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SOLUTIONS OF IMPLICIT EVOLUTION INCLUSIONS
WITH PSEUDO-MONOTONE MAPPINGS
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ABSTRACT. Existence results are given for the implicit evolution inclu-
sions (Bz(t)) + A(t,z(t)) 2 f(t) and (Bz(t)) + A(t,z(t)) — G(t,z(t)) >
f(t) with B a bounded linear operator, A(t, -) a bounded, coercive and
pseudo-monotone set-valued mapping and G a set-valued mapping of non-
monotone type. Continuity of the solution set of first inclusion with respect
to f is also obtained which is used to solve the second inclusion.

1. Introduction

In this paper, we shall consider existence and continuity problems of solutions
for the implicit inclusion

(1.1) %(Bl“(t)) + A(t,z(t)) > f(t) a.e.on [0,T7,

Bz(0) = By,

and the perturbation problem

(1.2) %(Bx(t)) + A(t,x(t)) — G(t,z(t)) > f(¢t) a.e. on [0,T],

Bz(0) = Buxy,
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in an evolution triple (V, H,V*) with V, H real separable Hilbert spaces. Here
B is a linear bounded, symmetric and positive operator from V to V* and

v+ > 0, A(t, ) is a set-valued, bounded and coercive pseudo-
monotone mapping from V to V*, f € L1(0,T;V*) and G is a set-valued map-
ping of non-monotone type with values in H. The initial value z( is supposed
to be in V' although it can be in the larger space H. We will prove that these
two problems have solutions x € LP(0,T;V) with 2’ € L4(0,T;V*) and the set
of all such solutions to (1.1) is continuous with respect to f.

Problems (1.1) and (1.2) allow many special cases that have been studied
already. When B is the identity operator on V, (1.1) is the problem considered
by the Bian and Webb in [3] (where V can be a reflexive Banach space). When
A(t,z) = A(z) and A is a maximal monotone mapping, (1.1) is studied by Barbu
and Favini in [2]. When A is monotone and Lipschitz, it is a problem treated by
Andrews, Kuttler and Shillor in [1]. When A is monotone and B is the identity
operator on V', (1.2) is the problem considered by Migérski in [4]. More further
special cases can be found in the references of the papers cited above.

We remark that we work in LP(0,7;V) and L4(0,T;V*) with p > 2,¢q =
p/(p — 1), and in [1] and [2], the spaces used are L2(0,7T;V) and L%(0,T; V™).
We also note that, in [1] and [2], the coercivity condition was imposed on the sum
A + AB for some A > 0 and the assumption inf{||Bul| : ||u]| = 1} > 0 was not
imposed, but in this paper, coercivity condition is made on A (if p > 2, these are
equivalent). The extra condition we imposed on B makes that the solution = of
(1.1) is such that 2’ € L9(0,T;V*) (particularly if p = ¢ = 2, 2’ € L?(0,T;V))
and, from this property, the continuity result for (1.1) and the solvability for
(1.2) can be derived which are not given in [1], [2] or [3].

2. Preliminaries

In this paper, we always suppose that (V, H,V*) is an evolution triple with
V, H Hilbert spaces, we suppose p > 2 is a given number and write ¢ = p/(p—1).
The scalar product in H and the duality pairing between V and V* are denoted
by (-, -). The space L"(0,T;V) will be abbreviated as L"(V) and the duality
pairing between LP(V) and L?(V*) will be denoted by ((-, -)). The set of all
bounded linear operators from V to V* is denoted by L(V,V*). The norm in
a space X is denoted by || - || x except that in L(V,V*) which will be denoted
by || - || only. Convergence in the weak topology will be written z,, — x. The
space X endowed with the weak topology will be denoted by X,,,.

Suppose N : V — 2V is a set-valued mapping. N is said to beof class (S ) if

(2.1) Tp, —2 inV, wu, € Nz, and limsup (u,,z, —2z) <0

n—oo
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imply z, — x. N is said to be pseudo-monotone if (2.1) implies that for each
y € V, there exists u = u(y) € Nz such that (u,z —y) < liminf, o0 (un,zy —
y). N is said to be quasi-monotone if x,, — x in V. It is known that, if the
mapping involved is bounded and demicontinuous, monotonicity implies pseudo-
monotonicity, pseudo-monotonicity implies quasi-monotonicity, and a mapping
of class (S, ) is pseudo-monotone.

Now, we introduce the following conditions regarding B and A.

(H1) B € L(V,V*) is symmetric, positive and
l:=inf{||Bul| : w €V, |lul|ly =1} > 0.

(H2) A:[0,T]xV — 2" is measurable with nonempty closed convex values
and v — A(t,v) is pseudo-monotone for every ¢ € [0,T].
(H3) There exist by > 0,by € L(0,T) such that

sup{|lul|v~ : u € A(t,v)} < blHUHZ";l +by(t), forallveV, tel0,T].
(H4) There exist b3 > 0,bs € L*(0,T) such that

%An(f )(u,v) > bs|jv||}, — ba(t), forallveV, tel0,T].
ucA(t,v

We denote by

(Lx)(t) = /tx(s) ds, foreach z e L"(V), r > 1,
0
Az ={ge L (V*) : g(t) € A(t,z(t)) a.e.}, for each x € LP(V).

It is known that, under (H2)-(H4), A is a well-defined bounded mapping from
L?(V) to L9(V*) with closed convex values. Moreover, in [3], the authors proved
the following results which remains valid if we replace the general triple by
a Hilbert space one.

LEMMA 2.1 ([3]). Suppose (H2)—(H4) are satisfied. Then the following as-
sertions hold.

(i) For each f € L1(V*) and each xg € V, there exists x € LP(V) such that
e LI(V*), 2'(t)+ A(t,z(t)) > f(t) a.e. and z(0) = 0.

(ii) Ifxy, are functions from [0, T into V with x,, = x in LY(V*), Lz, — Lz
in LP(V) and z, € ALz, limsup (zn, Lz, — Lz)) < 0, then there exist
z € ALz, a subsequence {zn; } such thatz,; — z and (zn,, Lz,,)) —

(z, Lx)).
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Let A : V — V* be the canonical isomorphism and € > 0 be given. Under
assumption (H1), we see that eA + B is an isomorphism from V to V*. So we
can let

(u,v)w := ((eA+ B) tu,v) and A(t,v):= A(t,(eA+ B) 'v)

for all u,v € V*. Since B is symmetric, (-, - ) is an inner product on V* and
the space W := (V*, (-, - )w) is a Hilbert space in which the norm is denoted
by |- -

The following conclusion regarding the equivalence of the two norms on V*
might be known, but for completeness, we give it with proof.

LEMMA 2.2. |[(eA+ B)~Y|~Y2|v|lw < |v|
veW.

v < ||5A+B||1/2||v||w for each

PRrROOF. Let v € V*. Then
[ollfy = ((eA+ B)"'v,v) < [[(eA + B) | [lv]l3-

which implies the first part of our inequalities. Also, there existsu € V, |lully =1
such that ||v||v+ = (u,v). Write z = (A + B)u € V*. Then

213 = (2, 2)w = (u, 2) < ||z]

V*,
and, therefore, we have
[ollv- = (A + B)"t2,0) = (2,0)w
1/2
< [ollwllzllw < lollwl2I1/:
1/2
< lollwlled + BI2|fully/* = lleA + BIY2|[v]lw O

3. Existence

In this section, we consider the existence of solutions for problem (1.1) and
some related second order problems.

LEMMA 3.1. Under assumptions (H1)—(H4), suppose € (0,1/(2||A|])). Then
A [0, T)xW — 2V is a measurable mapping with closed convex values, A(t, -)
is pseudo-monotone and, for each v € W and each y € A-(t,v), we have

(3.1) lyllw < b1(2/0P~ VD @BINPD2|wllfy " + (2/1)'ba(8),
(32) (g, v)w > bsk?(1/2)""2|ollfy — ba(?).

Proor. First, under our assumptions, we see

(3.3) leA+ Bl < || B[l +elAll <2[|B],

1 2
3.4 eA+B) Y= sup —————— <=
(34) lEeA+BN= S0 AT Byl <1
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By our assumption (H2) and Lemma 2.2, A, is a measurable mapping from
[0,T] x W to 2" with closed convex values.

Suppose v, = vin W, w, € A.(t,v,) and limsup,,_, . (W, v,—v)w < 0. Let
zp, = (A + B)"'v,,x = (A + B)"'v. Then we see that w,, € A(t,z,),r, = =
in V and

0 > lim sup (wp, v, — v)w = limsup (wy, T, — x).

n—oo n—oo
Since A(t, -) is pseudo-monotone, for each y € V*, there exists w(y) € A(t,x)
such that

(w(y),v —y)w = (w(y),z — (A + B)"'y)
< liminf (wy, z, — (A + B)"'y) = liminf (w,,, v, — y)w.

n—oo n—oo

This means that A.(t, -) is pseudo-monotone.
To verify (3.1) and (3.2), we suppose v € W and let y € A(t, (eA + B)~1v).
Then
lyll¥ = (,mhw = ((eA+ B)"y,) < ll(eh+ B) Iyl

Since ¢ € (0,1/(2]|A]])), by (3.4), we see ||(eA + B)~!|| < 2/I. So from (H3),
Lemma 2.2 and (3.3), it follows

lyllw < bl +B) V2 (l(eA + B) "M ollft + [I(eA + B) MM 2ba(2)
< bifl(eA+ B) P YD ed + BTV ol 4 (A + B) VA (0)
< bu(2/DP~ A BT lolf + (2/D)M 20a(1).

On the other hand, let

1
k—inf nf WEAEB)llv
e>0veV+\{0} [lv]

V*

If k = 0, then there exist sequences {v,} € V* and {e, } such that |lv,]|
en — 0 and ||(e,A + B) " tv,|ly — 0. Writing u, = (¢,A + B) v, we see

V*:17

L= [lvnflve = l(EnA + B)uy|

ve < (enlAll+ B [[unllv — 0
which is a contradiction. So k > 0 and, by (H4), Lemma 2.2 and (3.3), we have

(v, v)w = ((eA + B)"'v,y) > bsll(eA + B)~l[f, — ba(t)
> byk?||ol[f. — ba(t) = bak? (| (A + B) M| 7P l0]lfy — ba(t)
> bsk?(1/2)"/2[0]|fy — ba(2). 0

The main result of this section is



106 W. M. BianN

THEOREM 3.2. Under the assumptions (H1)—(H4), there exists ¢ > 0 such
that, for each f € L(V*), problem (1.1) has at least one solution © € LP(V)
with *' € LY(V*) and ||z| ov), |2 | Laqvey < (L + || fllLaqv=)). If, in addition,
p=2, then z’ € L3(V).

PRrOOF. For each € € (0,1/(2||A])), applying Lemma 3.1 and Lemma 2.1(i)
in the triple (W, W, W), we see that there exists z. € LP(W) with 2.(0) = z1 :=
(eA + B)xg and zL € LY(W) such that

(3.5) oL (t) + Ac(t, (eA+ B) tz. (1)) 2 f(t), ae.te€][0,T).

Scalar multiplying (3.5) by z.(t) and using the coercivity (3.2) of A., we have

5 7117l + Cullz=@) 5y = ba(®) < 1 @)llw lle=(®)lw
with Cy := (1/2)P/?b3kP. Therefore

1

1 T
ey + Cullaell vy < 5 lealliy +/0 (b4 ()]t + (| fl o w el Lo (w)-

Using (3.5) and the growth condition (3.1), we see
—1
2l Laowy < I1fllLaewy + Callzellp iy + C2

with C2 > 0 a constant independent of f and €. By Lemma 2.2, (3.3) and (3.4),

we see

lzlw < 1A+ B) M2 | v
< (2/)'2)|eA + Bllllwollv < 21IBII(2/D"2 o]y

Similarly, || f[|r«w) < 2||B|[(2/1)Y?|| f||a(v+)- So there exists constant Cs > 0,
independent of f and ¢, such that

(3.6) 22l Laqwys 2l Leqwy < Ca(L+ (| fllLav))-

Let n be so large that 1/n < I/(2||A]]). Let e = 1/n,y, = ((1/n)A+ B) " 'z..
Then y,, € LP(V), y, = ((1/n)A + B)~ 12l € LY(V) C LY(V*) and there exists
zn € LU(V*) with 2z(t) € A(t,yn(t)) a.e. (that is z, € /TLy;L) such that
(3.7 yn(0) =z and ((1/n)A+ B)y,(t)) + z,(t) = f(t), a.e. on [0,T].

Since (V, H,V*) is an evolution triple, there exists 3 > 0 such that

(3-8) [l

v« <Bllully and |ul|lg < Bllullvy  for all u € V.
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From (3.6), Lemma 2.2, (3.3) and (3.4), it follows that there exist constants
Cy > 0, independent of f and ¢, such that

(3.9) |l < Blypllzaon < BI(L/R)A+ B) |2kl pave
S Ca(T+ ([ fllzaqvey),
lynllevry < 1((1/n)A+ B) Mllzellpeqvsy < Ca(l+ || fllpavye))-

So we may suppose that y, — y := Ly’ + zo in LP(0,T;V), y, — ¢  in
L0, T;V*), z,, = zin LY(0,T;V*) and ((1/n)A+B)y,, — (By)" in L1(0,T;V*)
(by passing to subsequences). By (3.7) and noting y,(0) — y(0) = 29 — 29 = 0,
we have

T
lim Sup (n, g — v) = limsup / (=((1/m)A = BYy, (t), yu(t) — y(t))dt

n—oo n—oo

n—00

T
= — liminf /0 %%(B(yn(t) — y(t))’yn(t) _ y(t))dt

By Lemma 2.1(ii), z,, — z € E(Ly/). So (By)' 4+ z = f, that is, y is a solution
for (1.1). Obviously, [|y/(|raqv+), [|¥llLr(vy < Ca(l + | fllLaqv))-

If p =g =2, from (3.9), it follows that {y/,} is bounded in L?(V). So we
may suppose ¥/, — y' in L?(V'). This means that 3’ € L?(V). O

REMARK 3.3. In [1] or [2], [ > 0 is not imposed, but, the boundedness of
x (the solution) and x’ are not derived there either. The property that z’ €
L?(0,T;V) when p = g = 2 is claimed in [1] under other extra assumptions.

COROLLARY 3.4. Under the assumptions (H1)—(H4), suppose, A is mea-
surable mapping from [0.T] x V' to V* with closed convex values and, for each
t €[0,T],v — A(t,v) is quasi-monotone and weakly closed. Then, for each f €
L1(V*), problem (1.1) is almost solvable in the sense that f Grange(L*B—&—L*A\L).
More precisely, if we denote by j the duality map from V to V*, then for each n,
there exists x, € LP(V'), x(0) = xo such that

(310) I (Bran) + At a(0) >~ ieal0) +10), ae.
and j(x,)/n — 0 in LI(V*).

PRrOOF. For each n, define a mapping A4,, : [0,T] x V — V* by

1
Ap(t,v) = gj(v) + A(t,v) fortel0,T],veV.
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Since j is single-valued, of class (5 ) and demicontinuous, It can be proved easily
that v — A, (t,v) is pseudo-monotone and

sup lullv+ < (1+bo) ol + 1+ ba(2),
ueAn(t;U)
inf >b B by(t
st (o) > byl — ba)

for all v € V, ¢t € [0,T] and n > 0. Applying Theorem 3.2, there exists z,, €
LP(V) satisfying (3.10) for each n > 0 and ||zy||z»(vy < ¢ for some constant ¢
independent of n. As ||j(zn(t))|lv+ = |zn(t)]lv, {j(x,)} is bounded in LI(V*).
So, j(xn)/n — 01in LI(V*). O

Now, we consider some second order differential inclusions. The first one is

(3.11) ((P=z(t)) + m(x(t))) + Qz(t) = f(t), m(x(t)) € N(t,z(t)) ae.,
Pz(0) = Pxg, ((Pz)"+m(z))(0) = Qx1,70,71 € V.

Here, P,Q € L(V,V*) are symmetric operators and (Pu,u) > 0, (Qu,u) >
v+ > 0, and N : [0,T] x
V — 2V is a set-valued mapping. Its solvability can be obtained directly from
Theorem 3.2.

wllull}, for some w > 0 for all w € V, inf),, ||Pul

COROLLARY 3.5. Suppose xg,x1 € V, N satisfies (H2)—(H4). Then problem
(3.11) has at least one solution x € LP(V') with Pz’ +m(xz) € LI1(V*).

PROOF. Obviously, (3.11) is equivalent to

~

(Bz(t)) + A(t, 2(t)) > f(t) a.e. and Bz(0) = Bz

in the evolution triple (V2, H2, V*2) with

(5 8) w70 1= () we(2)

We take the duality pairing between V2 and V*? as
((w,v), (z,y)) = (u,2) + (v,y) foru,veV” zyeV.

Here, in order to distinguish the duality pairing different from the points-pairing
(u,v) € V2 or V*2, we use (-, -) to stand for the duality pairing between V
and V*. Let 2, := (¥, yn) € V2, wy, = (Un,vn) € A(t, 2,) such that 2z, — 2z =
(z,y) € V? and

thllp <<(Un71)n), (xnvyn) - (mvy)» S 0.

n—oo
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Then u, € N(t7$n) = QYn,vn = Qx, and z, = z, Yy, — y, Qr, — Qx,
Qy, — Qy. Since @ is symmetric, we see that

(3'12) (hm lnf) lim sup <<(un7 'Un)’ (J?n, yn) - (.23*, y*)>>

n—oo

= (liminf) im sup (up, + Qyn, n — =) + (Qy, z*) — (Qz, y™),

n—oo

for all 2*, y* € V.By taking 2* = z,y = y* in (3.12), we obtain limsup,, , . {(u,+
QYn, xn — ) < 0 and, therefore, the pseudo-monotonicity of N implies that, for
each (7,7) € V2, there exists u* € N(¢, ) such that

(u*,z — =) < liminf (u, + Qyn, T, — T).

n—oo

Let 4 = u* — Qy,v = Qz. Then (u,?) € A(t, (z,y)). Using (3.12), we have

<<(av i]\)a (l‘,y) - (57 :7/\)» = <’U/*,$ - £> + <Qy7'//1:\> - <Qxa@\>
< hnﬂilgf <<(un7 Un)a (xna yn) - (553 @\)»7
that is, A(t, -) is pseudo-monotone. Also, it can be proved easily that the other

conditions of Theorem 3.2 are satisfied in the present situation. So, the conclu-
sion follows. O

THEOREM 3.6. Under the assumptions (H1)-(H4), suppose P : V. — V*
is a linear, bounded, symmetric and positive operator. Then, for each f €
LY V*),xg,21 € V, there exists © € LP(V) such that

(Bx(t))” + A(t,2'(t)) + Px(t) > f(t) ae.,

(3.13)
Bz(0) = Bz, (Bz(0)) = Bux.

ProOOF. Consider the problem
(3.14) (By(t)) + A(t,y(t)) + PLy(t) > f(t) a.e., By(0)= Bx.

Let P be the realization of P. By our assumptions on P, PL is continuous
and positive from LP(V) to LI(V*). So L*(A + PL)L is pseudo-monotone and
satisfies the same coercive and growth conditions as L*AL. Using almost the
same method as used in Theorem 3.2 (just replace Aby A+ ﬁL), problem (3.14)
has a solution y. Obviously, z = Ly + ¢ is a solution of (3.13). O

4. Continuity
Now, we denote the solution set of problem (1.1) by

S(f)={x e W(0,T) : z is a solution of (1.1),
lzllzeqvys 12" laqv=y < (U + [ fllLaqv=))}
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and consider its continuity with respect to f. Here c is the constant obtained in
Theorem 3.2 and W(0,T) = {z € LP(V) : 2’ € LI(V*)}. Recall that is compact,
then W(0,T) — LP(H) compactly.

THEOREM 4.1. Under the assumptions (H1)-(H4), S(f) is a bounded weakly
closed subset of W(0,T). If, in addition, V — H compactly, then f — S(f) is
upper semicontinuous as a set-valued mapping from L1(H),, to both W(0,T),
and LP(H).

PRrROOF. Suppose f € L9(V*) and x,, € S(f) with x,, = = in W(0,T). Then

Tp = xin LP(V), 2], — ' in LY(V*) and there exist z, € SZ&@ 2 (+y) Such that

(Bxp(t)) + za(t) = f(t) ae..
Multiplying both sides by x,, — x, we have
((Bx(t)), wa(t) — 2(t)) + %%(an(t) — B(t), xn(t) — x(t))
+ (2n(t), 2n () — 2(t) = (f(1), 2n(t) — (1))

and, therefore

(4.1)  limsup ((zn, T, — ) = limsup (f — (Bz)', z,, — 1))

n—oo n— 00

+ %limsup [—(B(zn(T) —2(T)), zn(T) — x(T)] < 0.

n—oo

Applying Lemma 2.1(ii) to the sequence {z }, we see that there exist a subse-
quence {z,,} and a point z € SE‘(_)I(_) such that z,, — z in LY(V*). Hence
(Bxyn,) = f — 2n; = f — 2. Since (Bx,)" — (Bz)', we see (Bx)' + z = f, that
is. € S(f). This proves the closedness. Obviously, S(f) is a bounded subset.

Now, suppose V — H compactly. If S is not u.s.c. from LY(H),, to W(0,T)
or L?(H), then there exist f, — fin LY(H), x, € S(f,) and a neighbourhood V
of S(f)in W(0,T),, or LP(H) with x,, ¢ V for all n > 0. Since {f,} is boundedin
LY(V*), we see that {z,} is bounded in W(0,T). We may suppose(by passing
to subsequences) that

T, =z in LP(V), i, —2' in LY(V¥)

for some x € W(0,T) and, therefore, Bz, — Bx,(Bxz,) — (Bz) in LI(V*).
The continuous embedding of W (0,T') into C(0,T; H) implies 2(0) = z(. Since
W(0,T) — LP(H) compactly, we may suppose x, — « in LP(H). Therefore

((fnvxn_x)):((fnvxn_l'))H—)O as n — oQ.

Here, ((, - ) g stands for the duality pairing between LP(H) and LY(H). Let
Zn € SZ&(- 20 () De the functions such that (Bxp)' (t) + zn(t) = fn(t) a.e. So,
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using the same method as used to obtain (4.1), we have

limsup (zn, zn — x)) = limsup |(fn — (Bz)', 2, — x))

n—oo n—o0

— S (Baa(T) — Ba(T),2,(T) — 2(1))| <0.

Applying Lemma 2.1(ii) to the sequence {z }, we see that there exist a subse-
quence {z,,} and z € Si(_’m(.)) such that z,, — zin LY(V*) and (zn,,7n; —
z)) — 0. So (Bz(t)) + z(t) = f(t) a.e. which implies z € S(f) C V. In case V is
a neighbourhood of S(f)in W(0,T),,, this has contradicted the assumption that
xn ¢ V for all n. In case V is a neighbourhood of S(f) in LP(H), the compact
embedding of W(0,T) into LP(H) implies that we can suppose (by passing to
a further sequence) x,,; — 2 in LP(H) which also contradicts our assumption.[]

5. Perturbation problem
In this section, we consider the solvability of (1.2).

THEOREM 5.1. Under the assumptions (H1)-(H4), let V. — H compactly
and, for each f € LY(H), problem (1.1) has a unique solution. Suppose G :
[0,T] x H — 2% is a measurable set-valued mapping with closed conver val-
ues, v — G(t,v) is u.s.c. as a mapping from H into H,. If there exist
dy € LY(H),ds,ds > 0 such that either

(5.1) |G(t,w)|lg :==sup{||v|lg : v € G(t,u)} <di(t) forallt€[0,T], ue H
or
(5-2) (Bu,u) = dallvllFr,  1G(t, W)l < daflullfr + da(t)

for allt € [0,T), u € H, then, for each xyg € V and each f € L1(V*), problem
(1.2) has solutions.

PrROOF. First, we suppose (5.1) is satisfied. Let x; be the unique solution
of problem (1.1) and let

F(g) = Sé(,@fm(,)) ={2€ LY (H): 2(t) € G(t,x44(t)) ae.},
D=A{zeL/(H): |z(t)|a <dt)}.

Then, our assumptions imply that F' is a well-defined mapping from D into itself
with closed convex values.

Let (gn, 2n) € Graph(F') and g, — ¢,2, — 2z in L9(H). By Theorem 4.1,
Tg,+f — Tgys in LP(H) and, therefore, x4 4 f(t) = 244 ¢(t) in H a.e. (by pas-
sing to a subsequence). Since G(t, -) is u.s.c., we see

w-limsup G(t,z4,4¢(t)) C G(t, xg1¢(2))

n—oo



112 W. M. BiaN
for almost all ¢t. Invoking Theorem 4.2 of [5], we have

2 € w-limsup F(gn) C Sy timoup, . G- gnss () C G0 agis() = F(9)-

n—oo

So (g,z) € Graph F, that is F is closed under the weak topology. Since D
is weakly compact, we see F' is weakly upper semicontinuous under the weak
topology. Since D is convex, from Kakutani’s fixed point theorem, it follows
that F has fixed point, say g. Obviously, x4 is a solution of (1.2).

Now, suppose (5.2) is satisfied. We claim that there exists M > 0 such that

(5.3) lx(®)|lr < M for each t € [0,T] and each solution x of (1.2).

In fact, let « be a solution to (1.2). Then there exist g3 € LY(V*), g2 € LY(H
such that g1 (t) € A(t,z(t)), g2(t) € G(t,x(t)) a.e. and (Bz(t)) + g1(t) — g2(t) =
f(¢t) a.e. Therefore, by (5.3) and Young’s inequality, for each € > 0, we have

li(ng(t), Z‘(t))2 + (gl (t)a .T(t))

2 dt
— (gat), 2(t)) + (F(), 2(1))
< @slz ()12 + ds ()@l + 1D~ )y
< %(dgnac@)u?f" +d (1))

eP
— |l

eP 1
+ — =% + —IfOIL. + L.
pll Ol 8qu @)l ’ @)l

Noting (5.2), (H4) and (3.8), we obtain

1 t
gle(Ol +bs [ la(s)lf ds

1 t qug ¢ 2
<5 Bava) + [ bi)ds+ ED [ ats)lf
2 0 qu 0

1 ! P t
+ o | @) I s+ S+ 1) [ et ds

Choosing & = [(pb3)/(B? + 1)]*/P, and by Gronwall’s Inequality, we see that
a priori estimates (5.3) hold. Let

Gi(t,x) = G(t,x) if [|z]|lg < M,

Gi(t,x) = G(t, Mx/||z||g) if ||z||g > M.
Then G is an upper semicontinuous mapping from [0,7] x H into H with

closed convex values and |G (t,z)|| g < di(t)+d3M?/9. Applying the conclusion
obtained in the first case, we see that there exists x € W(0,T) such that

Bz(0) = Bryg and (Buxz(t)) + A(t,z(t)) — G1(t,z(t)) 2 f(t) a.e..
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Using the same method as the one used to obtain (5.3), we can prove that
|zl < M on [0,T] and, therefore, G1(t,z(t)) = G(t,z(t)) a.e. Hence, z is a
solution of (1.1). O
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