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HIGHER-ORDER NECESSARY OPTIMALITY CONDITIONS
FOR EXTREMUM PROBLEMS

IN TOPOLOGICAL VECTOR SPACES
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Abstract. We present a higher-order extension of the well-known theorem
of Ben–Tal and Zowe on second-order necessary optimality conditions in
topological vector spaces. We also examine the connection between this

extension and the results of Furukawa and Yoshinaga which are stated in
terms of higher-order variational sets and Neustadt derivatives.

1. Introduction

Ben–Tal and Zowe [1, Theorem 2.1] have proved a general theorem on second-
order necessary optimality conditions for the following abstract optimization
problem in topological vector spaces:

(1.1) min{f(x) | g(x) ∈ −K, h(x) = 0},

where f : X → U , g : X → V and h : X → W are continuous maps, X , U , V and
W are real topological vector spaces, K is a convex cone in V with nonempty
topological interior (int K �= ∅), and U is ordered by a proper cone C with
int C �= ∅. This result is a second-order extension of the classical Dubovitskĭı–
Milyutin theorem (see [3]).
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In this paper, the theorem of Ben–Tal and Zowe is generalized so as to include
necessary conditions of arbitrary order n. Although the generalization itself is
rather simple, one important question arises. Since the n-order necessary con-
ditions for x0 to be a local solution of (1.1) are formulated for a given sequence
of points x1, . . . , xn−1, one should specify for which sequences the n-order infor-
mation can be nontrivial. We discuss this question in Section 2.

In Section 3, we study the connection between the results of Section 2 and
the n-order necessary optimality conditions of Furukawa and Yoshinaga [2, The-
orem 5.2]. We prove that both types of optimality conditions are essentially
equivalent if they are applied to problem (1.1) (note that in [2], the optimiza-
tion problem is formulated in a Banach space, but the formulation includes an
arbitrary subset B with nonempty interior instead of a convex cone K). This
equivalence enables one to extend the conditions of Furukawa–Yoshinaga type
to problems of the form (1.1) in an arbitrary real topological vector space.

We end this section by setting some notation which will be used throughout
the paper. The zero vectors in the topological vector spaces X , U , V and W will
be denoted, respectively, by 0X , 0U , 0V and 0W . For a given vector x, we denote
by N (x) the collection of all neighbourhoods of x. For the order relations in U ,
we use the following notation: we write u1 � u2 (or u2 � u1) if u1 − u2 ∈ C and
u1 � u2 (u2 ≺ u1) if u1 − u2 ∈ int C.

In addition to the assumptions of [1] (which are quoted above), we will as-
sume, throughout the paper, that the cone C is convex.

Finally, we associate with a subset S of X its so-called support functional
δ∗( · |S) defined on the topological dual X∗ of X with values in the extended real
line R ∪ {±∞}:

δ∗(x∗|S) := sup{x∗(x) | x ∈ S} for x∗ ∈ X∗.

(If S = ∅, then by convention, δ∗( · |S) = −∞.) The effective domain of δ∗( · |S)
is denoted by Λ(S), i.e., Λ(S) := {x∗ ∈ X∗ | δ∗(x∗|S) < ∞}. (See [1] for more
information about these notions.)

2. A generalization of the theorem of Ben–Tal and Zowe

We start with some definitions needed for the formulation of the main result
of this section. Let us denote by F the feasible set for problem (1.1), i.e.,

F := {x ∈ X | g(x) ∈ −K, h(x) = 0W }.

Definition 1. Let x0 ∈ F . We say that x0 is a weak local minimum point
for problem (1.1) if there exists N ∈ N (x0) such that

(2.1) f(x) /∈ f(x0) − int C for all x ∈ N ∩ F.
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In particular, if U = R and C = {λ ∈ R | λ ≥ 0}, then (1.1) is a usual
minimization problem, and (2.1) amounts to f(x) ≥ f(x0) for all x ∈ N ∩ F ,
which means that x0 is a usual local minimum point for (1.1).

Definition 2.

(a) A vector x1 ∈ X is called a direction of quasidecrease at x0 of the
objective function f : X → U if, for every u � 0 in U , there exists a
real t0 > 0 such that

f(x0 + tx1) � f(x0) + t u for all t ∈ (0, t0].

(b) A vector x1 ∈ X is called a quasifeasible direction at x0 for the constraint
g(x) ∈ −K if, for every v ∈ int K, there exists a real t0 > 0 such that

g(x0 + tx1) ∈ −K + tv for all t ∈ (0, t0].

The cone of all directions of quasidecrease of f (respectively, quasifeasible
directions for g(x) ∈ −K) at x0 is denoted by Df (x0) (respectively, Dg(x0)).

Extending the second-order approximations from [1], we now define some
n-order approximating sets associated with f , g and h. In the Banach space
context, these approximating sets have been defined by Ledzewicz and Schättler
in [5], [6] (where approximating sets in the space X have been used to construct
approximating cones in the extended space X × R).

Definition 3. Let n ≥ 1 be an integer, and let x0, . . . , xn−1 ∈ X .

(a) A vector xn ∈ X is called an n-order direction of decrease of f at x0

with respect to (x1, . . . , xn−1) if there exist u � 0, N ∈ N (xn) and
t0 > 0 such that

(2.2) f

( n−1∑
i=0

tixi + tny

)
� f(x0) − tnu for all y ∈ N and t ∈ (0, t0].

(b) A vector xn ∈ X is called an n-order feasible direction for the constraint
g(x) ∈ −K at x0 with respect to (x1, . . . , xn−1) if there exist v ∈ int K,
N ∈ N (xn) and t0 > 0 such that

(2.3) g

( n−1∑
i=0

tixi + tny

)
∈ −K − tnv for all y ∈ N and t ∈ (0, t0].

(c) A vector xn ∈ X is called an n-order tangent direction to the constraint
h(x) = 0 at x0 with respect to (x1, . . . , xn−1) if there exist t0 > 0 and
a function r : (0, t0] → X such that

(2.4) h

( n∑
i=0

tixi + r(t)
)

= 0 for all t ∈ (0, t0]



132 L. Mikołajczyk — M. Studniarski

and, for every N ∈ N (0X), there exists t1 ∈ (0, t0] such that

(2.5) t−nr(t) ∈ N for all t ∈ (0, t1].

The set of all n-order directions of decrease of f (respectively, feasible direc-
tions for g(x) ∈ −K and tangent directions to h(x) = 0) at x0 with respect
to (x1, . . . , xn−1) is denoted by Qf (x0, . . . , xn−1) (respectively, Qg(x0, . . . , xn−1)
and Vh(x0, . . . , xn−1)). In particular, the first order sets Qf(x0), Qg(x0) and
Vh(x0) are defined for n = 1, with the sequences (x1, . . . , xn−1) absent in the
formulations of (a), (b) and (c), respectively.

Definition 4. We say that:

(a) f is (x1, . . . , xn−1)-regular at x0 if Qf (x0, . . . , xn−1) is nonempty and
convex,

(b) g is (x1, . . . , xn−1)-regular at x0 if Qg(x0, . . . , xn−1) is nonempty and
convex,

(c) h is (x1, . . . , xn−1)-regular at x0 if Vh(x0, . . . , xn−1) is nonempty and
convex.

(If the respective condition holds for n = 1, we simply say that f , g or h is
regular at x0.)

We can now formulate the n-order version of [1, Theorem 2.1].

Theorem 5. Let x0 be a weak local minimum point for problem (1.1). Then,
for every sequence (x1, . . . , xn−1) of elements of X, the following conditions
hold:

(a) Qf (x0, . . . , xn−1) ∩ Qg(x0, . . . , xn−1) ∩ Vh(x0, . . . , xn−1) = ∅,
(b) if f , g and h are (x1, . . . , xn−1)-regular, then there exist continuous

linear functionals on X:

(2.6)

lf ∈ Λ(Qf (x0, . . . , xn−1)),

lg ∈ Λ(Qg(x0, . . . , xn−1)),

lh ∈ Λ(Vh(x0, . . . , xn−1)),

not all zero, which satisfy the Euler–Lagrange equation

(2.7) lf + lg + lh = 0X∗

and the Legendre inequality

δ∗(lf |Qf (x0, . . . , xn−1)) + δ∗(lg|Qg(x0, . . . , xn−1))(2.8)

+ δ∗(lh|Vh(x0, . . . , xn−1)) ≤ 0.
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Proof. Statement (a) follows from Definitions 1 and 3 exactly in the same
way as in the proof of [1, Theorem 2.1]. Statement (b) follows from (a), Defini-
tion 4 and [1, Lemma 3.2]. �

It should be noted that in [1, Theorem 2.1], for n = 2, an additional assump-
tion (2.9) appears, which in our notation has the form

(2.9) x1 ∈ Df(x0) ∩ Dg(x0) ∩ Vh(x0).

This assumption is not needed for the proof of the theorem, but it is added to
specify the set of directions x1 for which the second order conditions can give
nontrivial information. Similarly, for an arbitrary n, we should be able to identify
some set of sequences (x1, . . . , xn−1) for which statement (a) of Theorem 5 holds
trivially (such sequences should be excluded from verifying necessary conditions
of part (b)). Below we give an answer to this question by proving a result
analogous to [2, Proposition 5.1].

Definition 6.

(a) A vector xn ∈ X is called an n-order tangent direction to the relation
f(x) � f(x0) at x0 with respect to (x1, . . . , xn−1) if there exist t0 > 0
and a function r : (0, t0] → X such that

(2.10) f

( n∑
i=0

tixi + r(t)
)

� f(x0) for all t ∈ (0, t0]

and, for every N ∈ N (0X), there exists t1 ∈ (0, t0] such that (2.5) holds.
(b) A vector xn ∈ X is called an n-order tangent direction to the constraint

g(x) ∈ −K at x0 with respect to (x1, . . . , xn−1) if there exist t0 > 0 and
a function r : (0, t0] → X such that

(2.11) g

( n∑
i=0

tixi + r(t)
)

∈ −K for all t ∈ (0, t0]

and, for every N ∈ N (0X), there exists t1 ∈ (0, t0] such that (2.5) holds.

The set of all n-order tangent directions to f(x) � f(x0) (respectively,
g(x) ∈ −K) at x0 with respect to (x1, . . . , xn−1) is denoted by Vf (x0, . . . , xn−1)
(respectively, Vg(x0, . . . , xn−1)).

Proposition 7. For every sequence (x0, . . . , xn−1) of points of X, the fol-
lowing relations hold:

(a) Qf (x0, . . . , xn−1) �= ∅ ⇒ xn−1 ∈ Vf (x0, . . . , xn−2),
(b) Qg(x0, . . . , xn−1) �= ∅ ⇒ xn−1 ∈ Vg(x0, . . . , xn−2),
(c) Vh(x0, . . . , xn−1) �= ∅ ⇒ xn−1 ∈ Vh(x0, . . . , xn−2).
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Consequently, the necessary conditions in Theorem 5 are meaningful only if

(2.12) xn−1 ∈ Vf (x0, . . . , xn−2) ∩ Vg(x0, . . . , xn−2) ∩ Vh(x0, . . . , xn−2)

(otherwise, statement (a) of the theorem holds trivially without any optimality
assumption at x0).

Proof. (a) Define f̃(x) := f(x) − f(x0). Then the condition f(x) � f(x0)
is equivalent to f̃(x) ∈ −C, where C is a convex cone with nonempty interior.
Therefore, part (a) can be obtained as a special case of part (b) which is proved
below.

(b) Suppose that there exists a point xn ∈ Qg(x0, . . . , xn−1). Then, according
to Definition 3(b), there exist v ∈ int K, N ∈ N (xn) and t0 > 0 such that (2.3)
holds. Since K is a convex cone, we have

(2.13) −K − tnK ⊂ −K for all t > 0.

Hence, by putting r(t) := tnxn, we obtain from (2.3) (where y = xn ∈ N)
and (2.13)

(2.14) g

( n−1∑
i=0

tixi + r(t)
)

∈ −K for all t ∈ (0, t0].

Moreover, for every N0 ∈ N (0X), there exists t1 ∈ (0, t0] such that t−(n−1)r(t) =
txn ∈ N0 for all t ∈ (0, t1]. This, together with (2.14), means that xn−1 ∈
Vg(x0, . . . , xn−2).

(c) Suppose that there exists a point xn ∈ Vh(x0, . . . , xn−1). Then we can
find t0 > 0 and a function r : (0, t0] → X such that

(2.15) h

( n−1∑
i=0

tixi + tnxn + r(t)
)

= 0 for all t ∈ (0, t0],

and

(2.16) ∀N ∈ N (0X), ∃tN ∈ (0, t0], ∀t ∈ (0, tN ], t−nr(t) ∈ N.

Now, take any N0 ∈ N (0X). We can choose t1 ∈ (0, t0] and N1 ∈ N (0X) such
that

(2.17) (0, t1](xn + N1) ⊂ N0.

Let t2 := tN1 be the number selected for N = N1 according to (2.16); we may
assume that t2 ≤ t1. Putting r̃(t) := tnxn + r(t), we get from (2.15)–(2.17) that

h

( n−1∑
i=0

tixi + r̃(t)
)

= 0 for all t ∈ (0, t0],(2.18)

t−(n−1)r̃(t) = t(t−nr̃(t)) = t(xn + t−nr(t)) ∈ N0 for all t ∈ (0, t2].(2.19)



Higher-Order Necessary Optimality Conditions 135

Conditions (2.18) and (2.19) mean that xn−1 ∈ Vh(x0, . . . , xn−2). �

3. Comparison with the results of Furukawa and Yoshinaga

The authors of [2] have formulated their n-order necessary optimality condi-
tions by using three kinds of n-order variational sets defined in a Banach space.
For the first two of these sets, F (Q; x0, . . . , xn−1) and V (Q; x0, . . . , xn−1), it is
easy to give equivalent definitions which are valid in an arbitrary real topological
vector space. This is done below in Definition 8. The third variational set
T (Q; x0, . . . , xn−1) is defined in terms of sequences and will not be considered
here.

Definition 8. Let X be a real topological vector space, and let Q be an arbi-
trary nonempty subset of X . For x0 ∈ Q, and for any sequence (x1, . . . , xn−1) of
points of X , we define the variational sets F (Q; x0, . . . , xn−1) and
V (Q; x0, . . . , xn−1) as follows:

(a) xn ∈ F (Q; x0, . . . , xn−1) if and only if there exist N ∈ N (xn) and t0 > 0
such that

n−1∑
i=0

tixi + tnN ⊂ Q for all t ∈ (0, t0].

(b) xn ∈ V (Q; x0, . . . , xn−1) if and only if there exist t0 > 0 and a function
r : (0, t0] → X such that

n∑
i=0

tixi + r(t) ∈ Q for all t ∈ (0, t0],

and for every N ∈ N (0X), there exists t1 ∈ (0, t0] such that t−nr(t) ∈ N

for all t ∈ (0, t1].

It is easy to see that both the variational sets are empty if x0 /∈ cl Q, and
are equal to X if x0 ∈ int Q. Hence, these variational sets can give nontrivial
information only if x0 is a boundary point of Q.

We now give an inductive definition of n-order Neustadt derivatives of an
arbitrary mapping between two real topological vector spaces (they are called
variational derivatives in [4]).

Definition 9. Let f : X → U where X and U are real topological vector
spaces, and let x0 ∈ X .

(a) Suppose that, for every x1 ∈ X , there exists an element f (1)(x0; x1) ∈ U

such that, for every N0 ∈ N (0U ), there are N1 ∈ N (x1) and t1 > 0 for
which

t−1(f(x0 + ty) − f(x0) − tf (1)(x0; x1)) ∈ N0 for all y ∈ N1 and t ∈ (0, t1].
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Then we call the mapping f (1)(x0; ·) the first-order Neustadt derivative
of f at x0.

(b) Let n ≥ 2, and suppose that f has the derivatives f (1)(x0; · ), . . . ,

f (n−1)(x0, . . . , xn−2; · ), and for every xn ∈ X , there exists an element
f (n)(x0, . . . , xn−1; xn) ∈ U such that, for every N0 ∈ N (0U ), there are
Nn ∈ N (xn) and tn > 0 for which

t−n

(
f

( n−1∑
i=0

tixi + tny

)
− f(x0) −

n∑
i=1

tif (i)(x0, . . . , xi−1; xi)
)

∈ N0

for all y ∈ Nn and t ∈ (0, tn].

Then we call the mapping f (n)(x0, . . . , xn−1; · ) the n-order Neustadt derivative
of f at x0 with respect to (x1, . . . , xn−1). In this case, f is called n-times Neustadt
differentiable at x0 with respect to (x1, . . . , xn−1).

Let us now return to problem (1.1), and suppose that the assumptions for-
mulated in Section 1 hold. By comparing Definitions 3, 8 and 9, we can obtain
the following result.

Theorem 10. Suppose that g is n-times Neustadt differentiable at x0 with
respect to (x1, . . . , xn−1), and that g(x0) ∈ −K. Then the following conditions
are equivalent:

(3.1) xn ∈ Qg(x0, . . . , xn−1),

(3.2) g(n)(x0, . . . , xn−1; xn)

∈ F (−K; g(x0), g(1)(x0; x1), . . . , g(n−1)(x0, . . . , xn−2; xn−1)).

Proof. (3.1)⇒(3.2). Let xn ∈ Qg(x0, . . . , xn−1); then there exist v ∈ int K,
N ∈ N (xn) and t0 > 0 such that (2.3) holds. Since v ∈ int K, we can find
N0 ∈ N (0V ) satisfying

(3.3) v − N0 − N0 ⊂ K.

It follows from the assumption of n-times Neustadt differentiability of g that
there exist Nn ∈ N (xn) and tn ∈ (0, t0] such that Nn ⊂ N and

tng(n)(x0, . . . , xn−1; xn) ∈ g

( n−1∑
i=0

tixi + tny

)
− g(x0)(3.4)

−
n−1∑
i=1

tig(i)(x0, . . . , xi−1; xi) + tnN0
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for all y ∈ Nn and t ∈ (0, tn]. Applying successively conditions (3.4), (2.3) and
(3.3), we get

g(x0) +
n∑

i=1

tig(i)(x0, . . . , xi−1; xi) + tnN0(3.5)

⊂ g(x0) +
n−1∑
i=1

tig(i)(x0, . . . , xi−1; xi) + g

( n−1∑
i=0

tixi + tny

)

− g(x0) −
n−1∑
i=1

tig(i)(x0, . . . , xi−1; xi) + tn(N0 + N0)

= g

( n−1∑
i=0

tixi + tny

)
+ tn(N0 + N0)

⊂ − K − tn(v − N0 − N0) ⊂ −(K + tnK)

for all y ∈ Nn and t ∈ (0, tn]. Since K is a convex cone, we have

(3.6) K + tnK ⊂ K for all t > 0.

Let us define M := g(n)(x0, . . . , xn−1; xn) + N0 ∈ N (g(n)(x0, . . . , xn−1; xn)).
Then (3.5) and (3.6) imply

(3.7) g(x0) +
n−1∑
i=1

tig(i)(x0, . . . , xi−1; xi) + tnM ⊂ −K for all t ∈ (0, tn],

which means that condition (3.2) holds.

(3.2)⇒(3.1). If (3.2) holds, then there exist tn > 0 and M ∈N (g(n)(x0, . . . ,

xn−1; xn)) such that (3.7) is fulfilled. Then we can find N0 ∈ N (0V ) satisfying

(3.8) g(n)(x0, . . . , xn−1; xn) + N0 + N0 ⊂ M.

It follows from the assumption of n-times Neustadt differentiability of g that
there exist Nn ∈ N (xn) and t∗

n ∈ (0, tn] such that

(3.9) g

( n−1∑
i=0

tixi + tny

)
− g(x0) −

n−1∑
i=1

tig(i)(x0, . . . , xi−1; xi)

∈ tn(g(n)(x0, . . . , xn−1; xn) + N0) for all y ∈ Nn and t ∈ (0, t∗
n].

Applying successively conditions (3.9), (3.8) and (3.7), we get

(3.10) g

( n−1∑
i=0

tixi + tny

)
+ tnN0 = g(x0) +

n−1∑
i=1

tig(i)(x0, . . . , xi−1; xi)

+ g

( n−1∑
i=0

tixi + tny

)
− g(x0) −

n−1∑
i=1

tig(i)(x0, . . . , xi−1; xi) + tnN0
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⊂ g(x0) +
n−1∑
i=1

tig(i)(x0, . . . , xi−1; xi)

+ tn(g(n)(x0, . . . , xn−1; xn) + N0 + N0)

⊂ g(x0) +
n−1∑
i=1

tig(i)(x0, . . . , xi−1; xi) + tnM ⊂ −K

for all y ∈ Nn and t ∈ (0, t∗
n]. Since K is a cone with nonempty interior, the set

int K is a nonempty cone; hence, there exists a vector v ∈ (int K) ∩ N0.Then
(3.10) implies

g

( n−1∑
i=0

tixi + tny

)
+ tnv ∈ −K for all y ∈ Nn and t ∈ (0, t∗

n],

which means that xn ∈ Qg(x0, . . . , xn−1). �

Corollary 11. Suppose that f is n-times Neustadt differentiable at x0 with
respect to (x1, . . . , xn−1). Then the following conditions are equivalent:

(3.11) xn ∈ Qf (x0, . . . , xn−1),

(3.12) f (n)(x0, . . . , xn−1; xn)

∈ F (f(x0) − int C; f(x0), f (1)(x0; x1), . . . , f (n−1)(x0, . . . , xn−2; xn−1)).

Proof. From Definition 8(a), it is easy to see that F (Q; x0, . . . , xn−1) =
F (int Q; x0, . . . , xn−1) for an arbitrary set Q. Hence, the set int C in condition
(3.12) may be replaced by C. Now, the equivalence of (3.11) and (3.12) follows
from Theorem 10 with g and K replaced by f̃ and C, respectively, where f̃ is
defined by f̃(x) := f(x) − f(x0). �

Remark 12. If U = R and C = {λ ∈ R | λ ≥ 0}, then condition (3.12) is
identical with condition (5.7) in [2].

Gathering the information provided in Theorems 5(a), 10 and in Corollary 11,
we obtain the following result.

Theorem 13. Let x0 be a weak local minimum point for problem (1.1).
Then, for every sequence (x1, . . . , xn−1) of elements of X, there is no solution
xn to the system

f (n)(x0, . . . , xn−1; xn)

∈ F (f(x0) − int C; f(x0), f (1)(x0; x1), . . . , f (n−1)(x0, . . . , xn−2; xn−1)),

g(n)(x0, . . . , xn−1; xn)

∈ F (−K; g(x0), g(1)(x0; x1), . . . , g(n−1)(x0, . . . , xn−2; xn−1)),

xn ∈ Vh(x0, . . . , xn−1).



Higher-Order Necessary Optimality Conditions 139

Theorem 13 has a form similar to that of [2, Theorem 5.2]. However,
the authors of [2] use the “sequential” variational set T (Q; x0, . . . , xn−1) in-
stead of V (Q; x0, . . . , xn−1), for an arbitrary set constraint x ∈ Q (in our case,
Q = {x ∈ X | h(x) = 0}). Although the set T (Q; x0, . . . , xn−1) is, in gen-
eral, larger than V (Q; x0, . . . , xn−1), which leads to a formally stronger result
in [2], it can be seen that these two sets are equal under sufficiently strong dif-
ferentiability assumptions in Banach spaces. (See, for example, the proof of [1,
Proposition 7.2] which can be repeated as well for the “sequential” definitions.)
Therefore, Theorem 13 shows that the n-order necessary optimality conditions
of Ben–Tal and Zowe are essentially equivalent to the conditions of Furukawa
and Yoshinaga.
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