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CAUCHY PROBLEMS AND APPLICATIONS

Chin-Yuan Lin

Abstract. Of concern is the Cauchy problem

du

dt
∈ Au, u(0) = u0, t > 0,

where u : [0,∞) → X, X is a real Banach space, and A : D(A) ⊂ X →
X is nonlinear and multi-valued. It is showed by the method of lines,

combined with the Crandall–Liggett theorem that this problem has a limit

solution, and that the limit solution is a unique strong one if A is what is
called embeddedly quasi-demi-closed. In the case of linear, single-valued

A, further results are given. An application to nonlinear partial differential

equations in non-reflexive X is given.

1. Introduction

Let (X, ‖ · ‖) be a real Banach space with the norm ‖ · ‖. Let A : D(A) ⊂
X → X be a densely defined, linear operator. Consider the Cauchy problem

(1)
du

dt
= Au, u(0) = u0, t > 0

on X. The fundamental Hille–Yosida theorem ([5], [10], [11], [15]) says that if A
is m-dissipative, that is, if A satisfies:

(i) ‖u‖ ≤ ‖u− λAu‖ for u ∈ D(A) and λ > 0,
(ii) the range of (I − λA) equals X for λ > 0,
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then A generates a linear operator semigroup S(t), and S(t)u0 for u0 ∈ D(A)
is the unique solution of (1). To obtain S(t), Hille ([15]) proves that {(I −
(t/n)A)−nx}n∈N is Cauchy for x ∈ D(A2), while Yosida ([11]) uses the so-called
Yosida approximation λA(λ−A)−1, λ > 0.

Extend (1) to the nonlinear multi-valued case

(2)
du

dt
∈ Au, u(0) = u0, t > 0,

where A : D(A) ⊂ X → X is nonlinear and multi-valued. The fundamen-
tal Crandall–Liggett theorem (see [3], [1], [8], [9]) shows that if A satisfies the
following conditions:

(iii) ‖u − v‖ ≤ ‖(u − v) − λ(x − y)‖ for λ > 0, u, v ∈ D(A), x ∈ Au, and
y ∈ Av,

(iv) the range of (I − λA) ⊃ D(A) for small enough λ > 0,

then A generates a nonlinear operator semigroup S(t). Due to Benilan (see [1],
[2], [8], [9]), S(t)u0 for u0 ∈ D(A) satisfies some integral inequalities, associated
with (2), and is called the unique generalized solution to (2). Crandall and
Liggett prove the existence of S(t) by showing that {(I − (t/n)A)−nx}n∈N is
Cauchy for x ∈ D(A).

For the existence of a strong solution in the nonlinear case, the known re-
sults include the cases where reflexive X (see [1], [3], [8], [9]) or demi-continuous
A [9, p. 88] is assumed. In this paper, we will use the method of lines ([7],
[12]), combined with the Crandall–Liggett theorem, to show that (2) has a limit
solution, which is a unique strong one if A is what we call, embeddedly quasi-
demi-closed. Here note that our assumption of embeddedly quasi-demi-closed
(see Section 4) is weaker than that of demi-continuous. An application to non-
linear partial differential equations in non-reflexive X is given in Section 5.

In the case of linear, single-valued closed A which satisfies (iii) and (iv),
the Hille–Yosida theorem applied to the section of A in the Banach space D(A)
shows that the section is an m-dissipative operator on the Banach space D(A)
and that for u0 ∈ D(A) with Au0 ∈ D(A), (1) has a unique solution u(t), and
du/dt is differentiable in t for u0 ∈ D(A2) with A2u0 ∈ D(A). In this paper,
we will show, by making use of the Crandall–Liggett theorem that the same
results hold true, together with the additional property that du/dt is Lipschitz
continuous in t for u0 ∈ D(A2).

In [6], the Crandall–Liggett theorem is applied to this nonlinear differential
operator B : D(B) ⊂ (C[0, 1], ‖ · ‖∞) → (C[0, 1], ‖ · ‖∞), where Bu ≡ ψ(x, u′)u′′

for u ∈ D(B) ≡ {v ∈ C2[0, 1] : v′(j) ∈ (−1)jβj(v(j)), j = 0, 1}. It is showed
that B satisfies (iii) and (iv) and then, there is a unique generalized solution to



Cauchy Problems 361

the nonlinear parabolic boundary value problem

∂

∂
u(x, t) = ψ(x, ux)uxx, (x, t) ∈ (0, 1)× (0,∞),

ux(j, t) ∈ (−1)jβj(u(j, t)), j = 0, 1,

u(x, 0) = u0(x).

In this paper, we extend this result to a more general nonlinear differential
operator and obtain a strong solution (Section 5), stronger than a generalized
solution; precisely, we consider this nonlinear differential operator G : D(G) ⊂
C[0, 1] → C[0, 1], where Gu ≡ ψ(x, u′)u′′+ g(x, u, u′) for u ∈ D(G) ≡ D(B). We
show that G satisfies (iii) and (iv) and is embeddedly quasi-demi-closed. That
gives a strong solution to the corresponding nonlinear parabolic boundary value
problem.

The rest of the paper is planned as follows. Section 2 gives a preliminary
result. Section 3 deals with a limit solution and the case of linear A. Section 4
is concerned with a strong solution and Section 5 is about an application to
nonlinear partial differential equations in non-reflexive X.

2. A preliminary result

As before, let (X, ‖ · ‖) be a real Banach space with the norm ‖ · ‖, A : D(A) ⊂
X → X be a multi-valued nonlinear operator, and A satisfy the conditions (iii)
and (iv) in the Introduction.

Let T > 0, u0 ∈ D(A), n ∈ N be large. Consider the discretization of (2)

(3) ui − λAui 3 ui−1, ui ∈ D(A),

where λ = T/n and i = 1 to n. For the given u0 ∈ D(A) ⊂ X, ui exists
for i = 1, . . . , n by the condition (iv). Uniqueness of ui follows from (iii). For
convenience, define u−1 to be an element in (u0−λAu0), so that u−1 = u0−λv0
for some v0 ∈ Au0.

By the condition (iii), ‖ui − ui−1‖ ≤ ‖ui−1 − ui−2‖. It follows that ‖ui −
ui−1‖ ≤ ‖u0 − u−1‖ ≤ λ‖v0‖. Thus we have proved

Proposition 1. The ui in (3) satisfies ‖ui−ui−1‖ ≤ λ‖v0‖ for i = 1, . . . , n.

3. A limit solution

From here on, let k be a generic constant which can vary with different
occasions.

Consider the ui in (3) and put ti = iλ for i = 1, . . . , n. Define χn(0) = u0,
χn(t) = ui for t ∈ (ti−1, ti] and

(4) un(t) = ui−1 +
ui − ui−1

λ
(t− ti−1)
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for t ∈ [ti−1, ti]. By the definitions of χn(t) and un(t), we have

lim sup
n→∞

‖un(t)− χn(t)‖ = 0

and

(5)
dun(t)
dt

∈ Aχn(t), un(0) = u0

for almost every t, where the last equation has values in B([0, T ];X), the real
Banach space of bounded functions from [0, T ] to X.

Proposition 2. For each t ∈ [0, T ], un(t) has a convergent subsequence
in X and so, un(t) is relatively compact in X.

Proof. Note that for each bounded t ∈ (0, T ), we have t ∈ [ti−1, ti) for
some i and so, i− 1 = [t/λ]. Here for each x ∈ R, [x] is the greatest integer that
is less than or equal to x. Also note from the definition of un

t that pointwise
convergence of un

t is the same as that of ui−1 since ‖(uu − ui−1)/λ‖ ≤ k, by
Proposition 1.

Since ui−1 = (I − λA)−(i−1)u0 and the convergence of ui−1 as λ → 0 is the
same as the convergence of (I − (t/n)A)−nu0 for each bounded t as n→ 0, the
proof is completed by applying the Crandall–Liggett theorem.

Applying Proposition 1 to (4) we have

(6) ‖un(t)− un(τ)‖ ≤ k|t− τ |

for t, τ ∈ [ti−1, ti], that is, un(t) is equi-continuous in C([0, T ];X). Here the
space C([0, T ];X) is the real Banach space of continuous functions from [0, T ]
to X. Proposition 2 says that for each t ∈ [0, T ], un(t) is relatively compact
in X. Therefore, un(t) converges to some u(t) in C([0, T ];X) by the Ascoli–
Arzela theorm [13]. Here we denote u(t) by S(t)u0. Since un(t) satisfies (5) and
converges to u(t) in C([0, T ];X), we call u(t) a limit solution of (2) on [0, T ] (and
then on [0,∞) since T is arbitrary). Thus we have proved

Proposition 3. The equation (2), where A is defined as in Section 2, has
a limit solution for u0 ∈ D(A).

Note that since for each t ∈ [ti−1, ti), [t/λ] = i−1 and from (3) we have that

ui−1 = (I − λA)−(i−1)u0 = (I − λA)−[t/λ]u0 → S(t)u0 = u(t)

for u0 ∈ D(A), as λ → 0+. Since u(t) is the uniform limit of un(t), S(t)u0 is
continuous for u0 ∈ D(A). By (iii), (I−λA)−[t/λ] are contractions and so, S(t)u0

also exists for u0 ∈ D(A) and is continuous in t. On the other hand, from (6),
where k depends on {‖v‖ : v ∈ Au0, u0 ∈ D(A)}, we see that u(t) = S(t)u0 for
u0 ∈ D(A) is Lipschitz continuous in t.
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Now suppose additionally that A is linear, single-valued, and closed. Here
by closedness of A, we mean that if xn ∈ D(A), yn = Axn, xn → x, and yn → y,
then x ∈ D(A) and y = Ax. Assume that u0 ∈ D(A) and Au0 ∈ D(A).

From (3) we have

Aui =
ui − ui−1

λ
=

(I − λA)−iu0 − (I − λA)−(i−1)u0

λ

= (I − λA)−(i−1)

(
(I − λA)−1 − I

λ

)
u0

= (I − λA)−(i−1)(I − λA)−1Au0 = (I − λA)−i(Au0)

since A is linear. Letting λ → 0+, we have Aui or Aχn(t) → S(τ)Au0 since
Au0 ∈ D(A) and so, Au(τ) = S(τ)Au0 since A is closed; also

∫ t

0
Aχn(τ) dτ →∫ t

0
Au(τ) dτ by the Lebesgue convergence theorem since ‖Aχn(τ)‖ ≤ k. Thus

the integrated (5)

un(t)− u0 =
∫ t

0

Aχn(τ) dτ

converges to

(7) u(t)− u0 =
∫ t

0

Au(τ) dτ.

Since Au(τ) = S(τ)Au0 is continuous in τ for Au0 ∈ D(A) and is Lipschitz con-
tinuous in τ for Au0 ∈ D(A), we have that so is Au(τ). Thus by the fundamental
theorem of calculus, (7) gives that

(8)
du(t)
dt

= Au = S(t)Au0, u(0) = u0.

Thus du/dt is continuous in t for u0 ∈ D(A) with Au0 ∈ D(A) and Lipschitz
continuous in t for u0 ∈ D(A) with Au0 ∈ D(A). This, together with (7), in
turn shows that du/dt is differentiable in t for u0 ∈ D(A2) with A2u0 ∈ D(A).
More regularity of du/dt in t can be obtained iteratedly.

Uniqueness of solution in (8) is standard and follows from e.g. [9, Lemma 4.9,
p. 88]. Thus, we have proved

Theorem 1. If the operator A in Section 2 is linear and closed, then (8) has
a unique solution u(t) for u0 ∈ D(A) with Au0 ∈ D(A), which has the property
that du(t)/dt is continuous in t. Furthermore, du/dt is Lipschitz continuous in
t for u0 ∈ D(A) with Au0 ∈ D(A) and differentiable in t for u0 ∈ D(A2) with
A2u0 ∈ D(A). More regularity of du/dt in t can be obtained iteratedly.

Remark 1. The above result, except for the case for the Lipschitz continuity
of du/dt in t, can be obtained by applying the Hille–Yosida theorem to the
section of A in the Banach space D(A), in which case, the section becomes an
m-dissipative operator in D(A).



364 C.-Y. Lin

4. A strong solution

Let (Y, ‖ · ‖Y ) be a real Banach space with (X, ‖ · ‖) continuously embedded
into it. Assume additionally that A is embeddedly quasi-demi-closed, that is,
assume that if xn ∈ D(A) → x and ‖yn‖ ≤ k for some yn ∈ Axn, then x ∈
D(φ ◦ A) (that is, φ(Ax) exists.) and |φ(ynk

) − z)| → 0 for some subsequence
ynk

of yn, for some z ∈ φ(Ax) and for each φ ∈ Y ∗ ⊂ X∗, the real dual spaces
of Y and X, respectively.

Let vn(t) ∈ Aχn(t) for t ∈ (ti−1, ti] be such that (5) gives

dun(t)
dt

= vn(t)

for t ∈ (ti−1, ti]. Integrating (5) gives that for each φ ∈ Y ∗ ⊂ X∗, φ(un(t)−u0) =∫
φ(vn(τ) dτ and

φ(un(t)− u0) ∈ φ
( ∫ t

0

Aχn(τ) dτ
)

=
∫ t

0

φ(Aχn(τ)) dτ,

where note that supt∈[0,T ] ‖vn(t)‖ ≤ k by vn(t) ∈ Aχn(t) and ‖(ui−ui−1)/λ‖ ≤ k

from Proposition 1. Since un(t) → u(t) uniformly for bounded t and A is em-
beddedly quasi-demi-closed, we have that φ(vn(t)) converges to φ(v(t)) through
some subsequence for some v(t) ∈ Au(t) and then, by the Lebesgue convergence
theorem, we have

φ(u(t)− u0) =
∫
φ(v(τ)) dτ = φ

( ∫
v(τ) dτ

)
.

Thus u(t) − u0 =
∫
v(τ) dτ in Y . Therefore we have by the Radon–Nikodym

type theorem [9] that

du(t)
dt

= v(t) in Y for almost every t,

and then

(9)
du(t)
dt

∈ Au(t) in Y for almost every t,

u(0) = u0.

Again, uniqueness of solution for (9) in X is standard [9]. Thus we have proved

Theorem 2. If the operator A in Section 2 is additionally embeddedly quasi-
demi-closed, then (9) has a strong solution in Y for u0 ∈ D(A), which is unique
if Y ≡ X.

Remark 2. Here note that X is not necessarily reflexive, and that the
assumption of embeddedly quasi-demi-closedness is weaker than that of demi-
continuity ([9, p. 88]).
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5. An application

From here on, k denotes a generic constant, which can vary with different
occasions. We make the following assumptions (5.1) to (5.3).

(5.1) β0, β1 : R → R are multi-valued maximal monotone functions with
0 ∈ β0(0) ∩ β1(0).

(5.2) ψ(x, p) ≥ δ1 > 0 holds for some constant δ1 and is continuous.
(5.3) g(x, z, p) is continuous and satisfies zg(x, z, 0) ≤ 0, and∣∣∣∣g(x, z, p)ψ(x, p)

∣∣∣∣ ≤ N(x, z)(1 + |p|),

where N is positive and continuous.

Define a nonlinear operator E : D(E) ⊂ C[0, 1] → C[0, 1] by Eu = u′′ for
u ∈ D(E) ≡ {u ∈ C2[0, 1] : u′(j) ∈ (−1)jβj(u(j)), j = 0, 1}.

We have the following result in [6], and [14]:

Proposition 4. For h ∈ C[0, 1], there is a unique solution u ∈ C2[0, 1] to

u− u′′ = h, u′(j) ∈ (−1)jβj(u(j)), j = 0, 1,

and the operator (I −E)−1 : C[0, 1] → C2[0, 1] ⊂ C[0, 1] exists and is nonexpan-
sive.

Define a nonlinear operator G : D(G) ⊂ C[0, 1] → C[0, 1] by

Gu = ψ(x, u′)u′′ + g(x, u, u′)

for u ∈ D(G) ≡ {v ∈ C2[0, 1] : v′(j) ∈ (−1)jβj(v(j)), j = 0, 1}.

Proposition 5. For each h ∈ C[0, 1], the equation

(10) u− λ(ψ(x, u, u′)u′′ + g(x, u, u′)) = h, u′(j) ∈ (−1)jβj(u(j)), j = 0, 1,

has a solution for small enough λ > 0. And so G satisfies (iv).

Proof. As in [6] and [14], consider the operator equation equation u =
(u− λE)−1Wu, where

W : C1[0, 1] → C[0, 1], Wu = u+
h− u+ λg(x, u, u′)

ψ(x, u′)
,

and (I − λE)−1 : C[0, 1] → C2[0, 1] is from Proposition 4 and continuous. Solv-
ability of this operator equation will complete the proof.

We truncate W by defining, for each m ∈ N,

Wmu =


Wu if ‖u‖C1[0,1] ≤ m,

W

(
mu

‖u‖C1[0,1]

)
if ‖u‖C1[0,1] > m.
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It follows that (I − λE)−1Wm : C1[0, 1] → C1[0, 1] is continuous, compact, and
uniformly bounded for each m; the compactness follows from the Ascoli–Arzela
theorem. By the Schauder fixed point theorem [4],

(I − λE)−1Wmum = um

holds for some um. We complete the proof by showing ‖um0‖C1 ≤ um0 for some
m0 since (I − λE)−1Wum0 = um0 in this case.

Assume ‖um‖C1 > m for all m and we seek a contradiction. By the definition
of Wm, we have

(11) um − λu′′m = vm +
h− vm + λ(g(x, vm, v

′
m))

ψ(x, v′m)
,

where um ∈ D(E) and vm = mum/‖um‖C1 . We have from the first and second
derivative tests that

‖um‖∞ = |um(x0)|, u′m(x0) = 0, and um(x0)u′′m(x0) ≤ 0

for some x0 ∈ [0, 1]. Multiplying (11) by um and evaluating it at x0, we have

0 ≤ ((1− m

‖um‖C1
)u2

m(x0)− λum(x0)u′′m(x0))ψ(x0, 0)

= (h− vm)(x0)um(x0) + λum(x0)(g(x0, vm, 0))

≤ (h− vm)(x0)um(x0)

and so, ‖vm‖∞ ≤ ‖h‖∞. It follows from (11) and (5.3) that

‖v′′m‖∞ ≤ λ−1k + k(1 + ‖v′m‖∞).

Using the interpolation inequality [4]:

‖v′m‖∞ ≤ ε‖v′′m‖∞ + η(ε)‖vm‖∞

for all ε > 0, we have ‖vm‖C2[0,1] ≤ k, which is a contradiction to m = ‖vm‖C1 ≤
‖vm‖C2 ≤ k as m→∞. �

Proposition 6. G satisfies (iii).

Proof. Let u, v ∈ D(B). As in [6], applying the first and second derivative
tests gives ‖u−v‖∞ = |(u−v)(x0)|, (u−v)′(x0) = 0, and (u−v)(x0)(u−v)′′(x0) ≤
0 for some x0 ∈ [0, 1]. Since

(u− v)(x0)(Bu−Bv)(x0)

= ψ(x0, u, u
′)(u−v)(x0)(u−v)′′(x0)+(u−v)(x0)(g(x0, u, u

′)−g(x0, v, u
′)) ≤ 0,

we have

‖u− v‖2∞ = (u− v)2(x0) ≤ (u− v)(x0)((u− v)(x0)− λ(Gu−Gv)(x0))
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for all λ > 0, and so

‖u− v‖∞ ≤ ‖(u− v)− λ(Gu−Gv)‖∞.

Thus (iv) is proved. �

We now show that G is embeddedly quasi-demi-closed, so that Theorem 2
applies.

Let (Y, ‖·‖) = (L2(0, 1), ‖·‖), which has (C[0, 1], ‖·‖∞) continuously embed-
ded into it. Let un ∈ D(G) → u and ‖Gun‖∞ ≤ k. As in prove of Proposition 5,
we have ‖un‖C2[0,1] ≤ k. It follows from the Ascoli–Arzela theorem that un → u

in C1[0, 1] through some subsequence. Apply this to the following.
Let η ∈ L2(0, 1) = (L2(0, 1))∗. We have to show that u ∈ D(η ◦G), that is,

η(Gu) exists, and that |η(Gun)− η(Gu)| → 0. Formally, we have

η(Gun) =
∫
η(ψ(x, u′n)u′′n + g(x, un, u

′
n)) dx

=
∫
ηψ(x, u′)(un − u)′′ dx+

∫
η(ψ(x, u′n)− ψ(x, u′))u′′n dx

+
∫
η(g(x, un, u

′
n)− g(x, u, u′)) dx+

∫
η(Gu) dx ≡

4∑
i

Ii.

Here the integration range [0, 1] is omitted.
It follows that I1 converges to 0 since ‖un‖C2 ≤ k, W 2,2(0, 1) is a Hilbert

space, ηψ(x, u′) ∈ L2(0, 1), and u′′n converges weakly to u′′ through some subse-
quence (this also shows η(Gu) exists), that I2 converges to 0 by |I2| ≤ ‖ψ(x, u′n)−
ψ(x, u′)‖∞‖η‖‖u′′n‖, and that I3 converges to 0 by the uniform convergence the-
orem. Thus η(Gu) exists and η(Gun) → η(Gu) and so, G is embeddedly quasi-
demi-closed. By Theorem 2, we have that

Theorem 3. In L2(0, 1), there is a strong solution u to the nonlinear para-
bolic boundary value problem

∂

∂t
u(x, t) = ψ(x, u, ux)uxx + g(x, u, ux), (x, t) ∈ (0, 1)× (0,∞),

ux(j, t) ∈ (−1)jβj(u(j, t)), j = 0, 1,

u(x, 0) = u0(x),

for almost every t and for u0 ∈ D(G).

Remark 3. Theorem 2 with a more general equation, obtains a strong so-
lution and so, is stronger than [4], [14]. More applications to partial differential
equations can be done through Theorem 2.
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