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CAUCHY PROBLEMS AND APPLICATIONS

CHIN-YUAN LIN

ABSTRACT. Of concern is the Cauchy problem

% € Au, u(0) =wup, t>0,

where u : [0,00) — X, X is a real Banach space, and A : D(A) C X —
X is nonlinear and multi-valued. It is showed by the method of lines,
combined with the Crandall-Liggett theorem that this problem has a limit
solution, and that the limit solution is a unique strong one if A is what is
called embeddedly quasi-demi-closed. In the case of linear, single-valued
A, further results are given. An application to nonlinear partial differential
equations in non-reflexive X is given.

1. Introduction

Let (X, | - ||) be a real Banach space with the norm || - ||. Let A : D(A) C
X — X be a densely defined, linear operator. Consider the Cauchy problem
d
(1) d—? =Au, u(0)=wuy, t>0

on X. The fundamental Hille-Yosida theorem ([5], [10], [11], [15]) says that if A
is m-~dissipative, that is, if A satisfies:

(@) JJull < |lu— AAu|| for u € D(A) and A > 0,
(ii) the range of (I — AA) equals X for A > 0,
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then A generates a linear operator semigroup S(t), and S(t)ug for ug € D(A)
is the unique solution of (1). To obtain S(¢), Hille ([15]) proves that {(I —
(t/n)A) "z} nen is Cauchy for z € D(A?), while Yosida ([11]) uses the so-called
Yosida approximation AA(XA — A)~1 A > 0.

Extend (1) to the nonlinear multi-valued case

(2) U € Au, u(0) =wug, t >0,

where A : D(A) € X — X is nonlinear and multi-valued. The fundamen-
tal Crandall-Liggett theorem (see [3], [1], [8], [9]) shows that if A satisfies the
following conditions:

(iii) [Ju —v|| < [[(u—=v) = Az —y)|| for A > 0, u,v € D(A), z € Au, and
y € Av,
(iv) the range of (I — AA) D D(A) for small enough A > 0,

then A generates a nonlinear operator semigroup S(¢). Due to Benilan (see [1],
[2], [8], [9]), S(t)ug for up € D(A) satisfies some integral inequalities, associated
with (2), and is called the unique generalized solution to (2). Crandall and
Liggett prove the existence of S(¢) by showing that {(I — (t/n)A) "z }nen is
Cauchy for z € D(A).

For the existence of a strong solution in the nonlinear case, the known re-
sults include the cases where reflexive X (see [1], [3], [8], [9]) or demi-continuous
A [9, p. 88] is assumed. In this paper, we will use the method of lines ([7],
[12]), combined with the Crandall-Liggett theorem, to show that (2) has a limit
solution, which is a unique strong one if A is what we call, embeddedly quasi-
demi-closed. Here note that our assumption of embeddedly quasi-demi-closed
(see Section 4) is weaker than that of demi-continuous. An application to non-
linear partial differential equations in non-reflexive X is given in Section 5.

In the case of linear, single-valued closed A which satisfies (iii) and (iv),
the Hille-Yosida theorem applied to the section of A in the Banach space D(A)
shows that the section is an m-dissipative operator on the Banach space W
and that for ug € D(A) with Aug € D(A), (1) has a unique solution u(t), and
du/dt is differentiable in t for ug € D(A?) with A%uy € D(A). In this paper,
we will show, by making use of the Crandall-Liggett theorem that the same

results hold true, together with the additional property that du/dt is Lipschitz
continuous in t for ug € D(A?).

In [6], the Crandall-Liggett theorem is applied to this nonlinear differential
operator B : D(B) C (C[0,1], ]| - [leo) — (C[0,1], ]| - ||s0), Where Bu = ¢(z, u')u”
for u € D(B) = {v € C?0,1] : v'(j) € (—=1)78;(v(4)), 7 = 0,1}. It is showed
that B satisfies (iii) and (iv) and then, there is a unique generalized solution to
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the nonlinear parabolic boundary value problem

gu(x,t) = (2, Uy ) Ugg, (z,t) € (0,1) x (0, 00),
uf(]a t) € (71)jﬂj(u(]7t))a ] = 07 13
u(z,0) = up(x).

In this paper, we extend this result to a more general nonlinear differential
operator and obtain a strong solution (Section 5), stronger than a generalized
solution; precisely, we consider this nonlinear differential operator G : D(G) C
C10,1] — C[0,1], where Gu = ¢ (z, v )u” + g(z,u,v') for u € D(G) = D(B). We
show that G satisfies (iii) and (iv) and is embeddedly quasi-demi-closed. That
gives a strong solution to the corresponding nonlinear parabolic boundary value
problem.

The rest of the paper is planned as follows. Section 2 gives a preliminary
result. Section 3 deals with a limit solution and the case of linear A. Section 4
is concerned with a strong solution and Section 5 is about an application to
nonlinear partial differential equations in non-reflexive X.

2. A preliminary result

Asbefore, let (X, || - ||) be a real Banach space with the norm || - ||, A : D(A) C
X — X be a multi-valued nonlinear operator, and A satisfy the conditions (iii)
and (iv) in the Introduction.

Let T > 0, up € D(A), n € N be large. Consider the discretization of (2)
(3) U; — )\Aul S Ui—1, Ui € D(A),

where A\ = T//n and ¢ = 1 to n. For the given uy € D(A) C X, u; exists
for ¢ = 1,...,n by the condition (iv). Uniqueness of u; follows from (iii). For
convenience, define u_; to be an element in (ug — AAug), so that u_1 = ug — Avg
for some vy € Auyg.

By the condition (iii), ||u; — wi—1] < [Jui—1 — ui—2|. It follows that ||u; —
wi—1|] < |Juop —u—1]] < Aljvg||. Thus we have proved

PROPOSITION 1. The u; in (3) satisfies ||u; —u;—1|| < A||vol| fori=1,...,n.

3. A limit solution

From here on, let k be a generic constant which can vary with different
occasions.

Consider the u; in (3) and put t; = i) for i = 1,...,n. Define x™(0) = uo,
X" (t) = u; for t € (t;-1,t;] and

i — Ui—1

(4) u(t) = ui—1 + “ X (t—tiz1)
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for ¢t € [t;—1,t;]. By the definitions of x"(¢) and u"(t), we have
limsup ||u" () — x" ()] =0

n—oo

and
5) du;t(t)

for almost every ¢, where the last equation has values in B([0,T]; X), the real

€ Ax"(t), u"(0) =uo

Banach space of bounded functions from [0,7] to X.

PROPOSITION 2. For each t € [0,T], u™(t) has a convergent subsequence
in X and so, u™(t) is relatively compact in X.

PROOF. Note that for each bounded ¢t € (0,7T), we have ¢t € [t;_1,t;) for
some ¢ and so, i — 1 = [t/A]. Here for each 2 € R, [z] is the greatest integer that
is less than or equal to x. Also note from the definition of u} that pointwise
convergence of u} is the same as that of u;_q since |[(u, — u;—1)/A|| < k, by
Proposition 1.

Since u;_1 = (I — AA)~(~Dyg and the convergence of u;_; as A\ — 0 is the
same as the convergence of (I — (¢/n)A) "uq for each bounded t as n — 0, the
proof is completed by applying the Crandall-Liggett theorem.

Applying Proposition 1 to (4) we have

(6) [ (8) = u™(7)|| < Kt — 7]

for t,7 € [t;—1,t;], that is, u™(t) is equi-continuous in C([0,7]; X). Here the
space C([0,T]; X) is the real Banach space of continuous functions from [0, 7T
to X. Proposition 2 says that for each ¢ € [0,T], u"(¢) is relatively compact
in X. Therefore, u"(t) converges to some wu(t) in C([0,T]; X) by the Ascoli—
Arzela theorm [13]. Here we denote u(t) by S(t)ug. Since u™(t) satisfies (5) and
converges to u(t) in C([0,T]; X), we call u(t) a limit solution of (2) on [0,T] (and
then on [0, 00) since T is arbitrary). Thus we have proved

PROPOSITION 3. The equation (2), where A is defined as in Section 2, has
a limit solution for ug € D(A).

Note that since for each ¢ € [t;_1,%;), [t/\] =i —1 and from (3) we have that
wi—y = (I = AA) "Dy = (I — NA) "Ny — S(t)ug = u(t)

for ug € D(A), as A — 0T. Since u(t) is the uniform limit of u™(t), S(t)uo is
continuous for ug € D(A). By (iii), (I —AA)~[*/* are contractions and so, S(t)ug
also exists for ug € D(A) and is continuous in £. On the other hand, from (6),
where k depends on {||v]| : v € Aug, ug € D(A)}, we see that u(t) = S(t)ug for

ug € D(A) is Lipschitz continuous in ¢.
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Now suppose additionally that A is linear, single-valued, and closed. Here
by closedness of A, we mean that if z,, € D(A),y, = Az,,z, — x, and y,, — vy,
then z € D(A) and y = Axz. Assume that up € D(A) and Aug € D(A).

From (3) we have

U; — Ui—1 (I — )\A)_i’u,o — (I — )\A)_(i_l)uO

Au; = _
Y ) A

= (I - A)~GD (W)UO

= (I = MA) "D = XA) P Aug = (I — M) " (Aug)

since A is linear. Letting A — 07, we have Au; or Ax"(t) — S(7)Auq since
Aug € D(A) and so, Au(r) = S(7)Aug since A is closed; also fg Ax™(r)dr —
fg Au(T)dr by the Lebesgue convergence theorem since ||Ax™(7)|| < k. Thus
the integrated (5)

u™(t) —up = /0 Ax"(7)dr

converges to

) u(t) — o = /0 Au(r) dr.

Since Au(r) = S(7)Aug is continuous in 7 for Aug € D(A) and is Lipschitz con-
tinuous in 7 for Aug € D(A), we have that so is Au(7). Thus by the fundamental
theorem of calculus, (7) gives that

du(t)
8 oy
(8) o
Thus du/dt is continuous in ¢ for ug € D(A) with Auy € D(A) and Lipschitz
continuous in ¢ for ug € D(A) with Aug € D(A). This, together with (7), in
turn shows that du/dt is differentiable in t for uy € D(A?) with A%uy € D(A).
More regularity of du/dt in ¢t can be obtained iteratedly.

= Au = S(t)Aug, u(0) = up.

Uniqueness of solution in (8) is standard and follows from e.g. [9, Lemma 4.9,
p. 88]. Thus, we have proved

THEOREM 1. If the operator A in Section 2 is linear and closed, then (8) has

a unique solution u(t) for ug € D(A) with Aug € D(A), which has the property
that du(t)/dt is continuous in t. Furthermore, du/dt is Lipschitz continuous in
t for ug € D(A) with Aug € D(A) and differentiable in t for ug € D(A?) with

A%ug € D(A). More regularity of du/dt in t can be obtained iteratedly.

REMARK 1. The above result, except for the case for the Lipschitz continuity
of du/dt in t, can be obtained by applying the Hille-Yosida theorem to the

section of A in the Banach space D(A), in which case, the section becomes an

m-dissipative operator in D(A).
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4. A strong solution

Let (Y, - |ly) be a real Banach space with (X, |- ||) continuously embedded
into it. Assume additionally that A is embeddedly quasi-demi-closed, that is,
assume that if z, € D(A) — z and ||y,|| < k for some y,, € Ax,, then x €
D(¢p o A) (that is, ¢p(Ax) exists.) and |¢p(yn, ) — z)| — 0 for some subsequence
Yny Of Yn, for some z € ¢p(Az) and for each ¢ € Y* C X*, the real dual spaces
of Y and X, respectively.

Let v, (t) € Ax™(¢) for t € (t;—1,t;] be such that (5) gives

dudt(t) o (t)
for t € (t;—1,t;]. Integrating (5) gives that for each ¢ € Y* C X*, p(u"(t)—ug) =
J ¢(v™(r)dr and

G(u"(t) —uo) € ¢(/Ot AX"™(7) dT) = /Ot P(AX" (1)) dr,

where note that sup,c(o 7} [[vn(t)[| < k by v, (t) € Ax"™(t) and ||(u;—ui—1) /A < k
from Proposition 1. Since u"(¢) — w(t) uniformly for bounded ¢ and A is em-
beddedly quasi-demi-closed, we have that ¢(v,(t)) converges to ¢(v(t)) through
some subsequence for some v(t) € Au(t) and then, by the Lebesgue convergence
theorem, we have

ou(t) —w) = [ $(u(r) dr = aS( [ dr).

Thus u(t) —up = [v(7)dr in Y. Therefore we have by the Radon-Nikodym
type theorem [9] that

du(t
Z(t ) =o(t) inY for almost every t,
and then
du(t
() Z(t ) € Au(t) inY for almost every t,

'LL(O) = Ug-.
Again, uniqueness of solution for (9) in X is standard [9]. Thus we have proved
THEOREM 2. If the operator A in Section 2 is additionally embeddedly quasi-

demi-closed, then (9) has a strong solution in'Y for ug € D(A), which is unique
ifY = X.

REMARK 2. Here note that X is not necessarily reflexive, and that the
assumption of embeddedly quasi-demi-closedness is weaker than that of demi-
continuity ([9, p. 88]).
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5. An application

From here on, k denotes a generic constant, which can vary with different
occasions. We make the following assumptions (5.1) to (5.3).

(5.1) Bo, 01 : R — R are multi-valued maximal monotone functions with
0 € 5o(0) N 51(0).

(5.2) (z,p) > 91 > 0 holds for some constant d; and is continuous.

(5.3) g(z,z,p) is continuous and satisfies zg(z, z,0) < 0, and

9(x,z,p)

Y(x, p)

where NN is positive and continuous.
Define a nonlinear operator F : D(E) C C0,1] — C[0,1] by Eu = u” for
u€ D(E) = {u e C?0,1] : v/'(j) € (=1)!B;(u(4)), j=0,1}.
We have the following result in [6], and [14]:

\ < N(z,2)(1+ o)),

PROPOSITION 4. For h € C[0,1], there is a unique solution u € C?[0,1] to
u—u’=h, W'(j) € (=1)8;(u(), =01,

and the operator (I — E)~1 : C[0,1] — C?[0,1] C C[0,1] exists and is nonexpan-
sive.

Define a nonlinear operator G : D(G) C C0,1] — C[0,1] by
Gu = Y(z,u" )" + g(z,u,u)
for u € D(G) = {v € C?[0,1] : v'(j) € (=1)B;(v(j)), j = 0,1}.
PROPOSITION 5. For each h € C[0,1], the equation
(10) u =A@ (2, u,u')u" + gz, u,u')) = h,  u'(j) € (=1 B;(u(s)), j=0,1,
has a solution for small enough A > 0. And so G satisfies (iv).

PROOF. As in [6] and [14], consider the operator equation equation u =
(u — AE)"1Wu, where
h—u+ Ag(z,u,u)
Y(z, u) ’
and (I — AE)~!:C[0,1] — C?[0,1] is from Proposition 4 and continuous. Solv-
ability of this operator equation will complete the proof.
We truncate W by defining, for each m € N,

W C0,1] — C[0,1], Wu=1u+

Wu if ||’U/||01[0)1] <m,

Wnu = mu .
W() i Jullos oy > m.
||“HCI[0,1]
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It follows that (I — AE)~'W,, : C[0,1] — C*[0, 1] is continuous, compact, and
uniformly bounded for each m; the compactness follows from the Ascoli-Arzela
theorem. By the Schauder fixed point theorem [4],

(I - )\E)71W7rzum = Um
holds for some u,,. We complete the proof by showing |[tm, |lc1 < tm, for some
myg since (I — AE) "Wy, = tpm, in this case.

Assume ||ty ||cr > m for all m and we seek a contradiction. By the definition
of W,,, we have

h— Um + A(g(xa Um, v;n))
V(x,vp,) 7

where u,, € D(E) and vy, = My, /||tm||cr. We have from the first and second

(11) U, — AU = U +

derivative tests that
[wmlloo = [um(zo)], (o) =0, and  wm(wo)up, (o) <0

for some zg € [0, 1]. Multiplying (11) by u,, and evaluating it at xo, we have

0<((1- 2=

m)ufn(%) — My (0 )y, (20)) ¥ (0, 0)
= (h = v) (o) um(T0) + Aty (70) (9(0; Vi, 0))
< (h = vm)(20)um (o)

and so, ||vmllco < ||P|loo- It follows from (11) and (5.3) that

[vmlloe < AT+ k(L + o], [loc)-

Using the interpolation inequality [4]:

[Vinllse < ellvimlloe + n(e)vmllos

for all € > 0, we have |[v,,[|¢2(0,1) < k, which is a contradiction to m = [[v,[[cr <
|[vmllcz < k as m — oo. O

PROPOSITION 6. G satisfies (iii).

PROOF. Let u,v € D(B). As in [6], applying the first and second derivative
tests gives ||lu—v||oo = |(u—2v)(20)|, (u—v) (20) = 0, and (u—v)(zo)(u—v)" (zg) <
0 for some z € [0, 1]. Since

(u—v)(xo)(Bu — Bv)(xo)
= (o, u, u’) (u—v)(@o) (u—v)" (o) +(u—v)(@0)(9(x0, u, u’) —g(z0,v,u")) <0,
we have

lu =], = (u = v)*(z0) < (u—v)(wo)((u—v)(x0) = A(Gu — Gv)(x0))
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for all A > 0, and so
[t = vlloo < [[(u =) = AMGu = G|
Thus (iv) is proved. O

We now show that G is embeddedly quasi-demi-closed, so that Theorem 2
applies.

Let (Y, | -]]) = (L?(0,1),]-|), which has (C[0,1],] - |lec) continuously embed-
ded into it. Let u,, € D(G) — w and ||Guy||oo < k. As in prove of Proposition 5,
we have |[uy||c2p0,1] < k. Tt follows from the Ascoli-Arzela theorem that u, — u
in C1[0,1] through some subsequence. Apply this to the following.

Let n € L?(0,1) = (L?(0,1))*. We have to show that u € D(n o G), that is,
n(Gu) exists, and that |n(Gu,) — n(Gu)| — 0. Formally, we have

0(Guuy) = / (@, )l + g, my ) de

= [ =" e+ [ (et~ vl do
4
+ /n(g(x,umu;l) —g(z,u,u)) dx + /n(Gu) dr = ZIi'
Here the integration range [0, 1] is omitted.

It follows that I; converges to 0 since |ju,|c2 < k, W22(0,1) is a Hilbert
space, n(z,u’) € L?(0,1), and !, converges weakly to u” through some subse-
quence (this also shows 7(Gu) exists), that I converges to 0 by |Iz| < ||¢(z,ul,)—
Yz, u)||so|Inllllw|l, and that Is converges to 0 by the uniform convergence the-
orem. Thus n(Gu) exists and n(Gu,) — n(Gu) and so, G is embeddedly quasi-
demi-closed. By Theorem 2, we have that

THEOREM 3. In L?(0,1), there is a strong solution u to the nonlinear para-

bolic boundary value problem

O 1) = 00w s+ gl ), (2,1) € (0,1) x (0,00),
uI(]7t) € (_1)J/8j(u(37 t))? ] = 07 1a
u(x,0) = ug(x),
for almost every t and for uy € D(G).

REMARK 3. Theorem 2 with a more general equation, obtains a strong so-
lution and so, is stronger than [4], [14]. More applications to partial differential
equations can be done through Theorem 2.
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