
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 16, 2000, 1–15

MULTIPLE NONTRIVIAL SOLUTIONS
OF ELLIPTIC SEMILINEAR EQUATIONS

Kanishka Perera — Martin Schechter

Abstract. We find multiple solutions for semilinear boundary value prob-

lems when the corresponding functional exhibits local splitting at zero.

1. Introduction

In his studies of semilinear elliptic problems with jumping nonlinearities, Các
[2] proved the following

Theorem 1.1. Let Ω be a bounded domain in Rn, n ≥ 2, with smooth
boundary ∂Ω. Let 0 < λ0 < . . . < λk < . . . be the sequence of distinct eigenvalues
of the eigenvalue problem

(1.1)

{
−∆u = λu in Ω,

u = 0 on ∂Ω.

Let p(t) be a continuous function such that p(0) = 0 and

p(t)/t→ a as t→ −∞ and p(t)/t→ b as t→∞.
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Assume that for some k ≥ 1, we have a ∈ (λk−1, λk), b ∈ (λk, λk+1), and the
only solution of

(1.2)

{
−∆u = bu+ − au− in Ω,

u = 0 on ∂Ω,

is u ≡ 0, where u± = max[±u, 0]. Assume further that

(1.3)
p(s)− p(t)
s− t

≤ ν < λk+1, s, t ∈ R, s 6= t.

Assume also that p′(0)exists and satisfies p′(0) ∈ (λj−1, λj) for some j ≤ k.
Then

(1.4)

{
−∆u = p(u) in Ω,

u = 0 on ∂Ω,

has at least two nontrivial solutions.

This theorem generalizes the work of Gallouët and Kavian [7] which required
λk to be a simple eigenvalue and the left hand side of (1.3) to be sandwiched
in between λk−1 and λk+1 and bounded away from both of them. Các proves a
counterpart of the theorem in which the inequalities are reversed.

In the present paper we generalize this theorem and its reverse inequality
counterpart by not requiring p(t)/t to converge to limits at either ±∞ or 0.
Rather, we work with the primitive

F (x, t) :=
∫ t

0

f(x, s) ds

and bound 2F (x, t)/t2 near ±∞ and 0 (we replace p(t) with a function f(x, t)
depending on x as well). Our main assumptions are

t[f(x, t1)− f(x, t0)] ≤ a(t−)2 + b(t+)2, tj ∈ R, t = t1 − t0,(1.5)

a0(t−)2 + b0(t+)2 ≤ 2F (x, t) ≤ a1(t−)2 + b1(t+)2, |t| < δ(1.6)

for some δ > 0,

(1.7) a2(t−)2 + b2(t+)2 −W1(x) ≤ 2F (x, t), |t| > K

for some K > 0 and W1 ∈ L1(Ω), where the constants a, a0, a1, a2, b, b0, b1, b2
are suitably chosen (they include the cases considered by Các). The advantage
of such inequalities is that they do not restrict the expression 2F (x, t)/t2 or
f(x, t)/t to any particular interval. Special cases of our theorems were proved
by Li–Willem [9]
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2. Statement of the theorems

Let Ω be a smooth, bounded domain in Rn, and let A be a selfadjoint operator
on L2(Ω). We assume that

(2.1) C∞0 (Ω) ⊂ D := D(|A|1/2) ⊂ HT,2(Ω)

holds for some T > 0 (T need not be an integer), and the eigenvalues of A satisfy

0 < λ0 < . . . < λk < . . . .
We use the notation

a(u, v) = (Au, v), a(u) = a(u, u), u, v ∈ D.

Let f(x, t) be a Carathéodory function on Ω × R. This means that f(x, t) is
continuous in t for a.e. x ∈ Ω and measurable in x for every t ∈ R. We assume
that the function f(x, t) satisfies

(2.2) |f(x, t)| ≤ C(|t|+ 1), x ∈ Ω, t ∈ R.

We define

(2.3)

‖u‖D := ‖A1/2u‖,

F (x, t) :=
∫ t

0

f(x, s) ds,

G(u) := ‖u‖2D − 2
∫

Ω

F (x, u) dx.

It is known that G is a continuously differentiable functional on the whole of D
(cf. [17, p. 57]) and

(G′(u), v)D = 2(u, v)D − 2(f(u), v),

where we write f(u) in place of f(x, u(x)). In connection with the operator A,
the following quantities are very useful. For each fixed positive integer ` we let
N` denote the subspace of D spanned by the eigenfunctions corresponding to
λ0, . . . , λ`, and let M` = N⊥

` ∩D. Then D = M` ⊕N`. For real a, b we define

I(u, a, b) = (Au, u)− a‖u−‖2 − b‖u+‖2,

where u±(x) = max{±u(x), 0}.

γ`(a) = sup{I(v, a, 0) : v ∈ N`, ‖v+‖ = 1},
Γ`(a) = inf{I(w, a, 0) : w ∈M`, ‖w+‖ = 1},

F1`(w, a, b) = sup{I(v + w, a, b) : v ∈ N`},
F2`(v, a, b) = inf{I(v + w, a, b) : w ∈M`},
M`(a, b) = inf{F1`(w, a, b) : w ∈M`, ‖w‖D = 1},
m`(a, b) = sup{F2`(v, a, b) : v ∈ N`, ‖v‖D = 1},
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ν`(a) = sup{b : M`(a, b) ≥ 0},
µ`(a) = inf{b : m`(a, b) ≤ 0}.

Our first result is

Theorem 2.1. Assume that for some integers l < m the following inequali-
ties hold.

(2.4) t[f(x, t1)− f(x, t0)] ≤ a(t−)2 + b(t+)2, tj ∈ R, t = t1 − t0,

where b < Γm(a).

(2.5) a0(t−)2 + b0(t+)2 ≤ 2F (x, t) ≤ a1(t−)2 + b1(t+)2, |t| < δ,

for some δ > 0, with a0, b0 < λl+1, a1, b1 > λl, b0 > µl(a0), and b1 < νl(a1).

(2.6) a2(t−)2 + b2(t+)2 −W1(x) ≤ 2F (x, t), |t| > K,

for some K ≥ 0, where a2, b2 < λm+1, b2 > µm(a2), and W1 ∈ L1(Ω). Then the
equation

(2.7) Au = f(x, u), u ∈ D

has at least two nontrivial solutions.

In contrast to this we have

Theorem 2.2. Equation (2.7) will have at least two nontrivial solutions if
we assume that for some integers l > m the following inequalities hold:

(2.8) t[f(x, t1)− f(x, t0)] ≥ a(t−)2 + b(t+)2, tj ∈ R, t = t1 − t0,

where b > γm(a),

(2.9) a0(t−)2 + b0(t+)2 ≤ 2F (x, t) ≤ a1(t−)2 + b1(t+)2, |t| < δ,

for some δ > 0, with a0, b0 < λl+1, b0 > µl(a0) and a1, b1 > λl, b1 < νl(a1),

(2.10) 2F (x, t) ≤ a2(t−)2 + b2(t+)2 +W2(x), |t| > K,

for some K ≥ 0, where a2, b2 > λm, b2 < νm(a2) and W2 ∈ L1(Ω).

Immediate consequences of these theorems are

Corollary 2.1. Assume that for some integers l < m the following in-
equalities hold:

(2.11) t[f(x, t1)− f(x, t0)] ≤ at2, tj ∈ R, t = t1 − t0,

where a < λm+1,

(2.12) a0t
2 ≤ 2F (x, t) ≤ a1t

2, |t| < δ,
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for some δ > 0, with λl < a0 ≤ a1 < λl+1,

(2.13) a2t
2 −W1(x) ≤ 2F (x, t), |t| > K,

for some K ≥ 0, where a2 > λm and W1 ∈ L1(Ω). Then the equation (2.7) has
at least two nontrivial solutions.

Corollary 2.2. Equation (2.7) will have at least two nontrivial solutions
if we assume that for some integers l > m the following inequalities hold:

(2.14) t[f(x, t1)− f(x, t0)] ≥ at2, tj ∈ R, t = t1 − t0,

where a > λm,

(2.15) a0t
2 ≤ 2F (x, t) ≤ a1t

2, |t| < δ,

for some δ > 0, with λl < a0 ≤ a1 < λl+1,

(2.16) 2F (x, t) ≤ a2t
2 +W2(x), |t| > K,

for some K ≥ 0, where a2 < λm+1 and W2 ∈ L1(Ω).

It was shown in [15] that the functions γl, µl, νl−1, Γl−1 all emanate from
the point (λl, λl) and satisfy

Γl−1(a) ≤ νl−1(a) ≤ µl(a) ≤ γl(a)

on their common domains. It would therefore give a weaker result if we assumed
in Theorems 2.1 and 2.2 that b0 > γl(a0) and b1 < Γl(a1). However, the functions
γl, Γl are defined on the whole of R, while the others are not. For cases in which
the other functions are not defined we state the following

Tjeorem 2.3. Theorems 2.1 and 2.2 remain true if we assume that (2.5)
holds with b0 > γl(a0), and b1 < Γl(a1) for some a0, a1 ∈ R.

3. Some lemmas

The proofs of the theorems of Section 2 will be based on a series of lemmas.

Lemma 3.1. If b < Γl(a), then there is an ε > 0 such that

(3.1) I(w, a, b) ≥ ε‖w‖2D, w ∈Ml.

Proof. By the continuity of Γl, there is a t < 1 such that b/t < Γl(a/t).
Then,

I(w, a/t, b/t) = ‖w‖2D − a

t
‖w−‖2 − b

t
‖w+‖2 ≥ 0, w ∈Ml.

Therefore,

I(w, a, b) = t

[
‖w‖2D − a

t
‖w−‖2 − b

t
‖w+‖2

]
+ (1− t)‖w‖2D ≥ (1− t)‖w‖2D. �
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Lemma 3.2. If b > γl(a), then there is an ε > 0 such that

(3.2) I(v, a, b) ≤ −ε‖v‖2D, v ∈ Nl.

Proof. By the continuity of γl, there is a t > 1 such that b/t > γl(a/t).
Hence,

I(v, a/t, b/t) = ‖v‖2D − a

t
‖v−‖2 − b

t
‖v+‖2 ≤ 0, v ∈ Nl,

and

I(v, a, b) = t

[
‖v‖2D − a

t
‖v−‖2 − b

t
‖v+‖2

]
+ (1− t)‖v‖2D ≤ (1− t)‖v‖2D. �

Lemma 3.3. If

(3.3) t[f(x, t1)− f(x, t0)] ≤ a(t−)2 + b(t+)2, tj ∈ R, t = t1 − t0,

then

(3.4) (G′(v + w1)−G′(v + w0), w) ≥ 2I(w, a, b), v, wj ∈ D, w = w1 − w0.

Proof. We have

(f(x, v + w1)− f(x, v + w0), w) ≤ a‖w−‖2 + b‖w+‖2.

Hence,

(G′(v + w1)−G′(v + w0), w)/2

= ‖w‖2D−(f(x, v+w1)−f(x, v+w0), w) ≥ I(w, a, b). �

Lemma 3.4. If f(x, t) satisfies (3.3), and b < Γm(a), then there is a contin-
uous map ϕ from Nm into Mm such that

(3.5) J(v) ≡ G(v + ϕ(v)) = min
w∈Mm

G(v + w) ∈ C1(Nm,R), v ∈ Nm,

and

(3.6) J ′(v) = G′(v + ϕ(v)), v ∈ Nm.

Proof. In view of Lemmas 3.1 and 3.3, we have

(G′(v + w1)−G′(v + w0), w) ≥ ε‖w‖2D, w ∈Mm.

We can now apply a well known theorem of Castro [3] to arrive at the conclu-
sion. �
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Lemma 3.5. If, in addition,

(3.7) a0(t−)2 + b0(t+)2 ≤ 2F (x, t), |t| < δ,

for some δ > 0, with a0, b0 < λl+1, b0 > µl(a0), l ≤ m, then there are ε > 0,
r > 0 such that

(3.8) J(v) ≤ −ε‖v‖2D, v ∈ Nl ∩Br,

where Br = {u ∈ D : ‖u‖D ≤ r}.

Proof. Let q be any number satisfying

2 < q ≤ 2n/(n− 2T ), 2T < n,

2 < q <∞, n ≤ 2T.

It was shown in Schechter [16] that there is a continuous map τ : Nl →Ml such
that

τ(s v) = s τ(v), s ≥ 0,(3.9)

I(v + τ(v), a0, b0) = inf
w∈Ml

I(v + w, a0, b0), v ∈ Nl,(3.10)

‖τ(v)‖D ≤ C‖v‖D, v ∈ Nl.(3.11)

Then, for u = v + τ(v), we have by (2.2)

J(v) ≤ G(u) ≤ I(u, a0, b0) +
∫
|u|>δ

[a0(u−)2 + b0(u+)2 − 2F (x, u)] dx

≤ F2l(v, a0, b0) + C

∫
|u|>δ

|u|q dx

≤ ml(a0, b0)‖v‖2D + o(‖v‖2D) ≤ −ε‖v‖2D

for r sufficiently small (cf. [17], p. 159–160). �

Lemma 3.6. Assume that

(3.12) a(t−)2 + b(t+)2 −W1(x) ≤ 2F (x, t), |t| > K,

for some K ≥ 0, where a, b < λm+1, b ≥ µm(a), l ≤ m, and W1 ∈ L1(Ω). Then
there is a K1 <∞ such that

(3.13) J(v) ≤ K1.

If b > µm(a), then

(3.14) J(v) → −∞ as ‖v‖D →∞.

Proof. For u = v + w, v ∈ Nm, w ∈Mm, we have

G(u) ≤ I(u, a, b) + C

∫
|u|<K

|u|q dx+
∫

Ω

W1(x) dx ≤ I(u, a, b) +K ′.
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Thus,

J(v) = inf
w∈Mm

G(v + w) ≤ inf
w∈Mm

I(v + w, a, b) +K ′

= F2m(v, a, b) +K ′ ≤ m(a, b)‖v‖2D +K ′.

If b ≥ µm(a), then m(a, b) ≤ 0. This proves (3.13). If b > µm(a), then m(a, b) <
0. This proves (3.14). �

Lemma 3.7. If l < m, and λl < a, b < λm+1, then there are continuous
functions ξ : Nm ∩Ml → Nl, η : Nm ∩Ml → Mm homogeneous of degree one
and such that, for y ∈ Nm ∩Ml,

I(ξ(y) + η(y) + y, a, b) = sup
v∈Nl

inf
w∈Mm

I(v + w + y, a, b)(3.15)

= inf
w∈Mm

sup
v∈Nl

I(v + w + y, a, b).

Proof. Let Ly(v, w) = I(v+w+y, a, b). Then Ly is a strictly convex lower
semicontinuous functional in w ∈ Mm, and strictly concave and continuous in
v ∈ Nl. By a theorem of Ky-Fan (cf. [6]), for each y0 ∈ Nm∩Ml there are unique
elements v0 = ξ(y0) ∈ Nl, w0 = η(y0) ∈Mm such that (3.15) holds, i.e., that

Ly0(v, w0) ≤ Ly0(v0, w0) ≤ Ly0(v0, w), v ∈ Nl, w ∈Mm.

The functions ξ, η are clearly homogeneous of degree one. To prove continuity,
let yj → y0 in Nl ∩Mm, and let vj = ξ(yj), wj = η(yj). We note that the
functions vj and wj are bounded in D. For otherwise, it is easy to show that

I(v + wj + yj , a, b) →∞ as j →∞, for any v ∈ Nl,

I(vj + w + yj , a, b) → −∞ as j →∞, for any w ∈Mm.

This would contradict (3.15). Thus there are renamed subsequences such that
vj → v1, wj ⇀ w1 in D. Since

I(v + wj + yj , a, b) ≤ I(vj + wj + yj , a, b) ≤ I(vj + w + yj , a, b),

for v ∈ Nl, w ∈Mm, we have in the limit

I(v + w1 + y0, a, b) ≤ I(v1 + w1 + y0, a, b) ≤ I(v1 + w + y0, a, b),

for v ∈ Nl, w ∈ Mm, showing that v1 = v0, w1 = w0. Since this is true for any
subsequence, the result follows. �
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Lemma 3.8. If

(3.16) 2F (x, t) ≤ a1(t−)2 + b1(t+)2, |t| ≤ δ,

for some δ > 0, with a1, b1 > λl, b1 < νl(a1), l < m, then there are ε > 0, r > 0
such that

(3.17) J(y + ξ(y)) ≥ ε‖y‖2D, y ∈ Nm ∩Ml ∩Br.

Proof. By Lemma 3.7 we have

(3.18) inf
w∈Mm

I(ξ(y) + y + w, a1, b1) = inf
w∈Mm

sup
v∈Nl

I(v + y + w, a1, b1),

for y ∈ Nm ∩Ml. Then for y ∈ (Nm ∩Ml ∩Br) \ {0},

(3.19) J(ξ(y) + y) = G(ξ(y) + y + ϕ(ξ(y) + y))

≥ I(ξ(y) + y + ϕ(ξ(y) + y), a1, b1)− o(‖y‖2D)

≥ inf
w∈Mm

I(ξ(y) + y + w, a1, b1)− o(‖y‖2D)

= inf
w∈Mm

sup
v∈Nl

I(v + y + w, a1, b1)− o(‖y‖2D)

≥ inf
w∈Mm

Ml(a, b)‖y + w‖2D − o(‖y‖2D)

= Ml(a, b)‖y‖2D − o(‖y‖2D) ≥ ε‖y‖2D. �

Lemma 3.9. Assume

(3.20) t[f(x, t1)− f(x, t0)] ≥ a(t−)2 + b(t+)2, tj ∈ R, t = t1 − t0.

Then

(3.21) (G′(v1 + w)−G′(v0 + w), v) ≤ 2I(v, a, b), vj , w ∈ D, v = v1 − v0.

Proof. We have

(f(x, v1 + w)− f(x, v0 + w), v) ≥ a‖v−‖2 + b‖v+‖2.

Hence

(G′(v1+w)−G′(v0+w), v)/2 = ‖v‖2D−(f(x, v1+w)−f(x, v0+w), v) ≤ I(v, a, b).
�

Lemma 3.10. If f(x, t) satisfies (3.20), and b > γm(a), then there is a con-
tinuous map ψ from Mm → Nm such that

(3.22) J(w) ≡ G(w + ψ(w)) = max
v∈Nm

G(v + w) ∈ C1(Mm,R), w ∈Mm,

and

(3.23) J ′(w) = G′(w + ψ(w)), w ∈Mm.
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Proof. In view of Lemmas 3.2 and 3.9 we have

(G′(v1 + w)−G′(v0 + w), v) ≤ −ε‖v‖2D, v ∈ Nm.

We can now apply the theorem of Castro [3] to obtain the conclusion. �

Lemma 3.11. If, in addition,

(2.24) a0(t−)2 + b0(t+)2 ≤ 2F (x, t), |t| < δ,

for some δ > 0, with a0, b0 < λl+1, b0 > µl(a0), l > m, then there are ε > 0,
r > 0 such that

(3.25) J(y + η(y)) ≤ −ε‖y‖2D, y ∈ Nl ∩Mm ∩Br.

Proof. For y ∈Mm ∩Nl, let u = y + η(y) ∈Mm. By (2.2),

J(u) = G(u+ ψ(u)) ≤ I(u+ ψ(u), a0, b0) + o(‖u‖2D)(3.26)

≤ sup
v∈Nm

I(u+ v, a0, b0) + o(‖u‖2D)

= I(y + η(y) + ξ(y), a0, b0) + o(‖u‖2D)

= sup
v∈Nm

inf
w∈Ml

I(y + v + w, a0, b0) + o(‖u‖2D)

= sup
v∈Nm

F2l(y + v, a0, b0) + o(‖u‖2D)

≤ sup
v∈Nm

ml(a0, b0)‖y + v‖2D + o(‖u‖2D) ≤ −ε‖y‖2D

for r sufficiently small (cf. [17, p. 159]). �

Lemma 3.12. If

(3.27) 2F (x, t) ≤ a1(t−)2 + b1(t+)2, |t| ≤ δ,

for some δ > 0, with a1, b1 > λl, b1 < νl(a1), l > m, then there are ε > 0, r > 0
such that

(3.28) J(w) ≥ ε‖w‖2D, w ∈Ml ∩Br.

Proof. We recall from Schechter [16] that there is a continuous map θ :
Ml → Nl such that

θ(sw) = s θ(w), s ≥ 0,(3.29)

I(θ(w) + w, a1, b1) = sup
v∈Nl

I(v + w, a1, b1), w ∈Ml.(3.30)



Elliptic Semilinear Equations 11

Thus,

J(w) ≥ G(w + θ(w), a1, b1) ≥ I(w + θ(w), a1, b1)− o(‖w‖2D)

= sup
v∈Nl

I(v + w, a1, b1)− o(‖w‖2D)

= F1l(w, a1, b1)− o(‖w‖2D)

≥Ml(a1, b1)‖w‖2D − o(‖w‖2D) ≥ ε‖w‖2D

for r sufficiently small. �

Lemma 3.13. Assume that

(3.31) 2F (x, t) ≤ a(t−)2 + b(t+)2 +W1(x), |t| > K

for some K ≥ 0, where a, b > λm, b ≤ νm(a), l ≥ m, and W1 ∈ L1(Ω). Then
there is a K1 <∞ such that

(3.32) J(w) ≥ −K1, w ∈Mm.

If b < νm(a), then

(3.33) J(w) →∞ as ‖w‖D →∞.

Proof. For u = v + w, v ∈ Nm, w ∈Mm, we have

G(u) ≥ I(u, a, b)− C

∫
|u|<K

|u|q dx−
∫

Ω

W1(x)dx ≥ I(u, a, b)−K ′.

Thus,

J(w) = sup
v∈Nm

G(v + w) ≥ sup
v∈Nm

I(v + w, a, b)−K ′

= F1m(w, a, b)−K ′ ≥Mm(a, b)‖w‖2D −K ′.

If b ≤ νm(a), then Mm(a, b) ≥ 0. This proves (3.32). If b < νm(a), then
Mm(a, b) > 0. This proves (3.33). �

Lemma 3.14. If

(3.34) a0(t−)2 + b0(t+)2 ≤ 2F (x, t), |t| < δ

for some δ > 0, with b0 > γl(a0), l ≤ m, then there are ε > 0, r > 0 such that

(3.35) J(v) ≤ −ε‖v‖2D, v ∈ Nl ∩Br,

where Br = {u ∈ D : ‖u‖D ≤ r}.

Proof. Let q be any number satisfying

2 < q ≤ 2n/(n− 2T ), 2T < n,

2 < q <∞, n ≤ 2T.
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By (2.2),

J(v) ≤ G(v) ≤ I(v, a0, b0) +
∫
|v|>δ

[a0(v−)2 + b0(v+)2 − 2F (x, v)] dx

≤ −ε‖v‖2D + C

∫
|v|>δ

|v|q dx ≤ −ε‖v‖2D + o(‖v‖2D) ≤ −ε‖v‖2D

for r sufficiently small (cf. [17, p. 60]). �

Lemma 3.15. If

(3.36) 2F (x, t) ≤ a1(t−)2 + b1(t+)2, |t| ≤ δ

for some δ > 0, with b1 < Γl(a1), l < m, then there are ε > 0, r > 0 such that

(3.37) J(v) ≥ ε‖v‖2D, v ∈ Nm ∩Ml ∩Br.

Proof. Let u = v + ϕ(v) ∈Ml. Then

J(v) = G(u) ≥ I(u, a1, b1) +
∫
|u|>δ

[a0(u−)2 + b0(u+)2 − 2F (x, u)] dx

≥ ε‖u‖2D − C

∫
|u|>δ

|u|q dx ≥ ε‖u‖2D − o(‖u‖2D)

≥ ε‖v‖2D − o(‖v‖2D) ≥ ε‖v‖2D

for r sufficiently small, since ‖v‖D ≤ ‖u‖D ≤ C‖v‖D. �

Lemma 3.16. If

(3.38) a0(t−)2 + b0(t+)2 ≤ 2F (x, t), |t| < δ,

for some δ > 0 with b0 > γl(a0), l ≥ m, then there are ε > 0, r > 0 such that

(3.39) J(w) ≤ −ε‖w‖2D, w ∈ Nl ∩Mm ∩Br.

Proof. For w ∈Mm ∩Nl, let u = w + ψ(w) ∈ Nl. By (2.2),

J(w) = G(w + ψ(w)) = G(u)

≤ I(u, a0, b0) +
∫
|u|>δ

[a0(v−)2 + b0(u+)2 − 2F (x, u)] dx

≤ −ε‖u‖2D + C

∫
|u|>δ

|u|q dx ≤ −ε‖u‖2D + o(‖u‖2D) ≤ −ε‖u‖2D

for r sufficiently small (cf. [17, p. 60]). Since ‖w‖D ≤ ‖u‖D ≤ C‖w‖D, the result
follows. �



Elliptic Semilinear Equations 13

Lemma 3.17. If

(3.40) 2F (x, t) ≤ a1(t−)2 + b1(t+)2, |t| ≤ δ,

for some δ > 0, with b1 < Γl(a1), l > m, then there are ε > 0, r > 0 such that

(3.41) J(w) ≥ ε‖w‖2D, w ∈Ml ∩Br.

Proof. We have

G(w) ≥ I(w, a1, b1) +
∫
|w|>δ

[a0(u−)2 + b0(w+)2 − 2F (x,w)] dx

≥ ε‖w‖2D − C

∫
|w|>δ

|w|q dx ≥ ε‖w‖2D − o(‖w‖2D)

≥ ε‖w‖2D − o(‖w‖2D) ≥ ε‖w‖2D

for r sufficiently small. Since J(w) = supv∈Nl
G(v + w) ≥ G(w), the result

follows. �

4. The proofs

We prove the theorems of Section 2.

Proof of Theorem 2.1. By Lemma 3.4, it suffices to show that J(v) has
two nontrivial solutions. Now J is bounded from above by Lemma 3.6 and it
satisfies (PS) by (3.14). Moreover,

(4.1) J(v) < 0, v ∈ Nl ∩Br \ {0},

by Lemma 3.5, and

(4.2) J(ξ(y) + y) > 0, y ∈ Nm ∩Ml ∩Br \ {0},

by Lemma 3.8. Thus J has a positive maximum on Nm. We can now apply a
theorem of Perera [11] to obtain the desired conclusion. �

Proof of Theorem 2.2. By Lemma 3.10, it suffices to show that J(w)
given by (3.22) has two nontrivial solutions. Now J is bounded from below by
Lemma 3.13 and it satisfies (PS) by (3.33). Moreover,

(4.3) J(w + η(w)) < 0, w ∈ Nl ∩Mm ∩Br \ {0},

by Lemma 3.11, and

(4.4) J(w) > 0, w ∈Ml ∩Br \ {0},

by Lemma 3.12. Thus J has a negative minimum on Mm. We can now apply
the theorem of Perera [11] to obtain the desired conclusion. �
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Proof of Theorem 2.3. With reference to Theorem 2.1, we note that by
Lemma 3.4, it suffices to show that J(v) has two nontrivial solutions. Now J is
bounded from above by Lemma 3.6 and it satisfies (PS) by (3.14). Moreover,

(4.5) J(v) < 0, v ∈ Nl ∩Br \ {0},

by Lemma 3.14, and

(4.6) J(v) > 0, v ∈ Nm ∩Ml ∩Br \ {0},

by Lemma 3.15. Thus J has a positive maximum on Nm. We can now apply a
theorem of Brézis–Nirenberg [1] to obtain the desired conclusion. With respect
to Theorem 2.2, we note that by Lemma 3.10, it suffices to show that J(w)
given by (3.22) has two nontrivial solutions. Now J is bounded from below by
Lemma 3.13 and it satisfies (PS) by (3.33). Moreover,

(4.7) J(w) < 0, w ∈ Nl ∩Mm ∩Br \ {0},

by Lemma 3.16, and

(4.8) J(w) > 0, w ∈Ml ∩Br \ {0},

by Lemma 3.17. Thus J has a negative minimum on Mm. We can now apply
the theorem of Brézis–Nirenberg [1] to obtain the desired conclusion. �
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