[.

The set of all strict egress points (respectively strict ingress, bounce-off) of
the closed set B will be denoted by Be (respectively, Bi, Bb). A closed set
B ⊂ X is called an isolating block, if ∂B = Be ∪Bi ∪Bb and B− := Be ∪Bb is
closed.

Let N be a closed subset of X. Then N is called strongly π-admissible if the
following properties are satisfied:

(1) Whenever uπt ∈ N for all t ∈ [0, ωu[ then ωu =∞.
(2) Whenever (un)n∈N is a sequence inX and (tn)n∈N is a sequence in [0,∞[
such that tn →∞ as n→∞ and unπ[0, tn] ⊂ N for all n ∈ N, then the
sequence (unπtn)n∈N of endpoints has a convergent subsequence.

Theorem 3.1. Let K be an isolated π-invariant set and N be a strongly
π-admissible isolating neighbourhood of K. Then there exists an open set V such
that B := clV is an isolating block such that K ⊂ V ⊂ B ⊂ N and ∂V = ∂B.

Proof. By Theorem 5.1 in Chapter 1 of [39] there exists an isolating block
B′ such that K ⊂ IntB′ ⊂ B′ ⊂ N . Set V := IntB′ and B := clV . It is easily
verified that B := clV is an isolating block such that K ⊂ V ⊂ B ⊂ N and
∂V = ∂B. �
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Let N , Y be subsets of X such that Y ⊂ N . The set Y is called N -positively
invariant relative to π, if whenever u ∈ X, t ≥ 0 are such that uπ[0, t] ⊂ N and
u ∈ Y , then uπ[0, t] ⊂ Y .

Definition 3.2. LetN be a closed set inX andN1 andN2 be closed subsets
of N . The pair (N1, N2) is called a pseudo-index pair in N if:

(1) N1 and N2 are N -positively invariant,
(2) whenever u ∈ N1 and uπt0 6∈ N for some t0 ∈ [0,∞[, then there exists
a t′ ∈ [0, t0] such that uπ[0, t′] ⊂ N and uπt′ ∈ N2.

A pseudo index pair (N1, N2) in N is called an index pair in N if Aπ(N) is closed
and Aπ(N) ⊂ Int (N1 \N2).

If B is an isolating block with Aπ(B) closed, then (B,B−) is an index pair
in B.
Let K be an isolated invariant set, N be a strongly π-admissible isolating

neighbourhood of K and (N1, N2) be an index pair in N . Then the homotopy
type of the pointed space (N1/N2, [N2]) depends only on the semiflow π and the
isolated invariant set K (see Theorem 10.1 in [39]). The Conley index, h(π,K),
of the isolated invariant set K with respect to π is defined to be the homotopy
type of (N1/N2, [N2]).

Remark 3.3. If N is a strongly π-admissible isolating neighbourhood rela-
tive to π, we will sometimes write h(π,N) to denote h(π,Aπ(N)). This will not
lead to confusion.

The following result is obvious.

Proposition 3.4. Let π and π′ be local semiflows on the metric space X.
Let Y be a subset of X on which π and π′ coincide. Suppose N is closed in
X and N ⊂ Y . Then Aπ(N) = Aπ′(N). Moreover, N is a strongly admissible
isolating neighbourhood relative to π if and only if N is a strongly admissible
isolating neighbourhood relative to π′ and in this case

h(π,N) = h(π′, N).

We can now state the main result of this section.

Theorem 3.5. Let ε0 > 0 and (fε)ε∈[0,ε0] be a family of maps satisfying
hypothesis (A1). Let N be a bounded isolating neighbourhood for π0,f0 . Then for
every η > 0 there exists an εc = εc(η) > 0 such that for every ε ∈ ]0, εc] the set
[N ]ε,η is a strongly admissible isolating neighbourhood relative to πε,fε and

(5) h(πε,fε , [N ]ε,η) = h(π0,f0 , N).

Theorem 3.5 can also be reworded in terms of the semiflows π̃ε, efε generated
by the original reaction-diffusion equations on the squeezed domains Ωε.
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Theorem 3.6. Let ε0 > 0 and (fε)ε∈[0,ε0] be a family of maps satisfying
hypothesis (A1). For ε > 0 define f̃ε : H1(Ωε)→ L2(Ωε) by f̃ε := Φε−1 ◦ fε ◦Φε.
Let N be a bounded isolating neighbourhood for π0,f0 . Then, for every η > 0,
there exists an εc = εc(η) > 0 such that, for every ε ∈ ]0, εc], the set Φε−1([N ]ε,η)
is a strongly admissible isolating neighbourhood relative to π̃ε, efε and

h(π̃ε, efε ,Φε
−1([N ]ε,η)) = h(π0,f0 , N).

Proof. The isomorphism Φε conjugates the local semiflow π̃ε, efε to the local
semiflow πε,fε . Thus whenever S is a strongly admissible isolating neighbourhood
with respect to πε,fε , then Φε

−1(S) is a strongly admissible isolating neighbour-
hood with respect to π̃ε, efε and

h(πε,fε , S) = h(π̃ε, efε ,Φε
−1(S)).

Now Theorem 3.5 completes the proof. �

Theorem 3.5 yields the following corollary, which was stated, somewhat less
precisely, in the Introduction.

Corollary 3.7. For every η > 0 the family (Kε,η)ε∈[0,εc(η)] of invariant
sets, where Kε,η := Aπε([N ]ε,η), ε ∈ ]0, εc(η)], and K0,η = K0 := Aπ0(N), is
upper semicontinuous at ε = 0 with respect to the family | · |ε of norms. In other
words,

lim
ε→0+

sup
u∈Kε,η

inf
v∈K0
|u− v|ε = 0.

Proof. If the corollary is not true, then there are numbers η and β > 0, a
sequence εn → 0+ and a sequence un ∈ Kεn,η, n ∈ N, such that

inf
v∈K0
|un − v|ε > β.

For every n ∈ N let σn : R→ [N ]εn,η be a solution of πεn with σn(0) = un. Using
Lemma 2.21 we may assume that whenever t ∈ R, then |σn(t)− σ(t)|εn → 0 as
n → ∞, where σ : R → N is a solution of π0. In particular, |un − v|εn → 0
as n → ∞ where v := σ(0) ∈ K0. This is a contradiction, which proves the
corollary. �

Theorem 3.5 will be proved in the Appendix. In the next section we discuss a
few applications of this result. More applications will be given in a forthcoming
publication.

4. Applications

4.1. Connection lifting. Until further notice assume that ε0 > 0 and that
(fε)ε∈[0,ε0] is a family of maps satisfying hypothesis (A1). Write πε := πε,fε
for ε ∈ [0, ε0]. Using Theorem 3.5 we will show in this subsection that, under



224 M. C. Carbinatto — K. P. Rybakowski

certain hypotheses, heteroclinic orbits of the limit semiflow π0 can be “lifted” to
the semiflows πε and thus, by conjugacy, to the corresponding semiflows π̃ε on
the squeezed domains Ωε, for ε > 0 small. We first treat an abstract problem
and then apply the results obtained to an equation considered by Fiedler and
Rocha.

Proposition 4.1. Suppose that the local semiflow π0 is gradient-like with
respect to a Liapunov function V0 : H1s (Ω) → R. Assume also that N , N ′ and
N ′′ are bounded isolating neighbourhoods with respect to π0 with N ′ ∩ N ′′ = ∅,
N ′ ∪N ′′ ⊂ N and there are points u′ and u′′ such that V0(u′) > V0(u′′), {u′} =
Aπ0(N

′) and {u′′} = Aπ0(N ′′). Finally, assume that

(6) h(π0, N) 6= h(π0, N ′) ∨ h(π0, N ′′)

and there are no equilibria of π0 lying in N \ (N ′∪N ′′). Then there is a solution
σ0 : R→ N of π0 with {u′} = α(σ0) and {u′′} = ω(σ0).

Remark 4.2. Recall that, given a metric space X and an arbitrary map
σ : R → X, the α-limit set α(σ) (respectively, the ω-limit set ω(σ)) of σ is
defined as the set of all points x ∈ X for which there is a sequence (tn)n∈N in
R with tn → −∞ (respectively, tn → ∞) as n → ∞ such that σ(tn) → x as
n→∞.

Proof. From (6) we see that there is a solution σ0 : R → N of π0 with
σ0(R) 6⊂ N ′ ∪N ′′. Since π0 is gradient-like, it follows that α(σ0) and ω(σ0) are
nonempty sets of equilibria of π0. Our assumptions imply that the only equilibria
of π0 lying in N are u′ and u′′. In particular, σ0 is a nonconstant solution, so V0
is strictly decreasing along σ0. This concludes the proof. �

Using Theorem 3.5 we can, in some sense, “lift” the connection σ0 to the
semiflows πε, for ε > 0 small.

Theorem 4.3. Assume the hypotheses of Proposition 4.1. In addition, sup-
pose that for some ε0 > 0 and every ε ∈ ]0, ε0] the local semiflow πε is gradient-
like with respect to a Liapunov function Vε : H1(Ω)→ R. Assume that whenever
εn → 0+, (un)n∈N is a sequence in H1(Ω) and |un − u0|εn → as n→∞, where
u0 ∈ H1s (Ω), then Vεn(un)→ V0(u0) as n→∞. Then, for every η > 0, there is
an εη > 0 such that for every ε ∈ ]0, εη] there exists a solution σε : R → [N ]ε,η
of πε such that α(σε) ⊂ [N ′]ε,η and ω(σε) ⊂ [N ′′]ε,η.

Proof. Choose numbers γ1 and γ2 such that V0(u′′) < γ1 < γ2 < V0(u′).
Given η > 0, Theorem 3.5 implies that there is an εη > 0 such that for ε ∈ ]0, εη]

(7)

h(πε, [N ]ε,η) = h(π0, N),

h(πε, [N ′]ε,η) = h(π0, N ′),

h(πε, [N ′′]ε,η) = h(π0, N ′′),
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and as a consequence there exists a solution σε : R → [N ]ε,η of πε such that
σε(0) ∈ [N \ (N ′ ∪N ′′)]ε,η.
An application of Proposition 2.16 shows that we may also assume that for

ε ∈ ]0, εη] there are no equilibria of πε lying in [N \ (N ′ ∪N ′′)]ε,η. This implies
that

α(σε) ∪ ω(σε) ⊂ [N ′]ε,η ∪ [N ′′]ε,η
and so

α(σε) ∪ ω(σε) ⊂ Aπε([N ′]ε,η ∪ [N ′′]ε,η) = Aπε([N ′]ε,η) ∪Aπε([N ′′]ε,η)

for ε ∈ ]0, εη]. The latter equality follows since N ′ and N ′′ are disjoint.
Using Proposition 2.16 again we may assume that

Vε(u′′ε ) < γ1 < γ2 < Vε(u
′
ε)

whenever ε ∈ ]0, εη], u′ε ∈ Aπε([N ′]ε,η) and u′′ε ∈ Aπε([N ′′]ε,η). By the same
token, we may assume that for every ε ∈ ]0, εη] there is a tε such that γ1 <
Vε(σε(tε)) < γ2. We also have

Vε(u′′ε ) < Vε(σε(tε)) < Vε(u
′
ε)

whenever ε ∈ ]0, εη], u′ε ∈ α(σε) and u′′ε ∈ ω(σε). Thus whenever ε ∈ ]0, εη] and
u′ε ∈ α(σε) then for every u′′ε ∈ Aπε([N ′′]ε,η) we obtain that

Vε(u′′ε ) < γ1 < Vε(σε(tε)) < Vε(u
′
ε)

so u′ε /∈ Aπε([N ′′]ε,η). Hence α(σε) ⊂ Aπε([N ′]ε,η). Similarly we prove that
ω(σε) ⊂ Aπε([N ′′]ε,η). �

Assuming hyperbolicity, we can refine the results of Theorem 4.3. To this
end, we need the following result.

Proposition 4.4. Assume that for every ε ∈ [0, ε0] the map fε is Fréchet
differentiable. Moreover, suppose that, whenever u0, v ∈ H1s (Ω), εn → 0+ as
n → ∞ and (un)n∈N is a sequence in H1(Ω) with |un − u0|εn → 0 as n → ∞,
then

|Dfεn(un)v −Df0(u0)v|L2 → 0 as n→∞.
Let u0 be a hyperbolic equilibrium of π0 and N be a bounded isolating neighbour-
hood of {u0}. Then for every η > 0 there is an ε1 = ε1(η), 0 < ε1 ≤ ε0, such
that for every ε ∈ ]0, ε1] there is only a finite number of equilibria of πε in the
set [N ]ε,η and all of them are hyperbolic.

Proof. In view of Proposition 2.9 it is not restrictive to assume that the
family (fε)ε∈[0,ε0] satisfies hypothesis (A2). Let η > 0 be arbitrary. We claim
that for ε > 0 small, every equilibrium of πε in the set [N ]ε,η is hyperbolic. If
the claim is not true, then we obtain a strictly decreasing sequence εn → 0+ and
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a sequence un ∈ [N ]εn,η, n ∈ N, such that un is a nonhyperbolic equilibrium of
πεn . It follows that for every n ∈ N there is a vn ∈ D(Aεn) with |vn|εn = 1 and

Aεnvn = Dfεn(un)vn.

For ε ∈ [0, ε0] define Fε := Dfε(un) if there is an n ∈ N with ε = εn and set
Fε := Dfε(u0) otherwise. Since |un − u0|εn → 0 as n → ∞ it follows that
the family (Fε)ε∈[0,ε0] satisfies hypothesis (A2). Since σn(t) ≡ vn is a solution
of πεn,Fεn for every n ∈ N, we may use Proposition 2.16 and assume, taking
a subsequence if necessary, that |vn − v0|εn → 0 as n → ∞, where v0 is an
equilibrium of π0,F0 . It follows that |v0|H1 = 1 and

A0v0 = Df0(u0)v0.

Thus u0 is not hyperbolic, a contradiction, proving our claim. Since for ε > 0
small, every equilibrium of πε in the set [N ]ε,η is hyperbolic and since the largest
πε-invariant set in [N ]ε,η is compact, it follows that there can be only a finite
number of equilibria in [N ]ε,η. This proves the proposition. �

Combining Theorem 4.3 and Proposition 4.4 we arrive at the following

Corollary 4.5. Assume the hypotheses of Theorem 4.3. In addition, sup-
pose that for every ε ∈ [0, ε0] the map fε is Fréchet differentiable and that

|Dfεn(un)v −Df0(u0)v|L2 → 0 as n→∞

whenever u0, v ∈ H1s (Ω), εn → 0+ as n → ∞ and (un)n∈N is a sequence in
H1(Ω) with |un − u0|εn → 0 as n → ∞. Finally, assume that the equilibria u′

and u′′ are hyperbolic. Under these assumptions, for every η > 0 there is an
εη > 0 such that for every ε ∈ ]0, εη] there exists a solution σε : R→ [N ]ε,η and
hyperbolic equilibria u′ε ∈ [N ′]ε,η and u′′ε ∈ [N ′′]ε,η of πε such that {u′ε} = α(σε)
and {u′′ε} = ω(σε).

For the rest of this subsection suppose that M = 1 so Ω ⊂ R × RN and let
P : R× RN → R be the projection onto the first coordinate. Define J := P (Ω).
Suppose also that Ω has connected vertical sections, i.e. that for every x ∈ J the
x-section

Ωx := {y ∈ RN | (x, y) ∈ Ω}
is connected.
For every x ∈ J let p(x) > 0 be the N -dimensional Lebesgue measure of the

vertical section Ωx. Define the space

Hp := {v | v : J → R and p1/2v ∈ L2(J)}.

This is a Hilbert space under the scalar product (u, v)Hp =
∫
J
puv dx.
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Furthermore, define the space

Vp := {v ∈ Hp | v′ ∈ L1loc(J) and p1/2v′ ∈ L2(J)}.

This is a Hilbert space under the scalar product (u, v)Vp =
∫
J
puv dx+

∫
J
pu′v′ dx.

If p and 1/p are bounded on J , then Hp is isomorphic to L2(J) and Vp is
isomorphic to H1(J). An obvious modification of the proof of Proposition 3.6
in [34] shows that a function u : Ω → R lies in L2s(Ω) if and only if there is
a function ũ : J → R such that u(x, y) = ũ(x) a.e. in Ω and p1/2ũ ∈ L2(J).
The assignment u 7→ ũ defines an isomorphism Φ : L2s(Ω) → Hp. Moreover,
Φ(H1s (Ω)) = Vp and Φ|H1s (Ω) is an isomorphism of H

1
s (Ω) onto Vp.

A modification of the proof of Theorem 6.6 in [33] yields a characterization
of the operator A0. In fact, u ∈ D(A0) ⊂ H1s (Ω) and A0u = w ∈ L2s(Ω) if and
only if, defining ũ := Φ(u) ∈ Vp and w̃ := Φ(w) ∈ Hp, we have that

(1) The distributional derivative (pũ′)′ of pũ′ is an L1loc(J)-function with
(pũ′)′ = −pw̃,

(2) (pũ′)(x) = 0 for x ∈ ∂J .

Assume that p(x) ≥ c > 0 on J and p ∈ C3(cl J). It follows that u ∈ D(A0)
and A0u = w if and only if the functions ũ := Φ(u) and w̃ := Φ(w) are such that
u ∈ H2(Ω), ũ′(x) = 0 for x ∈ ∂J and w̃ = −ũ′′ − p′ũ′/p a.e. in J .
Let f : R × R × RN × R → R, (ε, x, y, u) 7→ f(ε, x, y, u) be a function of

class C2 for which there are constants β, γ and C ∈ [0,∞[ such that for all
(ε, x, y, u) ∈ R× R× RN × R the following estimates are satisfied:

(1) |∂εf(ε, x, y, u)| ≤ C(1 + |u|β),
(2) |∇yf(ε, x, y, u)| ≤ C(1 + |u|β),
(3) |∂uf(ε, x, y, u)| ≤ C(1 + |u|γ),
(4) |∂ε∂uf(ε, x, y, u)| ≤ C(1 + |u|β),
(5) |∇y∂uf(ε, x, y, u)| ≤ C(1 + |u|β),
(6) |∂u∂uf(ε, x, y, u)| ≤ C(1 + |u|γ).

If n := M + 1 > 2, we also assume that β ≤ 2∗/2 and γ ≤ (2∗/2) − 1, where
2∗ := 2n/(n− 2).
Given ε ≥ 0 and a function u : Ω→ R define the function f̂ε(u) : Ω→ R by

f̂ε(u)(x, y) := f(ε, x, εy, u(x, y)) for (x, y) ∈ Ω.

Lemma 4.6. The following conditions are satisfied:

(1) If u ∈ H1(Ω), then f̂ε(u) ∈ L2(Ω).
(2) The family (f̂ε)ε∈[0,1] of maps satisfies hypothesis (A1).
(3) For every ε ∈ [0, 1] the map f̂ε is Fréchet differentiable and

|Df̂εn(un)v −Df̂0(u0)v|L2 → 0 as n→∞
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whenever u0, v ∈ H1s (Ω), εn → 0+ as n→∞ and (un)n∈N is a sequence
in H1(Ω) with |un − u0|εn → 0 as n→∞.

Proof. Assertions (1) and (2) follows from Proposition 2.7. The proof of
that proposition, using the estimates on ∂ε∂uf , ∇y∂uf and ∂u∂uf yields asser-
tion (3). �

Define the function F : R× R× RN × R→ R by

F (ε, x, y, s) :=
∫ s
0
f(ε, x, y, r) dr for (ε, x, y, s) ∈ R× R× RN × R.

An easy calculation shows that for every ε > 0 the semiflow πε := πε, bfε is
gradient-like with respect to the Liapunov function Vε : H1(Ω)→ R defined by

Vε(u) := (1/2)aε(u, u)−
∫
Ω
F (ε, x, εy, u(x, y)) dx dy for u ∈ H1(Ω).

Moreover, the semiflow π0 := π0, bf0 is gradient-like with respect to the Liapunov
function V0 : H1s (Ω)→ R defined by

V0(u) := (1/2)a0(u, u)−
∫
Ω
F (0, x, 0, u(x, y)) dx dy for u ∈ H1s (Ω).

It is easily seen that whenever εn → 0+, (un)n∈N is a sequence in H1(Ω) and
|un−u0|εn → as n→∞, where u0 ∈ H1s (Ω), then Vεn(un)→ V0(u0) as n→∞.
Furthermore, it is clear that the isomorphism Φ|H1s (Ω) conjugates the semiflow

π0 to the semiflow π̃0 generated by the following scalar semilinear parabolic
equation with Neumann boundary conditions:

(8)
ũt = ũxx + p′ũx/p+ f(0, x, 0, ũ), t > 0, x ∈ J,
ũx = 0, t > 0, x ∈ ∂J.

Therefore Proposition 3.2 in Chapter 2 of [39] implies that a set N is a strongly
admissible isolating neighbourhood with respect to π0 if and only if Ñ := Φ(N)
is a strongly admissible isolating neighbourhood with respect to π̃0, and, in this
case, A

eπ0(Ñ) = Φ(Aπ0(N)) and h(π0, Aπ0(N)) = h(π̃0, Aeπ0(Ñ)).
Notice that the equation (8) satisfies the hypotheses of [14].
Therefore, we obtain the following result.

Theorem 4.7. Let p and f satisfy the above hypotheses. Assume ũ′ and
ũ′′ are hyperbolic equilibria for the equation (8) such that h(π̃0, {ũ′}) = Σi(eu

′)

and h(π̃0, {ũ′′}) = Σi(eu
′′) with i(ũ′) = i(ũ′′) + 1. Moreover, assume that the

connections from ũ′ to ũ′′ are not blocked in the sense of [14].
Under these assumptions there exist bounded isolating neighbourhoods N , N ′

and N ′′ with respect to π0 with N ′∩N ′′ = ∅, N ′∪N ′′ ⊂ N such that {Φ−1(ũ′)} =
Aπ0(N

′) and {Φ−1(ũ′′)} = Aπ0(N ′′). Furthermore for every η > 0 there is an
εη > 0 such that for every ε ∈ ]0, εη] there exists a solution σε : R→ [N ]ε,η and
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hyperbolic equilibria u′ε ∈ [N ′]ε,η and u′′ε ∈ [N ′′]ε,η of πε such that {u′ε} = α(σε)
and {u′′ε} = ω(σε).

Proof. Lemma 1.7 in [14] and the remarks preceding the statement of this
theorem imply that the hypotheses of Proposition 4.1 hold. Note that the con-
ditions of Theorem 4.3 are also satisfied. Therefore the result follows from
Lemma 4.6and Corollary 4.5.

4.2. Monotonicity. Now recall that, given ε ≥ 0, we denote by (λε,j)j∈N

the repeated sequence of eigenvalues of the operator Aε.
As it was proved in [33], for every j ∈ N the family (λε,j)ε>0 is monotone

decreasing and converges to λ0,j . Note that, λε,1 ≡ 0. On the other hand, if j ≥
2, then, as we will prove now, the family (λε,j)ε>0 is strictly monotone decreasing
in many cases. We begin with the following result, which gives a necessary
and sufficient condition for strict monotonicity of a given family (λε,j)ε>0 of
eigenvalues:

Theorem 4.8.

(1) Suppose that there is a j ∈ N and there are numbers 0 < ε2 < ε1, such
that λε2,j = λε1,j. Then there is a w ∈ H1s (Ω), w 6= 0, such that

(9) 〈∇w,∇v〉 = λ〈w, v〉 for all v ∈ H1(Ω),

where λ = λε2,j.
(2) Conversely, if there exist a λ ∈ R and a w ∈ H1s (Ω), w 6= 0 such that
(9) is satisfied, then there is a unique r ∈ N with λ = λ0,r < λ0,r+1.
Furthermore, there is an ε0 > 0 with the property that

λε,r ≡ λ for all ε ∈ [0, ε0].

Proof. Assume the hypothesis of the first part of the theorem. Let E be
the (j-dimensional) subspace of H1(Ω) spanned by the vectors wε2,k, k = 1, . . . ,
j. Then, by the min-max principle,

λε1,j ≤ max
u∈E\{0}

aε1(u, u)
〈u, u〉

.

Hence there is a w ∈ E, 〈w,w〉 = 1, such that

λε1,j ≤ aε1(w,w) = aε2(w,w)−
(
1
ε22
− 1
ε21

)
〈∇yw,∇yw〉.

Now

aε2(w,w) =
j∑
k=1

λε2,k|〈w,wε2,k〉|2.
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We also have

λε2,j = λε2,j〈w,w〉 = λε2,j
j∑
k=1

|〈w,wε2,k〉|2.

Since λε2,j = λε1,j we obtain

λε2,j

j∑
k=1

|〈w,wε2,k〉|2 ≤
j∑
k=1

λε2,k|〈w,wε2,k〉|2 −
(
1
ε22
− 1
ε21

)
〈∇yw,∇yw〉,

i.e.
j∑
k=1

(λε2,j − λε2,k)|〈w,wε2,k〉|2 ≤ −
(
1
ε22
− 1
ε21

)
〈∇yw,∇yw〉.

Since the left-hand side of this inequality is nonnegative while the right-hand side
is nonpositive, both sides must be equal to zero. This implies, on the one hand,
that 〈∇yw,∇yw〉 = 0 so w ∈ H1s (Ω) and, on the other hand, that 〈w,wε2,k〉 = 0,
whenever λε2,j − λε2,k > 0. Thus w lies in the eigenspace of the eigenvalue λ
(with respect to the pair (aε2 , b)). In other words, for all v ∈ H1(Ω),

〈∇w,∇v〉 = 〈∇xw,∇xv〉 = 〈∇xw,∇xv〉+
1
ε22
〈∇yw,∇yv〉 = λ〈w, v〉.

This proves the first part of the theorem. Now assume the hypothesis of the
second part of the theorem. Since w ∈ H1s (Ω) it follows that for every ε > 0

aε(w, v) = 〈∇w,∇v〉 = λ〈w, v〉 for all v ∈ H1(Ω).

Thus for every ε ≥ 0 the number λ is an eigenvalue of the operator Aε. In
particular, let r ∈ N be the largest number with λ = λ0,r. Then λ0,r < λ0,r+1
so there exists an ε0 > 0 such that λ = λ0,r < λε,r+1 for ε ∈ ]0, ε0]. This implies
that, for every ε ∈ ]0, ε0], we have that λε,r = λ, since otherwise

λε,r < λ < λε,r+1

so λ is not an eigenvalue of Aε, a contradiction. The theorem is proved. �

The following result implies that, for j ≥ 2, strict monotonicity of all the
families (λε,j)ε>0 is an open dense (and so generic) property with respect to
C1-perturbations of the boundary of Ω.

Theorem 4.9. Suppose that there is a nonempty open set J in RM and there
are disjoint open sets U and U ′ in RM ×RN such that Ω ∩ (J ×RN ) = U ∪ U ′,
and for every x ∈ J , the vertical section

Ux := {y | (x, y) ∈ U}

is nonempty and connected. For x ∈ J let p(x) > 0 be the N -dimensional
Lebesgue measure of the vertical section Ux. Assume that p ∈ C1(J) and ∇p 6≡ 0.
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Then for every j ∈ N with j ≥ 2 the family (λε,j)ε>0 is strictly monotone
decreasing.

Proof. If the theorem is not true, then, by Theorem 4.8, there is a λ ∈ R,
λ 6= 0 and a w ∈ H1s (Ω), w 6= 0, such that

〈∇w,∇v〉 = λ〈w, v〉 for all v ∈ H1(Ω).

By the usual regularity theory it follows that w is real analytic on Ω and
∆w(x, y) = −λw(x, y) for all (x, y) ∈ Ω. Since w ∈ H1s (Ω) it follows that
∇yw(x, y) ≡ 0 for all (x, y) ∈ Ω. Since Ux is connected for all x ∈ J it follows
that there is a function w̃ : J → R with w̃(x) ≡ w(x, y) for all (x, y) ∈ U . This
immediately implies that w̃ is real analytic on J and

(10) ∆xw̃(x) = −λw̃(x) for x ∈ J .

Now given ṽ ∈ C∞0 (J) define the function v : Ω→ R by

v(x, y) =

{
ṽ(x) if (x, y) ∈ U ,
0 otherwise.

Using our assumptions it is easy to prove that v ∈ C∞(Ω) with ∇yv ≡ 0 and

∇xv(x, y) =

{
∇ṽ(x) if (x, y) ∈ U ,
0 otherwise.

Thus v and ∇v are bounded on Ω and so v ∈ H1(Ω).
We therefore obtain

〈∇w,∇v〉 =
∫
U

∇w · ∇v dx dy =
∫
J

p(x)∇w̃(x) · ∇ṽ(x) dx

= −
∫
J

p(x)ṽ(x)∆w̃(x) dx−
∫
J

ṽ(x)∇p · ∇w̃ dx

= λ
∫
J

p(x)ṽ(x)w̃(x) dx−
∫
J

ṽ(x)∇p · ∇w̃ dx.

On the other hand,

〈∇w,∇v〉 = λ〈w, v〉 = λ
∫
U

wv dx dy = λ
∫
J

p(x)ṽ(x)w̃(x) dx.

This shows that ∫
J

ṽ(x)∇p · ∇w̃ dx ≡ 0 for all ṽ ∈ C∞0 (J)

so
∇p · ∇w̃ ≡ 0 on J .

Since ∇p 6≡ 0 it follows that for some nonempty open connected subset J ′ of J ,

∇w̃(x) ≡ 0 on J ′.
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Hence w̃ is constant on J ′. Since λ 6= 0, formula (10) implies that w̃(x) ≡ 0 on
J ′ so

w(x, y) ≡ 0 for (x, y) ∈ Ω′ := U ∩ (J ′ × RN ).
Since J ′ is nonempty and Ux is nonempty for every x ∈ J , it follows that Ω′ is
nonempty. Since w is analytic, it follows that w ≡ 0, which is a contradiction.
The theorem is proved. �

4.3. Bifurcation at resonance. For the rest of this subsection, suppose
that M = N = 1 so Ω ⊂ R×R and let r ∈ N, r ≥ 2, be such that λ0,r < λ0,r+1.
Consider the following hypothesis:

(HR) f : R→ R is a function of class C2 such that f(0) = 0, f ′(0) = λ0,r and
there are constants p and C ∈ ]0,∞[ such that

|f ′′(s)| ≤ C(|s|p + 1) for all s ∈ R.

The following result is well-known, cf. Theorem 5.3 and Proposition 5.5
in [33]:

Lemma 4.10. Let f satisfy hypothesis (HR). Then

(1) f ◦ v ∈ L2(Ω) whenever v ∈ H1(Ω).
(2) The Nemitskĭı operator f̂ : H1(Ω) → L2(Ω) given by f̂(v) = f ◦ v
is well-defined, Lipschitzian on bounded subsets of H1(Ω) and it maps
bounded subsets of H1(Ω) into bounded subsets of L2(Ω). Moreover,
f̂(H1s (Ω)) ⊂ L2s(Ω).

(3) f̂ is Fréchet differentiable and Df̂(v)(u) = f ′(v) · u, for all v and for
all u in H1(Ω).

(4) Df̂ is continuous and Lipschitzian on bounded subsets of H1(Ω).

For the rest of this subsection assume hypothesis (HR) and suppose that

(11) H1s (Ω) ⊂ L∞(Ω) with continuous inclusion.

This latter property is satisfied, e.g., if Ω is a nicely decomposed domain in the
sense defined in [33].
We write πε := πε, bf for ε ≥ 0. Since f̂(0) = 0, the set K0 = {0} is an

invariant set for πε, for ε ≥ 0. We will prove in this subsection that, under
appropriate conditions, there is a family uε, of nontrivial equilibria of πε, ε > 0
small, bifurcating from the trivial equilibrium 0 of π0. The precise statement
is given in Theorem 4.15. Our main tool will be Theorem 3.5 and the Conley
index product formula introduced in [38] or Chapter 2 of [39]. To set up the
framework, define

L := A0 − λ0,rI.
Recall that (w0,j)j∈N is a complete orthonormal system on L2s(Ω).
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Define the following linear subspaces of L2s(Ω):

X1 := span{w0,j | λ0,j = λ0,r},
X2 := span{w0,j | λ0,j < λ0,r},
X3 := clL2span{w0,j | λ0,j > λ0,r}.

Notice that m := dimX1 < ∞, m ≥ 1 and dimX2 = r − m. Furthermore,
X1, X2 and X3 are mutually orthogonal and L-invariant subspaces of L2s(Ω).
Moreover,

(12) L2s(Ω) = X1 ⊕X2 ⊕X3.

For each i = 1, 2, 3 the restriction of the operator L to Xi will be denoted by
Li. Since σ(L) = {λ− λ0,r | λ ∈ σ(A0) }, we have

λ ∈ σ(L1) implies that λ = 0,
λ ∈ σ(L2) implies that λ < 0,
λ ∈ σ(L3) implies that λ > 0.

In what follows we will write ej := w0,r−m+j , j = 1, . . . ,m, so

X1 = span{e1, . . . , em}.

We will also write g := f̂−λ0,rI. Notice that we are in the setting of Theorem 2.1
in Chapter 2 of [39]. Therefore for each i = 1, 2, 3 there exists a neighbourhood Vi
of zero in X1/2i := H1s (Ω)∩Xi such that an m-dimensional local center manifold
close to zero can be described by a mapping ξ : V1 → V2 ⊕ V3. Furthermore,
the coordinate representation πξ of the semiflow π0 on the center manifold is the
flow generated by the ordinary differential equation

(13) u̇+ L1u = E1g(u+ ξ(u)),

where u ∈ V1 and E1 denotes the projection of L2s onto X1 induced by direct
sum described in (12). We have the following result.

Proposition 4.11. Assume hypotheses (HR) and (11). Moreover, suppose
that

(14) f(s) = λ0,rs+ ask + β(s),

where k ≥ 2 is a natural number, a ∈ R and β(s) = O(sk+1) as s→ 0. Then the
following statements hold:

(1) If a < 0 and k is odd, then the set {0} is an isolated invariant set
relative to πξ and h(πξ, {0}) = Σ0.

(2) If k is even, m = 1 and a〈wk0,r, w0,r〉 6= 0, then the set {0} is an isolated
invariant set relative to πξ and h(πξ, {0}) = 0.
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Proof. Notice that all norms are equivalent on the finite-dimensional space
X1. Write Ikm := {1, . . . ,m}k and let α = (α1, . . . , αk) denote a generic element
of Ikm. Recall that

X1 = span{e1, . . . , em}.

Define the map φ : X1 → X1/22 ⊕X
1/2
3 by

φ(u) :=
∑
α∈Ikm

〈u, eα1〉〈u, eα2〉 . . . 〈u, eαk〉v(α1, . . . , αk),

with v(α1, . . . , αk) ∈ D(A0) and orthogonal to ei for all i = 1, . . . ,m to be
determined later. Obviously φ is of class C∞. By (11) there are a constant C
and a δ0 > 0 such that |φ(u)(x, y)| ≤ C|u|kL2 for all u ∈ X1 and all (x, y) ∈ Ω.
Moreover, |β(u(x, y)+φ(u)(x, y))| ≤M |u|k+1L2 for all u ∈ X1 with |u|L2 ≤ δ0 and
all (x, y) ∈ Ω. It follows that

g(u+ φ(u)) = auk + β1(u),

with |β1(u)|L2 = O(|u|k+1L2 ) as |u|L2 → 0. Consequently,

E1g(u+ φ(u)) = a〈uk, e1〉e1 + · · ·+ a〈uk, em〉em + β2(u),

with β2(u) = O(|u|k+1L2 ) as |u|L2 → 0. Define the map ∆ : X1 → L
2(Ω) by

(15) ∆(u) := Dφ(u)[L1u−E1g(u+φ(u))]−Lφ(u)+g(u+φ(u))−E1g(u+φ(u)).

Notice that L1u = 0. It is a simple task to prove that |Dφ(u)[−E1g(u +
φ(u))]|L2 = O(|u|k+1L2 ) as |u|L2 → 0. Therefore

∆(u) =
∑
α∈Ikm

〈u, eα1〉〈u, eα2〉 . . . 〈u, eαk〉h(α1, . . . , αk) + β3(u),

where

h(α1, . . . , αk) := −Lv(α1, . . . , αk) + aeα1 . . . eαk − a
m∑
i=1

〈eα1 . . . eαk , ei〉ei

and |β3(u)|L2 = O(|u|k+1L2 ) as |u|L2 → 0. Now choose v(α1, . . . , αk) ∈ D(A0),
orthogonal to ei, for i = 1, . . . ,m in such a way that h(α1, . . . , αk) = 0. Since
L = A0 − λ0,r, the vector v(α1, . . . , αk) with the above property exists and is
unique. With this choice, we have

|∆(u)|L2 = O(|u|k+1L2 ).

Therefore, we are in the conditions of Theorem 2.3 in Chapter 2 of [39]. In other
words,

|ξ(u)− φ(u)|H1s = O(|u|
k+1
L2 ).



Conley Index Continuation and Thin Domain Problems 235

Reasoning as above, we see that the reduced equation (13) on the center manifold
becomes:

(16) u̇ = E1g(u+ ξ(u)) = E1g(u+ φ(u)) + β4(u) = aE1(uk) + β5(u),

with |β4(u)|L2 = O(|u|k+1L2 ) and |β5(u)|L2 = O(|u|
k+1
L2 ) as |u|L2 → 0.

Suppose first that a < 0 and k is odd. Consider the positive definite func-
tional V : X1 → R given by V (u) = 〈u, u〉/2. Let t 7→ uπξt be a solution of πξ.
Then

d

dt
V (uπξt)|t=0 = a〈E1(uk), u〉+ 〈β5(u), u〉 = a〈uk, u〉+ β6(u),

where β6(u) = O(|u|k+2L2 ) as |u|L2 → 0. There is a constant C such that

|u|L2 ≤ C|u|Lk+1 for all u ∈ X1.

Therefore there exist positive constants M and δ such that whenever |u|L2 ≤ δ
then

|β6(u)| ≤M |u|L2 |u|k+1L2 ≤MC
k+1|u|L2〈uk, u〉.

Choosing δ such that MCk+1δ = −a/2 we see that

d

dt
V (uπξt) |t=0 ≤ (a/2)〈u

k, u〉 < 0

if |u|L2 ≤ δ and u 6= 0.
It follows that the closed ball B := {u ∈ X1 | 〈u, u〉 ≤ δ} is an isolating

block for πξ with B− = ∅ and the largest invariant set in B is {0}. Thus
h(πξ, {0}) = h(πξ, B) = Σ0. This completes the proof of the first part of the
proposition.
Now assume that k is even, m = 1 and a〈wk0,r, w0,r〉 6= 0. Note that em =

w0,r. Writing u = yem we see that (16) is equivalent to the one-dimensional
equation

ẏ = a〈ekm, em〉yk + γ(y),
where γ(y) = O(|y|k+1) as y → 0. Since k is even and a〈ekm, em〉 6= 0 , it is clear
that {0} is an isolated invariant set of the latter equation with Conley index 0.
This proves the second part of the proposition. �

Applying the index-product formula of [38] (or [39]) we thus arrive at the
following

Proposition 4.12. Under each of the alternative hypotheses of Proposi-
tion 4.11 the set K0 = {0} is an isolated invariant set for π0 and

h(π0,K0) =

{
Σr−m if k is odd and a < 0,

0 k is even, m = 1 and a〈wk0,r, w0,r〉 6= 0.
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The case for which m = 1 and a〈wk0,r, w0,r〉 = 0 can be treated as in Section
2.4 of Chapter 2 in [39]. The index depends on the higher order terms in the
expansion of the map f . We only treat a special case.

Proposition 4.13. Assume hypotheses (HR) and (11). Moreover, suppose
that m = 1, a〈wk0,r, w0,r〉 = 0 and

(17) f(s) = λ0,rs+ ask + bs2k−1 + β(s),

where k is an even positive integer, a and b ∈ R are arbitrary and β(s) = O(s2k)
as s → 0. Then for all b < 0 with |b| large enough the set {0} is an isolated
invariant set relative to πξ and

h(πξ, {0}) = Σ0.

Consequently, the set {0} is an isolated invariant set relative to π0 and

h(π0, {0}) = Σr−1.

Proof. Note again that em = w0,r. Let φ : X1 → X1/22 ⊕ X
1/2
3 be a map

defined by

φ(u) = 〈u, em〉kv + 〈u, em〉2k−1w,

where v, w ∈ D(A0), v and w orthogonal to em, Lv = aekm+a〈ekm, em〉em = aekm
and Lw = akek−1m v − ak〈ekm, v〉em + be2k−1m − b〈e2k−1m , em〉em.
Proceeding exactly as in Section 2.4 of Chapter 2 in [39], we see that the

reduced equation on the center manifold is

u̇ = E1g(u+ ξ(u)) = 〈u, em〉2k−1(ak〈ekm, v〉+ b〈e2k−1m , em〉)em + γ(u),

where |γ(u)|L2 = O(|u|2kL2) as |u|L2 → 0. An equivalent ordinary differential
equation on R reads as follows:

ẏ = (ak〈ekm, v〉+ b〈e2k−1m , em〉)y2k−1 + γ1(y),

where |γ1(y)| = O(|y|2k) as |y| → 0. Since 〈e2k−1m , em〉 > 0, it follows that
ak〈ekm, v〉 + b〈e2k−1m , em〉 < 0 for b < 0 and |b| large enough. It clearly follows
that in this case the set Kξ := {0} is an isolated invariant set relative to πξ
and its index is Σ0. An application of the index product formula concludes the
proof. �

Proposition 4.14. For every ε > 0 let πε be as above. Suppose that the
family (λε,r)ε>0 is strictly monotone decreasing. Then there exists an ε1 > 0
such that for all ε ∈ ]0, ε1], the set {0} is an isolated invariant set relative to πε
and

h(πε, {0}) = Σr.
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Proof. Since λ0,r < λ0,r+1, our assumption implies that

λε,r < λ0,r < λε,r+1

for all ε > 0 small enough. This obviously implies the assertion. �

We can now state the main result of this subsection.

Theorem 4.15. Assume any of the alternative hypotheses of Proposition
4.11 or else assume the hypotheses of Proposition 4.13. Moreover, suppose
that the family (λε,r)ε>0 is strictly monotone decreasing. Suppose that N0 is
a bounded isolating neighbourhood of {0} for π0. Then for every η > 0 there
exists an 0 < ε0 = ε0(η), such that, for every ε ∈ ]0, ε0],

Kε,η := Aπε([N0]ε,η)

contains a nontrivial equilibrium uε of πε and a nonconstant full solution σε of
πε whose ω-limit set or α-limit set is equal to {0}. In other words, 0 is connected
to a set of nontrivial equilibria of πε.

Proof. Fix η > 0. By Proposition 4.14, there exists an ε1 > 0 such that
for all ε ∈ ]0, ε1], the set {0} is an isolated invariant set relative to πε and

h(πε, {0}) = Σr.

Since Σr 6= Σr−m and Σr 6= 0 Theorem 3.5 and Proposition 4.12 (or else Propo-
sition 4.13) implies that

h(πε,Kε,η) 6= Σr

so Kε,η 6= {0} for all ε > 0 small enough. Since πε is gradient-like, we obtain
the existence of a nontrivial equilibrium uε. The existence of the connection
σε follows from the irreducibility of Kε,η (see Lemma 11.4 and Theorem 11.6
in [39]). �

4.4. C-shaped domains. In this subsection we will define a class of very
simple two-dimensional domains, which we call C-shaped, and show that all of
the alternative assumptions of Theorem 4.15 are satisfied for an appropriate
choice of the domain Ω belonging to that class.

Definition 4.16. Let ai and bi, i = 1, 2, 3, be real numbers with a1 < 0,
a2 > 0, a3 > 0 and 0 < b1 < b2 < b3. The C-shaped domain with parameters ai
and bi, i = 1, 2, 3 is the following set

Ω := (]a1, a2[× ]0, b1[) ∪ (]a1, 0[× ]0, b3[) ∪ (]a1, a3[× ]b2, b3[).

(See Figure 1.) Setting Ω1 := ]a1, 0[ × ]0, b3[, Ω2 := ]0, a2[ × ]0, b1[, Ω3 :=
]0, a3[ × ]b2, b3[ and Z := {0} × R we obtain a nice decomposition of Ω in the
sense of [33]. In this case J1 = ]a1, 0[, J2 = ]0, a2[ and J3 = ]0, a3[, while
p1(x) ≡ b3, p2(x) ≡ b1 and p3(x) ≡ b3 − b2.
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Figure 1

For the rest of this section let Ω be a C-shaped domain with parameters ai
and bi, i = 1, 2, 3. Theorem 6.6 in [33] provides conditions for a pair (λ, u) to
be an eigenvalue-eigenvector pair of the operator A0 on Ω. In fact, (λ, u) is an
eigenvalue-eigenvector pair of A0 if and only if u 6≡ 0 and there exist absolutely
continuous functions ul : Jl → R, l = 1, 2, 3 and a null set S in R×R such that
whenever l = 1, 2, 3, then u(x, y) = ul(x) for (x, y) ∈ Ωl \ S, ul, u′l ∈ L2(Jl) and
the following properties hold:

(1) u′′l = −λul, l = 1, 2, 3, in the sense of distributions.
(2) The limits: ul(0) := limx→0 ul(x), l = 1, 2, 3, exist and u1(0) = u2(0) =
u3(0).

(3) The limits: u′l(al) := limx→al u
′
l(x) and u

′
l(0) := limx→0 u

′
l(x), l = 1, 2,

3, exist and u′1(a1) = u
′
2(a2) = u

′
3(a3) = 0 while b3u

′
1(0) = b1u

′
2(0) +

(b3 − b2)u′3(0).

Notice that condition 1 is equivalent to

ul(x) = αl cos
√
λx+ βl sin

√
λx, l = 1, 2, 3, x ∈ Jl,

where αl and βl, l = 1, 2, 3, are arbitrary real numbers. By a simple calculation
we thus obtain the following

Proposition 4.17. A pair (λ, u) is an eigenvalue-eigenvector pair of A0 if
and only if u 6≡ 0 and there exist functions ul : Jl → R, l = 1, 2, 3, real numbers
α and βl, l = 1, 2, 3, and a null set S in R × R such that whenever l = 1, 2, 3
then u(x, y) = ul(x) for all (x, y) ∈ Ωl \ S and following conditions hold

ul(x) = α cos
√
λx+ βl sin

√
λx, l = 1, 2, 3, x ∈ Jl,(18)

b3
√
λβ1 = b1

√
λβ2 + (b3 − b2)

√
λβ3,(19)

−α
√
λ sin al

√
λ+ βl

√
λ cos al

√
λ = 0, l = 1, 2, 3(20)
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Remark 4.18. Proposition 4.17 immediately implies that λ = 0 is a simple
eigenvalue of A0. Now let λ > 0 be an arbitrary eigenvalue of A0. If sin al

√
λ = 0

for l = 1, 2, 3, then βl = 0 for l = 1, 2, 3 by condition (20), so by condition (18)
λ is a simple eigenvalue. If sin ai

√
λ 6= 0 for some i, then α = βi cot ai

√
λ

and so conditions (18) and (19) imply that the eigenspace of λ is at most two-
dimensional. Thus there are no eigenvalues of A0 of multiplicity higher than
two.

The following result is a strict monotonicity criterion for C-shaped domains.

Proposition 4.19. Let λ > 0 be an eigenvalue of A0 and let r ∈ N, r ≥ 2,
be such that λ = λ0,r < λ0,r+1. Then the following properties are equivalent:

(1) sin(al
√
λ) = 0 for l = 1, 2, 3.

(2) There is an ε0 > 0 such that λε,r ≡ λ for ε ∈ [0, ε0].

Proof. Suppose property 1 holds. Set u(x, y) ≡ u(x) := cos
√
λx, for

(x, y) ∈ Ω. Then u 6≡ 0 and so Proposition 4.17 (with α = 1 and βl ≡ 0)
implies that the pair (λ, u) is an eigenvalue-eigenvector pair of the operator A0.
In particular we have that u ∈ H1s (Ω). The divergence theorem implies that for
every v ∈ H1(Ω)

〈∇u,∇v〉 =
3∑
l=1

∫
Ωl
u′(x)∂xv(x, y) dx dy

=
3∑
l=1

∫
∂Ωl
u′(x)v(x, y)ρl(x, y) dσ(x, y)−

3∑
l=1

∫
Ωl
u′′(x)v(x, y) dx dy

=
3∑
l=1

∫
∂Ωl
u′(x)v(x, y)ρl(x, y) dσ(x, y) + λ

3∑
l=1

∫
Ωl
u(x)v(x, y) dx dy

=
3∑
l=1

∫
∂Ωl
u′(x)v(x, y)ρl(x, y) dσ(x, y) + λ〈u, v〉,

where σ is the 1-dimensional Hausdorff measure on R2 and ρl(x, y) is the x-
component of the outer normal vector to ∂Ωl at (x, y) ∈ ∂Ωl. Now ρl(x, y) = 0
on the horizontal part of ∂Ωl, while, by the definition of u, u′(x) = 0 for (x, y)
lying on the vertical part of ∂Ωl. Thus

3∑
l=1

∫
∂Ωl
u′(x)v(x, y)ρl(x, y) dσ(x, y) = 0

and so

〈∇u,∇v〉 = λ〈u, v〉 for all v ∈ H1(Ω).

Now Theorem 4.8 implies property (2).
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Assume, conversely, that property (2) holds. Then Theorem 4.8 implies that
there is a u ∈ H1s (Ω), u 6≡ 0, such that

(21) 〈∇u,∇v〉 = λ〈u, v〉 for all v ∈ H1(Ω).

In particular, (λ, u) is an eigenvalue-eigenvector pair of A0. By Proposition 4.17
there exist functions ul : Jl → R, real numbers α and βl, l = 1, 2, 3, and a
null set S in R × R such that whenever l = 1, 2, 3 then u(x, y) = ul(x) for all
(x, y) ∈ Ωl \ S and conditions (18)–(20) hold. Formula (21) and the divergence
theorem imply that for every v ∈ H1(Ω)

λ〈u, v〉 = 〈∇u,∇v〉 =
3∑
l=1

∫
Ωl
u′l(x)∂xv(x, y) dx dy

=
3∑
l=1

∫
∂Ωl
u′l(x)v(x, y)ρl(x, y) dσ(x, y)−

3∑
l=1

∫
Ωl
u′′l (x)v(x, y) dx dy

=
3∑
l=1

∫
∂Ωl
u′l(x)v(x, y)ρl(x, y) dσ(x, y) + λ

3∑
l=1

∫
Ωl
ul(x)v(x, y) dx dy

=
3∑
l=1

∫
∂Ωl
u′l(x)v(x, y)ρl(x, y) dσ(x, y) + λ〈u, v〉.

This implies that

(22)
3∑
l=1

∫
∂Ωl
u′l(x)v(x, y)ρl(x, y) dσ(x, y) = 0 for all v ∈ H1(Ω).

Letting v in (22) be the restriction to Ω of an arbitrary nonnegative test function
on R2 whose support is included in the horizontal strip R × ]b1, b2[ and which
is nontrivial on {0} × ]b1, b2[ we see that u′1(0) = 0, i.e. β1

√
λ = 0, so β1 = 0.

Similarly, we prove that β2 = β3 = 0. Hence α 6= 0 and so condition (20) implies
that sin(al

√
λ) = 0 for l = 1, 2, 3. The proposition is proved. �

The following result shows that, by choosing the parameters ai and bi,
i = 1, 2, 3, appropriately, we can satisfy all the alternative hypotheses of Theo-
rem 4.15.

Proposition 4.15. Suppose that bl = l for l = 1, 2, 3 and let λ be an arbi-
trary real number.

(1) If −a1 = a2 = a3 =: a and cos a
√
λ = 0, then λ is a double eigenvalue

of A0, whose eigenspace is formed by all functions u for which there are
constants β2, β3 ∈ R such that:
(1.1) u(x, y) = (1/3)(β2 + β3) sin

√
λx a.e. on Ω1,

(1.2) u(x, y) = βl sin
√
λx a.e. on Ωl, l = 2, 3.
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(2) If −a1 = a2 =: a, cos a
√
λ = 0 and cos a3

√
λ 6= 0, then λ is a simple

eigenvalue of A0, whose eigenspace is formed by all functions u for which
there is a constant β2 ∈ R such that:
(2.1) u(x, y) = (1/3)β2 sin

√
λx a.e. on Ω1,

(2.2) u(x, y) = β2 sin
√
λx a.e. on Ω2,

(2.3) u(x, y) = 0 a.e. on Ω3.

If e is an arbitrary eigenfunction of λ and k ∈ N is even, then

(23) 〈ek, e〉 =
∫
Ω
ek+1(x, y) dx dy 6= 0.

(3) If a2 = a3 =: a, cos a
√
λ = 0 and cos a1

√
λ 6= 0, then λ is a simple

eigenvalue of A0, whose eigenspace is formed by all functions u for
which there is a constant β2 ∈ R such that:
(3.1) u(x, y) = 0 a.e. on Ω1,

(3.2) u(x, y) = β2 sin
√
λx a.e. on Ω2,

(3.3) u(x, y) = −β2 sin
√
λx a.e. on Ω3,

If e is an arbitrary eigenfunction of λ and k ∈ N is even, then

(24) 〈ek, e〉 =
∫
Ω
ek+1(x, y) dx dy = 0.

In all the above cases, if r is such that λ = λ0,r < λ0,r+1 then the family (λε,r)ε>0
is strictly monotone decreasing, so, in particular, λε,r < λ for all ε > 0.

Proof. Consider the first case. If u is any function satisfying properties
(1.1) and (1.2) then conditions (18)–(20) of Proposition 4.17 are satisfied with
α = 0 and β1 = (1/3)(β2 + β3), so, by that proposition, λ is an eigenvalue of A0
and u lies in its eigenspace.

Now consider the second case. Suppose first that λ is an eigenvalue of A0
and let u be a corresponding eigenvector. Then u is determined by constants α
and βl, l = 1, 2, 3, so that conditions (18)–(20) of Proposition 4.17 hold. Since
cos a
√
λ = 0, we conclude that α = 0 and since cos a3

√
λ 6= 0 we also conclude

that β3 = 0. Thus u must necessarily satisfy properties (2.1)–(2.3), so λ is
a simple eigenvalue. On the other hand, letti u 6≡ 0 be an arbitrary function
satisfying these properties, we conclude from Proposition 4.17 that (λ, u) is an
eigenvalue-eigenvector pair of A0. Thus λ is, indeed, a simple eigenvalue of A0.
Formula (23) is obtained by a simple integration.

The third case is proved in the same way.

The last statement of the proposition is a consequence of Proposition 4.19.
The proposition is proved. �
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5. Appendix

In this section we prove Theorem 3.5. In view of Proposition 2.9 it is not
restrictive to assume that the family (fε)ε∈[0,ε0] satisfies hypothesis (A2). Write
πε := πε,fε for all ε ∈ [0, ε0].
We need a number of preliminary results.

Proposition 5.1. For all sufficiently small ε > 0 the set [N ]ε,η is a strongly
πε-admissible isolating neighbourhood for πε.

Proof. Theorem 4.4 in [39] implies that [N ]ε,η is a strongly πε-admissible
set for every η > 0 and ε > 0. Suppose that there are an η > 0 and a sequence
(εn)n∈N of positive numbers converging to zero such that for each n ∈ N the set
[N ]εn,η is not an isolating neighbourhood for πεn . Then for each n ∈ N there
exists a solution σn : R→ H1(Ω) of πεn such that

σn(R) ⊂ [N ]εn,η and σn(0) ∈ ∂ [N ]εn,η .

By Lemma 2.21 there exists a subsequence of (σn)n∈N denoted again by
(σn)n∈N such that for every t ∈ R

(25) |Qεnσn(t)− σ(t)|H1 → 0 and |(I −Qεn)σn(t)|εn → 0

as n → ∞, where σ : R → N is a solution of π0. Setting t = 0 in (25), we
conclude that |(I − Qεn)σn(0)|εn < η and so Qεnσn(0) ∈ ∂N for all n large
enough. This implies that σ(0) ∈ ∂N , a contradiction to the fact that N is an
isolating neighbourhood for π0. The proposition is proved. �

Assume now thatK0 := Aπ0(N) = ∅. We claim thatKε,η := Aπε([N ]ε,η) = ∅
for every η > 0 and all sufficiently small ε > 0. Otherwise, we find an η > 0 and
a sequence (εn)n∈N, of positive numbers converging to zero such that for each
n ∈ N,

Kεn,η 6= ∅.

Let σn : R → [N ]εn,η be a full solution of πεn . Lemma 2.21 implies that there
exists a solution σ : R → N of π0. Since K0 is the empty set, we obtain a
contradiction. This proves our claim.

Thus Theorem 3.5 holds if K0 = ∅. Therefore let us assume from now on
that K0 6= ∅. We shall prove Theorem 3.5 by appropriately modifying the proof
of the usual Conley index continuation theorem as given in [37] or [39].

Assume that K0 6= ∅ is an isolated invariant set of π0. By Theorem 3.1, we
may choose an open set U0 in H1s (Ω) such that N0 := clU0 is an isolating block
for π0 and such that K ⊂ U0 ⊂ N0 ⊂ N and ∂U0 = ∂N0.
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Let α : [0,∞[ → [1, 2[ be a monotone increasing C∞-diffeomorphism. Let
s+ : N0 → R ∪ {∞} be given by

s+(u) := sup{t ≥ 0 | uπ0[0, t] ⊂ N0},

t+ : U0 → R ∪ {∞} by

t+(u) := sup{t ≥ 0 | uπ0[0, t] ⊂ U0} > 0

and F : H1s (Ω)→ [0, 1] defined by

F (u) := min{1, d(u,A−π0(N0))},

where d(u,A−π0(N0)) is the distance (in H
1
s (Ω)) of the point u from the set

A−π0(N0). Finally, we define g
− : N0 → R as follows:

g−(u) := sup{α(t)F (uπ0t) | t ∈ [0, s+(u)],
if s+(u) <∞ and t ∈ [0,∞[ , if s+(u) =∞}.

Whenever (un)n∈N is a sequence in N0 with g−(un) → 0 as n → ∞, then,
by admissibility, there is a subsequence of (un)n∈N converging to an element of
A−π0(N0). Given a > 0, b > 0 define

V (a, b) := {u ∈ U0 | g−(u) < a, t+(u) > b}.

Note that V (a, b) is open in H1s (Ω), K0 ⊂ V (a, b) and admissibility implies that
we can choose a0 > 0 and b0 > 0 such that clV (a0, b0) ⊂ U0.
Given a > 0, b > 0, ε > 0 and α > 0 define

Vε,α(a, b) := ]V (a, b)[ε,α .

Lemma 5.2. Fix positive numbers a, b, α, δ, η and M such that a ≤ a0 and
b ≥ b0. Then

K(ε, η, a, b) := Aπε([clV (a, b)]ε,η) ⊂ Vε,α(δ,M)

for all sufficiently small ε > 0.

Proof. If the lemma is not true then there are positive numbers a, b, α,
δ, η and M such that a ≤ a0 and b ≥ b0 and a sequence (εn)n∈N of positive
numbers converging to zero such that for all n ∈ N

K(εn, η, a, b) 6⊂ Vεn,α(δ,M).

For each n ∈ N, there is a solution σn : R→ [clV (a, b)]εn,η of πεn with σn(0) 6∈
Vεn,α(δ,M). By Lemma 2.21 there exists a subsequence of (σn)n∈N which we
will denote again by (σn)n∈N and there exists a solution σ : R→ clV (a, b) ⊂ N0
of π0 such that for every t ∈ R,

(26) |Qεn(σn(t))− σ(t)|H1 → 0 and |(I −Qεn)(σn(t))|εn → 0
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as n→∞. Thus σ(R) ⊂ K0 and |(I−Qεn)(σn(0))|εn < α for all n large enough.
Since V (δ,M) is open in H1s (Ω) it follows that Qεn(σn(0)) ∈ V (δ,M) for all
n large enough. In other words, σn(0) ∈ Vεn,α(δ,M) for all n large enough, a
contradiction proving the lemma. �

Let ε > 0 and ν > 0 be arbitrary. Given u ∈ ]U0[ε,ν , define

t+ε,ν(u) := sup{t ≥ 0 | uπε[0, t] ⊂ ]U0[ε,ν} > 0.

Lemma 5.3. Fix ν > 0. Let εn > 0, un ∈ ]U0[εn,ν , n ∈ N, and u ∈ U0 be
such that εn → 0 and |un − u|εn → 0 as n→∞. Then

t+εn,ν(un)→ t
+(u) as n→∞.

Proof. Let C ∈ ]0,∞[ be such that t+(u) < C. Since uπ0t+(u) ∈ ∂U0 =
∂N0 and N0 is an isolating block for π0, there exists an s ∈ R with C > s > t+(u)
such that uπ0s 6∈ N0. By Corollary 2.15 we have |unπεns− uπ0s|εn → 0 and so
|Qεn(unπεns) − uπ0s|H1 → 0 as n → ∞. This implies that Qεn(unπεns) 6∈ N0,
so unπεns 6∈ [N0]εn,ν and therefore t+εn,ν(un) < s < C for n large enough.
Now let t+(u) > C > 0. Then uπ0[0, C] ⊂ U0. We claim that unπεn [0, C] ⊂

]U0[εn,ν for all n large enough. Suppose that this is not true. Then we may
assume that, for every n ∈ N, unπεn [0, C] 6⊂ ]U0[εn,ν , and so there exists a
tn ∈ [0, C] such that unπεntn 6∈ ]U0[εn,ν . Again we can assume that there exists
a t ∈ [0, C] such that tn → t as n → ∞. Now Corollary 2.15 implies that
|unπεntn − uπ0t|εn → 0 as n → ∞. Thus |Qεn(unπεntn) − uπ0t|H1 → 0 and
|(I − Qεn)(unπεntn)|εn → 0 as n → ∞. It follows that Qεn(unπεntn) ∈ U0 and
|(I −Qεn)(unπεntn)|εn < ν for all n large enough.
This shows that unπεntn ∈ ]U0[εn,ν for all large n, contradicting the choice

of the sequence (tn)n∈N. This proves our claim, which, in turn, implies that
t+εn,ν(un) > C for all sufficiently large n. The lemma is proved. �

Definition 5.4. Fix positive real numbers M , M ′, β, ν, η, ρ, a and b. For
all positive numbers ε, α and δ define the following subsets of H1(Ω):

N1(α, δ, ε) := [clV (a, b)]ε,η ∩ clε{v | ∃ u ∈ Vε,α(δ,M) and t ≥ 0
such that uπε[0, t] ⊂ ]U0[ε,β and uπεt = v},

N2(α, δ, ε) :=N1(α, δ, ε) ∩ {u ∈ ]U0[ε,ν | t+ε,ν(u) ≤M ′},

Ê(ε) := [{u ∈ U0 | t+(u) ≤ 5M} ∩ clV (a, b)]ε,η ,
Ĉ(ε, α, δ) := {u ∈ ]U0[ε,ν | t+ε,ν(u) ≤ 4M} ∩N1(α, δ, ε),
E(ε, α, δ) := [{u ∈ U0 | t+(u) ≤ 3M} ∩ clV (δ,M)]ε,α ,
C(ε, ρ, α, δ) := {u ∈ ]U0[ε,α | t+ε,α(u) ≤ 2M} ∩ clεVε,ρ(δ,M).



Conley Index Continuation and Thin Domain Problems 245

Remark 5.5. If α ≤ β, α ≤ η, δ ≤ a and M ≥ b then clearly Vε,α(δ,M) ⊂
N1(α, δ, ε). Moreover, if a ≤ a0, b ≥ b0 and η < ν then [clV (a, b)]ε,η ⊂ ]U0[ε,ν
and whenever v lies in K(ε, η, a, b), the largest invariant set in [clV (a, b)]ε,η,
then, by the definition of t+ε,ν , we have t

+
ε,ν(v) =∞. In particular, K(ε, η, a, b)∩

N2(α, δ, ε) = ∅.

Proposition 5.6. Assume that M > b, M ′ > b, a ≤ a0, b ≥ b0 and
η < ν < β.

(1) For all sufficiently small positive α, δ and ε:
(a) (N1(α, δ, ε), N2(α, δ, ε)) is a pseudo-index pair in [clV (a, b)]ε,η,
(b) the following inclusions are satisfied:

E(ε, α, δ) ⊂ Ĉ(ε, α, δ) ⊂ Ê(ε).

(2) For every α > 0 and all sufficiently small positive ρ, δ and ε

C(ε, ρ, α, δ) ⊂ E(ε, α, δ).

Proof. Proceeding exactly as in the proof of Lemma 12.5 in [39] we see
that the sets N1(α, δ, ε) and N2(α, δ, ε) are closed in H1(Ω) and [clV (a, b)]ε,η-
positively invariant relative to πε.
Suppose that part 1 of the proposition does not hold. Then for some choice

of the constants M , M ′, β, ν, η, a and b as above there are sequences (δn)n∈N,
(αn)n∈N and (εn)n∈N of positive numbers converging to zero and a sequence
(un)n∈N such that

(27) un ∈ N1(αn, δn, εn) ∩ ∂εn [clV (a, b)]εn,η \N2(αn, δn, εn) for all n ∈ N

or

(28) un ∈ Ĉ(εn, αn, δn) \ Ê(εn) for all n ∈ N

or

(29) un ∈ E(εn, αn, δn) \ Ĉ(εn, αn, δn) for all n ∈ N.

In the first two cases un ∈ N1(αn, δn, εn), so there exist a vn ∈ Vεn,αn(δn,M)
and a tn ≥ 0 such that

vnπεn [0, tn] ⊂ ]U0[εn,β
and ũn := vnπεntn is such that |un − ũn|εn < 2−n. Since g−(Qεnvn) < δn → 0,
we may assume, taking subsequences if necessary, that |Qεnvn − v|H1 → 0 for
some v ∈ A−π0(N0). Since |(I −Qεn)vn|εn → 0, it follows that |vn − v|εn → 0.
We claim that there is a subsequence of (vnπεntn)n∈N, denoted again by

(vnπεntn)n∈N, and there is a ṽ ∈ A−π0(N0) such that

|vnπεntn − ṽ|εn → 0 as n→∞.
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First assume that the sequence (tn)n∈N is bounded. By taking subsequences,
if necessary, we may assume that there exists a t ∈ [0,∞[ such that tn → t as
n→∞. It follows from Corollary 2.15 that

|vnπεntn − vπ0t|εn → 0 as n→∞.

Since A−π0(N0) is an N0-positively invariant set relative to π0, it follows that

ṽ := vπ0t ∈ A−π0(N0).

If (tn)n∈N is unbounded then we may assume that tn → ∞ as n → ∞. Let
σn : [−tn, 0]→ H1(Ω) be a solution through vnπεntn relative to πεn given by

σn(s) = vnπεn(tn + s), for every s ∈ [−tn, 0].

By Lemma 2.21 there exist a subsequence of (σn)n∈N, denoted again by (σn)n∈N,
and a solution σ : ]−∞, 0] → H1s (Ω) of π0 lying in N0 such that for each s ∈
]−∞, 0],

(30) |σn(s)− σ(s)|εn → 0 as n→∞.

Let ṽ := σ(0) ∈ A−π0(N0). Letting s = 0 in (30), we obtain

|vnπεntn − ṽ|εn → 0 as n→∞.

This completes the proof of our claim.
It follows that |ũn − ṽ|εn → 0 and so |un − ṽ|εn → 0 as n→∞. Thus

(31) |(I −Qεn)un|εn < η and |(I −Qεn)un|εn < ν for all n large enough.

Moreover, since un ∈ [clV (a, b)]εn,η we also have Qεnun ∈ clV (a, b) ⊂ U0. Thus
un ∈ ]U0[εn,ν for all n large enough and so Lemma 5.3 and the continuity of of
t+ imply that t+εn,ν(un)→ t

+(ṽ) and t+(Qεnun)→ t+(ṽ) as n→∞.
Suppose that (27) holds. Then relations (27) and (31) imply that Qεnun ∈

∂clV (a, b) ⊂ U0, for all n large enough and so ṽ ∈ ∂clV (a, b) ⊂ U0. Since
t+εn,ν(un) > M

′ for all n we also conclude that t+(ṽ) ≥ M ′ > b. Since g−(ṽ) =
0 < a, we see that ṽ ∈ V (a, b). However V (a, b) ∩ ∂clV (a, b) = ∅. This contra-
diction proves part (1)(a).
Suppose now that (28) holds. Then t+εn,ν(un) ≤ 4M for all n and so t

+(ṽ) ≤
4M < 5M . We thus conclude that t+(Qεnun) < 5M for all n large enough.
All this clearly implies that un ∈ Ê(εn) for all n large enough, a contradiction
proving the second inclusion in (1)(b).
Finally assume that (29) holds. Therefore for all n ∈ N

(32) Qεnun ∈ {u ∈ U0 | t+(u) ≤ 3M} ∩ clV (δn,M)
and |(I −Qεn)un|εn ≤ αn.
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Hence there exists a vn ∈ V (δn,M) such that |Qεnun − vn|H1 < 2−n. Since
g−(vn) → 0, we may again assume that there is a v ∈ A−π0(N0) such that
|vn − v|H1 → 0 as n→∞. Therefore

|Qεnun − v|H1 → 0 as n→∞.

Together with (32) this shows that |un − v|εn → 0 as n → ∞. For all n large
enough we have g−(vn) < δn < a and t+(vn) > M > b so vn ∈ V (a, b). This
implies that v ∈ clV (a, b) ⊂ U0. Since t+(Qεnun) ≤ 3M , the continuity of
t+ implies that t+(v) ≤ 3M . Recall that un ∈ ]U0[εn,ν for all n large enough.
Lemma 5.3 now shows that t+εn,ν(un)→ t

+(v) as n→∞. Hence we can assume
that t+εn,ν(un) ≤ 4M for all n large enough.
Since N1(αn, δn, εn) is closed, we obtain from Remark 5.5 and Lemma 2.20

that, for all n large enough,

un ∈ [clV (δn,M)]εn,αn = clεn ]V (δn,M)[εn,αn
= clεnVεn,αn(δn,M) ⊂ N1(αn, δn, εn).

This implies that un ∈ Ĉ(εn, αn, δn). This contradiction completes the proof of
part (1) of the proposition.
If the second part of the proposition is not true then there exist numbers

M > b, α > 0 and sequences of positive numbers (δn)n∈N, (ρn)n∈N and (εn)n∈N,
converging to zero and a sequence (un)n∈N such that

un ∈ C(εn, ρn, α, δn) and un 6∈ E(εn, α, δn).

Therefore for every n ∈ N we have un ∈ ]U0[εn,α, t+εn,α(un) ≤ 2M and there exists
a vn ∈ Vεn,ρn(δn,M) such that |un−vn|εn < 2−n. Therefore Qεnvn ∈ V (δn,M).
Hence for every n ∈ N,

g−(Qεnvn) < δn and t
+(Qεnvn) > M

and so there exists a subsequence of (vn)n∈N, denoted again by (vn)n∈N, and a
v ∈ A−π0(N0) such that |Qεnvn − v|H1 → 0 as n→∞.
Since |(I − Qεn)vn|εn < ρn, we conclude that |vn − v|εn → 0 and so |un −

v|εn → 0 as n→∞. For all n large enough we have Qεnvn ∈ V (a, b). Therefore
v ∈ clV (a, b) ⊂ U0. Recall that un ∈ ]U0[εn,α. Hence Lemma 5.3 implies that
t+εn,α(un) → t

+(v) as n → ∞. Therefore t+(v) ≤ 2M . This inequality and
the continuity of t+ imply that t+(Qεnun) ≤ 3M for all n large enough. Since
un ∈ clεnVεn,ρn(δn,M) = [clV (δn,M)]εn,ρn it follows that for all n large enough,

Qεnun ∈ clV (δn,M) and |(I −Qεn)un|εn < α.

Therefore we have proven that un ∈ E(εn, α, δn) for all n large enough, a con-
tradiction. The proposition is proved. �
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Lemma 5.7. Let N1 and N2 be closed subsets in H1s (Ω) such that N2 ⊂ N1.
Then for every ε > 0 and η > 0 the pointed spaces N1/N2 and [N1]ε,η / [N2]ε,η
have the same homotopy type. More precisely, let ιε : N1/N2 → [N1]ε,η / [N2]ε,η
be the inclusion induced map and Tε : [N1]ε,η / [N2]ε,η → N1/N2 be the map
induced by the projection Qε. Then the maps ιε and Tε are homotopy inverses
to each other in the category of pointed spaces.

Proof. Obviously Tε ◦ ιε = IN1/N2 . Let H : [N1]ε,η / [N2]ε,η × [0, 1] →
[N1]ε,η / [N2]ε,η be the map induced by the function

K : [N1]ε,η × [0, 1]→ [N1]ε,η , (v, t) 7→ Qεv + (I −Qε)(1− t)v.

It is clear thatH is a homotopy between I[N1]ε,η/[N2]ε,η and ιε◦Tε. This concludes
the proof. �

We can now complete the proof of Theorem 3.5. Choose positive numbers β,
ν, η and M with M > b0 and η < ν < β. Now choose positive numbers α′ < η,
δ′ < a0 and ε′ such that for all positive α ≤ α′, δ ≤ δ′ and ε ≤ ε′ all assertions
of part (1) of Proposition 5.6 hold, where we fix a := a0, b := b0 and M ′ := 4M .
Now choose positive numbers ρ′ < α′, δ′′ ≤ δ′ and ε′′ ≤ ε′ such that for all
positive ρ ≤ ρ′, δ ≤ δ′′ and ε ≤ ε′′ part (2) of Proposition 5.6 holds, where we
fix α := α′.

Notice also that 2M > b0, ρ′ < α′ and α′ < β (α′ < η < ν < β). Therefore
we are able to apply Proposition 5.6 with M and M ′ replaced by 2M , η := ρ′,
ν := α′, a := δ′′, b := M . Thus we obtain positive numbers α′′′ ≤ ρ′, δ′′′ < δ′′

and ε′′′ ≤ ε′′ such that for all positive α ≤ α′′′, δ ≤ δ′′′ and ε ≤ ε′′′ the pair
(Ñ1(α, δ, ε), Ñ2(α, δ, ε)) is a pseudo-index pair in [clV (δ′′,M)]ε,ρ′ .

Here,

Ñ1(α, δ, ε) = [clV (δ′′,M)]ε,ρ′ ∩ clε{v | ∃ u ∈ Vε,α(δ, 2M) and t ≥ 0
such that uπε[0, t] ⊂ ]U0[ε,β and uπεt = v}

and

Ñ2(α, δ, ε) = Ñ1(α, δ, ε) ∩ {u ∈ ]U0[ε,α′ | t+ε,α′(u) ≤ 2M}.

Fix α := α′′′, δ := δ′′′ and write ρ := ρ′. We now conclude that for ε ∈ ]0, ε′′′[

A1 := Ñ1(α, δ, ε) ⊂ [clV (δ′′,M)]ε,ρ ⊂ A2 := [clV (δ′′,M)]ε,α′

⊂ A3 := N1(α′, δ′′, ε) ⊂ A4 := [clV (a0, b0)]ε,η .
B1 := Ñ2(α, δ, ε) ⊂ [clV (δ′′,M)]ε,ρ ∩ {u ∈ ]U0[ε,α′ | t+ε,α′(u) ≤ 2M}

= C(ε, ρ, α′, δ′′) ⊂ B2 := E(ε, α′, δ′′)
⊂ B3 := Ĉ(ε, α′, δ′′) = N2(α′, δ′′, ε) ⊂ B4 := Ê(ε).
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Notice that for each i = 1, 2, 3, 4, Bi ⊂ Ai. Therefore we can consider the
pointed spaces Ai/Bi. The two sequences of inclusions described above induce
continuous maps

Γ1 : A1/B1 → A2/B2, Γ2 : A2/B2 → A3/B3, and Γ3 : A3/B3 → A4/B4.

Using Lemma 5.2 let us now choose a positive number εc ≤ ε′′′ such that

K(ε, η, a0, b0) ⊂ Vε,α′(δ′′,M) ∩ Vε,α(δ, 2M)

for ε ∈ ]0, εc]. Then Remark 5.5 implies that (A1, B1) and (A3, B3) are index
pairs for K(ε, η, a0, b0) and it follows from Theorem 9.4 in [39] that Γ2 ◦ Γ1 is
an isomorphism in the homotopy category of the pointed spaces. The proof of
Theorem 2.3 in [39] implies that

(clV (δ′′,M), clV (δ′′,M) ∩ {u ∈ U0 | t+(u) ≤ 3M}),
(clV (a0, b0), clV (a0, b0) ∩ {u ∈ U0 | t+(u) ≤ 5M})

are index pairs for K0. Now, by Lemma 5.7, we conclude that there exist maps

Γ4 : clV (δ′′,M)/(clV (δ′′,M) ∩ {u ∈ U0 | t+(u) ≤ 3M})→ A2/B2,
Γ5 : clV (a0, b0)/(clV (a0, b0) ∩ {u ∈ U0 | t+(u) ≤ 5M})→ A4/B4,

which are isomorphism in the homotopy category of pointed spaces. Moreover,
Theorem 9.4 in [39] allows us to conclude that Γ−15 ◦ Γ3 ◦ Γ2 ◦ Γ4 is also an
isomorphism in the same category. Consequently Γ3 ◦ Γ2 is an isomorphism.
Now Lemma 12.4 in [39] implies that Γ1, Γ2 and Γ3 are all isomorphisms in the
homotopy category of pointed spaces. We conclude that (5) also holds for the
case K0 6= ∅. The proof of Theorem 3.5 is complete. �

Acknowledgment. A part of this work was completed while the first au-
thor was visiting the Institute of Mathematics of the Jagiellonian University.
We thank Professor Roman Srzednicki for his hospitality and many delightful
discussions.

References

[1] J. Arrieta, Neumann eigenvalue problems on exterior perturbations of the domain,
J. Differential Equations 118 (1995), 54–103.

[2] , Spectral behavior and upper semicontinuity of attractors, preprint.

[3] J. Arrieta, J. Hale and Q. Han, Eigenvalue problems for nonsmoothly perturbed
domains, J. Differential Equations 91 (1991), 24–52.

[4] V. Benci, A new approach to the Morse–Conley theory and some applications, Ann.

Mat. Pura Appl. (4) 158 (1991), 231–305.

[5] M. C. Carbinatto, J. Kwapisz and K. Mischaikow, Horseshoes and the Conley
index spectrum, Ergodic Theory Dynam. Systems (to appear).



250 M. C. Carbinatto — K. P. Rybakowski

[6] M. C. Carbinatto and K. Mischaikow, Horseshoes and the Conley index spectrum,

Part II: the theorem is sharp,, Discrete Contin. Dynam. Systems 5 (1999), 599–616.

[7] M. C. Carbinatto and K. P. Rybakowski, On a general Conley index continuation
principle for singular perturbation problems, preprint.

[8] , On convergence, admissibility and attractors for damped wave equations on

squeezed domains, preprint.

[9] , Continuation of the connection matrix for singular perturbation problems, in
preparation.

[10] I. S. Ciuperca, Spectral properties of Schrödinger operators on domains with varying

order of thinness, J. Dynam. Differential Equations 10 (1998), 73–108.

[11] C. C. Conley, Isolated Invariant Sets and the Morse Index, CBMS, vol. 38, Amer.

Math. Soc., Providence, 1978.

[12] C. C. Conley and E. Zehnder, Morse type index theory for flows and periodic solu-
tions for Hamiltonian Systems, Comm. Pure Appl. Math. 37 (1984), 207–253.

[13] M. Degiovanni and M. Mrozek, The Conley index for maps in the absence of com-

pactness, Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 75–94.

[14] B. Fiedler and C. Rocha, Heteroclinic orbits of semilinear parabolic equations, J. Dif-

ferential Equations 125 (1996), 239–281.

[15] A. Floer, Morse theory for Lagrangian intersections, J. Differential Geometry 28
(1988), 513–547.

[16] , Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120

(1989), 575–611.

[17] R. Franzosa, The connection matrix theory for Morse decompositions, Trans. Amer.

Math. Soc. 311 (1989), 561–592.

[18] R. Franzosa and K. Mischaikow, The connection matrix theory for semiflows on (not
necessarily locally compact) metric spaces, J. Differential Equations 71 (1988), 270–287.

[19] K. Gęba, M. Izydorek and A. Pruszko, The Conley index in Hilbert spaces and its

applications, Studia Math. 134 (1999), 217–233.

[20] J. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly per-

turbed hyperbolic equation, J. Differential Equations 73 (1988), 197–214.

[21] , Reaction-diffusion equations on thin domains, J. Math. Pures Appl. (9) 71
(1992), 33–95.

[22] , A damped hyperbolic equation on thin domains, Trans. Amer. Math. Soc. 329

(1992), 185–219.

[23] , A reaction-diffusion equation on a thin L-shaped domain, Proc. Roy. Soc. Ed-

inburgh Sect. A 125 (1995), 283–327.

[24] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Ber-
lin, 1981.

[25] Q. Huang, The continuation of Conley index for singular perturbations and the Conley

indices in gradient-like systems I: Theory, preprint.

[26] R. Johnson, P. Nistri and M. Kamenskĭı, On periodic solutions of a damped wave
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