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A TOPOLOGICAL APPROACH TO SUPERLINEAR
INDEFINITE BOUNDARY VALUE PROBLEMS

Duccio Papini — Fabio Zanolin

Abstract. We obtain the existence of infinitely many solutions with pre-

scribed nodal properties for some boundary value problems associated to
the second order scalar equation ẍ + q(t)g(x) = 0, where g(x) has superlin-

ear growth at infinity and q(t) changes sign.

1. Introduction

The study of boundary value problems for the second order ordinary differ-
ential equation

(1.1) ẍ+ f(t, x) = 0

with f superlinear at infinity with respect to x, that is

(1.2) lim
s→±∞

f(t, s)
s
=∞,

is a topic which has been widely investigated in the literature, using various
different approaches.
The case in which the limit in (1.2) holds uniformly with respect to t was

studied since the fifties by Morris [37], [38], Ehrmann [23], [24] and Nehari [39]
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for some particular forms of f (see also the references in [17]). The main feature
of such kind of problems is the absence of a priori bounds due to the strong
oscillatory behaviour of the large solutions [36]. A typical example of equation
(1.1) is given by

(1.3) ẍ+ q(t)g(x) = 0

with g satisfying

(1.4) lim
s→±∞

g(s)
s
=∞.

In this case, the uniformity with respect to t of the limit in (1.2) corresponds to
the condition of definite sign

inf
t
q(t) > 0.

In this situation, according to Coffman and Ullrich [19], some weak regularity
assumptions on the “weight” q (like q continuous and locally of bounded varia-
tion) are enough to guarantee the global continuability of the solutions for the
associated Cauchy problems and this allows to apply shooting type techniques.
A particular type of equation (1.3) is given by

(1.5) ẍ+ q(t)x2n−1 = 0,

which has deserved much attention for the rich dynamics exhibited by its solu-
tions. After the work of Laederich and Levi [30] (see also [33], [34], for further
progress in that direction) it is known that for q( · ) positive, periodic and suffi-
ciently smooth (e.g., at least of class C5, according to [33]), all the solutions of
(1.5) are bounded, there are infinitely many periodic solutions (harmonics and
subharmonics of each order) and most of the solutions with large amplitude are
quasiperiodic. The same kind of result holds for suitable perturbations of (1.5),
as well as for (1.1) with f smooth enough in both variables and having a polyno-
mial growth in x (see, e.g., [33], [34]). On the other hand, it was proved in [19],
that the sole continuity of q is not sufficient even for the global continuability of
all the solutions.
It seems that Waltman [47] was the first who considered a changing sign

weight for the study of the oscillatory solutions for a superlinear equation of the
form (1.5). Observe that here the global continuability of the solutions is no
more guaranteed (independently of the degree of regularity of q). In fact, one
can see, according to Burton and Grimmer [11], that some solutions will blow
up in the intervals of negativity for q(t). Hence, in this situation, the problem
of absence of a priori bounds is accompanied by the technical difficulty due to
the noncontinuability of some solutions. This makes the phase-plane analysis
somehow more delicate. A study of the topological properties of the set of initial
points from which depart globally defined solutions of (1.3) was initiated by
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Butler in [12], [13]. A condition for the stability of the origin for a perturbed
form of (1.5) with q continuous, periodic and changing sign, has been recently
obtained by Liu in [35].

In 1976, G. J. Butler [12], proved the existence of infinitely many periodic
solutions for equation (1.3) in a situation for which the weight function q(t)
may change sign. Butler’s argument, which is an ingenious blend of the rapid
oscillatory properties of the large solutions when q > 0 with the properties of
the set of initial points of the continuable solutions when q < 0, seems to be
“flexible” enough to be adapted to other boundary value problems.

In 1991, L. Lassoued [31] using a variational approach, obtained the existence
of one non-constant T -periodic solution for the system of differential equations
ẍ+ q(t)G′(x) = 0, assuming G : RN → R a superquadratic convex homogeneous
function of class C2 and q ∈ L1([0, T ],R) a T -periodic function which changes
sign. In the case of G even, also the existence of infinitely many solutions was
proved. Various investigations along this or related directions were then per-
formed, in particular, with respect to the existence and multiplicity of solutions
for Dirichlet, Neumann or mixed boundary value problems associated to elliptic
equations [2]–[5], [7]–[10], [29], [32], [42] or to the existence and multiplicity of
periodic solutions for Hamiltonian systems [6], [8], [12], [26], [27]. Most of the
above quoted results apply to situations (like PDEs or systems) which are widely
more general than (1.3) on the other hand, the assumptions involved therein on
the nonlinearity require either symmetry conditions or a growth at infinity which
is quite close to a power. Moreover, except for the case of the existence of pos-
itive solutions, the results obtained up to now, seem to be not very complete
with respect to the nodal properties of the solutions.

In a recent article [46], S. Terracini and G. Verzini, dealing with the scalar
equation

ẍ+ q(t)x3 = 0,

obtained a very sharp result for the two-point boundary value problem, prov-
ing the existence of solutions with precise nodal properties in the intervals of
positivity of q(t) and with exactly one zero in the intervals of negativity of q.
Similar conclusions are derived for the periodic problem and for the existence of
bounded non-periodic oscillatory solutions defined on the whole real line. The
Nehari method employed in [46], works also adding a perturbation of the form
m(t)x+ h(t) and for more general nonlinearities of power-like growth.

In this paper, following some lines inspired by the Butler approach [12], we
prove, like in [46], that the two-point boundary value problem for equation (1.3)
has solutions with precise number of zeros in each interval of positivity of q
and, moreover, for each interval of negativity, we can fix a priori if the solution
will have exactly one zero being also strictly monotone or will have no zeros
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and exactly one zero of the derivative. As in [12], we combine the oscillatory
properties of the solutions with the noncontinuability. Indeed, the condition of
superlinear growth at infinity produces a strong oscillatory behaviour of the large
solutions in the intervals of positivity for q(t) (see [18], [28], [36]). In the proof,
the main problem that we have to face is to “connect” a solution of (1.3) having
a certain number n1 of zeros in an interval ]a, b[, where q > 0, to a solution with
a possibly different number n2 of zeros in another interval of positivity ]c, d[, by
passing through the intermediate interval ]b, c[ where q < 0. This program is
achieved by finding a continuum Γ in the phase-plane such that all the solutions
departing from Γ at the time t = a will be continuable till to t = d and have n1
zeros in ]a, b[ and n2 zeros in ]c, d[. We can also prescribe that either the solution
or its derivative, will vanish exactly once in ]b, c[. A repetition of this argument
yields the conclusion.
The class of the functions g(x) to which our result can be applied is of the

same kind as that considered by Butler in [12], [13], namely, it contains all the
monotone locally Lipschitz functions g : R→ R satisfying (1.4) and such that

(1.6)
∣∣∣∣ ∫ ±∞ ds√

G(s)

∣∣∣∣ <∞,
where

G(x) =
∫ x
0
g(s) ds.

Indeed, our class of functions (like Butler’s one) is much larger as it contains non-
monotone functions, hence, the potential G need not be convex. For example,
any locally Lipschitz function g : R → R, with g(s)s > 0 for s 6= 0, and such
that

∃k > 0, α > 2 : |g(s)| ≥ k|s| logα(1 + |s|) for |s| � 1,
is suitable for our results. A more precise discussion about the hypotheses that
we need to assume on g(x) is given at the end of Section 2 and in the Appendix.
As an example of a result that we can obtain, let us consider the following
consequence of Theorem 1 in Section 4.

Corollary 1. Let g : R → R be a locally Lipschitz continuous function
with g(0) = 0 and g(s)s > 0 for s 6= 0. Suppose that g is monotone increasing in
a neighbourhood of infinity and let (1.4) and (1.6) hold. Let q : [0, ω] → R be a
continuous and piecewise monotone function with a finite number of zeros such
that

[0, ω] =
( k+1⋃
i=1

I+i

)
∪
( k⋃
i=1

I−i

)
∪ J,

where we assume that J = [0, ω] \ ((
⋃k+1
i=1 I

+
i ) ∪ g(

⋃k
i=1 I

−
i )) and that

I+1 , I
−
1 , . . . , I

+
k , I

−
k , I

+
k+1
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are 2k+1 consecutive adjacent nondegenerate closed intervals, with q ≥ 0 on I+i
and q ≤ 0 on I−i and on J (J = ∅ is not excluded). Then, there are k+1 positive
integers n∗1, . . . , n

∗
k+1 such that for each (k + 1)-uple n := (n1, . . . , nk+1), with

ni > n∗i , and each k-uple δ := (δ1, . . . , δk), with δi ∈ {0, 1}, there are at least
two solutions x+n,δ( · ) and x

−
n,δ( · ) of (1.3), such that x

±
n,δ(0) = x

±
n,δ(ω) = 0 and

(1) ẋ−n,δ(0) < 0 < ẋ+n,δ(0),
(2) x±n,δ( · ) has exactly ni zeros in I

+
i , exactly δi zeros in I

−
i and exactly

1− δi zeros of the derivative in I−i ,
(3) neither x±n,δ( · ), nor ẋ

±
n,δ( · ), may vanish in J \ {0, ω},

(4) for each i, |x±n,δ(t)|+ |ẋ
±
n,δ(t)| → ∞, as ni →∞, uniformly in t ∈ I

+
i .

As we have remarked above, more general assumptions on g are allowed.
More precisely, we are able to obtain our result by assuming only conditions on
the time-mappings associated to the autonomous equations

ẍ+ g(x) = 0, ẍ− g(x) = 0,

which, roughly speaking, describe the dynamic behaviour of equations (1.3) in
the intervals where q(t) > 0 or q(t) < 0, respectively. A precise definition of these
conditions, which are called (g+2 ) and (g

−
2 ) respectively, is given in Section 2;

intuitively they mean that the time to run along the orbits tends to zero as we
consider orbits which are far and far from the origin.
All the results that we obtain for equation (1.3), could be given for an equa-

tion of the form (1.1) under suitable assumptions on f like those in [12]. As an
example, we could deal with

f(t, x) = q+(t)f1(x) + q−(t)f2(x),

with fi(s)s > 0 for s 6= 0 and f1 and f2 satisfying (g+2 ) and (g
−
2 ), respectively.

Similar kind of nonlinearities, with f1(s) = sα and f2(s) = sβ , have been recently
considered in [4] for the study of positive solutions of an elliptic problem.
With respect to the weight function q(t), we observe that the assumption

of piecewise monotonicity can be removed at some extent. We also point out
that, using our approach, it is easy to deal with the case in which there are some
intervals where q ≡ 0. More details about the meaning of the assumptions for q
are given in Section 2 (see also [41], where a similar kind of weights is considered
with respect to a Floquet type BVP). Concerning g(x), we note that, by the
use of mollifiers and proving the fact that the solutions of (1.3) with fixed nodal
properties will be subjected to a priori bounds which are uniform with respect to
perturbations of g which are small in the compact-open topology, it is possible
to check that the condition of local lipschitzianity for g can be dropped and
the continuity of g (paired by an upper bound for g(x)/x in a neighbourhood of
zero) is enough to prove all our results. However, in order to make our arguments
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more transparent, we have preferred not to pursue a detailed investigation in this
direction and we have assumed the local Lipschitz condition in order to have the
uniqueness of the solutions for the Cauchy problems.

Further results are then given in Section 6 for the Sturm–Liouville boundary
conditions. There we also show how it is possible to obtain nodal singular so-
lutions, that is solutions which blow up in some fixed interval of negativity I−j
and have prescribed oscillatory properties in the I+i for i ≤ j. Clearly, the same
kind of results can be obtained for radially symmetric solutions of the equation
∆u+ q(|x|)g(u) = 0 in an annular domain.
In Section 5, we consider the case in which q : R → R and q(t) ≤ 0 for

t in a neighbourhood ]−∞, a[ ∪ ]b,∞[, of infinity and q changes sign on [a, b].
Then, combining our approach for the proof of Theorem 1 with a Ważewski type
argument considered by C. Conley in [20], we obtain the existence of solutions
x(t) which are asymptotic to zero as t → ±∞ and have given nodal properties
in the interval [a, b] like in the above Corollary 1. Recent results in this direction
for Hamiltonian systems having a superlinear growth at infinity and a weight
function possibly changing sign, can be found in [14], [22], [25].

As a last consideration, we observe that an iteration of our main argument for
the two-point boundary value problem indicates the existence of solutions having
a kind of “chaotic” behaviour, when q(t) is defined on R+ and the intervals of
positivity and negativity of q interchange indefinitely. For example, the following
result could be obtained by an inductive reasoning along the proof of Theorem 1:

Assume that g : R → R is like in Corollary 1 and let q : [0,∞[ → R be a
continuous piecewise monotone and ω-periodic function such that q(0) = q(σ) =
q(ω) = 0 for some σ ∈ ]0, ω[, and such that q > 0 in ]0, σ[ and q < 0 in ]σ, ω[.
Then, there is a positive integer n∗, such that for any integer N∗ ≥ n∗, and
having chosen arbitrarily a sequence (nj)j, and sequence (δj)j, such that

n∗ ≤ nj ≤ N∗ and δj ∈ {0, 1} for all j = 1, 2, . . . ,

there are at least two solutions u( · ) and v( · ) to equation (1.3), such that u(0) =
v(0) = 0, u̇(0) > 0 > v̇(0) and u( · ), v( · ), have exactly nj zeros in the intervals
](j − 1)ω, (j − 1)ω + σ[ and exactly δj zeros and 1− δj zeros of the derivative in
the intervals [(j − 1)ω + σ, jω].

By construction, the sets {u̇(0)} ⊂ ]0,∞[, and {v̇(0)} ⊂ ]−∞, 0[, for u( · )
and v( · ) as above, have the power of the continuum and possess a Cantor-like
structure. We thank professors Rafael Ortega and Zhong Li, who called our
attention on this possible development of our approach. More general results in
this direction will be given elsewhere [15].
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2. Basic setting

Consider the second order equation

(2.1) ẍ+ q(t)g(x) = 0.

Throughout the paper the following conditions are assumed:

(g1) g : R→ R is locally Lipschitz continuous, g(x)x > 0 for x 6= 0, and such
that

lim
s→±∞

|g(s)| =∞.

We define

G(s) =
∫ s
0
g(ξ) dξ.

Observe that G : R → R is strictly increasing on [0,∞[ and strictly decreasing
on ]−∞, 0] and also G(±∞) = ∞. Hence there are a right and a left inverse,
denoted, respectively, by G−1+ : [0,∞[→ [0,∞[ and G−1− : [0,∞[→ ]−∞, 0].
With respect to the “weight” function q(t), we assume that it is continuously

defined on a interval and the following convention is used:

(q1) If I ⊂ dom(q) is any interval such that q(t) ≥ 0, for all t ∈ I and
q 6≡ 0 on I, then q is locally of bounded variation in I and the set where
q(t) > 0 is the union of a finite number of open intervals. Moreover, if
[a, b] ⊂ I is such that q(a) = 0 (or q(b) = 0) and q(t) > 0 for all t ∈ ]a, b[,
then q is monotone in a right neighbourhood of a (or, respectively, in a
left neighbourhood of b).

The hypothesis (q1) is taken from [13], [19] in order to guarantee the con-
tinuability of the solutions to the initial value problems for (2.1) in the intervals
where q is nonnegative.
Associated to (2.1), the following autonomous equations

(2.2) ẍ+ g(x) = 0

and

(2.3) ẍ− g(x) = 0

are considered. In the corresponding phase-plane (x, ẋ), equation (2.2) describes
a global center around the origin. In fact, the level lines

1
2
y2 +G(x) = c > 0,

correspond to the (non-trivial) orbits and these orbits are periodic with minimal
period

τ+(c) :=
√
2
∫ G−1+ (c)
G−1− (c)

1√
c−G(s)

ds.
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On the other hand, equation (2.3), describes a saddle-like structure in the plane.
In fact the union of the origin with its stable and unstable manifolds coincides
with the set y2 = 2G(x), so that the level lines

1
2
y2 −G(x) = c 6= 0,

correspond to the orbits crossing the positive and the negative axes at the points
(0,±
√
2c) and (G−1± (−c), 0), according to the fact that c > 0 or c < 0. The time

to run along these orbits is given by the following integrals: the number

1√
2

∫ ∞
−∞

1√
c+G(s)

ds if c > 0,

represents the time for each of the two orbits passing through (0,±
√
2c) and

contained in the upper half-plane y > 0 and in the lower half-plane y < 0,
respectively. The number

√
2
∫ ∞
G−1+ (−c)

1√
c+G(s)

ds if c < 0

is the time for the orbit passing through (G−1+ (−c), 0) and contained in the right
half-plane x > 0, while

√
2
∫ G−1− (−c)
−∞

1√
c+G(s)

ds if c < 0

is the time for the orbit passing through (G−1− (−c), 0) and contained in the left
half-plane x < 0. If we set

τ−(c) :=
√
2
∫ ∞
−∞

1√
c+G(s)

ds for c > 0

and

τ−(c) :=
√
2
∫ G−1− (−c)
−∞

1√
c+G(s)

ds

+
√
2
∫ ∞
G−1+ (−c)

1√
c+G(s)

ds for c < 0,

we have that τ±(c) represents the whole time of moving along the level lines

1
2
y2 ±G(x) = c 6= 0.

In the main result of the paper, we shall assume the condition (g2) := (g+2 )∧
(g−2 ), where

(g+2 ) limc→∞ τ+(c) = 0,
(g−2 ) limc→±∞ τ−(c) = 0.
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Hypothesis (g2) is a weak condition of superlinear growth of g at infinity. For
instance, it is satisfied when lim inf |s|→∞ g(s)/s logα s > 0, for some α > 2. A
brief discussion about some (more general) possible assumptions on g and G
yielding to (g2) is given in the Appendix.

3. Technical lemmas

Consider the second order equation

(3.1) ẍ+ q(t)g(x) = 0,

with g : R→ R and q : [0, ω]→ R continuous and such that (g1) and (q1) hold.
We are interested in the search of solutions of (3.1) satisfying the two-point
boundary condition

(3.2) x(0) = x(ω) = 0.

The unique solution z(t) = (x(t), ẋ(t)) of

(3.3)

{
ẋ = y,

ẏ = −q(t)g(x),

with z(t0) = p = (p1, p2) will be denoted by z( · ; t0, p). For simplicity, we also
introduce the following notation: R+ and R+0 are respectively the sets of non-
negative and positive real numbers. Moreover, we set H+ := {(x, y) ∈ R2 : x >
0} ∪ {(0, y) ∈ R2 : y > 0} and H− := −H+. A path is a continuous one-to-one
map (simple curve) from an interval to R2. When no confusion occurs, we speak
at the same time of a path γ : I → R2 and its image Γ = γ(I) ⊂ R2. The
positive open quadrant (R+0 )2 is denoted by A1. The other open quadrants of
the plane (axes excluded), counted after A1 in the counterclockwise sense, are
A2, A3, A4, respectively. B(R) and B[R] are, respectively, the open and the
closed disk centered at the origin and with radius R, in the plane.
The uniqueness of the solution z(t) ≡ 0 implies that the number

rot[a,b](p) :=
∫ b
a

q(t)g(x(t; a, p))x(t; a, p) + ẋ2(t; a, p)
x2(t; a, p) + ẋ2(t; a, p)

dt

is well defined for every p 6= 0 and represents the angle spanned by the vector
z(t; a, p) measured in clockwise sense as t increases from a to b.

Lemma 1. Let [b, c] ⊂ [0, ω] be such that

q ≤ 0 and q 6≡ 0 on [b, c].

Consider a half-line

Γ := {p ∈ R2 : p = sv, s ≥ 0},
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where v is a fixed unit vector of the plane. Assume that (g−2 ) is satisfied. Then,
there are four positive constants: Kb ≤ Lb and Kc ≤ Lc such that the following
holds:

• for each k ∈ ]0,Kb[, the solution x( · ; b, kv) is defined on [b, c] and

lim
k→Kb

|x(c; b, kv)| = lim
k→Kb

|ẋ(c; b, kv)| =∞,

• for each k ≥ Lb, the solution x( · ; b, kv) is not defined on [b, c],
• for each k ∈ ]0,Kc[, the solution x( · ; c, kv) is defined on [b, c] and

lim
k→Kc

|x(b; c, kv)| = lim
k→Kc

|ẋ(b; c, kv)| =∞,

• for each k ≥ Lc , the solution x( · ; c, kv) is not defined on [b, c].

In the special situation when Γ is one of the half-axes, more precise informa-
tion on the solution is available. For example, denoting by ]αx, βx[ the maximal
interval of existence of the solution x( · ), we have that

• if v = (1, 0) and k > 0, then x(t; b, kv) ≥ k and ẋ(t; b, kv) > 0 for
t ∈ ]b, βx[, while x(t; c, kv) ≥ k and ẋ(t; c, kv) < 0 for t ∈ ]αx, c[,
• if v = (0, 1) and k > 0, then x(t; b, kv) > 0 and ẋ(t; b, kv) ≥ k for
t ∈ ]b, βx[, while x(t; c, kv) < 0 and ẋ(t; c, kv) ≥ k for t ∈ ]αx, c[.

The cases when v = (−1, 0) or v = (0,−1) may be treated in a similar
manner.

Proof. At first let us observe that the existence of Kb and Kc will follow
from the existence of Lb and Lc, the fact that x(t) ≡ 0 is a global solution and
the continuous dependence on the initial data.
Secondly, we can assume without loss of generality that actually q(t) 6≡ 0 in

any right neighbourhood of b and in any left neighbourhood of c. In fact, if q(t) ≡
0 on [b, b′] and on [c′, c], the Poincaré maps p 7→ z(b′; b, p) and p 7→ z(c′; c, p)
homeomorphically transforms our half line Γ in another half line, leaving the
origin fixed. This reduction implies that both b and c are accumulation points
of the set {t ∈ [b, c] : q(t) < 0}.
Let us now consider the existence of Lb: we will show the proof with all

details when Γ is given by {(u,−hu) : u > 0} for some h > 0 since this turns out
to be the most difficult case and the other ones can be proved with analogous
(or even simpler) calculations. We set x(t;u) := x(t; b, (u,−hu)) to simplify the
notation. Since x( · ;u) starts positive in b, then it is convex and its graph lies
over the line which is tangent in t = b, until it remains positive; hence we have
that

x(t;u) ≥ (−hu)(t− b) + u for all t ∈ [b, b+ 1/h]
and

x(t;u) ≥ u/2 for all t ∈ [b, b+ 1/2h],
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whenever x(t, u) is defined. Our assumptions implies that there exist an interval
[b′, c′] ⊂ ]b, b+ 1/2h[, and a constant m > 0 such that

−q(t) ≥ m for all t ∈ [b′, c′].

We will actually show that the right maximal interval of continuability of x( · ;u)
is contained in [b, b′] when u is large enough: this will obviously implies the
existence of Lb.
As a first step, we are going to find that, for all u sufficiently large, x( · ;u) has

an internal minimum whose abscissa lies in ]b, b′]. Let us argue by contradiction
and suppose that there are a sufficiently small number η > 0 (for instance η <
c′ − b′) and two sequences 0 < un →∞ and tn ∈ [b′ + η, c′] such that ẋn(t) ≤ 0
for every t ∈ [b′, tn], where xn(t) := x(t;un). Therefore we have

ẍn(t)ẋn(t) = −q(t)g(xn(t))ẋn(t) ≤ mg(xn(t))ẋn(t) for all t ∈ [b′, tn].

Integrating this inequality between t ∈ [b′, tn] and tn we obtain

ẋ2n(t) ≥ 2m[G(xn(t))−G(xn(tn))] + ẋ2n(tn) ≥ 2m[G(xn(t))−G(xn(tn))]

on [b′, tn]. Recalling that ẋ(t) ≤ 0 on [b′, tn], we have

−ẋn(t) ≥
√
2m
√
[G(xn(t))−G(xn(tn))] on [b′, tn]

and then

1 ≤ − 1√
2m

ẋn(t)√
G(xn(t))−G(xn(tn))

on [b′, tn].

A second integration between b′ and tn leads to

η < tn − b′ ≤
1√
2m

∫ xn(b′)
xn(tn)

dx√
G(x)−G(xn(tn))

≤ 1√
2m

∫ ∞
xn(tn)

dx√
G(x)−G(xn(tn))

≤ 1
2
√
m
τ−(−G(xn(tn))).

Thanks to our choices we know that xn(tn) ≥ un/2 by (3.4), so that xn(tn)→∞
as n→∞. Hence we obtain a contradiction with hypotheses (g−2 ).
Now, let t0 = t0(u) ∈ ]b, c[, be the minimum point of x( · ;u) for u sufficiently

large. Then, for such large u, we have:

(1) ẋ(t0;u) = 0 and x( · ;u) is a convex function, wherever defined in [b, c],
(2) t0(u) ≤ b′,
(3) x(t;u) ≥ x(t0;u)→∞ as u→∞, by (3.4).
Now we can show that the right interval of continuability of x( · ;u) is con-

tained in [b, b′] for every sufficiently large u. Let us argue again by contradic-
tion: let us suppose that there are a number 0 < η < c′ − b′ and two sequences
un → ∞ and tn ∈ ]b′ + η, c′[, such that xn( · ) := x( · ;un) is continuable up to
tn and t0(un) ∈ ]b, b′] for every n (this last condition can be fulfilled thanks to
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point 2 above). Then we have that ẋn(t) ≥ 0 and xn(t) ≥ xn(b′) ≥ xn(t0(un)),
as t ∈ [b′, tn]. Estimates, which are completely analogous to those carried on
above, lead to

η < tn − b′ ≤
1√
2m

∫ ∞
xn(b′)

dx√
G(x)−G(xn(b′))

≤ 1
2
√
m
τ−(−G(xn(b′)))

and this again leads to a contradiction with the assumption (g−2 ), since xn(b
′)→

∞ as n→∞.
A completely symmetric argument shows the existence of Lc. �

Lemma 2. Let [a, b] ⊂ [0, ω] be such that q ≥ 0 and q 6≡ 0 on [a, b]. Assume
that (g+2 ) is satisfied. Then |z(b; a, p)| → ∞ and rot[a,b](p) → ∞ as |p| → ∞.
Moreover, suppose that Γ1 ⊂ A and Γ2 ⊂ B are two unbounded continua, where
A and B are two (not necessarily distinct) closed quadrants of the plane; let also
R > 0 be such that

Γi ∩B[R] 6= ∅ for i = 1, 2.
Then there is n∗ = n∗R such that the following holds:

• if Γ1 and Γ2 are both in H+ or both in H−, then, for every n ≥ n∗ and
n even, there is at least one solution z( · ) of (3.3) such that

z(a) ∈ Γ1, z(b) ∈ Γ2, |z(t)| ≥ R for all t ∈ [a, b]

and x( · ) has exactly n zeros on ]a, b],
• if Γ1 ⊂ H+ and Γ2 ⊂ H− (or vice versa) then, for every n ≥ n∗ and n
odd, there is at least one solution z( · ) of (3.3) such that

z(a) ∈ Γ1, z(b) ∈ Γ2, |z(t)| ≥ R for all t ∈ [a, b]

and x( · ) has exactly n zeros on ]a, b].

This result is essentially contained in [45] for the case in which g(s)/s→∞
as s → ±∞. The treatment in the situation when the weaker condition (g+2 )
holds follows from the argument developed in [21].

Lemma 3. Assume (g2). Let a < b < c, with [a, c] ⊂ [0, ω] be such that

q ≥ 0 and q 6≡ 0 on [a, b], q ≤ 0 and q 6≡ 0 on [b, c].

Then there is a constant R∗ (depending only on g and q|[b,c]) such that the fol-
lowing holds: for each R > 0, there is n∗ = n∗R > 0 such that, for each n > n∗,
and for each path γ : [α, β[→ A1 (respectively, γ : [α, β[→ A3), with

|γ(α)| ≤ R and |γ(s)| → ∞ as s→ β−,

there is an interval ]αn, βn] ⊂ ]α, β[, such that for each s ∈ ]αn, βn] we have:

• z(t; a, γ(s)) is defined for all t ∈ [a, c],



Superlinear Indefinite Problems 215

• x( · ; a, γ(s)) has exactly n zeros in ]a, b[, no zeros in [b, c] and exactly
one change of sign of the derivative in ]b, c[.

Moreover, setting γn(s) := z(c; a, γ(s)) for all s ∈ ]αn, βn], we have that

|γn(βn)| ≤ R∗ and |γn(s)| → ∞ as s→ α+n

and γn lies in A1 or in A3 according to the fact that n is even or odd (respectively,
γn lies in A3 or in A1 according to the fact that n is even or odd).

Proof. Applying Lemma 1 on [b, c] with v = (0,±1) and v = (±1, 0), we
find that there is R∗ > 0 such that for every p ∈ ({0} × R) ∪ (R × {0}), with
|p| ≥ R∗, the solutions z( · ; b, p) and z( · ; c, p) are not continuable on the whole
[b, c]. Moreover, let

R′ := max{|ξ| : |z(b; a, ξ)| ≤ R∗},

which is finite since q ≥ 0 on [a, b] and then we have the global continuability of
initial value problems for our equation. For every R > 0 we set

n∗ = n∗R :=
⌈
sup{rot[a,b](p) : 0 < |p| ≤ max{R,R′}}

π

⌉
.

Note that g(s)/s is bounded in a neighbourhood of zero and hence n∗R is well
defined.

Let us consider a curve γ : [α, β[→ A1 such that

|γ(α)| ≤ R and lim
s→β−

|γ(s)| =∞.

Without loss of generality we may assume also that γ(s) 6= (0, 0) for every
s ∈ [α, β[. By Lemma 2 we can find two continuous functions ρ : [α, β[ → R+0
and θ : [α, β[→ R such that

(1) z(b; a, γ(s)) = (ρ(s) cos θ(s), ρ(s) sin θ(s)) for all s ∈ [α, β[,
(2) lims→β− ρ(s) =∞ and lims→β− θ(s) = −∞,
(3) θ(s) + rot[a,b](γ(s)) ∈ [0, π/2] for all s ∈ [α, β[.

(Condition (3) can be achieved since θ is uniquely determined up to multiples of
2π.) Then, for every n > n∗, let α′, β′ ∈ [α, β[, be such that θ(α′) = −(n−1/2)π,
θ(β′) = −(n+1/2)π and −(n+1/2)π < θ(s) < −(n−1/2)π for every s ∈ ]α′, β′[.
We have that x( · ; a, γ(s)) has exactly n zeros in ]a, b[, for all s ∈ ]α′, β′].
We suppose for definiteness that n is even: then z(b; a, γ(s)) ∈ R+0 × R as

s ranges in ]α′, β′[; the other case can be treated in a completely symmetric
way. We remark that z( · ; a, γ(α′)), z( · ; a, γ(β′)) are not continuable on the
whole [a, c] since z(b; a, γ(α′)), z(b; a, γ(β′)) ∈ {0} × R, |z(b; a, γ(α′))| ≥ R∗ and
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|z(b; a, γ(β′))| ≥ R∗, by the definition of n∗; therefore, it can be deduced, by a
simple analysis of equation (3.1), that there are t1, t2 ∈ ]b, c] such that

lim
t→t−1

x(t; a, γ(α′)) = lim
t→t−1

ẋ(t; a, γ(α′)) =∞

and

lim
t→t−2

x(t; a, γ(β′)) = lim
t→t−2

ẋ(t; a, γ(β′)) = −∞.

Let

β′′ := inf{s ∈ ]α′, β′[ : x(t; a, γ(s)) < 0 for some t ∈ ]b, c]}.

In the definition of β′′ we do not care if x( · ; a, γ(s)) is not continuable up to c:
we simply ask that it is negative somewhere in the part of its interval of con-
tinuability which lies to the right of b. Of course we have α′ < β′′ < β′.
Now we show that x( · ; a, γ(β′′)) is actually continuable up to c and is nonneg-

ative and decreasing on [b, c], with x(c; a, γ(β′′)) = 0 and ẋ(c; a, γ(β′′)) < 0. From
the continuous dependence on the initial data we deduce that x(t; a, γ(β′′)) ≥ 0
for every t ∈ [b, c], wherever it is defined. Moreover, if x(t; a, γ(s)) < 0 for
some t ∈ ]b, c] and s ∈ ]α′, β′[, then x( · ; a, γ(s)) has a zero in ]b, c[, since
x(b; a, γ(s)) > 0 for every s ∈ ]α′, β′[. On the other hand, every solution of
(3.1) on [b, c] is convex, wherever it is positive, and concave elsewhere; this im-
plies that every solution x of (3.1) may have at most one zero and, if this is
the case, x is strictly monotone decreasing. Thus x( · ; a, γ(β′′)) is decreasing
since it is limit of decreasing functions by the continuous dependence on the ini-
tial data. Together with the nonnegativity, the decreasing monotonicity implies
that x( · ; a, γ(β′′)) is continuable on [a, c]. Finally, if x(c; a, γ(β′′)) were posi-
tive, we should have, again by the continuous dependence on the initial data,
that x(t; a, γ(s)) > 0 for every t ∈ [b, c] and every s in a neighbourhood of
β′′, and the definition of β′′ should be violated. Moreover, we obtain also that
ẋ(c; a, γ(β′′)) < 0 by the uniqueness of the trivial solution. In particular we can
deduce that all the solutions x( · ; a, γ(s)) are positive (and then convex) on [b, c [
(where defined) for all s ∈ [α′, β′′].
Now let

αn := inf{σ ∈ ]α′, β′′] : z( · ; a, γ(s)) is continuable on [a, c], for all s ∈ [σ, β′′]},

thus α′ ≤ αn < β′′,

lim
s→α+n

x(c; a, γ(s)) = lim
s→α+n

ẋ(c; a, γ(s)) =∞

and x( · ; a, γ(s)) is continuable on [a, c] for all s ∈ ]αn, β′′]. Since we have
ẋ(c; a, γ(β′′)) < 0, there is βn ∈ ]αn, β′′[, such that ẋ(c; a, γ(βn)) = 0 and
ẋ(c; a, γ(s)) > 0 for all s ∈ ]αn, βn[. As a consequence of this construction,
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ẋ( · ; a, γ(s)) must change sign exactly once in ]b, c[ and, by the convexity, the
zero set of ẋ( · ) is either a point or a closed subinterval of ]b, c[.
If we set γn(s) := z(c; a, γ(s)) as s ranges in ]αn, βn], then |γn(s)| → ∞

as s → α+n and |γn(βn)| < R∗, since, by construction, γn(βn) ∈ R × {0} and
z( · ; c, γn(βn)) is continuable on [b, c].
An analogous argument can be used in the case γ : [α, β[→ A3. �

It is clear that ẋ has exactly one zero in ]b, c[, if q(t) does not vanish identically
on any subinterval of ]b, c[.
A completely symmetric result is the following.

Lemma 4. Assume (g2). Let a < b < c, with [a, c] ⊂ [0, ω] be such that

q ≥ 0 and q 6≡ 0 on [a, b], q ≤ 0 and q 6≡ 0 on [b, c].

Then there is a constant R∗ (depending only on g and q|[b,c]) such that the fol-
lowing holds: for each R > 0, there is n∗ = n∗R > 0 such that, for each n > n∗,
and for each path γ : [α, β[→ A1 (respectively, γ : [α, β[→ A3), with

|γ(α)| ≤ R and |γ(s)| → ∞ as s→ β−,

there is an interval [αn, βn[ ⊂ ]α, β[, such that for each s ∈ [αn, βn[, we have:

• z(t; a, γ(s)) is defined for all t ∈ [a, c],
• x( · ; a, γ(s)) has exactly n zeros in ]a, b[, exactly one zero in ]b, c[ and
no zeros of the derivative in [b, c].

Moreover, setting γn(s) := z(c; a, γ(s)) for all s ∈ [αn, βn[, we have that

|γn(αn)| ≤ R∗ and |γn(s)| → ∞ as s→ β−n

and γn lies in A3 or in A1 according to the fact that n is even or odd (respectively,
γn lies in A1 or in A3 according to the fact that n is even or odd).

Proof. We describe only the main changes to be performed on the proof
of Lemma 3 in order to obtain Lemma 4. The first part of the proof can be left
unchanged until it is remarked that there are t1, t2 ∈ ]b, c] such that

lim
t→t−1

x(t; a, γ(α′)) = lim
t→t−1

ẋ(t; a, γ(α′)) =∞

and

lim
t→t−2

x(t; a, γ(β′)) = lim
t→t−2

ẋ(t; a, γ(β′)) = −∞.

At this point we set

αn := sup{s ∈ ]α′, β′[ : x(t; a, γ(s)) > 0 for all t ∈ ]b, c] where it is defined},

hence α′ < αn < β′.
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Now it is possible to show by the same kind of argument that x( · ; a, γ(αn))
is actually continuable up to c and on [b, c] is nonnegative and decreasing, with
x(c; a, γ(αn)) = 0 and ẋ(c; a, γ(αn)) < 0. In particular we deduce that all the
solutions x( · ; a, γ(s)) are strictly decreasing (hence their derivatives have no
zeroes) and with exactly one zeroes on ]b, c] for all s ∈ [αn, β′]. Now let

βn := sup{σ ∈ ]αn, β′] : z( · ; a, γ(s)) is continuable on [a, c] for all s ∈ [αn, σ]},

thus αn < βn ≤ β′,

lim
s→β−n

x(c; a, γ(s)) = lim
s→β−n

ẋ(c; a, γ(s)) = −∞

and x( · ; a, γ(s)) is continuable on [a, c] for all s ∈ [αn, βn [.
If we set γn(s) := z(c; a, γ(s)) as s ranges in [αn, βn[, then |γn(s)| → ∞

as s → β−n and |γn(αn)| < R∗, since, by construction, γn(αn) ∈ {0} × R and
z( · ; c, γn(αn)) is continuable on [b, c].
An analogous argument can be used in the case γ : [α, β[→ A3. �

4. Main result

After these preliminary lemmas we are now in position to prove our result
for the two-point boundary value problem.

Theorem 1. Assume (q1), (g1) and (g2). Let k ≥ 0, be an integer. Suppose
that there are 2k + 1 consecutive adjacent nondegenerate closed intervals

I+1 , I
−
1 , . . . , I

+
k , I

−
k , I

+
k+1,

such that q ≥ 0, q 6≡ 0 on I+i and q ≤ 0, q 6≡ 0 on I
−
i . We assume also that

q ≤ 0, q 6≡ 0 on

J := [0, ω] \
(( k+1⋃

i=1

I+i

)
∪
( k⋃
i=1

I−i

))
,

if J 6= ∅. Then, there are k + 1 positive integers n∗1, . . . , n∗k+1 such that for each
(k+1)-uple n := (n1, . . . , nk+1), with ni > n∗i , and each k-uple δ := (δ1, . . . , δk),
with δi ∈ {0, 1}, there are at least two solutions x+n,δ( · ) and x

−
n,δ( · ) of (3.1)–

(3.2), such that:

(1) ẋ−n,δ(0) < 0 < ẋ+n,δ(0),
(2) x±n,δ( · ) has exactly ni zeros in I

+
i , exactly δi zeros in I

−
i and exactly

1− δi changes of sign of the derivative in I−i ,
(3) neither x±n,δ( · ) nor ẋ

±
n,δ( · ), may vanish in J \ {0, ω},

(4) for each i, |x±n,δ(t)|+ |ẋ
±
n,δ(t)| → ∞, as ni →∞, uniformly in t ∈ I

+
i .
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Note that ẋ±n,δ(ω)× ẋ
±
n,δ(0) is positive or negative according to the fact that

the total number of zeros is even or odd. This clearly allows to determine the
sign of the slopes of the solutions at t = ω.

Proof. First of all, just to fix the starting point, let us assume that

(4.1) J = ∅,

so that q ≥ 0 and q 6≡ 0 in a right neighbourhood of 0 and in a left neighbourhood
of ω. At the end of the proof, we briefly describe how to deal with the other
cases which occur when (4.1) is not satisfied. We also suppose that k ≥ 2. The
situations when k = 0 or k = 1 are just sub-cases of our proof.
According to the above positions, we can split [0, ω] as

[0, ω] = [a1, b1] ∪ [b1, c1] ∪ [a2, b2] ∪ [b2, c2] ∪ . . . ∪ [ak, bk] ∪ [bk, ck] ∪ [ak+1, bk+1],

with a1 = 0, bk+1 = ω and I+i = [ai, bi], I
−
i = [bi, ci].

Step 1. Suppose that δ1 = 0 in δ. In this case we use Lemma 3 which
ensures the existence of a constant R∗1 > 0 and a positive integer n

∗
1 , such that

the following holds with respect to the curve

γ : [0,∞[→ A1 with γ(s) = (0, s)

(here, the choice of R is arbitrary). Fix any n1 > n∗1 . Then, there is an interval]
α(n1,δ1), β(n1,δ1)

]
⊂ ]0,∞[, such that for each s ∈

]
α(n1,δ1), β(n1,δ1)

]
, we have:

• z(t; a1, γ(s)) is defined for all t ∈ [a1, c1],
• x( · ; a1, γ(s)) has exactly n1 zeros in ]a1, b1[, no zeros in [b1, c1] and
exactly one change of sign of the derivative in ]b1, c1[.

Moreover, setting

γ(n1,δ1)(s) := z(c1; a1, γ(s)) for all s ∈
]
α(n1,δ1), β(n1,δ1)

]
,

we have that

|γ(n1,δ1)(β(n1,δ1))| ≤ R
∗
1, and |γ(n1,δ1)(s)| → ∞, as s→ α+(n1,δ1)

and γ(n1,δ1) lies in A1 or in A3 according to the fact that n1 is even or odd.
On the other hand, if δ1 = 1 in δ, we use Lemma 4 and obtain a completely

similar result, but with

• x( · ; a1, γ(s)) has exactly n1 zeros in ]a1, b1[, exactly one zero in ]b1, c1[,
and no zeros of the derivative in [b1, c1]

and γ(n1,δ1) lies in A3 or in A1 according to the fact that n1 is even or odd.
Step 2. We repeat now inductively this kind of argument. Without loss of

generality, we suppose that γn1 lies in A1. The proof is completely symmetric if
γn1 lies in A3.
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Suppose again that δ2 = 0 in δ. We use again Lemma 3 which ensures the
existence of a constant R∗2 > 0 and a positive integer n

∗
2 , depending on R

∗
1, but

not depending on n1, such that the following holds with respect to the curve
γn1 : ]αn1 , βn1 ]→ A1.
Fix an arbitrary n2 > n∗2. Then, there is an interval[

α((n1,n2),(δ1,δ2)), β((n1,n2),(δ1,δ2))
[
⊂
]
α(n1,δ1), β(n1,δ1)

]
,

such that for each s ∈
[
α((n1,n2),(δ1,δ2)), β((n1,n2),(δ1,δ2))

[
we have:

• z(t; a1, γ(s)) is defined for all t ∈ [a1, c2],
• x( · ; a1, γ(s)) has exactly n2 zeros in ]a2, b2[, no zeros in [b2, c2] and
exactly one change of sign of the derivative in ]b2, c2[.

Moreover, setting

γ((n1,n2),(δ1,δ2))(s) := z(c2; a1, γ(s))

for all s ∈
[
α((n1,n2),(δ1,δ2)), β((n1,n2),(δ1,δ2))

[
, we have that

|γ((n1,n2),(δ1,δ2))(α((n1,n2),(δ1,δ2)))| ≤ R
∗
2,

and

|γ((n1,n2),(δ1,δ2))(s)| → ∞ as s→ β−((n1,n2),(δ1,δ2))

and γ((n1,n2),(δ1,δ2)) lies in A1 or in A3 according to the fact that n2 is even or
odd.
On the other hand, if δ2 = 1 in δ, we use Lemma 4 and obtain a completely

similar result, but with

• x( · ; a1, γ(s)) has exactly n2 zeros in ]a2, b2[, exactly one zero in ]b2, c2[,
and no zeros of the derivative in [b2, c2]

and γ((n1,n2),(δ1,δ2)) lies in A3 or in A1 according to the fact that n2 is even or
odd.
As remarked above, it is clear that the same argument works if γ(n1,δ1) lies in

A3. Actually, we could now summarize all the different possibilities as follows:
γ((n1,n2),(δ1,δ2)) lies in A1 or in A3 according to the fact that n1 + n2 + δ1 + δ2,
that is, the total number of zeros in ]a1, c2] is even or odd.
Step 3. Repeating this argument k-times, we find an unbounded continuum

Γ∗ which is the image of a continuous curve

h := γ((n1,...,nk),δ)

defined on a suitable half-open bounded interval I ⊂
]
α(n1,δ1), β(n1,δ1)

]
such that

Γ∗ ∩B[R∗k] 6= ∅ and
Γ∗ ⊂ A1 or Γ∗ ⊂ A3

according to the fact that
∑k
i=1(ni + δi) is even or odd.
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We have that for each s ∈ I the solution x( · ; a1, γ(s)) is defined on [a1, ck]
and, for each i = 1, . . . , k, it possesses exactly ni zeros on ]ai, bi[, exactly δi
zeros in [bi, ci] and exactly 1− δi changes of sign of the derivative in [bi, ci]. By
construction, we notice that the curve h : I → Γ∗ is a homeomorphism and the
numbers ni (for i = 1, . . . , k) may be chosen independently one from each other,
depending only on the choice of n∗i which, in turn, depend on R

∗
i−1 and R

∗
i .

Step 4. At this point, we can use Lemma 2 with Γ1 = Γ∗, while Γ2 will be the
positive or the negative ẋ-axis in the phase-plane, according that we look for an
even or an odd number of zeros in ]ak+1, bk+1]. Lemma 2 guarantees that there
is n∗k+1 depending only on R

∗
k and the behaviour of g and q|[ak+1,bk+1] such that

for each nk+1 > n∗k+1 there is at least one point p ∈ Γ∗ such that the solution
z( · ; ak+1, p) of (3.3) is defined on [ak+1, bk+1], satisfies

x(bk+1; ak+1, p) = 0

and x( · ; ak+1, p) has exactly nk+1 zeros in ]ak+1, bk+1[. Moreover, we have
that z(bk+1; ak+1, p) and p ∈ Γ∗ belong to the same quadrant or to opposite
quadrants, according to the fact that nk+1 is even or is odd. More precisely, this
means that if Γ∗ ⊂ A1 (respectively, if Γ∗ ⊂ A3) then ẋ(bk+1; ak+1, p) > 0 if and
only if nk+1 is odd (respectively, if and only if nk+1 is even).
In conclusion, we can take

s∗ = h−1(p)

and have that the solution x( · ; a1, (0, s∗)) is defined on [a1, bk+1] = [0, ω] it has
precisely ni zeros in the interior of the I+i intervals, for each i = 1, . . . , k+1 and
also it has exactly δi zeros and 1 − δi changes of sign of the derivative in the
interior of the I−i intervals. By definition, ẋ(0; a1, (0, s

∗)) = s∗ > 0, so that we
see that the solution starts with positive slope. Clearly, a completely symmetric
argument yields a second solution with the same nodal properties and starting
with negative slope. Thus, the main part of the proof is concluded.
Step 5. We briefly discuss now how to proceed in the case that k = 0 or

k = 1.
In the former situation we have that q ≥ 0 and q 6≡ 0, for each t ∈ [0, ω].

This is a slight variant of the “classical” case in which q( · ) does not change
sign (see, e.g. [45]). To prove the result, (which is essentially already contained
in Lemma 2) it will be sufficient to argue like in Step 4 and obtain a solution
having a “large” number of zeros and connecting the positive (respectively, the
negative) ẋ-axis to the ẋ-axis.
If k = 1, it will be sufficient to jump directly from the Step 1 to the Step 4,

avoiding the intermediate steps.
Step 6. It remains to discuss the case in which J 6= ∅.
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In this situation, let us consider at first the possibility that J = [0, a1[. If this
happens, using Lemma 1 with v = (0, 1), we find an interval [0,K[ (for K = K0)
and a continuous one-to-one map σ : [0,K[ → A1 such that σ(0) = (0, 0) and
|σ(s)| → ∞ as s → K−. Such a map is defined by σ(s) = z(a1; 0, (0, s)). By
definition, σ(s) lies in the interior of the first quadrant for s > 0. Now, we can
repeat exactly the same argument in Step 1, replacing γ with σ. At the end of
Step 4, we’ll find a point

s∗ = h−1(p) ∈ ]0,K[

and have that the solution x( · ; 0, (0, s∗)) is defined on [0, bk+1] = [0, ω] it has
precisely ni zeros in the interior of the I+i intervals, for each i = 1, . . . , k+1 and
also it has exactly δi zeros and 1 − δi changes of sign of the derivative in the
interior of the I−i intervals and there are no zeros of x or ẋ in ]0, a1].

If J ⊃ ]bk+1, ω], we proceed without changes from Steps 1 to 3 (taking
also into account the first part of Step 6, if J contains also points in a right
neighbourhood of 0). Then, we use Lemma 1 and find two intervals [0,K ′[ and
]−K ′′, 0] (K ′ and K ′′ are given by Kb when we apply the lemma to [b, c] =
[bk+1, ω] and with v = (0, 1) and v = (0,−1), respectively) such that their
image under the map (0, s) 7→ z(bk+1;ω, (0, s)) is the union of two unbounded
paths S+ and S− passing through (0, 0) and contained in the second and in
the fourth quadrant, respectively. At this moment, we can repeat the same
argument of Step 4, but replacing the ẋ-axis, with S+ ∪ S−. Hence, we find a
point s∗ = h−1(p) and have that the solution x( · ; 0, (0, s∗)) is defined on [0, ω] it
has precisely ni zeros in the interior of the I+i intervals, for each i = 1, . . . , k+1
and also it has exactly δi zeros and 1− δi changes of sign of the derivative in the
interior of the I−i intervals and there are no zeros of x or ẋ in [bk+1, ω[. In this
manner, we have also checked the claim about the absence of zeros for x and ẋ
in J \ {0, ω} and therefore the proof is complete. �

5. Asymptotic solutions

In this section, we discuss the case when the function q is defined on the whole
real line and we look for conditions ensuring that there are solutions decaying at
infinity after an arbitrarily large number of oscillations. Problems of this kind
raised the interest of several authors in the recent years. Accordingly, from now
on, we assume that q, g : R → R are continuous functions satisfying (q1) and
(g1). It is also convenient to set

Q(t) :=
∫ t
0
q(s) ds.
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Lemma 5. Let us assume there is b ∈ R such that Q( · ) is strictly decreasing
on [b,∞[, with Q(∞) = −∞. Then there are two unbounded continua Γ+ ⊂ A4
and Γ− ⊂ A2, such that
(i) (0, 0) ∈ Γ+ ∩ Γ−,
(ii) for all p ∈ Γ+ ∪ Γ−, x( · ; b, p) is continuable on [b,∞[ and

lim
t→∞

x(t; b, p) = lim
t→∞

ẋ(t; b, p) = 0,

(iii) x(t; b, p) > 0 for every t ∈ [b,∞[ and p ∈ Γ+, while x(t; b, p) < 0 for
every t ∈ [b,∞[ and p ∈ Γ−.

We will use the following lemma, which is proved in [43].

Lemma 6. Let D = {(x, y) ∈ R2 : x2 + y2 ≤ 1,−1 < x < 1}, P0 = (0,−1),
P1 = (0, 1), Q0 = (−1, 0) and Q1 = (1, 0) and assume that there is a set C ⊂
D◦ = {(x, y) ∈ R2 : x2 + y2 < 1} such that C ∩ D = C and every continuous
curve in D from P0 to P1 meets C. Then there is a connected set Γ ⊆ C such
that Γ ∩D = Γ and Q0, Q1 ∈ Γ.

Proof of Lemma 5. We will show only the existence of Γ+, since Γ− can
be found in a completely symmetric way.
We claim at first that if γ : [0, 1] → A4 is any continuous curve with γ(0) ∈

R+0 × {0} and γ(1) ∈ {0} × R−0 then there is s ∈ ]0, 1[, such that
(a) x( · ; b, γ(s)) is continuable on [b,∞[,
(b) x(t; b, γ(s)) > 0 for all t ∈ [b,∞[,
(c) limt→∞ x(t; b, γ(s)) = limt→∞ ẋ(t; b, γ(s)) =0.

To this aim let W := {(x, y, t) : x ≥ 0, y ≤ 0 and t ≥ b} as subset of the
extended phase space and let us remark that every solution x, whose trajectory
t 7→ (x(t), ẋ(t), t) remains in W for t ≥ b (as long as it is defined), must satisfy
(a)–(c). In fact, such an x must be nonnegative and decreasing and, therefore,
it satisfies (a) and (b) and

lim
t→∞

x(t) = ` ≥ 0 and lim
t→∞

ẋ(t) = 0.

If ` > 0, there is a constant m > 0 such that g(x(t)) ≥ m for all t ∈ [b,∞[. Then
we can evaluate

−ẋ(b) =
∫ ∞
b

ẍ(t) dt =
∫ ∞
b

[−q(t)]g(x(t)) dt ≥ m
∫ ∞
b

[−q(t)] dt,

that is q is integrable on [b,∞[, which is a contradiction. Hence x satisfies
condition (c), too, and the problem is now finding s ∈ ]0, 1[, such that the
trajectory of x( · ; b, γ(s)) remains in W .
Consider now the semiflow π : (w, s) 7→ w · s induced on the phase space

X := {(x, y, t) : t ≥ b} by the system ẋ = y, ẏ = −q(t)g(x), ṫ = 1 and define
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the sets U := {(x, 0, t) : x > 0 and t ≥ b} and V := {(0, y, t) : y < 0 and t ≥ b}
which are contained in the boundary ∂W of W , relatively to X.
If w0 = (x0, 0, t0) ∈ U , we have that w0 ·s 6∈W for 0 < s ≤ ε. In fact, if ε > 0

is small enough, we have that g(x(t0+s)) ≥ η > 0 for 0 < s ≤ ε (for a suitable η).
Hence, y(t0+s)−y(t0) = −

∫ s
0 q(t0+ξ)g(x(t0+ξ) dξ ≥ η(Q(t0)−Q(t0+s)) > 0,

as Q( · ) is strictly decreasing. Similarly, one can check that w0 · s 6∈ W for
0 < s ≤ ε, when w0 ∈ V . On the other hand, if w0 ∈ ∂W \ (U ∪ V ), then
w0 ·s ∈W for all s, since x(t0+s) = y(t0+s) = 0 for all s ≥ b− t0 and therefore,
for each point w0 of W , either w0 · s ∈W , for all s ≥ 0, or there is a first s, such
that w0 · s ∈ U ∪V . In this manner, we have proved that U ∪V is the set of exit
points for W .
The Ważewski lemma (see [20] for a similar argument) now implies that the

map φ, which sends a point (x0, y0, t0) ∈W to the first exit point from W of the
positive semitrajectory starting from (x0, y0, t0), is continuous whenever defined.
We come back now to our curve γ, recalling that γ(0) = (x0, 0), with x0 > 0

and γ(1) = (0, y0), with y0 < 0, and we evaluate φ along (γ(s), b). Clearly,
φ(γ(0), b) = (γ(0), b) ∈ U and φ(γ(1), b) = (γ(1), b) ∈ V . Assume, by contradic-
tion, that we cannot find our s ∈ ]0, 1[: then (γ(s), b) belongs to the domain of
φ for every s ∈ [0, 1] and therefore φ(γ(s), b) ∈ U ∪ V , for all s ∈ [0, 1]. Observe
also that {φ(γ(s), b) : s ∈ [0, 1]} is a connected set, since φ and γ are continuous.
But this is not possible since such connected set should be contained in U ∪ V
and intersect both U and V which are disjoint and open relatively to ∂W . Thus,
our claim is proved.
Let now Ω+ := {p ∈ A4 : x( · ; b, p) satisfies (a)–(c)}.
We wish to find a connected and unbounded component of Ω+, which con-

tains the origin, by Lemma 6. To this aim let us define

ψ(x, y) :=
(
2

x+ y
1 + (x− y)2

, 1− 2
1 + (x− y)2

)
.

It is possible to check that ψ is a homeomorphism of A4 onto D \ {Q1}, such
that

(1) ψ((0, 0)) = Q0,
(2) ψ(R+0 × {0}) = {(x, y) : x2 + y2 = 1 and x > 0} and ψ({0} × R−0 ) =
{(x, y) : x2 + y2 = 1 and x < 0},

(3) if Z is any neighbourhood of Q1 then ψ−1(Z ∩D) is unbounded.

What we have proved above ensures that the set C := ψ(Ω+) satisfies the
hypotheses of Lemma 6 and, hence, there is a connected Γ ⊆ C such that
Q0, Q1 ∈ Γ. Our search is concluded letting Γ+ := ψ−1(Γ); in fact, with our
choices, Γ+ is connected, contains the origin by the connectedness and the fact
that (0, 0) ∈ Γ ∩ C and it is unbounded by property 3 of ψ. �
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A dual result is the following.

Lemma 7. Let us assume there is a ∈ R such that Q( · ) is strictly decreasing
on ]−∞, a], with Q(−∞) =∞. Then there are two unbounded continua Γ+ ⊂ A1
and Γ− ⊂ A3, such that

(i) (0, 0) ∈ Γ+ ∩ Γ−,
(ii) for all p ∈ Γ+ ∪ Γ−, x( · ; a, p) is continuable on ]−∞, a] and

lim
t→−∞

x(t; b, p) = lim
t→−∞

ẋ(t; b, p) = 0,

(iii) x(t; b, p) > 0 for every t ∈ ]−∞, a], and p ∈ Γ+, while x(t; b, p) < 0 for
every t ∈ ]−∞, a], and p ∈ Γ−.

At this moment, we can obtain a result of existence of solutions decaying to
zero at infinity and having sharp nodal properties in the intervals of positivity
and negativity of q(t).

Theorem 2. Assume (q1), (g1) and (g2). Let us suppose that there are
a, b ∈ R with a < b such that Q( · ) is strictly decreasing on ]−∞, a] ∪ [b,∞[,
with Q(∓∞) = ±∞. Let k ≥ 0, be an integer. Suppose that there are 2k + 1
consecutive adjacent nondegenerate closed intervals

I+1 , I
−
1 , . . . , I

+
k , I

−
k , I

+
k+1,

with q ≥ 0, q 6≡ 0 on I+i and q ≤ 0, q 6≡ 0 on I
−
i , such that

[a, b] =
(( k+1⋃

i=1

I+i

)
∪
( k⋃
i=1

I−i

))
.

Then, there are k + 1 positive integers n∗1, . . . , n
∗
k+1 such that for each (k + 1)-

uple n := (n1, . . . , nk+1), with ni > n∗i , and each k-uple δ := (δ1, . . . , δk), with
δi ∈ {0, 1}, there are at least two solutions x+n,δ( · ) and x

−
n,δ( · ) of (3.1) such

that:

(1) x−n,δ(t) < 0 and ẋ
−
n,δ(t) < 0 for all t ∈ ]−∞, a], while x

+
n,δ(t) > 0 and

ẋ+n,δ(t) > 0 for all t ∈ ]−∞, a],
(2) x±n,δ( · ) has exactly ni zeros in I

+
i , exactly δi zeros in I

−
i and exactly

1− δi changes of sign of the derivative in I−i ,
(3) x±n,δ(t)× ẋ

±
n,δ(t) 6= 0 for all t ∈ [b,∞[,

(4) for each i, |x±n,δ(t)|+ |ẋ
±
n,δ(t)| → ∞, as ni →∞, uniformly in t ∈ I

+
i ,

(5) |x±n,δ(t)|+ |ẋ
±
n,δ(t)| → 0 as t→ ±∞.

To prove this, we follow the argument of Theorem 1, but, instead of proving
that the solutions meet the y-axis at t = 0 and t = ω, we require now that the
solutions meet at the time t = a the continua of Lemma 5, say Γ±a , and at the
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time t = b the continua of Lemma 7, say Γ±b . The only difference is that now
these continua need not to be the images of any continuous curve, that is we
could be no more able to parametrize them by continuous functions of a real
variable. However this technical difficulty can be easily overcome by a standard
approximation procedure (see [12, Lemma 1] for instance). In fact, at first it can
be shown that we have to consider only a bounded portion of each continua Γ±a
and Γ±b , since we are interested in finding solutions with a fixed number of zeros
in I+1 and I

+
k+1 (it is a consequence of Lemma 2). Secondly these portions of

continua can be uniformly approximated by images of continuous curves Γ±a,ε and
Γ±b,ε, in the sense that Γ

±
a,ε and Γ

±
b,ε lies inside an ε-neighbourhood of the bounded

portions of Γ±a and Γ
±
b , respectively. Hence, following the arguments of the proof

of Theorem 1, we can find at least two solutions x±n,δ,ε such that they have the
prescribed nodal behaviour in [a, b] and moreover satisfy (x±n,δ,ε(a), ẋ

±
n,δ,ε(a)) ∈

Γ±a,ε and (x
±
n,δ,ε(b), ẋ

±
n,δ,ε(b)) ∈ Γ

+
b,ε ∪ Γ

−
b,ε. The required solutions x

±
n,δ can be

found by letting ε→ 0.
Note that from the number of zeros of the solutions it is possible to know

the sign of x±n,δ(t) and ẋ
±
n,δ(t) for t ≥ b.

It is possible to obtain a result for the existence of solutions decaying at
infinity and with a singularity at a point t∗ ∈ I−j by combining Theorem 4 with
Theorem 2.

6. Related results

In this section, we present some variants of Theorem 1. In particular we con-
sider general Sturm–Liouville boundary conditions and the existence of solutions
with a point of singularity in a prescribed interval.
Let us consider at first the boundary condition

(6.1)

{
αx(0) + βẋ(0) = 0,

γx(ω) + δẋ(ω) = 0,

where |α| + |β| > 0 and |γ| + |δ| > 0. With the same technique of Theorem 1,
the following result can be proved.

Theorem 3. Under the same assumptions of Theorem 1, there are k + 1
positive integers n∗1, . . . , n

∗
k+1 such that for each (k+1)-uple n := (n1, . . . , nk+1),

with ni > n∗i , and each k-uple δ := (δ1, . . . , δk), with δi ∈ {0, 1}, there are at
least two solutions x+n,δ( · ) and x

−
n,δ( · ) of (3.1)–(6.1), such that:

(1) αẋ−n,δ(0)− βx
−
n,δ(0) < 0 < αẋ+n,δ(0)− βx

+
n,δ(0),

(2) x±n,δ( · ) has exactly ni zeros in I
+
i , exactly δi zeros in I

−
i and exactly

1− δi changes of sign of the derivative in I−i ,
(3) for each i, |x±n,δ(t)|+ |ẋ

±
n,δ(t)| → ∞, as ni →∞, uniformly in t ∈ I

+
i .
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Depending of the position of the lines αx+βy = 0 and γx+δy = 0, one could
easily discuss the different possibilities that x±n,δ( · ), or ẋ

±
n,δ( · ), may not vanish

in J \ {0, ω}, or they have exactly one or two changes of sign. We also remark
that with small modifications in the proof, it is possible to find solutions as above
and satisfying the non-homogeneous Sturm–Liouville boundary conditions{

αx(0) + βẋ(0) = r1,

γx(ω) + δẋ(ω) = r2.

We refer to [16], [45] and the references therein for preceding results in this
direction for the case of positive definite weight.
We briefly discuss now the case of solutions which blow up in a fixed interval

of negativity, but maintaining their nodal properties in the intervals when q ≥ 0.
First we need two preparatory lemmas.

Lemma 8. Let [b, c] ⊂ [0, ω] be such that

q ≤ 0 and q 6≡ 0 on [b, c]

and assume that (g−2 ) is satisfied. Then there are two unbounded continua Γ1 ⊂
A4 and Γ2 ⊂ A2 such that, for every p ∈ Γ1∪Γ2, x( · ; b, p) is defined on [b, βp[ ⊂
[b, c[, x(t; b, p) 6= 0 for all t ∈ [b, βp[, and ẋ( · ; b, p) has exactly one change of sign
in [b, βp[. Moreover, we have that

lim
t→βp

x(t; b, p) = lim
t→βp

ẋ(t; b, p) =∞ for all p ∈ Γ1

and
lim
t→βp

x(t; b, p) = lim
t→βp

ẋ(t; b, p) = −∞ for all p ∈ Γ2.

Lemma 9. Let [b, c] ⊂ [0, ω] be such that

q ≤ 0 and q 6≡ 0 on [b, c]

and assume that (g−2 ) is satisfied. Then there are two unbounded continua Γ1 ⊂
A2 and Γ2 ⊂ A4 such that for every p ∈ Γ1 ∪Γ2, x( · ; b, p) is defined on [b, βp[ ⊂
[b, c[, ẋ(t; b, p) 6= 0 for all t ∈ [b, βp[, and x( · ; b, p) has exactly one zero in [b, βp[.
Moreover, we have that

lim
t→βp

x(t; b, p) = lim
t→βp

ẋ(t; b, p) =∞ for all p ∈ Γ1,

and
lim
t→βp

x(t; b, p) = lim
t→βp

ẋ(t; b, p) = −∞ for all p ∈ Γ2.

The proofs of these two results are omitted, as they follow quite closely those
of Lemmas 3 and 4. The fact that Γ1 and Γ2 can be chosen as connected sets, can
be proved by Lemma 6, using the same argument contained in Lemma 5. At this
moment, repeating the scheme in the proof of Theorem 1 (with the modifications
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introduced for Theorem 2, since Γ1 and Γ2 need not to be images of continuous
curves), we can obtain:

Theorem 4. Let us suppose k ≥ 1. Under the same assumptions of The-
orem 1, let us fix j ∈ {1, . . . , k}. Then, there are j positive integers n∗1, . . . , n∗j
such that for each j-uple n := (n1, . . . , nj), with ni > n∗i , and each j-uple
δ := (δ1, . . . , δj), with δi ∈ {0, 1}, there are at least two solutions x+n,δ( · )
and x−n,δ( · ) of (3.1) which are defined on [0, β+[ and [0, β−[, respectively, with
β± ∈ Ij , and such that:

(1) x±n,δ(0) = 0 and ẋ
−
n,δ(0) < 0 < ẋ+n,δ(0),

(2) x±n,δ( · ) has exactly ni zeros in I
+
i , exactly δi zeros in I

−
i and exactly

1− δi changes of sign of the derivative in I−i ,
(3) |x±n,δ(t)| → ∞ and |ẋ

±
n,δ(t)| → ∞ as t→ β±,

(4) neither x±n,δ( · ), nor ẋ
±
n,δ( · ), may vanish in J ∩ ]0, β±[,

(5) for each i, |x±n,δ(t)|+ |ẋ
±
n,δ(t)| → ∞, as ni →∞, uniformly in t ∈ I

+
i .

Note that one can decide if x±n,δ(t) and ẋ
±
n,δ(t) are positive or negative in a

left neighbourhood of β± by counting their number of zeros.

A completely symmetric result holds if we look for solutions defined on inter-
vals of the form ]α±, ω], which vanish in ω and blow up at α± ∈ Ij . Of course, a
version of Theorem 4 can be stated with respect to the Sturm–Liouville boundary
conditions or for the case of unbounded intervals on the line of Theorem 2.

It is possible to obtain extensions of Theorems 1, 3, 4 for the equation ẍ +
cẋ+ q(t)g(x) = 0, as well (see also [41]).

7. Appendix: Estimates on the time-maps

Let g : R→ R be a continuous map such that

lim
s→±∞

g(s)sgn(s) =∞.

Clearly, the primitive G of g is strictly monotone in a neighbourhood of ±∞ and
thus inverses G−1± are defined. We are looking for some conditions ensuring the
validity of (g+2 ) and (g

−
2 ).

With respect to the first condition, which means that the period of the closed
orbits of ẋ = y, ẏ = −g(x) tends to zero as the energy of the orbits tends to
infinity, we can use various results in the literature, starting with the classical
work of Opial [40] (see also [44]). A typical assumption which implies (g+2 ) is the
condition of superlinear growth at infinity

(g3) lim
s→±∞

g(s)
s
=∞.
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Other possibilities for (g+2 ) when (g3) does not hold, are discussed in [21]. For
instance, we have that (g+2 ) follows from

∃A > 0 : lim
s→±∞

G(s+A)−G(s)
s2

=∞.

With respect to (g−2 ), which is a condition on the time along the orbits of ẋ = y,
ẏ = g(x), we observe the following kind of integrals have to be evaluated:

(7.1) f1(x) :=
∫ ∞
−∞

1√
x+G(s)

ds,

and

(7.2) f2(x) :=
∫ ∞
G−1+ (x)

1√
G(s)− x

ds

(there is a similar integral depending on G−1− (x) which can be handled in the
same way like f2).
Our goal is to study under which conditions f1(x), f2(x)→ 0 as x→∞.
For the first question we easily see that f1(x)→ 0 as x→∞ if and only if

(g4)
∣∣∣∣ ∫ ±∞ 1√

G(s)
ds

∣∣∣∣ <∞.
For the second condition, we have the following lemma.

Lemma 10. Assume (g3), (g4) and suppose that there is a constant k > 1
such that

(g5) lim inf
s→±∞

G(ks)
G(s)

> 1.

Then (g−2 ) holds.

Proof. By the above remark we can confine ourselves to the proof of f2(x)
→ 0 as x→∞. With a simple change of variables, we consider the function

f3(x) :=
∫ ∞
x

1√
G(s)−G(x)

ds.

Clearly, f2(x)→ 0 if and only if f3(x)→ 0. Now we split the integral as∫ kx
x

1√
G(s)−G(x)

ds+
∫ ∞
kx

1√
G(s)−G(x)

ds.

For the first one, we have that∫ kx
x

1√
G(s)−G(x)

ds =
∫ kx
x

1√∫ s
x
g(ξ)dξ

ds ≤
∫ kx
x

1
√
s− x

√
gmin(x)

ds

=
2
√
(k − 1)x√
gmin(x)

= 2
√
(k − 1)

√
x

ξx

√
ξx
g(ξx)
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where we have set gmin(x) := min[x,kx] g(ξ) and ξx ∈ [x, kx] is such that g(ξx) =
gmin(x). From (g3) it easily follows that the first integral tends to zero as x→∞.
By (g5) there exist c > 1 and s > 0 such that

G(ks) ≥ cG(s) for all s ≥ s.

Moreover, we can assume without loss of generality thatG is monotone increasing
on [s,∞[. Hence, for the second integral we can estimate:

∫ ∞
kx

1√
G(s)−G(x)

ds =
∫ ∞
kx

1√
G(s)
√
1−G(x)/G(s)

ds

≤
∫ ∞
kx

1√
G(s)
√
1−G(x)/G(kx)

ds

≤
√

c

c− 1

∫ ∞
kx

1√
G(s)

ds

for all x ≥ s. Thus also the second integral tends to zero as x → ∞ since (g4)
holds. �

We remark that condition (g5) is related to a well-known assumption which
appears in the theory of Orlicz–Sobolev spaces. Indeed, it is easy to prove that
(g5) holds when G−1+ and |G−1− | satisfy a ∆2-condition at infinity (see [1, p. 232]).
We notice that a sufficient condition for the validity of (g5) is that g is monotone
increasing in a neighbourhood of infinity. In fact, if x > 0 is large enough, by
the monotonicity, we have that G(2x) =

∫ 2x
0 g(s) ds ≥ 2

∫ x
0 g(s) ds = 2G(x) (the

case for x << 0 is treated in the same manner) and therefore (g5) is proved. In
this case, however, we can obtain much more, namely we have:

Lemma 11. Assume (g4) with g a monotone function in a neighbourhood of
infinity. Then (g−2 ) holds.

Proof. Via the change of variables ξ = G(s)−G(x) and s = G−1+ (ξ+G(x)),
the function f3(x) defined in the proof of Lemma 10 can be written in the
following way:

f3(x) =
∫ ∞
0

dξ

g(G−1+ (ξ +G(x)))
√
ξ
.

By definition, the function φx : ξ 7→ 1/g(G−1+ (ξ +G(x)))
√
ξ is positive and

summable on ]0,∞[ for large x > 0. Moreover, by the monotonicity of g, we
see that φx(ξ) is monotonically pointwise decreasing to zero as x → ∞. As
a consequence, the monotone convergence theorem implies that f3(x) → 0 as
x→∞. �

Remark 1. Suppose that h : R→ R is a continuous function satisfying

lim
s→±∞

h(s)sgn(s) =∞
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and assume also that

|g(x)| ≥ |h(x)| for |x| � 1.
Then, it is straightforward to check that the validity of the condition (g2) with
respect to the function h implies the same for the function g. In particular,
if, for |x| large we have that g “dominates” a monotone increasing function h
at infinity, with h(x)/x → ∞ as x → ±∞ and |

∫ ±∞
ds/
√
H(s)| < ∞, where

H ′ = h, then (g2) holds for g.

From this remark, we see that a (non-necessarily monotone) function g which
is larger than kx logα(|x| + 1) for |x| large and for some k > 0 and α > 2,
satisfies (g2).
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[24] , Nachweis periodischer Lösungen bei gewissen nichtlinearen Schwingungsdiffer-

entialgleichungen, Arch. Rational Mech. Anal. 1 (1957), 124–138. (German)

[25] G. Fei, The existence of homoclinic orbits for Hamiltonian systems with the potentials
changing sign, Chinese Ann. Math. Ser. B 17 (1996), 403–410; Chinese Ann. Math. Ser.

A 17 (1996), 651–? (to appear). (Chinese summary)

[26] M. Girardi and M. Matzeu, Existence and multiplicity results for periodic solutions
of superquadratic Hamiltonian systems where the potential changes sign,, NoDEA Non-

linear Differential Equations Appl. 2 (1995), 35–61.

[27] , Some results about periodic solutions of second order Hamiltonian systems

where the potential has indefinite sign, Nonlinear Partial Differential Equations (Fès,

1994), Pitman Res. Notes Math. Ser., vol. 343, Longman, Harlow, 1996, pp. 147–154.

[28] P. Hartman, On boundary value problems for superlinear second order differential equa-

tions,, J. Differential Equations 26 (1977), 37–53.

[29] S. Khanfir and L. Lassoued, On the existence of positive solutions of a semilinear
elliptic equation with change of sign, Nonlinear Anal. 22 (1994), 1309–1314.

[30] S. Laederich and M. Levi, Invariant curves and time-dependent potentials, Ergodic

Theory Dynamic Systems 11 (1991), 365–378.

[31] L. Lassoued, Periodic solutions of a second order superquadratic system with a change

of sign in the potential, J. Differential Equations 93 (1991), 1–18.

[32] V. K. Le and K. Schmitt, Minimization problems for noncoercive functionals subject
to constraints, Trans. Amer. Math. Soc. 347 (1995), 4485–4513.

[33] M. Levi, Quasiperiodic motions in superquadratic time-periodic potentials, Comm. Math.

Phys. 143 (1991), 43–83.

[34] M. Levi and E. Zehnder, Boundedness of solutions for quasiperiodic potentials, SIAM

J. Math. Anal. 26 (1995), 1233–1256.

[35] B. Liu, The stability of the equilibrium of a conservative system, J. Math. Anal. Appl.
202 (1996), 133–149.



Superlinear Indefinite Problems 233

[36] J. Mawhin, Oscillatory properties of solutions and nonlinear differential equations with

periodic boundary conditions, Second Geoffrey J. Butler Memorial Conference in Dif-
ferential Equations and Mathematical Biology (Edmonton, AB, 1992), Rocky Mountain

J. Math. 25 (1995), 7–37.

[37] G. R. Morris, A differential equation for undamped forced non-linear oscillations I,

Proc. Cambridge Philos. Soc. 51 (1955), 297–312.

[38] , A differential equation for undamped forced non-linear oscillations II, Proc.

Cambridge Philos. Soc. 54 (1958), 426–438.

[39] Z. Nehari, Characteristic values associated with a class of nonlinear second order dif-

ferential equations, Acta Math. 105 (1961), 141–175.

[40] Z. Opial, Sur les périodes des solutions de l’équation différentielle x′′ + g(x) = 0, Ann.
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