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ON A CONTROLLABILITY PROBLEM FOR SYSTEMS
GOVERNED BY SEMILINEAR FUNCTIONAL

DIFFERENTIAL INCLUSIONS IN BANACH SPACES
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Dedicated to the memory od Juliusz P. Schauder

Abstract. For a Banach space E, a given pair (p, x) ∈ [0, a] × E, and
control system governed by a semilinear functional differential includion of
the form

x′(t) ∈ Ax(t) + F (t, x(t), Tx)

the existence of a mild trajectory of x(t) satisfying the condition x(p) = x
is considered. Using topological methods we develop an unified approach to
the cases when a multivalued nonlinearity F is Carathéodory upper semi-

continuous or almost lower semicontinuous and an abstract extension oper-
ator T allows to deal with variable and infinite delay. For the Carathéodory
case, the compactness of the solutions set and, as a corollary, an optimiza-
tion result are obtained.

1. Introduction

In the present paper we study a problem of attaining a given point at a pre-
scribed time for a system governed by a semilinear functional differential in-
clusion in a Banach space. Notice that inclusions of that type appear in the
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description of processes of controlled heat transfer (see, e.g. [13]), in hybrid sys-
tems with dry friction, in transmission line process and other problems (see [11]
and references therein).

Several authors have introduced hereditary structures for functional differ-
ential equations with bounded or unbounded delay. Recently, has been showed
that these structures are equivalent (see [12]).

The frame of our functional argument has been introduced in [14] for the
study of terminal value problems for functional differential equations with un-
bounded delay.

In this argument, the continuous extension operator T generalizes the known
structures and allows us to deal with variable and infinite delay (see, e.g. [3],
[9], [15]).

We use the technique of condensing multivalued maps to develop an uni-
fied approach to the cases when multivalued nonlinearity is Carathéodory upper
semicontinuous or almost lower semicontinuous. We obtain the existence result
(Theorem 4) basing, in the first case, on the Bohnenblust–Karlin fixed point
theorem, and, in the second case, on the Fryszkowski continuous selection re-
sult ([8]) and the Schauder fixed point theorem. For the case of Carathéodory
nonlinearity, we also prove the compactness of the solutions set (Theorem 5)
and, as a corollary, we obtain an optimization result.

2. Preliminaries

Let X and Y be topological spaces, P(Y ) denote the collection of all non-
empty subsets of Y . A multivalued map (multimap) F : X → P(Y ) is said
to be

(i) upper semicontinuous (u.s.c.) if F−1(V ) = {x ∈ X : F(x) ⊂ V } is an
open subset of X for every open V ⊂ Y ,

(ii) lower semicontinuous (l.s.c.) if F−1(W ) is a closed subset of X for every
closed W ⊂ Y (for futher details, see, eg. [2], [10], [11]).

Recall also the following notions (see, e.g. [1], [11]). Let E be a Banach space;
2E denotes the collection of all subsets of E. A function β : 2E → R ∪ {+∞} is
called a (real) measure of noncompactness (MNC) in E if

β(co Ω) = β(Ω)

for every Ω ∈ 2E and β(Ω) < +∞ for every bounded Ω.
A MNC is called

(i) monotone if Ω0,Ω1 ∈ 2E, Ω0 ⊂ Ω1 implies β(Ω0) ≤ β(Ω1),
(ii) nonsingular if β({a} ∪ Ω) = β(Ω) for every a ∈ E,Ω ∈ 2E,
(iii) regular if β(Ω) = 0 is equivalent to the relative compactness of Ω.
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As the example of the MNC possessing all these properties, we may consider
the Hausdorff MNC

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net }.

In the sequel, we will need the following its property that can be easily
verified: if L : E → E is a bounded linear operator, then, for every bounded set
Ω ⊂ E, we have

χ(LΩ) ≤ ‖L‖χ(Ω).

Everywhere in the following E will denote a separable Banach space.
We consider some properties of the space of all Bochner summable functions

L1([a, b];E).
A multifunction G : [a, b] → P(E) is said to be

(i) integrable provided it has a summable selection g ∈ L1([a, b];E), i.e.
g(t) ∈ G (t) for a.e. t ∈ [a, b],

(ii) integrably bounded if there exists a summable function µ ∈ L1
+([a, b])

such that

‖G (t)‖ := sup{‖g‖ : g ∈ G (t)} ≤ µ(t) for a.e. t ∈ [a, b].

The set of all summable selections of the multifunction G will be denoted
by S1

G. If the multifunction G : [a, b] → P(E) is integrable, then the integral of G
on every measurable subset I ⊂ [a, b] may be defined as∫

I

G (s) ds :=
{ ∫

I

g(s) ds : g ∈ S1
G

}
.

We recall that the multifunction G : [a, b] → P(E) is said to be measurable
if G −1(V ) is Lebesgue measurable for every open set V ⊂ E (for equivalent
definitions and details, see, e.g. [2], [4], [10], [11]).

We denote by χE the Hausdorff MNC in the space E.

Lemma 1 ([13], see also [11]). Let a multifunction G : [a, b] → P(E) be
integrable, integrably bounded and χE(G (t)) ≤ q(t) for a.e. t ∈ [a, b], where
q ∈ L1

+[a, b]. Then

χ

( ∫ b

a

G (s) ds
)

≤
∫ b

a

q(s) ds.

In the following we will suppose that

(A) A : dom(A) ⊂ E → E is a densely defined linear operator generating a
C0-group eAt (see, e.g. [7], [16]).

We will say that the map S : L1([a, b];E) → C([a, b];E) defined as

S(f)(t) =
∫ b

t

eA(t−s)f(s) ds



144 V. Obukhovskĭı — P. Rubbioni

is the Cauchy operator. As in [5] (see also [11]), the following its property may
be verified.

Lemma 2. If the sequence {fn} ⊂ L1([a, b];E) is integrably bounded and
the set {fn(t)} is relatively compact in E for a.e. t ∈ [a, b], then the sequence
{Sfn} ⊂ C([a, b];E) is relatively compact.

Further, consider the following notion. A nonempty set M ⊂ L1([a, b];E) is
said to be decomposable provided for every f, g ∈ M and each Lebesgue measur-
able subset m ∈ [a, b],

f · 1m + g · 1[a,b]\m ∈ M

where 1m is the characteristic function of the set m.

Lemma 3 ([8]). Let X be a compact metric space. Then every l.s.c. mul-
timap T : [a, b] → P(L1([a, b];E)) with closed decomposable values has a contin-
uous selection, i.e. there exists a continuous map f : X → L1([a, b];E) such that
f(x) ∈ T (x) for all x ∈ X.

For a > 0 fixed, we put I = (−∞, a]. We denote by C = Cloc(I;E) the space
of all continuous functions endowed with the topology of uniform convergence
on every compact subset of I. It is known that this topology can be induced by
a countable family of seminorms

pn(x) = sup{‖x(t)‖ : t ∈ [−n, n] ∩ I}, n ∈ N.

Therefore, the topology of C is compatible with the metric

d(x, y) =
∞∑

n=1

2−npn(x− y)
1 + pn(x− y)

.

Since E is a Banach space, C is a linear metric space.

3. Controllability problem

Let us give a pair (p, x) ∈ [0, a] ×E and an extension operator

T : C([0, a];E) → C, Tx|[0,a] = x for x ∈ C([0, a];E).

We suppose that TD is bounded for every bounded D ⊂ C([0, a];E). We con-
sider the following controllability problem for systems governed by a semilinear
functional differential inclusion of the form

P (p, x) =

{
x′(t) ∈ Ax(t) + F (t, x(t), Tx) a.e. t ∈ [0, p],

x(p) = x.

Let us denote by K(E)[Kv(E)] the collection of all nonempty compact [con-
vex] subsets of E. For the multivalued nonlinearity F : [0, a] ×E × C → K(E),
we will suppose two alternative groups of hypotheses.
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The first group includes the following assumptions.

(F1U ) F has nonempty compact convex values, i.e. it acts into the collection
Kv(E),

(F2U ) for every fixed ξ ∈ E and c ∈ C the multifunction F ( · , ξ, c) : [0, a] →
Kv(E) admits a measurable selection,

(F3U ) for a.e. t ∈ [0, a] the multimap F (t, · , · ) : E × C → Kv(E) is u.s.c.

Notice that condition (F2U) is fulfilled if the multifunction F ( · , ξ, c) is measur-
able for every (ξ, c) ∈ E × C.

The alternative supposition is the following.

(FL) F : [0, a] × E × C → K(E) is almost lower semicontinuous (a.l.s.c.) in
the sense that there exists a sequence of disjoint compact sets {Ij}, Ij ⊂
[0, a], with meas([0, a]\

⋃
j Ij) = 0, such that the restriction of F on each

set Ij ×E × C is l.s.c. (cf. [6]).

In both cases, the remaining hypotheses are the same.

(H1) (Volterra property) for a.e. t ∈ [0, a] and for every ξ ∈ E and c1, c2 ∈ C

with c1|]−∞,t] = c2|]−∞,t], we have

F (t, ξ, c1) = F (t, ξ, c2),

(H2) for every bounded Ω ⊂ C([0, a];E) there exists a function µΩ ∈L1
+([0, a])

such that for all x ∈ Ω we have that

‖F (t, x(t), Tx)‖ ≤ µΩ(t) for a.e. t ∈ [0, a].

To describe the next assumption, let us denote by the symbol χ′ the Hausdorff
MNC in the space C((−∞, t];E), t ∈ [0, a] endowed with the metric similar to
that in C.

(H3) there exists a function k ∈ L1
+([0, a]) such that, for every bounded set

D ⊂ C([0, a];E), we have that, for a.e. t ∈ [0, a],

χE(F (t,D(t), TD)) ≤ k(t) max{χE(D(t)), χ′(TD|]−∞,t])}.

On the extension operator T : C([0, a];E) → C we take the following as-
sumptions.

(T1) T is continuous,
(T2) (Volterra-type property) Tx|]−∞,0] = Ty|]−∞,0] if x(0) = y(0).

To give the next property of T , let us use, for every b ∈ (0, a], the following MNC
in the space C([0, b];E):

φ(Ω) = sup
t∈[0,b]

χE(Ω(t))
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for any bounded Ω ⊂ C([0, b];E) (notice that φ coincides with the Hausdorff
MNC on equicontinuous sets [1]).

We suppose that

(T3) there exists a real number m ≥ 1 such that, for every bounded set
D ⊂ C([0, a];E) and for every b ∈ (0, a], we have

χ′ (
TD|(−∞,b]

)
≤ mφ(D|[0,b]).

Note that operator T allows us to deal with variable and infinite delay. For
example, T may be a translation operator defined, for a given x∗ ∈ C, by

Tx(t) =

{
x(t) t ∈ [0, a],

x∗(t) − x∗(0) + x(0) t < 0.

Remark 1. For x ∈ C([0, a];E), the images F (t, x(t), Tx) are defined only
by values of x on [0, t], t ∈ (0, a]. In fact, if we consider any extension x̃ of
x|[0,t] to the whole interval [0, a], then, by means of conditions (H1) and (T2),
the value of F (t, x(t), T x̃) does not depend on the way we extend x. Thus, we
still denote by x the extension x̃.

For any p ∈ (0, a] and x ∈ C([0, p];E), the multifunction F (t, x(t), Tx) ad-
mits a measurable selection and, moreover, (H2) yields that it is integrable. In
fact, in the case when F satisfies (F1U )–(F3U), it follows from the Castaing’s
theorem (see, e.g. Proposition 3.5(a) in [6] or Theorem 1.3.5 in [11]). In the case
(FL), the general properties of multimaps (see, e.g. [2], [10], [11]) imply that the
multifunction F (t, x(t), Tx) is l.s.c. on (

⋃
j Ij)∩ [0, p] and hence it is measurable

on [0, p].
So, in both cases, we may define the superposition multioperator PF :

C([0, p];E) → P(L1([0, p];E)) as

PF (x) = S1
F ( · ,x( · ),T x).

We will say that a function x ∈ C([0, p];E) is a mild solution of problem
P (p, x) provided it has the following representation

x(t) = eA(t−p)x−
∫ p

t

eA(t−s)f(s) ds for f ∈ PF (x).

Theorem 4. Under assumptions (A) and

(i) (F1U )–(F3U) or
(ii) (FL)

and (H1)–(H3), (T1)–(T3) for every x ∈ E there exists h ∈ (0, a] such that the
problem P (p, x) has a mild solution for every p ∈ (0, h].

Proof. We will divide the proof into several steps. The first two of them
are the same in both cases (i) and (ii).
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Step 1. Let us take an arbitrary δ > 0. Since eAt is the C0-group, there
exists a real positive number h1 such that

‖eAθx− x‖ < δ/2 for all θ, θ ≤ h1.

Further, in the space C([0, a];E) we consider a ball B = Bδ(x( · )), where x( · )
is the function identically equal to x.

Now, let h2 = δ/(2r‖µB‖1), where r = supθ≤a ‖eAθ‖, µB be the function
from condition (H2) and ‖µB‖1 its norm in the space L1([0, a]).

We put h := min{h1, h2} and we take p ∈ (0, h].

We consider the integral multioperator associated to P (p, x), Γ : C([0, p];E)
→ P(C([0, p];E)) defined by

Γ(x) =
{
y : y(t) = eA(t−p)x−

∫ p

t

eA(t−s)f(s) ds, f ∈ PF (x)
}
.

It is clear that every mild solution x( · ) of P (p, x) is a fixed point of Γ: x ∈ Γ(x).

Let us verify that the multioperator Γ transforms the ball B′ = Bδ(x( · )) ⊂
C([0, p];E) into itself. In fact, if x ∈ B′ and y ∈ Γ(x), then y(t) = eA(t−p)x −∫ p

t e
A(t−s)f(s) ds, f ∈ PF (x) and we have the following estimation for any t ∈

[0, p]:

‖y(t) − x(t)‖ ≤ ‖eA(t−p)x− x‖ +
∥∥∥∥ ∫ p

t

eA(t−s)f(s) ds
∥∥∥∥

≤ δ/2 +
∫ p

t

‖eA(t−s)‖‖f(s)‖ ds ≤ δ/2 + hr‖µB‖1 ≤ δ.

Step 2. We construct a nonempty compact convex subset of B′ which is
invariant with respect to the action of Γ. To do so, we consider in C([0, p];E)
the MNC

ψ(Ω) = sup
t∈[0,p]

e−Rm
∫ t

0 k(θ) dθχE(Ω(t))

for any bounded Ω ⊂ C([0, p];E), where R > r, k( · ) is the function from
condition (H3) and m ≥ 1 is the real number of condition (T3). It is easy to see
that the MNC ψ is monotone and nonsingular, but not regular in general.

Let us demonstrate that the multioperator Γ is (r/R, ψ) – condensing, i.e.
for any Ω ⊂ B′ we will have that

ψ(Γ(Ω)) ≤ r

R
ψ(Ω).

Without loss of generality, we will assume that h > 0 taken at Step 1 is small
enough to provide

eRm
∫

h
0 k(θ) dθ ≤ 2.
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By means of the properties of the Hausdorff MNC and applying conditions
(H3) and (T3), for 0 ≤ t ≤ s ≤ p we have

χE(eA(t−s)F (s,Ω(s), TΩ)) ≤ ‖eA(t−s)‖χE(F (s,Ω(s), TΩ))

≤ rk(s) max{χE(Ω(s)), χ′(TΩ|]−∞,s])}
≤ rk(s) max{χE(Ω(s)),mφ(Ω|[0,s])}.

Since m ≥ 1, we obtain

χE(eA(t−s)F (s,Ω(s), TΩ)) ≤ rmk(s) sup
θ∈[0,s]

χE(Ω(θ))

≤ rmψ(Ω)k(s) sup
θ∈[0,s]

eRm
∫

θ
0 k(ρ)dρ

= rmψ(Ω)k(s)eRm
∫ s

0 k(θ) dθ.

Applying the properties of the Hausdorff MNC and Lemma 1, for every t ∈ [0, p],
we have

χE(Γ(Ω)(t)) ≤ χE

(
eA(t−p)x−

∫ p

t

eA(t−s)F (s,Ω(s), TΩ) ds
)

= χE

( ∫ p

t

eA(t−s)F (s,Ω(s), TΩ) ds
)

≤
∫ p

t

rmk(s)ψ(Ω)eRm
∫ s

0 k(θ) dθ ds

=
r

R
ψ(Ω)

∫ p

t

Rmk(s)eRm
∫

s
0 k(θ)dθ ds

=
r

R
ψ(Ω)[eRm

∫ p
0 k(θ) dθ − eRm

∫ t
0 k(θ) dθ]

=
r

R
ψ(Ω)eRm

∫
t

0 k(θ) dθ[eRm
∫

p
t

k(θ) dθ − 1] ≤ r

R
ψ(Ω)eRm

∫
t

0 k(θ) dθ,

and hence
e−Rm

∫ t
0 k(θ) dθχE(Γ(Ω)(t)) ≤ r

R
ψ(Ω)

yielding
ψ(Γ(Ω)) ≤ r

R
ψ(Ω).

Now, we consider the collection {Nν} of all convex closed subsets of B′ con-
taining origin and Γ-invariant, i.e. Γ(Nν) ⊂ Nν for all ν. Notice that this collec-
tion is nonempty, since it includes B′. We set

N =
⋂
ν

Nν .

From the minimality of N , it follows that N = co (Γ(N) ∪ {0}) and hence

ψ(N) = ψ(Γ(N)) = 0

therefore, we have that χE(N(t)) = 0 for all t ∈ [0, p].
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Conditions (H3) and (T3) yield that χE(F (t,N(t), TN)) = 0 for a.e. t ∈
[0, p] and by using the property of the Cauchy operator expressed in Lemma 2,
we obtain that Γ(N) is relatively compact and hence

X = co (Γ(N))

is the desiderable compact convex subset of B′ invariant with respect to the
action of Γ.

Step 3. Case (i). Following the lines of Theorem 5.1.2 of [11], we may
verify that the integral multioperator Γ is u.s.c. on X and has convex compact
values. So, we may apply the Bohnenblust–Karlin fixed point theorem (see, e.g.
Theorem 3.1.5 of [11]) to deduce that the fixed point set Fix Γ is nonempty.

Step 4. Case (ii). It is clear that the superposition multioperator PF has
closed and decomposable values. Following the lines of [6, Section 9], and [11,
Section 5.5], we may verify that PF is l.s.c.

Applying Lemma 3 to the restriction of PF on X , we obtain that there exists
its continuos selection

q : X → L1([0, p];E).

We consider a map γ : X → X defined as

γ(x)(t) = eA(t−p)x−
∫ p

t

eA(t−s)q(x)(s) ds.

Since the Cauchy operator is continuous, the map γ is also continuous, therefore,
it is a continuous selection of the integral multioperator Γ.

From the Schauder fixed point Theorem, it follows that Fixγ 
= ∅ and hence
Fix Γ 
= ∅. �

4. Compactness of the solutions set

In this Section, in the framework of case (i) and under a more severe assump-
tion on the boundedness of the nonlinearity F , we prove the compactness of the
solutions set S(p, x) of the controllability problem P (p, x) for all p small enough.

As an immediate consequence, we obtain the existence of an optimal trajec-
tory for P (p, x).

Theorem 5. Under assumptions (A), (F1U)–(F3U ), (H1), (H3) and

(H2’) there exists a function α ∈ L1
+[0, a] such that for every x ∈ C([0, a];E)

we have that

‖F (t, x(t), Tx)‖ ≤ α(t)(1 + ‖x(t)‖) for a.e. t ∈ [0, a],
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for every x ∈ E there exists h ∈ (0, a] such that the set S(p, x) of all mild
solutions of the problem P (p, x) is a (nonempty) compact for every p ∈ (0, h].

Proof. Let us demonstrate that the set S(p, x), for any p ∈ (0, h], x ∈ E,
is apriori bounded. In fact, if x( · ) ∈ S(p, x), then for t ∈ [0, p] we have that

x(t) = eA(t−s)x−
∫ p

t

eA(t−s)f(s) ds

where f ∈ PF (x).
By the condition (H2’), we obtain that

‖x(t)‖ ≤ ‖eA(t−p)‖‖x‖ +
∫ p

t

‖eA(t−s)‖‖f(s)‖ ds

≤ r

(
‖x‖ +

∫ p

t

α(s)(1 + ‖x(s)‖) ds
)

≤ r

(
‖x‖ + ‖α‖L1 +

∫ p

t

α(s)‖x(s)‖ ds
)
.

By a Gronwall type inequality, we have that

‖x(t)‖ ≤ r(‖x‖ + ‖α‖L1)er‖α‖L1 = M.

Now, repeating the steps of the proof of Theorem 4, we choose δ > 0 large
enough to provide that the ball Bδ(x( · )) will contain the ball BM (0).

Further, by considering the collection of Γ-invariant sets {Nν} at Step 2, we
will additionally assume that every such set apriori contains S(p, x) = Fix Γ.
Then, the set N and, hence, X also contain S(p, x).

The proof ends by the observation that the fixed points set Fix Γ of the u.s.c.
multioperator Γ is a closed, and hence compact, subset of X . �

Corollary 6. Under assumptions of Theorem 5, there exists a mild solu-
tion x∗ of the problem P (p, x) for p ∈ (0, h] such that

j(x∗) = max
x( · )∈S(p,x)

j(x( · ))

where j : C([0, p];E) → R is a given continuous cost functional.

References
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