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POSITIVE SOLUTIONS
OF A HAMMERSTEIN INTEGRAL EQUATION

WITH A SINGULAR NONLINEAR TERM

Mario Michele Coclite

Abstract. In this paper the existence of a positive measurable solution of

the Hammerstein equation of the first kind with a singular nonlinear term
at the origin is presented.

0. Introduction

The literature on the Hammerstein equations with the reciprocal of the so-
lution in the integrand is rather limited, although there are many applications.
For example, the equation

(1) u(x) =

1∫
0

K(x, y)
1

u(y)
dy, 0 ≤ x ≤ 1,

arises in some mathematical models of the Signal Theory (see [12], [13]). The
more general Hammerstein equation on Ω ⊂ RN , 1 ≤ N ,

(2) u(x) =
∫
Ω

K(x, y)g(y, u(y)) dy, x ∈ Ω,
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where K(x, y) is of potential type and g(y, s) does not converge as s → 0+

is usefull to establish the existence of the solutions of semilinear homogeneous
boundary problems (see [11]) with a nonlinear term depending on the reciprocal
of the solution (see [1]–[3], [5], [6]).

Nowosad in [13] proved the existence of one continuous, positive solution
of (1) assuming K(x, y) continuous, non-negative and symmetric. Later Kar-
lin and Nirenberg, in [10], improved this result considering K(x, y) continuous,
non-negative and K(x, x) > 0, 0 ≤ x ≤ 1. They proved the existence of one con-
tinuous, positive eigenfunction for the eigenvalue problem related to (2), where
Ω = [0, 1] and g(y, s) is continuous and positive in [0, 1] × ]0,∞[, bounded as
s→∞ and 0 < c0 ≤ g(y, s) ≤ c1s

−α, 0 ≤ y ≤ 1, 0 < s < 2, α > 0. In particular,
if g(y, s) = 1/sα, they proved that 1 will be an eigenvalue and, consequently, (2)
will have a positive solution (unique if 0 < α ≤ 1). More recently Karapetyants
and Yakubov, in [9], have weakened the previous assumptions about the kernel.
They consider K(x, y) = k(x− y), with k ∈ L1

loc([0,∞[) being non-negative and
non-increasing, and have found that the convolution equation u−α = k∗u, α > 1
has a unique solution u ∈ C(]0,∞[) almost increasing and positive. In [4] we have
proved that (2) has a non-negative summable solution assuming that K(x, y) is
measurable, non-negative and that there exists a finite covering (Ei)1≤i≤n

of Ω,
with E

i
being a measurable set, and R > 0, such that for every measurable set

F ⊂ Ω, whose measure is finite, it results that

(3) R ·meas(E
i
∩ F ) ≤

∫
E

i
∩F

K(x, y) dx, y ∈ E
i

a.e., 1 ≤ i ≤ n.

Moreover, g(y, s) is a non-negative Carathéodory function in Ω × ]0,∞[ (i.e.
g( · , s) is measurable in Ω, for all fixed s > 0 and g(y, · ) is continuous in ]0,∞[,
for almost fixed y ∈ Ω) bounded with respect to s as s→∞. There is no hypoth-
esis about the behaviour of g(y, s) when s→ 0+, and the following possibility is
not excluded:

lim
s→0+

g(y, s) = 0, lim
s→0+

g(y, s) = ∞.

In this work we advance some steps forward. The (3) is still satisfied but is
considered a countable covering of Ω and R

i
> 0 instead of R. We hypothesize

nothing regarding infiRi , it can be equal to 0. This assumption also permits
us to consider kernels which are not strictly positive over the diagonal set of
Ω× Ω. We consider only kernels whose support is a subset of a neighbourhood
of the diagonal of Ω×Ω. We prove that there exists a measurable non-negative
function u0 that ignors the behaviour of g(y, s) when s→ 0+, in the sense that
it satisfies the following equality
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(4) u0(x) =
∫

0<u0

K(x, y)g(y, u0(y)) dy,

where the symbol 0 < u0 denotes the set {x ∈ Ω | 0 < u0(x)}, and then it verifies
the following alternative

u0 = 0 a.e. in Ω or u0 > 0 a.e. in Ω,

(see Theorem 1).
Equation (4) always has the trivial solution, however, if there exists ϕ ∈

L1
loc(Ω), ϕ > 0 a.e. in Ω, such that

lim
s→0

g(y, s)
ϕ(y)s

= ∞,

uniformly with respect to y in every Ei, there exists u0 > 0, a.e. in Ω, solution
of (4) and then of (2) (see Theorem 2). The result of Karlin and Nirenbereg is
a particular case of this result (see [10]).

To conclude, we observe that, since g(y, s) may not be regular when s→ 0+,
as in [1], the proof of Theorem 1 should begin with the solutions of

(2)ε u(x) =
∫
Ω

K(x, y)g(y, ε+ u(y)) dy, x ∈ Ω, ε > 0,

(see Appendix 2). Any family of these approximate solutions will have a subse-
quence converging to one solution of (4) in all spaces L1(

⋃n
i=0Ei), n ∈ N.

In this paper, as in [4], [5], [9], [10], [12]–[15], the positivity of the solutions
of (2) depends on that of K(x, y) and g(y, s). For other information on the
positive solutions, the reader is refered to the monographs [7], [11].

The paper is organized as follows. In Section 1 we present the assumptions
and the results obtained. In Sections 2, 3 and 4 we demonstrate the Theorems.
Sections 5 and 6 are dedicated to Appendices 1 and 2.

1. Assumptions and results

For abbreviation, we write R+ and R∗+ instead of [0,∞[ and ]0,∞[, respec-
tively.
(G) : Let us suppose that g : Ω× R∗+ → R satisfies the following hypotheses:

(a) g is a Carathéodory function and g ≥ 0 a.e. in Ω× R∗+.
(b) y 7→ sups≤t g(y, t) is summable over Ω, for all s > 0.

Consequently the function

g∗(y, s) := sup
s≤t

g(y, t), (y, s) ∈ Ω× R∗+,
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verifies the Carathéodory condition, is decreasing with respect to s, is summable
on Ω, for all s, and g ≤ g∗.

(K) Let K : Ω× Ω → R satisfy the following hypotheses:

(a) K(x, y) is measurable and K(x, y) ≥ 0, (x, y) ∈ Ω× Ω a.e.
(b)

∫
Ω
K( · , y)g∗(y, s) dy is summable over Ω, for all s > 0.

(c) There exists (R
i
)

i∈N , with R
i
> 0, and a covering (Ei)i∈N of Ω, with Ei

a measurable set, such that for all F ⊂ Ω measurable with meas(F ) <
∞, it results that

Ri meas(Ei ∩ F ) ≤
∫

Ei∩F

K(x, y) dx, y ∈ Ei a.e., i ∈ N.

(d) Let Ωn :=
⋃n

i=0Ei, n ∈ N, then the map

u 7→ Kn(u) =
∫
Ωn

K( · , y)u(y) dy

is compact from L1(Ωn) into itself.
(e) There exists (Ω′

n
)

n∈N , which is an increasing covering of Ω, such that
Ω′

n
⊂ Ωn and K(x, y) = 0, Ω′

n
× (Ω \ Ωn), n ∈ N.

These hypotheses are satisfied, for example, by the following kernel:

K(x, y) = ϕ(x)ψ(y)H(x, y)χ
E
(x, y), x, y ∈ R+,

where ϕ,ψ ∈ C(R+), are strictly positive in R∗+ and ϕ(0) = ψ(0) = limx→∞ ϕ(x)
= limx→∞ ψ(x) = 0,

H(x, y) =

{
2 for x ≤ y,

1 for y < x,

and χ
E

is the characteristic function of E =
⋃∞

i=0(Ei × Ei) where E2k = [k +
1, k + 3], E2k+1 = [1/(2k + 1), 4/(2k + 1)] (see Appendix 1).

Since Kn maps L1(Ωn) into itself, then it is continuous (see [17, Chapter V,
Theorem 1.5]). Let |Kn|n be its norm. General conditions on K(x, y), such that
Kn maps L1(Ωn) into itself, are unknown except for some special cases (see for
example [8], [16], [17] and the next Lemma 3).

Remark. For (Kb), by the Tonelli Theorem, K(x, y)g∗(y, 1) is summable
in Ω×Ω. Then, by Fubini’s Theorem, K(x, y)g∗(y, 1) is summable with respect
to x. Consequently we conclude that K( · , y) ∈ L1(Ω), y ∈ Ω a.e.

We can now formulate our main results:
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Theorem 1. If (K) and (G) hold, then:

(i) There exists a measurable and non-negative, a.e. in Ω, function u0 such
that

(5) u0(x) =
∫

0<u0

K(x, y)g(y, u0(y)) dy.

(ii) If for all i ∈ N, there exists (Enk
)0≤k≤l

, such that 0 = n0, i = n
l

and
meas(En

k
∩ Enk+1) > 0, (0 ≤ k ≤ l − 1), then either u0 = 0 a.e. in Ω

or u0 > 0 a.e. in Ω. In the latter case, u0 is a solution of (1).

Theorem 2. Let assumption (K), (G) be fulfilled and in addition suppose
that (Gc): there exists ϕ ∈ L1

loc(Ω) where ϕ > 0 a.e. in Ω, such that

lim
s→0

g(y, s)
ϕ(y)s

= ∞,

uniformly with respect to y in every Ei, then (2) has at least one solution.

2. Proof of Theorem 1(i)

Let us recall certain notation which we shall frequently use here and subse-
quently. Br := Br(0) is the ball of radius r > 0 and center 0. | |1 is the norm
of L1(Ω). Let Er := E ∩ B1/r, where E ⊂ RN , and |E| := meas(E) if E is a
measurable set. Given a, b ∈ R and ω : Ω → R we set:

a ≤ ω ≤ b := {x ∈ Ω | a ≤ ω ≤ b}.

Analogously, we define a < ω ≤ b, a < ω < b, a ≤ ω etc. In a chain of inequalities
and in particular equalities, if a term is different from the previous, we indicate
only the variation and substitute the previous term with dots.

Let us prove one lemma on the continuity of an integral nonlinear operator,
which depends only on the assumption (Kb).

Lemma 3. Let ϕ, (ϕ
k
)

k∈N be given in L1(Ω), if ϕ
k
→ ϕ a.e. in Ω, for all

η0 > 0 the following equalities hold:

(6) lim
k

∫
η≤ϕ

k

K( · , y)|g(y, ϕ
k
(y))− g(y, ϕ(y))| dy = 0,

and

(7) lim
k

∫
η≤ϕ

K( · , y)|g(y, ϕ
k
(y))− g(y, ϕ(y))| dy = 0,

in L1(Ω), uniformly with respect to η in [η0,∞[.
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Proof. For short, we set

θ(y) :=
∫
Ω

K(x, y) dx, γ
k
(y) := |g(y, ϕ

k
(y))− g(y, ϕ(y))|, y ∈ Ω.

The absolute continuity of the indefinite integral of θg∗( · , η0/2) in Ω implies
that for all σ > 0, there exists δ > 0, such that for every measurable set E ⊂ Ω
with |E| < δ, it follows that:

(8)
∫
E

θg∗( · , η0/2) dy < σ,

∫
Ω\B1/δ

θg∗( · , η0/2) dy < σ.

According to the Egorov–Severini Theorem there exists a measurable set E ⊂ Ω
δ

with |E| < δ and, given τ ∈ ]0, η0/2[, there exists ν ∈ N such that

(9) ν ≤ k, x ∈ Ω
δ
\ E ⇒ ϕ

k
(x)− τ < ϕ(x) < ϕ

k
(x) + τ.

Thus, for every η, ρ, η0 < η < ρ, we have

ν ≤ k ⇒ (η ≤ ϕ
k
< ρ)

δ
\E ⊂ (η−τ ≤ ϕ < ρ+τ)

δ
\E ⊂

(
η0
2
≤ ϕ < ρ+

η0
2

)
δ

\E.

In (η0/2 ≤ ϕ < ρ+η0/2)
δ
\E and then in (η ≤ ϕ

k
< ρ)

δ
\E, k ≥ ν, it results that

γ
k
≤ 2g∗( · , η0/2). Now the Lebesgue Dominate Convergence Theorem implies

that

(10) lim
k

∫
(η≤ϕ

k
<ρ)

δ
\E

θγ
k
dy ≤ lim

k

∫
(η0/2≤ϕ<ρ+η0/2)

δ
\E

. . . = 0,

uniformly with respect to η over [η0,∞[.
From (9) we have

ν ≤ k ⇒ (ρ ≤ ϕ
k
)

δ
\ E ⊂ (ρ− η0/2 ≤ ϕ)

δ
\ E

⇒
∫

(ρ≤ϕ
k
)
δ
\E

θγ
k
dy ≤

∫
(ρ≤ϕ

k
)
δ
\E

θg∗( · , ϕ
k
) dy +

∫
(ρ−η0/2≤ϕ)

δ
\E

θg∗( · , ϕ) dy

≤
∫

(ρ≤ϕ
k
)
δ
\E

θg∗( · , ρ) dy +
∫

(ρ−η0/2≤ϕ)
δ
\E

θg∗( · , ρ− η0/2) dy

≤ 2
∫

(ρ−η0/2≤ϕ)
δ
\E

θg∗( · , ρ− η0/2) dy.

Since ρ 7→ (ρ− η0/2 ≤ ϕ) is decreasing, it follows that limρ→∞(ρ− η0/2 ≤ ϕ) =
(∞ = ϕ), and the summability of ϕ implies that |∞ = ϕ| = 0. Then:

lim
ρ→∞

∫
(ρ≤ϕ

k
)
δ
\E

θγ
k
dy = 0,
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uniformly with respect to k ≥ ν. Hence from (10) we obtain

(11) lim
k

∫
(η≤ϕ

k
)
δ
\E

θγ
k
dy = 0,

uniformly with respect to η over [η0,∞[. Finally, by (8), we obtain:∫
η≤ϕ

k

θγ
k
dy ≤

∫
(η≤ϕ

k
)
δ
\E

. . .+
∫

E∩(η≤ϕ
k
)
δ

. . .+
∫

(η≤ϕ
k
)\B1/δ

. . .

≤
∫

(η≤ϕ
k
)
δ
\E

. . .+ 2
∫

E∩(η≤ϕ
k
)
δ

θg∗
(
· , η0

2

)
dy + 2

∫
(η≤ϕ

k
)\B1/δ

θg∗
(
· , η0

2

)
dy

≤
∫

(η≤ϕ
k
)
δ
\E

. . .+ 4σ.

This together with (11) implies (6).
The same reasoning yields∫

(η≤ϕ)

θγ
k
dy ≤

∫
(η≤ϕ)

δ
\E

. . .+ 4σ.

By (9) we have ∫
(η≤ϕ)

θγ
k
dy ≤

∫
(η−η0/2≤ϕ

k
)
δ
\E

. . .+ 4σ.

Thus, (7) follows from (11). �

As stated in the Introduction, we have considered the solutions of the ap-
proximate equations (2)ε before studying (2). We remark that the integral which
compares in (2)ε is finite because the assumption (Kb) holds and the integrand
is positive.

Since K(x, y) satisfies (Ka), (Kb) and g(y, s) satisfies (G), there exists uε ∈
L1(Ω) positive a.e. in Ω which is a solution of (2)ε. For completeness, the proof of
the existence of these solutions is sketched in Appendix 2, (see [4, Theorem 5]).
The proof of Theorem 1i consists in a suitable analysis of uε as ε→ 0+.

Lemma 4. There exists (ε
k
)

k∈N , εk
→ 0, such that( ∫

Ωn

K( · , y)g(y, ε
k

+ uε
k
) dy

)
k∈N

converges in L1(Ωn), for all n ∈ N.

Proof. For abbreviation, we set gε := g( · , ε + uε). Given n ∈ N, let I be
the set of i = 0, . . . , n, such that Ti := Ei ∩ (uε < 1) has no zero measure. Let



242 M. M. Coclite

i ∈ I, r > 0, such that |Ti ∩Br| > 0, since∫
Ti∩Br

uε(x) dx =
∫
Ω

gε(y) dy
∫

Ti∩Br

K(x, y) dx

≥
∫
Ei

. . .

∫
Ti∩Br

. . . ≥ R
i
|Ti ∩Br|

∫
Ei

gε(y) dy,

then we obtain ∫
Ei

gε(y) dy ≤
1
R

i

, i ∈ I.

Successively, if we consider i 6∈ I, since 1 ≤ uε a.e. in Ei, it follows that∫
Ei

gε(y) dy ≤
∫
Ei

g∗(y, 1) dy ≤ |g∗( · , 1)|1 , i 6∈ I.

Seeing that (Ei)0≤i≤n
is a covering of Ωn , we conclude that (gε)0<ε is bounded in

L1(Ωn). According to the compactness of K0 from L1(Ω0) into itself (see (Kd)),
there exists (ε0

k
)

k∈N , ε0
k
→ 0, such that

(K0(gε0
k
))

k∈N

converges in L1(Ω0).
We now proceed by induction. We can say that there exists (εn

k
)

k∈N , εn
k
→ 0,

which is a subsequence of (εi
k
)

k∈N , where εi
k
→ 0, 0 ≤ i ≤ n− 1, such that

(K0(gεn
k
))

k∈N , . . . , (Kn(gεn
k
))

k∈N

converge in L1(Ω0), . . . , L1(Ω
n
), respectively. Now, if we consider the diagonal

subsequence (εk
k
)

k∈N , we conclude that

(Kn(gεk
k
))

k∈N

converges in L1(Ωn), for all n ∈ N. �

Let
u

k
:= uε

k
, g

k
:= g( · , ε

k
+ uε

k
),

u′k,n :=
∫
Ωn

K( · , y)g
k
(y) dy, u′′k,n := u

k
− u′k,n,

and set

vn(x) :=


lim

k

∫
Ωn

K(x, y)g
k
(y) dy for x ∈ Ωn,

0 for x ∈ Ω \ Ωn.

From the above statement, it follows that v
n
∈ L1(Ω) and that (vn)n∈N is in-

creasing. Then, there exists u0 measurable in Ω, 0 ≤ u0 a.e. in Ω, such that

u0 = lim
n
vn = sup

n
vn, a.e. in Ω.
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Lemma 5. (u
k
)

k∈N converges a.e. in Ω to u0 . In particular, for every n ∈ N,
it results that

(12) lim
k

u
k

= vn = u0 , a.e. in Ω′
n
.

Moreover, it results that

(13)
∫

0<u0

K(x, y)g(y, u0) dy ≤ u0(x).

Proof. By (Ke), it follows that, for every n, K(x, y) = 0 in Ω′
n
× (Ω \Ω

n
).

Thus,

u′′k,n(x) =
∫

Ω\Ωn

K(x, y)g
k
(y) dy = 0, a.e. in Ω′

n
.

Then, u
k

= u′k,n a.e. in Ω′
n
, and

lim
k

u
k

= v
n

a.e. in Ω′
n
.

Since lim
k
u

k
does not depend on n ∈ N, (12) holds and consequently u

k
→ u0

a.e. in Ω.
Having observed that lim

k
g

k
= g( · , u0) a.e. in (0 < u0), and by the Fatou

Lemma and the definition of u
k

we get (13). �

Lemma 6. For all n ∈ N and i ∈ {0, . . . , n},

essinf
Ei

v
n

= 0 ⇒ lim
k

∫
Ei

g
k
(y) dy = 0.

Proof. If essinf
Ei
vn = 0, there exists (X

l
)l∈N decreasing, with measurable

set X
l
⊂ Ei, 0 < |X

l
| <∞, such that vn < 1/(l + 1) a.e. in X

l
. Then from the

definition of u′k,n,

|u′k,n|L1(X
l
)
=

∫
Xl

dx

∫
Ωn

K(x, y)g
k
(y) dy

≥
∫
Ei

g
k
(y) dy

∫
Xl

K(x, y) dx ≥ Ri |Xl
|
∫
Ei

g
k
(y) dy.

Consequently,

R
i
|X

l
| lim

k

∫
Ei

g
k
(y) dy ≤ |vn|L1(X

l
) ≤

|X
l
|

l + 1
,

from which
lim

k

∫
Ei

g
k
(y) dy ≤ 1

R
i
(l + 1)

.

Since this last estimate holds for all l ∈ N the statement holds. �
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Let In be the set of the i ∈ {0, . . . , n}, such that essinf
Ei
v

n
= 0. We set

Nn :=
⋃

i∈In

Ei; Ω∗n := Ωn \Nn.

Corollary 7. For every n ∈ N, the following assertions are valid:

(14) lim
k

∫
Nn

g
k
(y) dy = 0,

(15) η
n

= essinf
Ω∗n

vn > 0,

(16) vn :=


lim

k

∫
Ω∗

n

K( · , y)g
k
(y) dy in L1(Ω

n
),

0 in L1(Ω \ Ω
n
).

Proof of Theorem 1(i). For (2), (14), (15), and (6) of Lemma 3, for each
n ∈ N, since u

k
→ v

n
= u0 a.e. in Ω′

n
and u

k
→ u0 a.e. in Ω, it follows that:

u0(x) = vn(x) = lim
k

∫
ηn≤vn

K(x, y)g
k
(y) dy ≤ lim

k

∫
ηn≤u0

K(x, y)g
k
(y) dy

=
∫

ηn≤u0

K(x, y)g(y, u0(y)) dy ≤
∫

0<u0

K(x, y)g(y, u0(y)) dy,

for x ∈ Ω′
n
. Since (Ω′

n
)

n∈N is increasing, we obtain:

u0(x) ≤
∫

0<u0

K(x, y)g(y, u0(y)) dy, x ∈ Ω a.e.

Combining this estimate and (3), we obtain (5). �

3. Proof of Theorem 1(ii)

According to (Kc), we deduce:

Lemma 8. K(x, y) 6= 0 a.e. in
⋃∞

i=0(Ei × Ei).

Proof. On the contrary, if we assume that the above statement is not true,
there exists i and Xi × Yi ⊂ Ei × Ei, |Xi × Yi| > 0, such that

K(x, y) = 0, (x, y) ∈ Xi × Yi a.e.

By (Kc) we obtain

R
i
|Ei ∩Xi| ≤

∫
Ei∩Xi

K(x, y) dx, y ∈ Ei a.e.
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Since |Ei ∩Xi| = |Xi| > 0 and Yi ⊂ Ei, |Yi| > 0, it follows that R
i
|Ei ∩Xi| = 0.

Again, given (Kc), this is a contradiction. �

Proof of Theorem 1(ii). First we will observe that, given i ∈ N, by (5)
and (Ke) it follows that:

(17) u0(x) =
∫

(0<u0 )∩Ωn

K(x, y)g(y, u0(y)) dy, x ∈ Ei ∩ Ω′
n
, n ≥ i.

By virtue of the previous lemma, it results

(18) u0 |Ei
= 0, or u0 |Ei

> 0, a.e. in Ei, i ∈ N.

In fact, if 0 < |Ei ∩ (u0 = 0)| < |Ei|, as (Ω′
n
)n∈N is an increasing covering of Ω,

there exists ν ∈ N, such that 0 < |Ei ∩ Ω′
n
∩ (u0 = 0)|, n ≥ ν. From (17), we

have

K(x, y)g(y, u0(y)) = 0, x ∈ Ei ∩ Ω′
n
∩ (u0 = 0), y ∈ Ω

n
∩ (u0 > 0).

Proceeding from the previous lemma, it follows that g( · , u0) = 0 in Ωn∩(u0 > 0).
Consequently, from (17), we have 0 < |Ei∩Ω′

n
∩(u0 = 0)| = |Ei∩Ω′

n
|. If n→∞,

we deduce that 0 < |Ei ∩ (u0 = 0)| = |Ei|. This contradicts our assumption,
therefore (18) is true.

If u0 = 0 a.e. in E0, given i ∈ N, let (En
k
)0≤k≤l

satisfy the hypothesis. Since
|E0 ∩ En1 | > 0 and u0 = 0 in E0 ∩ En1 , for (18) it results that u0 = 0 in En1 .

By finite induction we obtain u0 = 0 in Ei. The arbitrariness of i permits us to
conclude that u0 = 0 a.e. in Ω.

If u0 > 0 a.e. in E0, repeating the above reasoning we obtain that u0 > 0
a.e. in Ω. �

4. Proof of Theorem 2

We begin with a lemma:

Lemma 9. For all i ∈ N and A ⊂ Ei compact with |A| > 0, it results that

0 < essinf
x∈A

∫
A

K(x, y)ϕ(y) dy.

Proof. On the contrary, we assume that the thesis does not hold, since
there exists i ∈ N and A ⊂ Ei measurable with |A| > 0, such that, for all ε > 0,
there is a set X ⊂ A measurable with 0 < |X| <∞, therefore, we have∫

A

K(x, y)ϕ(y) dy < ε, x ∈ X a.e.
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Integrating on X, according to (Kc), we obtain

ε|X| ≥
∫
X

dx

∫
A

K(x, y)ϕ(y) dy =
∫
A

ϕ(y) dy
∫
X

K(x, y) dx ≥ R
i
|X|

∫
A

ϕ(y) dy.

Consequently,

R
i

∫
A

ϕ(y) dy < ε.

Thus, we obtain
∫

A

ϕ(y) dy = 0 and ϕ = 0 a.e. in A. This conclusion is not true,

therefore the thesis is proved. �

Proof of Theorem 2. Let us consider the solution used to prove Theo-
rem 1(i). On the contrary, if |u0 = 0| > 0, setting N = (u0 = 0), from Lemma 5
we obtain

lim
k

u
k

= 0, a.e. in N.

Let i ∈ N, such that |Ei∩N | > 0. By the Egorov–Severini Theorem, there exists
a compact A ⊂ Ei ∩N with |A| > 0, such that u

k
→ 0 uniformly in A. On the

other hand, setting

b = essinf
x∈A

∫
A

K(x, y)ϕ(y) dy,

to the previous lemma it follows that b > 0. For (Gc), there exists s0 > 0 such
that

0 < s < s0 ⇒
2
b
ϕ(y)s < g(y, s), y ∈ Ei a.e.

Let k0 ∈ N such that:

k0 ≤ k ⇒ ε
k

+ u
k
(y) < s0, y ∈ A a.e.

Consequently,

k0 ≤ k ⇒ 2
b
ϕ(y)(εk + u

k
(y)) ≤ g(y, ε

k
+ u

k
(y)) = g

k
(y), y ∈ A a.e.

⇒ u
k
(x) ≥

∫
A

K(x, y)g
k
(y) dy ≥ 2

b

∫
A

K(x, y)ϕ(y)(ε
k

+ u
k
(y)) dy

≥ 2
b

essinf
A

(ε
k

+ u
k
)
∫
A

K(x, y)ϕ(y) dy ≥ 2 essinf
A

(ε
k

+ u
k
).

This is not true, so Theorem 2 is proved. �

5. Appendix 1

The kernel mentioned in Section 1 evidently satisfies the hypotheses (Ka),
(Kb) and (Kc) with

Ri := (inf
Ei

ϕ)(inf
Ei

ψ), i ∈ N.
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We proceed to show that also (Kd) is satisfied.
We begin by proving that for all pairs of bounded intervals I, J ⊂ R∗+, the

operator:

(19) ω 7→
∫
I

ϕ( · )ψ(y)H( · , y)ω(y) dy,

is compact by L1(I) into L1(J).
Let E be a bounded non-empty subset of L1(I), we observe that:

(i)
∣∣∣∣ ∫

I

ϕψ(y)H( · , y)ω(y) dy
∣∣∣∣

L1(J)

≤ 2 sup
I
ψ|ϕ|

L1(J)
sup
ω∈E

|ω|
L1(I)

and

δ(h) :=
∫
J

dx

∣∣∣∣ ∫
I

ϕ(x+ h)ψ(y)H(x+ h, y)ω(y) dy(ii)

−
∫
I

ϕ(x)ψ(y)H(x, y)ω(y) dy
∣∣∣∣

≤
∫
J

|ϕ(x+ h)− ϕ(x)| dx
∫
I

ψ(y)H(x+ h, y)|ω(y)| dy

+
∫
J

ϕ(x) dx
∣∣∣∣ ∫

I

ψ(y)(H(x+ h, y)−H(x, y))ω(y) dy
∣∣∣∣

≤ 2 sup
I
ψ sup

ω∈E
|ω|

L1(I)

∫
J

|ϕ(x+ h)− ϕ(x)| dx

+ sup
I
ψ sup

J
ϕ

∫
I

|ω(y)| dy
∫
J

|H(x+ h, y)−H(x, y)| dx.

Since

H(x+h, y)−H(x, y) =


0 (y < x and y < x+ h) ∨ (x ≤ y and x+ h ≤ y),

1 x+ h ≤ y < x, h < 0,

−1 x ≤ y < x+ h, h > 0,

it follows that

δ(h) ≤ 2 sup
I
ψ sup

ω∈E
|ω|

L1(I)

∫
J

|ϕ(x+ h)− ϕ(x)| dx

+ sup
I
ψ sup

J
ϕ

∫
I

|ω(y)| |J ∩ [y ∧ (y − h), y ∨ (y − h)]| dy

≤ sup
I
ψ sup

ω∈E
|ω|

L1(I)

{
2

∫
J

|ϕ(x+ h)− ϕ(x)| dx+ sup
J
ϕ · |h|

}
.
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According to the Fréchet–Kolmogorov Theorem operator (19) is compact.
Given a sequence (ω

k
)

k∈N bounded in L1(Ω
n
), using finite induction argu-

ments, we find a subsequence that we still denote with the same symbol, such
that for all i, j = 1, . . . , n, (

∫
Ei

ϕ( · )ψ(y)H( · , y)ω
k
(y) dy)

k∈N converges in L1(Ej).

Since

σ(k, h) :=
∣∣∣∣ ∫
Ωn

K( · , y)(ω
k
− ω

h
)(y) dy

∣∣∣∣
L1(Ωn )

≤
1,...,n∑

i,j

∫
Ej

dx

∣∣∣∣ ∫
Ei

ϕ(x)ψ(y)H(x, y)(ω
k
− ω

h
)(y) dy

∣∣∣∣,
then limk,h σ(k, h) = 0.

Finally, we may conclude that

ω 7→
∫

Ωn

K( · , y)ω(y) dy,

is compact from L1(Ω
n
) into itself. Then the kernel satisfies (Kd).

As for (Ke), first we will observe that

Ω
n

=



[1, 3] n = 0,

[1, 4] n = 1,[
1

n− 1
,
n+ 6

2

]
n ≥ 2, n even,[

1
n
,
n+ 5

2

]
n ≥ 3, n odd.

Setting

Ω′
n

=


∅ n = 0,[

4
n+ 1

,
n+ 4

2

]
n even,[

4
n+ 2

,
n+ 3

2

]
n odd,

we get that (Ω′
n
)

n∈N is an increasing covering of R∗+ and Ω′
n
⊂ Ω

n
. Moreover,

since

(Ω′
n
× (Ω \ Ω

n
)) ∩ E = ∅, n ≥ 1,

it follows that K(x, y) = 0 in every Ω′
n
× (Ω \ Ωn), n ≥ 1. Thus also (Ke) is

satisfied.

6. Appendix 2

We now sketch the proof of the existence of solutions of (2)ε.
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Let L1
+(Ω) be the cone of the non-negative (a.e.) functions of L1(Ω) and let

ε > 0. From the definition of g∗, together with the assumption (G), it follows
that g∗( · , ε) ∈ L1

+(Ω) and

u ∈ L1
+(Ω) ⇒ g( · , ε+ u) ∈ L1

+(Ω) and g( · , ε+ u) ≤ g∗( · , ε).

Setting

u(x) = K[g∗( · , ε)](x) :=
∫
Ω

K(x, y)g∗(y, ε) dy,

by (Kb) we observe that u ∈ L1
+(Ω) and

0 ≤ u ≤ u a.e. ⇒ 0 ≤ K[g( · , ε+ u)] ≤ u a.e.

Since, for all u ∈ L1
+(Ω), it results

(i) |K[g( · , ε+ u)]( · + h)−K[g( · , ε+ u)]|1

≤
∫

Ω×Ω

|K(x+ h, y)−K(x, y)|g∗(y, ε) dx dy,

(ii)
∫

Ω\Bρ

K[g( · , ε+ u)] dx ≤
∫

Ω\Bρ

u dx.

The Fréchet–Kolmogorov Theorem gives that {K[g( · , ε + u)] | u ∈ L1
+(Ω)} is

compact in L1(Ω).
Finally, since g is a Carathéodory function, by using the Lebesgue Dominated

Convergence Theorem it is easily seen that u 7→ K[g( · , ε + u)] is continuous
in L1

+(Ω). Consequently, the Shauder Theorem implies that there exists uε ∈
L1

+(Ω), solution of (2)ε.
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