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ON SOME PROPERTIES OF DISSIPATIVE FUNCTIONAL
DIFFERENTIAL INCLUSIONS IN A BANACH SPACE

Valeri Obukhovskĭı1 — Pietro Zecca2

Abstract. For a semilinear functional differential inclusion of the form

y′(t) ∈ Ay(t0 + f(t, xt)

satisfying a dissipativity condition in a separable Banach space we prove
the existence of a periodic solution and a global compact attractor.

0. Introduction

In this paper we prove the existence of a periodic solution and a global
attractor for a semilinear functional differential inclusion satisfying a dissipa-
tivity condition in a separable Banach space. Usually in the investigation of
the solutions set for dissipative differential equations and functional differen-
tial equations it is assumed that the solution determined by the initial value is
unique and hence the translation operator along the trajectories of the equation
is single-valued (see, for example, [11], [10], [19], [16], [17]). We can overcome
this restriction using recent results on the structure of the integral funnel [8]
and developing the method of the translation multioperator along solutions of
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the functional differential inclusion. In particular, improving the recent result
of the paper of M. Kamenskĭı, V. Obukhovskĭı and P. Zecca [18] we give suf-
ficient conditions under which this multioperator is condensing with respect to
the Hausdorff measure of noncompactness in the space of initial functions.

Let us note that the results of the work are new, even in the case of functional
differential equations as the restrictive condition of the uniqueness of a solution
is not required.

1. Preliminaries

Let X and Y be Hausdorff topological spaces; a multivalued map (multimap)
F : X −◦Y is said to be upper semicontinuous (u.s.c.) if

F−1(V ) = {x ∈ X : F(x) ⊂ V }

is an open subset of X for every open V ⊆ Y . If a multimap F is u.s.c. and
compact-valued then:

(i) it is closed, i.e. its graph

GF = {(x, y) ∈ X × Y : y ∈ F(x)}

is a closed subset of X × Y ;
(ii) the image F(R) of every compact subset R ⊂ X is compact in Y (see

for example [5]).

For a multimap F : X −◦X and Q ⊂ X, the set

Γ(Q) =
⋃
n≥0

Fn(Q)

is said to be the orbit of Q under F .
In this section E will denote a real separable Banach space. A real valued

function χ defined on bounded subsets of E is said to be the Hausdorff measure
of noncompactness provided

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net}.

Let us recall the following properties of χ (see, e.g. [1]).

(i) χ is regular, i.e. χ(Ω) = 0 implies that Ω is relatively compact,
(ii) χ is monotone, i.e. Ω0 ⊆ Ω1 implies χ(Ω0) ≤ χ(Ω1),
(iii) χ is algebraically semiadditive, i.e. χ(Ω0 + Ω1) ≤ χ(Ω0) + χ(Ω1),
(iv) χ is non singular, i.e. χ(Ω ∪ {a}) = χ(Ω).

If L is a bounded linear operator in E then its χ-norm may be defined as

‖L‖(χ) = χ(LS)
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where S denotes the unit sphere in E . It is known that, for any bounded Ω ⊂ E

χ(LΩ) ≤ ‖L‖(χ)
χ(Ω).

For a bounded equicontinuous set D ⊂ C([a, b]; E) the function χ(D(t))
(where D(t) = {(y(t) : y ∈ D}) is continuous and the characteristic

χC(D) = sup
t∈[a,b]

χ(D(t))

coincides with the Hausdorff measure of noncompactness of D in C([a, b]; E).
Let B ⊆ E be a closed set; an u.s.c. multimap F : B−◦E is said to be

(k, χ)-condensing (or simply χ-condensing) if there exists k, 0 ≤ k < 1 such that

χ(F(Ω)) ≤ kχ(Ω)

for every bounded Ω ⊂ B. It is known (see, for example [4]) that, provided B
is bounded, there exists a nonempty convex compact set M ⊆ coF(B) (a fun-
damental set of F) with the property that B ∩M 6= ∅ and F(B ∩M) ⊆ M .
Moreover, the fundamental set can be chosen so that it will contain any pre-
scribed point a ∈ B.

In what follows if L is a nonempty subset of a normed space then

‖L‖ := sup{‖l‖ : l ∈ L}.

A multifunction G : [a, b]−◦E with compact values is said to be measurable
if it satisfies any of the following two equivalent conditions:

(i) the set G−1(V ) = {t ∈ [a, b] : G(t) ⊂ V } is measurable for every open
V ⊆ E ;

(ii) there exists the sequence {gn}∞n=1 of measurable functions gn : [a, b] → E
such that G(t) = {gn(t)}∞n=1 for all t ∈ [a, b] (see, for example, [7]).

By the symbol of S1
G we will denote the set of all Bochner integrable selectors

of the multifunction G : [a, b]−◦E , i.e.

S1
G = {g ∈ L1([a, b], E) : g(t) ∈ G(t) a.e. t ∈ [a, b]}.

If S1
G 6= ∅ then the multifunction G is called integrable and∫

I

G(s) ds :=
{ ∫
I

g(s) ds : g ∈ S1
G

}

for every measurable set I ⊆ [a, b]. Clearly, if G is measurable and integrably
bounded (i.e. there exists α ∈ L1

+([a, b]) such that ‖G(t)‖ ≤ α(t) a.e.) then G is
integrable.

We will need also the following property (see [22]).
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Lemma 1.1. Let the multifunction G : [a, b]−◦E with bounded values be
measurable, integrably bounded and

χ(G(t)) ≤ γ(t) a.e. on [a, b],

where γ ∈ L1
+([a, b]). Then

χ

( ∫
I

G(s) ds
)
≤

∫
I

γ(s) ds

for every measurable set I ⊆ [a, b]. In particular, if G is measurable and inte-
grably bounded then

χ(G( · )) ∈ L1
+([a, b])

and

χ

( ∫
I

G(s) ds
)
≤

∫
I

χ(G(s)) ds.

We recall that a nonempty space R is said to be an Rδ if R is the intersection
of a decreasing sequence of compact, contractible sets (see, e.g. [13]).

An u.s.c. multimap G : X −◦Y of normed spaces is said to be Rδ provided
every value G(x), x ∈ X is an Rδ set.

Let B be a closed subset of E . An u.s.c. multimap F : B−◦E is said to be
quasi-Rδ provided there exists a normed linear space Y , a continuous linear map
f : Y → E and an Rδ multimap G : B−◦Y such that F = f ◦ G.

Using the method of single-valued approximations of Rδ multimaps (see [13])
we can prove the following generalization of the known F. E. Browder’s asymp-
totic fixed point theorem ([6], see also [3], [4], et al.).

Theorem 1.1. Let B0, B1, B be balls in a Banach space E with B0 ⊂ B1 ⊂
B1 ⊂ B. Let M ⊂ E be a convex compact set such that B0M = B0 ∩M 6= ∅ and
F : B ∩M −◦M be a quasi-Rδ multimap such that:

(i)
⋃

1≤j≤m−1Fj(B1M ) ⊂ BM ,
(ii)

⋃
1≤j≤m−1Fj(B0M ) ⊂ B1M ,

(iii) Fm(B1M ) ⊂ B0M for some integer m ≥ 1.

Then F has a fixed point x∗ ∈ B0M , x∗ ∈ F(x∗).

2. The translation multioperator along
the solutions of a functional differential inclusion

Let E be a separable Banach space; for τ > 0 let us denote by C the space
C([−τ, 0];E) endowed with the usual topology of uniform convergence. The
norm in the space C will be denoted as ‖ · ‖0. For a continuous function y :
[−τ, a) → E, 0 < a ≤ ∞ and 0 ≤ t < a the function yt ∈ C is defined by the
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relation yt(θ) = y(t+θ). For a family Y of such functions we will denote Yt ⊂ C,
Yt = {yt : y ∈ Y }.

Consider the following problem for the semilinear functional differential in-
clusion in E of the form

y′(t) ∈ Ay(t) + F (t, yt), t ≥ 0,(1)

y(t) = x(t), t ∈ [−τ, 0],(2)

for a given initial function x ∈ C under the following assumptions:

(A) A is a closed linear, not necessarily bounded operator in E generating
an analytic semigroup eAt.

Let Kv(E) denote the collection of all nonempty compact convex subsets
of E. We will suppose that the multimap F : R+ × C → Kv(E) satisfies the
following conditions:

(F1) for T > 0 the multimap F is T -periodic in the first argument, i.e.

F (t+ T, x) = F (t, x) for all (t, x) ∈ R+ × C.

Condition (F1) obviously implies that it is enough to work with the restriction
F : [0, T ]× C → Kv(E).

Further it is assumed that:

(F2) for every x ∈ C the multifunction F ( · , x) : [0, T ] → Kv(E) admits
a measurable selection,

(F3) for a.e. t ∈ [0, T ] the multimap F (t, · ) : C → Kv(E) is u.s.c.,
(F4) ‖F (t, x)‖ ≤ α(t) + β(t)‖x‖0 for every x ∈ C and a.e. t ∈ [0, T ] where

α, β ∈ L1
+([0, T ]),

(F5) for every nonempty bounded equicontinuous set D ⊂ C we have

χ(F (t,D)) ≤ g(t, ξ(D)) a.e. t ∈ [0, T ]

where ξ(D) ∈ C([−τ, 0];R+), ξ(D)(θ) = χ(D(θ)) and g : [0, T ] ×
C([−τ, 0], R+) → R+ is a Carathéodory type function such that:

(i) g(t, · ) : C([−τ, 0];R+) → R+ is nondecreasing for a.e. t ∈ [0, T ] in the
following sense: ϕ,ψ ∈ C([−τ, 0], R+); ϕ(θ) < ψ(θ) for all θ ∈ [−τ, 0]
implies g(t, ϕ) ≤ g(t, ψ),

(ii) |g(t, φ) − g(t, ψ)| ≤ k(t)‖φ− ψ‖1 a.e. t ∈ [0, T ] for every φ, ψ ∈
C([−τ, 0];R+), where k ∈ L+

1 ([0, T ]) and ‖ · ‖1 denotes the norm in
the space C([−τ, 0];R+) and

(iii) g(t, 0) = 0 for a.e. t ∈ [0, T ].

It is clear that condition (F2) is fulfilled if the multifunction F ( · , x) is mea-
surable for every x ∈ C. For a function y( · ) ∈ C([−τ, T ];E) let us denote by
Hy the multifunction Hy : [0, T ] → Kv(E) given by Hy(t) = F (t, yt). From
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conditions (F2)–(F4) it follows that S1
Hy

6= ∅ for every y( · ) ∈ C([−τ, T ];E) (see,
for example, [23]).

Definition 2.1. A function y( · ) ∈ C([−τ, T ];E) is said to be a mild solu-
tion of the problem (1), (2) provided

y(t) = x(t), t ∈ [−τ, 0],

y(t) = eAty(0) +

t∫
0

eA(t−s)f(s) ds, t ∈ [0, T ],

where f ∈ S1
Hy

.

The following theorem is the combination of the results proved by V. Obu-
khovskĭı [22] and G. Conti, V. Obukhovskĭı and P. Zecca [8].

Theorem 2.1. Under assumptions (A), (F2)–(F5) the set Σ(x) of all mild
solutions of the problem (1)–(2) is an Rδ subset of C([−τ, T ];E) and the mul-
timap Σ : C −◦C([−τ, T ];E), x−◦Σ(x) is u.s.c. and hence Rδ.

It is easy to see that the periodicity condition (F1) allows to extend every
mild solution of (1), (2) on the whole R+.

Definition 2.2. A multimap PT : C −◦ C defined as

PT (x) = (Σ(x))T

is said to be the translation multioperator along mild solutions of the functional
differential inclusion (1).

Note that since PT can be represented as the composition of the Rδ multimap
Σ and the continuous linear map e : C([−τ, T ];E) → C, e(y) = yT the multimap
PT is quasi-Rδ. Our aim now is to investigate the further properties of this
multioperator.

Lemma 2.1. For every bounded set D ⊂ C the set PT (D) is bounded and,
provided T > τ , equicontinuous.

Proof. To prove the first statement, let us demonstrate that the set Σ(D)
is bounded.

Let ‖x‖0 ≤ N for all x ∈ D and take y ∈ Σ(D). Then we have

y(t) = eAtx(0) +

t∫
0

eA(t−s)f(s) ds, t ∈ [0, T ],

y(t) = x(t), t ∈ [−τ, 0],
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where x ∈ D, f ∈ S1
Hy

. From the property (F4) we have the following estimation

‖f(s)‖ ≤ α(s) + β(s)(‖x‖0 + sup
0≤η≤s

‖y(η)‖), 0 ≤ s ≤ t,

and denoting R = sup0≤t≤T ‖eAt‖ we obtain that

‖y(t)‖ ≤ R‖x(0)‖+R

t∫
0

(
α(s) + β(s)

(
‖x‖0 + sup

0≤η≤s
‖y(η)‖

))
ds.

Since the right-hand part of the above inequality does not decrease, we have

sup
0≤η≤t

‖y(η)‖ ≤ R(‖α‖+N(1 + ‖β‖)) +R

t∫
0

β(s) sup
0≤η≤s

‖y(η)‖ ds.

Applying to the function w(t) = sup0≤η≤t‖y(η)‖ the Gronwall–Bellman inequal-
ity we conclude that

w(t) ≤ C exp
(
R

t∫
0

β(s) ds
)

where C = R(‖α‖+N(1 + ‖β‖)) implying the desired boundedness.
Now, again let y ∈ Σ(D),

y(t) = eAtx(0) +

t∫
0

eA(t−s)f(s) ds, t ∈ [0, T ],

where x ∈ D, f ∈ S1
Hy

. From the above, there exists N1 > 0 such that ‖Σ(D)‖ ≤
N1 and hence we have the following estimate

‖f(t)‖ ≤ γ(t) = α(t) + β(t)N1, t ∈ [0, T ].

Now, for T > τ , consider yT ∈ C. Take θ1, θ2 ∈ [−τ, 0], θ1 < θ2, then

‖yT (θ2)− yT (θ1)‖ = ‖y(T + θ2)− y(T + θ1)‖

≤ ‖(eA(T+θ2) − eA(T+θ1))x(0)‖+

T+θ1∫
0

‖(eA(T+θ2−s) − eA(T+θ1−s))‖ · ‖f(s)‖ ds

+

T+θ2∫
T+θ1

‖eA(T+θ2−s)‖ · ‖f(s)‖ ds ≤ ‖eA(T+θ2) − eA(T+θ1)‖N

+

T+θ1∫
0

‖eA(T+θ2−s) − eA(T+θ1−s)‖γ(s) ds+R

T+θ2∫
T+θ1

γ(s) ds

concluding the proof. �
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Remark 2.1. From the proof it is clear that the set PT (D) is equicontinuous
for every T ≥ 0 provided D is bounded and equicontinuous.

Now, improving the idea of [18] we will formulate the conditions under which
the translation multioperator PT is condensing. At first note that from the
periodicity of the multimap F it follows that we may extend the functions g(t, x)
and k(t) appearing in the condition (F5) on the whole half-axis R+ in t.

Let us suppose that

(H1) there exists a continuous bounded function h : R+ → R+ such that

(3) ‖eAt‖(χ) ≤ h(t), t ∈ R+

and

(4) sup
t>0

t∫
0

h(t− s)k(s) ds < 1

(it is clear that h(0) ≥ 1).

Using the method of successive approximations (see, e.g. [9, §6.5]) we may
prove that under the hypothesis (4) the initial problem for the scalar Volterra
delay integral equation

w(t) = v(t), t ∈ [−τ, 0],(5)

w(t) =
1

h(0)
h(t)w(0) +

t∫
0

h(t− s)g(s, ws) ds, t ≥ 0,(6)

has a unique bounded solution w(t, v) on R+ for every initial function v ∈
C([−τ, 0];R+).

Our second assumption is that

(H2) the solutions of the problem (5), (6) are uniformly asymptotically bo-
unded in the following sense: there exists a function σ : R+ → R+ such
that lim supt→∞ σ(t) < 1/h(0) and for every solution w(t, v) of (5), (6)
we have

(7) ‖wt‖1 ≤ σ(t)‖v‖1, t ≥ 0.

Let us denote

t∗ = inf
{
t′ : σ(t) <

1
h(0)

for all t ≥ t′
}
.

Remark 2.2. From the estimate (7) it follows that σ(τ) ≥ 1 and hence
t∗ ≥ τ .

Example 2.1 below will illustrate applications of the assumption (H2).
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Now we are in position to prove the principal result on the condensivity of
the translation multioperator PT .

Theorem 2.2. Let the conditions (A), (F1)–(F5), (H1), (H2) be satisfied.
Then for every bounded equicontinuous set D ⊂ C we have that

χC(PT (D)) ≤ σ(T )h(0)χC(D)

and hence, PT is χC-condensing (on equicontinuous sets), provided

(8) T > t∗.

Proof. Let us estimate χ(Σ(D)(t)) for t ∈ [0, T ]. From the properties of
the Hausdorff measure of noncompactness χ and the hypotheses (F5) and (H1)
we have that

χ(Σ(D)(t)) ≤ χ

(
eAtΣ(D)(0) +

t∫
0

eA(t−s)F (s, (Σ(D))s) ds
)

≤ ‖eAt‖(χ)
χ (Σ(D)(0)) +

t∫
0

‖eA(t−s)‖
(χ)
χ(F (s, (Σ(D))s)) ds

≤ h(t)χ(Σ(D)(0)) +

t∫
0

h(t− s)g(s, ξ((Σ(D))s)) ds.

Therefore, if we denote u(t) = χ(Σ(D)(t)), we see that this function whose initial
value is r(t) = ξ(D)(t) for t ∈ [−τ, 0] satisfies the integral inequality

u(t) ≤ h(t)u(0) +

t∫
0

h(t− s)g(s, us) ds.

Now the standard technique of comparison theorems for integral inequalities
(see [21, Chapter 5]) can be applied to show that u(t) ≤ w(t), where w(t) is the
solution of the integral equation

w(t) =
1

h(0)
h(t)w(0) +

t∫
0

h(t− s)g(s, ws) ds, t ≥ 0

with the initial value v(t) = h(0)r(t), t ∈ [−τ, 0].
From the assumption (H2) we obtain that

χC(PT (D)) = ‖uT ‖1 ≤ ‖wT ‖1 ≤ σ(T )‖v‖1 = σ(T )h(0)‖r‖1
= σ(T )h(0)‖ξ(D)‖1 ≤ σ(T )h(0)χC(D)

concluding the proof. �
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Before considering an example illustrating the above hypotheses we will for-
mulate the following statement which we will need also in the sequel. It can be
easily verified on the basis of the Lemma of [15, §4.5].

Lemma 2.2. For positive γ, δ, τ let the function m : [t0 − τ, a) → R+,
0 ≤ t0 < a ≤ ∞, satisfies the functional differential inequality

m′(t) ≤ −γm(t) + δ‖mt‖1 for a.e. t ∈ [t0, a)

with the initial value m(t) = n(t), t ∈ [t0 − τ, t0], where δ < γ. Then

‖mt‖1 ≤ ‖n‖1 · e
λτe−λ(t−t0), t ∈ [t0, a)

where λ, 0 < λ < γ, is the solution of the equation γ = λ+ δeλτ .

Example 2.1. Consider the case when the solutions of the problem (5), (6)
are exponentially decreasing, i.e.

(9) σ(t) = Ce−µt.

In this situation we have that

t∗ =
1
µ

lnCh(0).

In order to get (9) we may assume that

(10) h(t) = Le−γt, t ∈ R+, L, γ > 0

and the function k( · ) from (F5)(ii) is constant k(t) ≡ k with

(11) k <
γ

L
.

In fact, the condition (11) implies inequality (4) and the problems (5), (6) take
the form

w(t) = v(t), t ∈ [−τ, 0],(5’)

w(t) = e−γtw(0) + L

t∫
0

e−γ(t−s)g(s, ws) ds, t ≥ 0,(6’)

and hence the function w(t) for a.e. t ≥ 0 satisfies

w′(t) = −γw(t) + Lg(t, wt) ≤ −γw(t) + Lk‖wt‖1.

Applying Lemma 2.2 we obtain that

‖wt‖1 ≤ ‖v‖1e
λτe−λt, t ≥ 0,

where λ is the solution of the equation γ = λ+Lkeλτ and therefore the condition
(9) of the exponential decay of solutions of (5), (6) is fulfilled with C = eλτ and
µ = λ.
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So in this case the translation multioperator would be condensing for

T > τ +
1
λ

lnL.

Let us note also that the estimation (3) with the gauge function (10) holds, for
example, as it was shown in [18], in the case when A = A1 + A2 where A1

and A2 are linear operators such that A1 is an infinitesimal generator of the
exponentially decreasing semigroup eA1t, i.e.

‖eA1t‖ ≤ Ke−dt, where K > 0, d > 0,

and the χ-norm of A2 satisfies the following estimation ‖A2‖(χ) ≤ b, where
0 ≤ b < d/K (in particular, A2 can be compact).

3. Dissipative functional differential inclusions:
periodic solutions and attractors

Everywhere in this section we will consider the functional differential inclu-
sion (1) under assumptions (A), (F1)–(F5), and (H1), (H2). It will be supposed
that the condition (8) which guarantees the χC-condensivity of the translation
multioperator PT on bounded equicontinuous sets is also fulfilled.

Let Y (t, x) denote the set of all mild solutions of the problem (1), (2) on R+.

Definition 3.1. The inclusion (1) is said to be dissipative if there exists
d > 0 such that

lim sup
t→∞

‖Yt‖0 < d.

In other words, the inclusion (1) is dissipative provided for every initial func-
tion x ∈ C there exists t(x) ≥ 0 such that each mild solution y(t, x) of the
problem (1), (2) satisfies

‖yt‖0 < d for t ≥ t(x).

In this paragraph, extending some results known for dissipative ordinary dif-
ferential equations and functional differential equations satisfying the condition
of the uniqueness of solution (see, for example, [11], [10], [19], [16], [17]) we will
discuss some properties of dissipative inclusions. But at first let us consider the
following condition for dissipativity.

Theorem 3.1. Let us assume that

(i) the operator A is an infinitesimal generator of an exponentially decreas-
ing semigroup:

‖eAt‖ ≤ Ne−ρt, N ≥ 1, ρ > 0;

(ii) the functions α( · ), β( · ) from the condition (F4) are constant: α(t) ≡ α,
β(t) ≡ β and β < ρ/N .
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Then the functional differential inclusion (1) is dissipative and the set
of mild solutions emanating from every bounded set D ⊂ C is bounded.

Before proving this statement, let us note that the condition (i) is fullfilled,
for example, if the operator −A is strongly positive (see [20]).

Proof. Take R > 0 large enough to provide α/R+ β = δ < ρ/N .
Now let y(t) be any mild solution of the problem (1), (2) with the initial

value x ∈ C. If we suppose that ‖ys‖0 > R for all s on some interval [t0, a),
t0 ≥ 0 we will have, for t ∈ [t0, a), the following estimation:

‖y(t)‖ ≤ Ne−ρt‖y(t0)‖+

t∫
t0

Ne−ρ(t−s)(α+ β‖ys‖0) ds

< Ne−ρt

(
‖y(t0)‖+

t∫
t0

eρsδ‖ys‖0 ds
)
.

Denoting the last expression by z(t) and defining this function on the interval
[t0 − τ, t0] as z(t) = N‖y(t)‖ we have that for a.e. t ∈ [t0, a)

z′(t) = −ρz(t) +Nδ‖yt‖0 ≤ −ρz(t) +Nδ‖zt‖1.

Now applying Lemma 2.2 we obtain

‖yt‖0 < N‖yt0‖0e
λτe−λ(t−t0), t ∈ [t0, a)

where 0 < λ < ρ, ρ = λ + δ · eλτ and hence for every mild solution y(t, x)
emanating from the initial value x ∈ C there exists a moment t1 = t1(x) ≥ 0
before which yt will reach the ball {‖x‖0 ≤ R} ⊂ C. Moreover, from the above
estimation we can see that, if ‖yt′‖0 ≤ R for any t′ ≥ 0, then yt will never leave
the ball {‖x‖0 ≤ NReλτ} ⊂ C for t ≥ t′.

The second statement of the theorem follows now from the fact that we have

‖Yt‖0 ≤ Neλτ max{R, ‖x‖0}, t ≥ 0. �

Now we can prove the following proposition on the existence of a periodic
solution for a dissipative inclusion.

Theorem 3.2. Assume that the functional differential inclusion (1) is dis-
sipative and the orbits Γ of bounded sets under PT are bounded. Then the inclu-
sion (1) has a T -periodic solution.

Proof. Let B0 ⊂ C be the ball {x : ‖x‖0 ≤ d} where d is the number
appearing in Definition 3.1. Take balls B1, B ⊂ C such that B0 ⊂ B1 ⊂ B1 ⊂ B

and Γ(B0) ⊂ B1, Γ(B1) ⊂ B.



Properties of Dissipative Functional Differential Inclusions 381

Consider now the translation multioperator PT on the ball B. From Lem-
ma 2.1 (see also Remark 2.2) it follows that the set N = PT (B) is equicontinuous
and the dissipativity condition yields N ∩ B0 6= ∅. Therefore PT is condensing
with respect to the Hausdorff measure of noncompactness as the multioperator

PT : B ∩ coN −◦ coN

and hence there exists a compact fundamental set M of PT with the property
that M ⊆ coN and M ∩B0 6= ∅.

Applying again the dissipativity condition we obtain that for every point
x ∈ B1 ∩M there exists a number m(x) such that Pn

T (x) ⊂ B0 for all n ≥ m(x).
From the upper semicontinuity of the multioperator PT it follows that there
exists a neighbourhood V (x) of x such that Pn

T (x′) ⊂ B0 for all x′ ∈ V (x) and
n ≥ m(x). The neighbourhoods V (x) cover the compact set B1 ∩M , so we may
select a finite covering V (x1), . . . , V (xk). For m = max{m(x1), . . . ,m(xk)} we
will have Pm

T (B1 ∩M) ⊂ B0.

Now we can see that for the multimap PT all conditions of the Theorem 1.1
are fullfilled and hence there exists a fixed point x ∈ B0 of PT . This fixed point
is the initial value from which the mild T -periodic solution emanates. �

Collorary 3.1. Under conditions (i) and (ii) of Theorem 3.1 there exists
a mild T -periodic solution of the functional differential inclusion (1).

Before to proceed we want to recall the recent contributions of L. Górniewicz
et al. ([2], [12], [14]) to the periodic problemsfor differential inclusions.

Our aim, now, is to describe the structure of the set of mild solutions of
a dissipative functional differential inclusion (1). We prove that this set has a
global compact attractor.

To be more precise we need the following definition which extends the notion
known for differential equations (see, e.g. [11], [10], [19]).

For bounded sets A,B ⊂ E let us denote

ρ(A,B) = sup
a∈A

dist (a,B)

the deviation of the set A from the set B.

Definition 3.2. A set M ⊂ C([−τ,∞);E) of bounded mild solutions of
the inclusion (1) is said to be a Λ-center of the inclusion (1) provided:

(i) the set M0 ⊂ C is closed and PT -invariant in the following sense:
PT (x) ∩M0 6= ∅ for every x ∈M0 and PT (M0) ⊇M0;

(ii) for every collection of solutions Y (t, x) of the problem (1), (2) we have

lim
n→∞

ρ(YnT ,M0) = 0 and lim
t→∞

ρ(Yt,Mt) = 0.

We will prove the following main statement.



382 V. Obukhovskĭı — P. Zecca

Theorem 3.3. Every dissipative functional differential inclusion (1) has
a Λ-center which is compact in the sense of the uniform convergence on every
finite interval.

Lemma 3.1. If the inclusion (1) is dissipative then the orbit Γ(x) of every
point x ∈ C under PT is relatively compact.

Proof. From the dissipativity condition and Lemma 2.1 it follows that the
set Γ(x) is bounded. Applying the same lemma to the equality

Γ(x) = PT (Γ(x)) ∪ {x}

we obtain that the set Γ(x) is equicontinuous and the condensivity of PT implies
χC(Γ(x)) = 0. �

Definition 3.3. A point z ∈ C is said to be an ω-limit point of the orbit
Γ(x) if there exist a sequence of numbers nk →∞ and a sequence {pnk

} ⊂ Γ(x),
pnk

∈ Pnk

T (x) such that pnk
→ z. The set of all ω-limit points of Γ(x) is said to

be an ω-limit set of Γ(x) and it is denoted as Ω(x).

It is easy to see that

Ω(x) =
⋂
n≥0

⋃
k≥n

P k
T (x),

and hence Lemma 3.1 yields that Ω(x) is a nonempty compact subset of Γ(x)
provided the inclusion (1) is dissipative. It is clear also that Ω(x) is contained
in the ball B0 = {x : ‖x‖0 < d}.

Lemma 3.2. If the inclusion (1) is dissipative then the set Ω(x) has the
following properties:

(i) Ω(x) is PT -invariant in the sense that PT (z) ∩ Ω(x) 6= ∅ for every
z ∈ Ω(x) and PT (Ω(x)) ⊇ Ω(x),

(ii) for every thickened solution Y (t, x) of the problem (1), (2) we have

lim
n→∞

ρ(YnT ,Ω(x)) = 0.

Proof. Let z ∈ Ω(x) and {pnk
} ⊂ Γ(x) be the sequence such that pnk

∈
Pnk

T (x) and pnk
→ z. Take arbitrary points wnk

∈ PT (pnk
) ⊆ Pnk+1

T (x). From
Lemma 3.1 it follows that the sequence {wnk

} is relatively compact hence we may
find a subsequence {wnkj

} convergent to w ∈ Ω(x). The u.s.c. multioperator PT

is closed therefore the relations wnkj
∈ PT (pnkj

), pnkj
→ z, wnkj

→ w imply
w ∈ PT (z) yielding PT (z) ∩ Ω(x) 6= ∅.

From the other side, for the same point z ∈ Ω(x) we have that pnk
∈

Pnk

T (x) = PT (Pnk−1
T (x)) and hence we may choose a sequence vnk

∈ Pnk−1
T (x)

such that pnk
∈ PT (vnk

). Again using the relative compactness of the sequence
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{vnk
} we may choose a subsequence vnkj

converging to v ∈ Ω(x). The same
argument as above implies that z ∈ PT (v) and therefore PT (Ω(x)) ⊇ Ω(x).

The property (ii) of Ω(x) evidently follows from Lemma 3.1. �

Proof of Theorem 3.3. Consider now the set M =
⋃

x∈CΩ(x). It is
clear that M ⊂ B0 and it is also PT -invariant in the above sense. The relation
PT (M) ⊇ M implies its relative compactness. It is easy to verify that the
compact set M is also PT -invariant.

Now let M ⊂ C([−τ,∞);E) be the set of all mild solutions of the inclu-
sion (1) emanating from the set M . This set is the desirable one. In fact, its
compactness in the topology of the uniform convergence on every finite interval
follows from the compactness of M and u.s.c. dependence of the solutions set on
initial data, see Theorem 2.1.

Further, from the same u.s.c. dependence it follows that, since the set M
is compact, for given ε > 0 there exists δ > 0 such that dist (x,M) < δ, x ∈
C implies ρ(Σ(x)t,Σ(M)t) < ε for t ∈ [0, T ]. Therefore for any collection of
solutions Y (t, x) we have that the relation

ρ(YnT ,M) ≤ ρ(YnT ,Ω(x)) −→
n→∞

0

implies
lim

t→∞
ρ(Yt,Mt) = 0. �

Remark 3.1. It is easy to see that the Λ-center constructed is minimal
in the sense that it is contained in any other Λ-center of the dissipative functional
differential inclusion (1).

References
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1992.
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