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TOPOLOGICAL DEGREE
FOR A CLASS OF ELLIPTIC OPERATORS IN Rn

Cristelle Barillon — Vitaly A. Volpert

Dedicated to the memory of Juliusz P. Schauder

Abstract. A class of elliptic operators in Rn is considered. It is proved

that the operators are Fredholm and proper. The topological degree is con-

structed. Existence of solutions for a reaction-diffusion system is studied.

1. Introduction

Consider the elliptic operator

(1.1) A(u) = a(x)∆u+
n∑

i=1

bi(x)
∂u

∂xi
+ F (x, u),

where x = (x1, . . ., xn) ∈ Rn, u = (u1, . . ., up), F (x, u) = (F1(x, u), . . ., Fp(x, u))
is a vector-valued function, a(x), bi(x) are p×p matrices, ∆ denotes the Laplace
operator. Conditions on the matrices a(x), bi(x) and on the function F (x, u)
will be specified below.

The operator A is considered as acting from the weighted Hölder space
C2+δ

µ (Rn) to the space Cδ
µ(Rn). The norm in the space Ck+δ

µ (Rn) where k

is an integer and 0 < δ < 1is defined by the equality

‖u‖k+δ
µ = ‖uµ‖k+δ.
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Here µ(x) is a weight function and ‖ · ‖k+δ is the usual Hölder norm:

‖v‖k+δ = ‖v‖k + [v]k+δ, ‖v‖k =
k∑

j=0

max
|α|=j

‖Dαv‖0, ‖v‖0 = sup
x∈Rn

|v(x)|,

[v]k+δ = sup
x,y∈Rn

|Dkv(x)−Dkv(y)|
|x− y|δ

,

Dk =
∂k

∂xk1
1 . . . ∂xkn

n

, k1 + . . .+ kn = k.

The weight function µ(x) is a sufficiently smooth positive function, µ(x) → ∞
as |x| → ∞, such that the functions

µi(x) =
1

µ(x)
∂µ(x)
∂xi

, i = 1, . . . , n, µ∆(x) =
∆µ(x)
µ(x)

are bounded in Cδ(Rn) and tend to 0 as |x| → ∞. As example we can take
µ(x) = 1 + |x|2.

In this work we define the topological degree for the class of operators (1.1).
We note that construction of the topological degree for elliptic operators in un-
bounded domains is essentially different in comparison with the operators in
bounded domains. In the latter case the corresponding vector field can be re-
duced to a completely continuous one and the classical Leray–Schauder theory
[6] can be used. In the case of unbounded domains it cannot be done and other
approaches should be employed. In [3], [4], [11], [10] the degree is constructed
in the one-dimensional spatial case and in [12] for the elliptic operators in un-
bounded cylinders. This construction is based on the estimations of the operators
from below and on the approach developed in [9]. In [15] a wider class of elliptic
operators in cylinders is considered. In this case the construction uses the degree
theory for Fredholm operators [5]. In this work we apply the approach developed
in [15] to define the degreefor elliptic operators in Rn (see also [1]).

We recall that the choice of function spaces is important for the degree con-
struction. We use weighted spaces and we give an example when the degree
cannot be constructed in spaces without weight.

The contents of the paper are as follows. In Section 2 we study linear oper-
ators and discuss the Fredholm property and the index. In Section 3 we obtain
the conditions when the nonlinear operators are proper. The degree construction
for Fredholm and proper elliptic operators is discussed in Section 4. We study
existence of solutions for a reaction-diffusion system of equations in Section 5
and give the example where the degree cannot be defined in Section 6.
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2. Linear operators

In this section we consider the linear elliptic operator

(2.1) Lu = a(x)∆u+
n∑

i=1

bi(x)
∂u

∂xi
+ c(x)u,

acting from the space C2+δ(Rn) to Cδ(Rn). The matrices a(x), bi(x), and c(x)
belong to Cδ(Rn) and the ellipticity condition

(a(x)ξ, ξ) ≥ σ > 0, |ξ| = 1

is supposed to be satisfied. We suppose moreover that the coefficients of the
operator have directional limits at infinity. To define the directional limits,
consider the unit sphere S in Rn and consider a(x) as a function of the variables
φ ∈ S and r ≥ 0. Assume, that for any φ ∈ S, there exists the limit

aφ = lim
r→∞

a(r, φ),

and that this limit is a continuous function of φ. Similarly we define biφ and cφ
and assume that biφ and cφ are continuous functions of φ.

We introduce the limiting operators

Lφu = aφ∆u+
n∑

i=1

biφ
∂u

∂xi
+ cφu

which are operators with constant coefficients. The following conditions ensure
that they are Fredholm operators.

Condition 1. For any φ ∈ S the problem Lφu = 0 does not have nontrivial
solutions in C2+δ(Rn).

Theorem 2.1. The operator L is normally solvable and has a finite dimen-
sional kernel if and only if Condition 1 is satisfied.

The proof of this theorem is given in [7], [8] in a more general formulation.
Since the limiting operators Lφ have constant coefficients, we can formulate

Condition 1 in an equivalent form.

Condition 1′. The matrices

M(φ, ξ) = −|ξ|2aφ + i
n∑

j=1

ξjbjφ + cφ

do not have zero eigenvalues for any φ ∈ S and ξ = (ξ1, . . . , ξn) ∈ Rn.

To obtain the equivalence of these conditions we should apply the generalized
Fourier transform to the differential problem. Condition 1′ is more convenient
and we use it below. For the degree construction we need not only Conditions 1
and 1′ but also more strong conditions:
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Condition 2. For any φ ∈ S and λ ≥ 0 the problem Lφu−λu = 0 does not
have nontrivial solutions in C2+δ(Rn).

Condition 2′. The matrices

Mλ(φ, ξ) = −|ξ|2aφ + i
n∑

j=1

ξjbjφ + cφ − λIp

do not have zero eigenvalues for any φ ∈ S, ξ ∈ Rn, and λ ≥ 0. Here Ip is the
identity matrix.

Under additional conditions on the operator, Condition 2′ follows from Con-
dition 1′. Indeed, suppose that for some positive λ and ξ ∈ Rn, detMλ(φ, ξ) = 0.
We find additional conditions on the operators such that there exists η ∈ Rn for
which

(2.2) Mλ(φ, ξ) = M(φ, η).

Comparing the real and imaginary parts of these matrices, we have

(2.3) (|η|2 − |ξ|2)aφ = λIp,
n∑

j=1

(ξj − ηj)bjφ = 0.

From the first equality immediately follows that aφ = Ip and |η|2 6= |ξ|2. The
second equality is satisfied if the matrices bjφ are linearly dependent. In this
case the same vectors ξ and η can be used to satisfy the first equality. We have
proved the following proposition.

Proposition 2.2. If aφ = Ip and the matrices bjφ are linearly dependent
for all φ, then Condition 2′ follows from Condition 1′.

Corollary 2.3. Let Condition 1′ be satisfied. If the matrices bjφ are lin-
early dependent for all φ then the index of the operator L is zero.

Proof. Consider first the case where aφ = Ip. To prove the corollary it is
sufficient to consider the homotopy L − τλ, τ ∈ [0, 1]. For λ sufficiently large
the operator L− λ is invertible and its index is zero. Since the homotopy takes
place in the class of normally solvable operators with finite dimensional kernel,
the index does not change.

It remains to note that the index of the operator a−1
φ (x)L is the same as

the index of the operator L and that multiplication by the matrix a−1
φ does not

change the linear dependence of the matrices bjφ. �

Corollary 2.4. If Condition 1′ is satisfied and one of the matrices bj is
zero, then the index of the operator L is zero.

The proof is obvious.



Topological Degree for a Class of Elliptic Operators in Rn 279

We note that in the case n > p2 the matrices bjφ are linearly dependent and
the index of the operator is zero. In particular it is the case for the multidimen-
sional scalar equation n > 1, p = 1. In the one-dimensional case the index can
be different from zero [2]. It can also be equal to zero but Condition 2′ may not
be satisfied. It shows in particular that there exist different homotopy classes of
Fredholm operators with the same index.

We conclude this section with the conjecture that if n > 1 and Condition 1′

is satisfied, then the index of the operator L is zero.

3. Proper operators

In this section we show that the restriction of the operator (1.1) on every
bounded set is proper. It means that the intersection of the inverse image of any
compact set with a ball ‖u‖ ≤ K, K > 0 is compact. For the degree construction
we need to consider the operators depending on a parameter. Along with the
operator (1.1), we consider also the operator

(3.1) A(u, τ) = a(x, τ)∆u+
n∑

i=1

bi(x, τ)
∂u

∂xi
+ F (x, u, τ),

where τ ∈ [0, 1] and the following hypothesis are satisfied:

(H1) a(x, τ), bi(x, τ) ∈ Cδ(Rn) for any τ ∈ [0, 1] and F ′(x, u, τ) ∈ Cδ
µ(Rn, |u|

≤M) for any τ ∈ [0, 1] and 0 < M <∞;
(H2) ‖a(x, τ) − a(x, τ0)‖δ → 0, ‖bi(x, τ) − bi(x, τ0)‖δ → 0 as τ → τ0 and

‖(F (x, u, τ) − F (x, u, τ0))µ‖δ → 0 as τ → τ0 uniformly in u on every
bounded set;

(H3) a(x, τ), bi(x, τ) and c(x, τ) ≡ F ′u(x, 0, τ) have directional limits a(φ, τ),
bi(φ, τ) and c(φ, τ), respectively. The matrix-functions a(φ, τ), bi(φ, τ)
and c(φ, τ) are continuous with respect to φ;

(H4) Denote

ã(φ, r, τ)=a(x, τ), b̃i(φ, r, τ)=bi(x, τ),

F̃ ′u(φ, r, u, τ)=F ′u(x, u, τ), φ ∈ S, r ≥ 0.

Then

lim
r→∞
φ→φ0

ã(φ, r, τ) = a(φ0, τ), lim
r→∞
φ→φ0

b̃i(φ, r, τ) = bi(φ0, τ),

lim
r→∞
φ→φ0
u→0

F̃ ′u(φ, r, u, τ) = c(φ0, τ).

We also introduce the following notations

E1 = C2+δ
µ (Rn), E′1 = E1 × [0, 1], E2 = Cδ

µ(Rn),
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and consider the operator A(u, τ) as acting from E′1 to E2.

Theorem 3.1. Suppose that hypothesis (H1)–(H4) are satisfied and the op-
erator

L(τ)u = a(x, τ)∆u+
n∑

i=1

bi(x, τ)
∂u

∂xi
+ c(x, τ)u

satisfies Condition 1 for any τ ∈ [0, 1]. Then the restriction of the operator
A(u, τ) on any bounded set in E′1 is proper.

Proof. Let BR = {(u, τ) ∈ E′1, ‖u‖E1 ≤ R, τ ∈ [0, 1]}, and D be a compact
set in E2. We choose a sequence {uk, τk} ∈ G = A−1(D) ∩ BR. We will show
that there exists a converging subsequence of the sequence {uk, τk}. Without
loss of generality we can assume that τk → τ0 as k →∞.

Since the sequence {uk} is bounded in E1, then there exists a subsequence
{ukl

} converging to some limiting function u0 ∈ E1 uniformly in C2(Rn). We
should show that this convergence takes place in E1. Let

A(uk, τk) = fk ∈ D.

Since D is compact then without loss of generality we can suppose that fk → f0
in E2. Hence A(u0, τ0) = f0. Put

vk = ukµ, v0 = v0µ, wk = vk − v0, gk = fkµ, g0 = f0µ.

Then wk satisfies the following equation

(3.2) a(x, τ0)∆wk +
n∑

i=1

(bi(x, τ0)− 2µia(x, τ0))
∂wk

∂xi

+
(
a(x, τ0)(2|µΣ|2 − µ∆)−

n∑
i=1

bi(x, τ0)µi +Bk(x, τ0)
)
wk = hk − h0,

where

Bk(x, τ0) =
∫ 1

0

F ′u(x, u0(x) + t(uk(x)− u0(x)), τ0) dt, |µΣ|2 =
n∑

i=1

µ2
i

and

hk − h0 = gk − g0 + (F (x, uk, τ0)− F (x, uk, τk))µ

+ (a(x, τ0)− a(x, τk))
(

∆vk + (2|µΣ|2 − µ∆)vk −
n∑

i=1

2µi
∂vk

∂xi

)

+
n∑

i=1

(bi(x, τ0)− bi(x, τk))
(
∂vk

∂xi
− µivk

)
.

To prove the theorem we should show that wk → 0 in C2+δ(Rn).
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We note first that hk → h0 in Cδ(Rn). Indeed, we put hk − h0 = gk − g0 +
G1 +G2, where G1 = −(F (x, uk, τk) − F (x, uk, τ0))µ and G2 contains all other
terms. By construction gk → g0 in Cδ(Rn). By virtue of the conditions on F ,
G1 → 0 in Cδ(Rn). All other terms have the form ykzk where yk → 0 and zk is
uniformly bounded in Cδ(Rn).

From the inequalities

|uk(x)| ≤ K

µ(x)
, |u0(x)| ≤

K

µ(x)
,

where K is a positive constant, we obtain the convergence

Bk(x, τ0) → cφ0 , r →∞, φ→ φ0.

Here x = (r, φ). By virtue of the convergence un → u0 in C2(Rn), wk → 0 in C2

on every bounded set.
We show next that wk → 0 in C(R). If this convergence does not take place,

then there exists a sequence {x(k)} such that |wk(x(k))| ≥ δ > 0. This sequence
cannot be bounded because of the uniform convergence on every bounded set.
If we consider the corresponding spherical coordinates {r(k), φ(k)}, then without
loss of generality we can assume that φ(k) → φ0 for some φ0 ∈ S. The function
w̃k(x) = wk(x+ x(k)) satisfies the equation

a(x+ x(k), τ0)∆w̃k +
n∑

i=1

(
bi(x+ x(k), τ0)− 2µ̃ia(x+ x(k), τ0)

)
∂w̃k

∂xi
(3.3)

+
(
a(x+ x(k), τ0)(2|µ̃Σ|2 − µ̃∆)−

n∑
i=1

bi(x+ x(k), τ0)µ̃i

)
w̃k

+Bk(x+ x(k), τ0)w̃k = hk(x+ x(k))− h0(x+ x(k)),

where µ̃i(x) = µi(x + x(k)), µ̃Σ(x) = µΣ(x + x(k)) and µ̃∆(x) = µ∆(x + x(k))).
Passing to the limit in this equation on every bounded set, we obtain that the
equation Lφ0(τ0)u = 0 has a nonzero solution. This contradicts Condition 1 and
proves the uniform convergence wk → 0.

Since the sequence {wk} is uniformly bounded in C2+δ(Rn), then wk → 0 in
C2(Rn). To prove that this convergence takes place in C2+δ(Rn), we rewrite the
equation (3.2) in the form

a∆wk = −
n∑

i=1

((bi(x, τ0)− 2µia(x, τ0)))
∂wk

∂xi
+ pk,

where

pk = −
(
a(x, τ0)(2|µΣ|2 − µ∆)−

n∑
i=1

bi(x, τ0)µi +Bk(x, τ0)
)
wk + hk − h0.
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The Schauder estimates give ‖wk‖2+δ ≤ C(‖pk‖δ +‖wk‖1+δ). It remains to note
that ‖pk‖δ → 0 as k →∞. �

The choice of function spaces plays an important role for properness of the
operators. Consider the following example. Let the operator A(u) = u

′′
+ F (u)

act from C2+δ(R) to Cδ(R) and the function F (u) be sufficiently smooth and
satisfy the following conditions:

F (0) = 0, F (u) < 0, 0 < u < u0, F (u) > 0, u0 < u ≤ 1,
∫ 1

0

F (u) du = 0.

Then it can be easily shown that there exists a solution u(x) of the problem
A(u) = 0, u(±∞) = 0. Moreover, this solution is invariant up to translation
in space, i.e. all functions u(x + h), −∞ < h < ∞ are also solutions of this
problem. Hence the inverse image of 0 is bounded in the space C2+δ(R) but not
compact and the operator is not proper. If we consider Sobolev spaces instead
of the Hölder spaces, the operator is not proper neither. The solution u(x)
decreases exponentially at infinity and it is integrable. The family of solutions
u(x + h) is not compact. However if we consider the weighted spaces then the
norm ‖u(x+h)‖2+δ

µ goes to infinity as h→ ±∞. An intersection of this family of
solutions with any closed bounded set is compact. It is important to emphasize
here that the growth of the weight function at infinity should be slower than
exponential. Otherwise solutions of the equation will not belong to the weighted
space.

4. Topological degree

We recall the definition of a topological degree. Let E1 and E2 be Banach
spaces. Suppose we are given a class Φ of operators acting from E1 to E2 and
a class H of homotopies, i.e. maps

(4.1) A(u, τ) : E1 × [0, 1] → E2, τ ∈ [0, 1], u ∈ E1

such that for any τ ∈ [0, 1] fixed, A(u, τ) ∈ Φ. Suppose that for any bounded
open set D ⊂ E1 and any operator A ∈ Φ such that A(u) 6= 0, u ∈ ∂D (∂D de-
notes the boundary of the set D) there is an integer γ(A,D) satisfying the
following conditions:

(i) (Normalization) There exists a linear bounded operator J : E1 → E2

with a bounded inverse defined on the whole E2 such that for any
bounded open set D ⊂ E1, 0 ∈ D, γ(J,D) = 1

(ii) (Additivity) Let D, D1, D2 ∈ E1 be domains in E1, Di ⊂ D, i = 1, 2,
D1 ∩D2 = ∅. Suppose that A ∈ Φ and

(4.2) A(u) 6= 0, u ∈ D \ (D1 ∪D2).
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Then γ(A,D) = γ(A,D1) + γ(A,D2).
(iii) (Homotopy invariance) Let A(u, τ) ∈ H and

(4.3) A(u, τ) 6= 0, u ∈ ∂D, τ ∈ [0, 1].

Then γ(A( · , 0), D) = γ(A( · , 1), D).

The integer γ(A,D) is called topological degree.
We use here the construction of the degree for Fredholm and proper opera-

tors [5]. It concerns operators Ã acting from E1 into itself such that the operator
Ã + λI is Fredholm for all λ ≥ 0, the operator Ã(u, τ) is proper as acting from
E1 × [0, 1] to E1 and has two derivatives withrespect to u and τ . The degree
in this form cannot be applied directly to the operators (3.1) acting in different
spaces and we need to reduce them to operators acting in the same spaces. We
use the approach similar to that in [15].

Let E0 be an open bounded set in E1. Let further Φ be the set of all proper
operators A acting from E0 to E2, which are continuous and have two Frechet
derivatives and such that A′ satisfies Condition 2. Denote Jku = ∆u − ku,
k > 0. We consider Jk as operator acting from E1 to E2 and denote Φk the set
of all operators of the form (1.1) such that the operator A(u) + σJku satisfies
Condition 1 for all σ ≥ 0.

Lemma 4.1. For any k > 0, Φ = Φk.

Proof. Condition 2′ for an operator A ∈ Φ equivalent to Condition 2 has
the form:

detM(ξ, φ, µ) 6= 0, M(ξ, φ, µ) = −|ξ|2aφ + i
n∑

i=1

ξibiφ + cφ − µIp,

for any ξ ∈ Rp, φ ∈ S, µ ≥ 0. Condition 1′ for an operator A + σJk ∈ Φk has
the form

det M̃(ξ, φ, σ) 6= 0, M̃(ξ, φ, σ) = −|ξ|2aφ + i
n∑

i=1

ξibiφ + cφ + σ(−|ξ|2 − k)Ip

for any ξ ∈ Rp, φ ∈ S, σ ≥ 0.
If for some ξ, φ and µ, detM(ξ, φ, µ) = 0, then for the same ξ and φ we can

choose σ ≥ 0 such thatM(ξ, φ, µ) = M̃(ξ, φ, σ). Consequently det M̃(ξ, φ, σ)= 0.
Inversely, if det M̃(ξ, φ, σ) = 0, then we can put µ = σ(|ξ|2 + k). Hence
detM(ξ, φ, µ) = 0. �

Consider now the operator Ã(u) = J−1
k A(u) : E1 → E1. By virtue of the

properties of the operator A, Ã + λI is Fredholm for all λ ≥ 0 and Ã(u, τ) is
proper. Hence the degree γ(Ã,D) is defined for any domain D ⊂ E1 such that
Ã(u) 6= 0, u ∈ ∂D. If Ã(u) 6= 0, u ∈ ∂D, then A(u) 6= 0, u ∈ ∂D and we put by
definition γ(A,D) = γ(Ã,D). The normalization operator is Jk for a positive k.



284 C. Barillon — V. A. Volpert

Thus the topological degree is defined (cf. [3], [4], [15]). The uniqueness of the
topological degree is proved in [15] under more general assumptions.

5. Application to a reaction-diffusion problem

In this section we consider the problem

(5.1) aw
′′

+ cw′ + F (w, x) = 0, lim
x→±∞

= w±, w+ < w−, .

Here w = (w1, . . . , wp), F = (F1, . . . , Fp), a is a constant diagonal matrix with
positive diagonal elements ai, the inequality between the vectors is understood
component-wise. We assume that the vector-valued function F is sufficiently
smooth.

Suppose that the following conditions are satisfied:

(C1) If Fi(u0, x0) = 0 for some w+ < u0 < w−, x0 ∈ R, then

(5.2)
∂Fi(u0, x0)

∂uj
> 0, j = 1, . . . , p, j 6= i,

∂Fi(u0, x0)
∂x

< 0.

In this case we call the system (5.1) locally monotone. This class of
systems was introduced in [10] for the case where the nonlinearity F

did not depend on x explicitly,
(C2) F (w±, x) ≡ 0, x ∈ R and there exist the limits

(5.3) F±(u) = lim
x→±∞

F (u, x), F±
′

(u) = lim
x→±∞

F
′

u(u, x)

uniform with respect to u,
(C3) If F+

i (u0) = 0 (F−i (u0) = 0), w+ ≤ u0 ≤ w−, then there exists such N

that

(5.4)
∂Fi(u, x)

∂x
< 0, u ∈ U(u0) ∩ {w+ < u0 < w−}, x ≥ N (x ≤ −N).

Here U(u0) is a neighbourhood of the point u0,
(C4) For all u ∈ Rp

(5.5)
∂F±i (u)
∂uj

> 0, i, j = 1, . . . , p, j 6= i.

All eigenvalues of the matrices F+
′
(w±) and F−

′
(w±) lie in the left-half plane,

the functions F+(u) and F−(u) have finite numbers of zeros in the interval
w+ < u < w−, the matrices F+

′
and F−

′
taken at these zeros are invertible and

their principal eigenvalues are positive.
Consider the problems

(5.6) aw
′′

+ cw′ + F+(w) = 0, w(±∞) = w±,
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and

(5.7) aw
′′

+ cw′ + F−(w) = 0, w(±∞) = w±.

We recall that if (C4) is satisfied then there exists unique values c = c+ and
c = c− such that the problems (5.5) and (5.6), respectively, have monotone
solutions [10], [16]. For each of these problems the monotone solution is unique
up to translation in space and

c± = inf
ρ∈K

sup
x,i

aiρ
′′

i + F±i (ρ)
−ρ′

i

= sup
ρ∈K

inf
x,i

aiρ
′′

i + F±i (ρ)
−ρ′

i

,

where K is the set of twice continuously differentiable monotically decreasing
functions ρ(x) = (ρ1(x), . . . , ρn(x)) with the limits ρ(±∞) = w±.

The main result of this section is given by the following theorem.

Theorem 5.1. Suppose that conditions (C1)–(C4) are satisfied. If c+ < c <

c−, then there exists a monotonically decreasing solution of the problem (5.1).

The particular case of this theorem where the inequalities (5.2) are satisfied
for all u0 ∈ Rp and x0 ∈ R is proved in [13]. In this case the system is called
monotone and it is the class of systems for which comparison theorems are valid.
For locally monotone systemsthey are not applicable and we cannot use them
to prove existence of solutions as it is done in [13]. To prove Theorem 5.1 we
use the topological degree and the Leray–Schauder method. We will construct
a homotopy to reduce the locally monotone system to a monotone system and
we will obtain a priori estimates of solutions. Together with the results of [13]
it will prove existence of solutions for (5.1).

The remaining part of this section is devoted to the proof of Theorem 5.1.
To define the operators corresponding to the problem (5.1) we introduce

a sufficiently smooth function ψ(x) such that ψ(x) = w− for x ≤ −1 and ψ(x) =
w+ for x ≥ 1. We put

A(u) = a(u+ ψ)
′′

+ c(u+ ψ)′ + F (u+ ψ, x).

We assume that all conditions of Sections 2 and 3 are satisfied and consider this
operator as acting from C2+δ

µ to Cδ
µ. Then the topological degree can be defined

for it.

5.1. Model system. Let F (u, x) satisfy condition (C1). Consider the first
component F1(u, x). For each u3, . . . , up and x fixed, zero line of the function
F1 is a single valued smooth function u2 = φ1(u1). We have

F1 < 0 if u2 < φ(u1), F1 > 0 if u2 > φ(u1).

To show the dependence of φ on u3, . . . , up and x we write it also as

u2 = φ1(u1, u3, . . . , up, x).
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By virtue of (5.2),

∂φ1

∂uj
< 0, j = 3, . . . , p,

∂φ1

∂x
> 0.

We define Φ1(u, x) as

Φ1(u, x) = b1(u2 − φ1(u1, u3, . . . , up, x)), b1 > 0.

Then
∂Φ1

∂uj
> 0, j = 2, . . . , p,

∂Φ1

∂x
< 0.

Similarly we define Φi for i = 2, . . . , p. Consider the problem

aw
′′

+ cw′ + Φ(w, x) = 0, w(±∞) = w±.

This system is monotone and it has a unique monotonically decreasing solution
w0(x) [13]. Moreover the eigenvalue problem

au
′′

+ cu′ + Φ
′

w(w0(x), x)w = λu, u(±∞) = 0

has all spectrum in the left half-plane. It allows us to conclude that the index
of this solution considered as a stationary point of the corresponding operator
equals 1.

5.2. Separation of monotone solutions. Consider the problem

(5.8) aw
′′

+ cw
′
+ Fτ (w, x) = 0, w(±∞) = w±

depending on a parameter τ ∈ [0, 1]. We suppose that conditions (C1)–(C4) are
satisfied for each τ ∈ [0, 1] and N in (C3) can be chosen independently of τ . The
homotopy considered below will satisfy this condition.

Suppose that there are two sequences of solutions {w(1)
k } and {w(2)

k }, where
the first one corresponds to the values τ = τ

(1)
k of the parameter and consists

of vector-valued functions each component of which is monotonically decreasing.
The second sequence corresponds to τ = τ

(2)
k and for each function there is

a nonmonotone component. We show that these two sequences are separated in
C2+δ

µ (R), i.e. there is a positive constant εsuch that

‖w(1)
k − w(2)

m ‖C2+δ
µ

≥ ε, for all k, m.

Suppose that it is not so. Then for some subsequences, the norm of the difference
converges to 0. Without loss of generality, we can assume that the subsequences
coincide with the original sequences,

(5.9) ‖w(1)
k − w

(2)
k ‖C2+δ

µ
→ 0, k →∞.

We will show below that the monotone solutions are uniformly bounded in the
norm C2+δ

µ (R). Hence without loss of generality we can assume that the sequence
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{w(1)
k } converges in C1(R) to some limiting function w0(x). Obviously, it is a

solution of the problem (5.8) for some τ .

Lemma 5.3. If ‖w(1)
k − w0‖C1 → 0, then w

′

0(x) < 0, x ∈ R.

Proof. Since w0(x) is a limit of monotone functions, then w
′

0(x) ≤ 0. Sup-
pose that for some i and x0, w

′

0i
(x0) = 0. Then w

′′

0i
(x0) = 0 and from (5.8)

Fτ,i(w0(x0), x0) = 0. Differentiate the i-th equation in (5.8) with respect to x:

aw
′′′

i + cw
′′

i +
p∑

j=1

∂Fτ,i

∂wj
w

′

j +
∂Fτ,i

∂x
= 0.

From the definition of the local monotonicity and since w
′

j ≤ 0, we obtain
w

′′′

i (x0) > 0. This contradiction proves the lemma. �

We use also the following lemma ([16, p. 209]).

Lemma 5.4. Let b(x) be a matrix with positive off-diagonal elements, b+ =
limx→∞ b(x), q > 0 be a vector such that

b(x)q < 0, x ≥ r, b+q < 0

for some r. If the vector-valued function u satisfies the inequality

au
′′

+ cu′ + b(x)u ≤ 0

for x ≥ r and u(r) > 0, then u(x) ≥ 0 for x ≥ r.

From the convergence of the monotone solutions to w0(x) and from (5.9), it
follows

(5.10) ‖w(2)
k − w0‖C1 → 0, k →∞.

Without loss of generality we can assume that τk → τ0 for some τ0 ∈ [0, 1], that
the first component of the vector valued function w

(2)
k (x) is not monotone in a

neighborhood of a point xk and xk →∞ as k →∞.
Since w0(x) → w+ as x → ∞ and F+

1 (w+) = 0, then there exist σ > 0 and
N such that

∂Fτ,1

∂wj
> 0, j = 2, . . . , p,

∂Fτ,1

∂x
< 0,

for w+ − σe ≤ w < w+, x ≥ N . Here e = (1, . . . , 1) and N can be chosen
independently of τ for τ sufficiently close to τ0.

On the other hand, by virtue of convergence (5.10) w(2)′

k (x0) < 0 for any
x0 and k sufficiently large. This contradicts Lemma 5.4. Indeed, let u(x) =
−w(2)′

k (x). Then

au
′′

+ cu
′
+ F

′

τk
(w(2)

k , x)u =
∂Fτk

(w(2)
k , x)

∂x
< 0
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and u(r) > 0 for some k and r sufficiently large. Existence of the vector q follows
from the fact that the principal eigenvalue of the matrix F

′

τ0
(w+) is negative.

Hence w(2)′

k (x) ≤ 0 for x ≥ max(N, r). This contradicts the assumption that the
functions w(2)

k are not monotone.

5.3. A priori estimates of monotone solutions. It can be easily verified
that monotone solutions of the problem (5.8) are uniformly bounded in C2+δ(R).
A priori estimates of solutions in the space C2+δ

µ (R) are reduced to check that
the functions (w − ψ)µ are also uniformly bounded. Each of them is certainly
bounded uniformly in x because w−ψ decreases exponentially at infinity. So by
the uniform boundedness we mean that

|(w − ψ)µ| ≤M

with the same M constant for all solutions.
Denote U(w±) neighbourhoods of the points w± where the solutions behave

exponentially. More precisely, we can choose positive constants K and ε such
that

|w(x)− w+| ≤ K exp−εx, |w(x)− w−| ≤ K expεx

if w(x) ∈ U(w±). Let x+ and x− be such that w(x+) ∈ ∂U(w+), w(x−) ∈
∂U(w−). It remains to estimate |x+| and |x−| uniformly for all solutions (see
[16] for more details).

Suppose that there is a sequence of solutions {wk} such that wk(x+
k ) ∈

∂U(w+) and x+
k → −∞. Then x−k → −∞. The functions uk(x) = wk(x + xk)

satisfy the equation

au
′′

k + cu
′

k + F (uk, x+ x+
k ) = 0.

Passing to the limit as k →∞, we obtain a solution u+(x) of the equation

(5.11) au
′′

+ cu
′
+ F−(u) = 0.

It is easy to verify that u+(x) → w+ as x → ∞. If u+(−∞) = w−, we obtain
a contradiction since the problem

au
′′

+ cu
′
+ F−(u) = 0, u(±∞) = w±

does not have monotone solutions with c 6= c−.
If u+(−∞) 6= w−, then it is an unstable intermediate zero of the function

F−(u). Hence c < 0 (see Lemma 5.5 below). We consider then the functions
vk(x) = wk(x+ x−k ) and proceeding as above, we obtain a solution v−(x) of the
equation (5.11) such that v−(−∞) = w−, v−(∞) 6= w+. Hence c > 0. This
contradiction shows that x+

k cannot converge to −∞.
We used here the following lemma [16].
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Lemma 5.5. If u(x) is a monotone solution of (5.11) such that u(−∞) = w−
and u(∞) 6= w+, then c > 0. If u(∞) = w+ and u(−∞) 6= w−, then c < 0.

For what follows we need also a generalization of this result for the case
where F depends explicitly on x.

Lemma 5.6. Let u(x) be a monotone solution of the equation

(5.12) au
′′

+ cu
′
+ F (u, x) = 0

such that u(−∞) = w−, u(∞) 6= w+. Then c > 0. If u(∞) = w+ and u(−∞) 6=
w−, then c < 0.

Proof. Suppose that u(−∞) = w− and u(∞) = u0 6= w+. Then F+(u0) =
0 and the principal eigenvalue of the matrix F+′

(u0) is positive. Then there
exists a vector p > 0 such that pF+′

(u0) > 0. We have for x sufficiently large

(p, F (u, x)) = (p, F (u, x)− F (u0, x)) + (p, F (u0, x)) > (p,B(x)(u− u0)) > 0.

Here B(x) =
∫ 1

0
F

′

u(tu+ (1− t)u0, x) dt. Multiplying (5.12) by p and integrating
from x0 to ∞, we obtain

−(p, au
′
(x0)) + c(p, u0 − u(x0)) +

∫ ∞

x0

(p, F (u, x)) dx = 0.

Since u(x) is monotonically decreasing, then c > 0.
The second case can be considered similarly. �

Suppose now that the sequence {x+
k } remains bounded and x−k → −∞.

Passing to the limit as above, we obtain that there exists a solution u(x) of the
equation (5.11) such that u(−∞) = w−, u(∞) 6= w+. From Lemma 5.6 it follows
that c > 0. On the other hand there exists a solution v(x) of the equation (5.12)
such that v(∞) = w+, v(−∞) 6= w−. Hence c < 0. We obtain a contradiction.

Similarly we consider all other cases and show that both sequences {x+
k } and

{x−k } remain bounded. This gives a priori estimates of solutions.

5.4. Homotopy. We prove Theorem 5.1 by the Leray–Schauder method.
For this we need to construct a homotopy of the system (5.1) to a model system
such that the corresponding operator Aτ (u) : E

′

1 → E2 satisfies the following
properties:

1. There exists a domain D ⊂ E1 such that the operator A1(τ) corre-
sponding to the model system has a nonzero degree γ(A1, D) ,

2. There are a priori estimates of solutions during the homotopy,

Aτ (u) 6= 0, u ∈ ∂D, τ ∈ [0, 1].



290 C. Barillon — V. A. Volpert

Then the properties of the topological degree allow us to conclude that there is
a solution of the equation A0(u) = 0 in D.

This general scheme should be modified in the case under consideration be-
cause we obtain a priori estimates only for monotone solutions. On the other
hand we prove also that monotone and nonmonotone solutions are separated in
the function space. Hence we can construct a domain Dτ , τ ∈ [0, 1] in C2+δ

µ (R)
depending on the parameter and such that it contains all solutions uM = wM−ψ
of the equation Aτ (u) = 0 and does not contain solutions uN = wN−ψ. Here wM

denotes monotone solutions of the problem (5.8) and wN nonmonotone solutions.
Consider a ball BR(uM ) with the center uM and the radius R. If R is

sufficiently small, then for each τ fixed, the union of all these balls,

Dτ =
⋃
uM

BR(uM )

does not contain the functions uN . Moreover, since the operator A(u) is proper
and all solutions uM are uniformly bounded, then the set {uM} is compact.
Hence, we can consider only a union of a finite number of balls.

Consider the problem

(5.13) aw
′′

+ cw′ + τΦ+ + (1− τ)F+ = 0, w(±∞) = w±,

where the function Φ is defined in Section 5.1. For τ ∈ [0, 1] it is monotone and
the nonlinearity G+

τ = τΦ+ + (1− τ)F+ has the same zeros as F+. Hence there
exists a unique monotone solution of (5.13) with c = c+(τ).

Similarly a monotone solution of the problem

(5.14) aw
′′

+ cw′ + τΦ− + (1− τ)F− = 0, w(±∞) = w±

exists for c = c−(τ). Let us first define Fτ as

Fτ = (1− τ)F + τΦ.

Then the system (5.5) is locally monotone. To apply the results of Sections 5.2
and 5.3 we should verify that

(5.15) c−(τ) > c+(τ), τ ∈ [0, 1].

By assumption c−(0) > c+(0). By construction of the function Φ, Φ−(w) >
Φ+(w) for w+ < w < w−. Hence c−(1) > c+(1). However (5.15) may be not
satisfied for some τ ∈ (0, 1). Without loss of generality we can assume that
c−(τ) > 0, τ ∈ [0, 1]. Otherwise we could modify the nonlinearity in such a way
that this condition holds (see [14]).

To obtain the required inequality we modify the homotopy Fτ to the form
Fτ = sτ (x)[(1 − τ)F + τΦ], where sτ (x) is a positive twice continuously differ-
entiable with respect to x and τ function such that sτ (x) = s+(τ) for x ≥ 1 and
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sτ (x) = s−(τ) for x ≤ −1 for some values s+(τ) and s−(τ). It is easy to verify
that the system (5.5) remains locally monotone and the systems (5.13) and (5.14)
are monotone. The values c±(τ) of the velocity are replaced by

√
s±(τ)c±(τ) in

this case. We can choose s±(τ) such that√
s−(τ)c−(τ) >

√
s+(τ)c+(τ), τ ∈ [0, 1]

and s±(0) = s±(1) = 1.
It remains to note that (C3) is satisfied for N independent of τ since Fτ and

F have the same zeros, Fτ = sτ [(1− τ)F + τΦ] and s
′

τ (x) ≡ 0 for |x| ≥ 1.
The model system with F1(w, x) is monotone and it has a monotone so-

lution [13]. As it was pointed out above the index of this solution equals
1. From the global stability of the solution follows its uniqueness [13]. Thus
γ(A1, D1) = 1.

From a priori estimates of monotone solutions and by construction of the
domain Dτ we have

Aτ (u) 6= 0, u ∈ ∂Dτ .

Hence γ(A0, D0) = γ(A1, D1) = 1. This proves existence of monotone solutions
of the problem (5.1).

6. Nonexistence of the degree

We consider the scalar equation (5.1) (p = 1) and put c = 0, w+ = 0, w− = 1.
Suppose that ∫ 1

0

F−(w) dw > 0,
∫ 1

0

F+(w) dw < 0.

Then there exists a monotonically decreasing solution w(x) of this problem [13].
The principal eigenvalue of the problem

v
′′

+ F ′(w(x), x)v = λv, v(±∞) = 0

is negative. Indeed, −w′(x) is a positive solution of the inequality

v
′′

+ F ′(w(x), x)v ≤ 0.

Hence all eigenvalues lie in the left-half plane [13]. Thus w(x) is a unique mono-
tonically decreasing solution of the problem

(6.1) w
′′

+ F (w, x) = 0, w(∞) = 0, w(−∞) = 1.

It is easy to construct a continuous deformation Fτ (w, x), τ ∈ [0, 1] such that
F0(w, x) = F (w, x), ∂F1/∂x < 0, and both integrals∫ 1

0

F±1 (w) dw
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are positive. During this deformation the monotone solution of the problem

(6.2) w
′′

+ Fτ (w, x) = 0, w(−∞) = 1, w(∞) = 0

disappears [13].
Consider the operator A(u) defined above as acting from C2+δ

0 to Cδ
0 . Here

the subscript 0 denotes the subspace of functions converging to 0 at infinity. If the
functions F (w, x) and ψ

′′
are Hölder continuous, then the operator A is bounded

and continuous. Denote uM and uN the functions such that w = uM +ψ and w =
uN + ψ are monotone and nonmonotone, respectively. As we discussed above,
monotone and nonmonotone solutions of the equation A(u) = 0 are separated
in the function space. It means that ‖uM − uN‖ ≥ ε for some positive ε and for
any monotone and nonmonotone solutions. As in the previous section we can
construct a domain Dτ depending on the parameter τ , containing all monotone
solutions and which does not contain nonmonotone solutions. A priori estimates
of monotone solutions in C2+δ

0 are obvious. Hence the degree γ(Aτ , Dτ ) does
not depend on τ . It remains to note that γ(A0, D0) = 1 because the linearized
operator A′0(w) has all eigenvalues in the left-half plane, γ(A1, D1) = 0 because
there are no monotone solutions of the equation A1(u) = 0. This contradiction
shows that the degree cannot be constructed with this choice of spaces.

Denote τc the value of the parameter τ for which

(6.3)
∫ 1

0

F+
τc

(w) dw = 0.

Consider the problem

(6.4) w
′′

+ F+
τc(w) = 0, w(−∞) = 1, w(∞) = 0.

It has a monotone solution wc(x). Let wτ (x) be a solution of (5.1) for τ < τc.
Then

(6.5) wτ (x) ∼ wc(x− h(τ)), τ → τc,

and h(τ) → ∞ as τ → τc. The asymptotic (6.5) shows how the solution disap-
pears being bounded in the norm C2+δ

0 . It occurs because the limiting problem
(6.4) has a solution. If we impose additional conditions such that the limiting
problem does not have solutions, the degree can be defined (cf. [3]).

The situation is different if we consider the weighted spaces. The norm of the
solution wτ (x) − ψ(x) goes to infinity in the space C2+δ

µ as τ → τc. Hence the
condition A(u, τ) 6= 0, u ∈ ∂Dτ cannot be satisfied (Dτ is uniformly bounded)
and disappearance of the solution does not contradict the homotopy invariance.
The degree can be defined.
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Norm. Sup. (4) 113 (1934), 45–78.

[7] E. M. Mukhamadiev, Normal solvability and the noethericity of elliptic operators in

spaces of functions on Rn, Part I, Plenum Publishing corporation 1984, 884–901.

[8] , Normal solvability and the noethericity of elliptic operators in spaces of func-
tions on Rn, Part II, Plenum Publishing corporation 1986, 499–512.

[9] I. V. Skipnik, Nonlinear Elliptic Equations of Higher Order, Naukova Dumka, Kiev,
1973.

[10] A. I. Volpert and V. A. Volpert, Applications of the rotation theory of vector fields
to the study of wave solutions of parabolic equations, Trans. Moscow Math. Soc. 52

(1990), 59–108.

[11] V. A. Volpert and A. I. Volpert, Construction of the rotation of the vector field for
operators describing wave solutions of parabolic systems, Soviet Math. Dokl. 36 (1988),

452–455.

[12] , Construction of the Leray-Schauder degree for elliptic operators in unbounded

domains, Ann. Inst. H. Poincaré 11 (1994), 245–273.
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