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Abstract. In this paper we review some old and new results on cohomol-

ogy of the maximal invariant set inside of an isolating block B. In partic-

ular, we prove the following one: If u ∪ cv is nonzero for some u ∈ H
∗
(B)

and v ∈ H
∗
(B, B−) then the restriction of u to H

∗
(S) is nontrivial.

Let φ be a flow on a topological space X. For a subset B of X we define its
invariant part (with respect to φ) as

InvB := InvφB := {x ∈ B : φt(x) ∈ B for all t ∈ R}.

B is called an isolating block provided it is compact, InvB is contained in the
interior of B and both the sets

B+ := {x ∈ B : ∃{εn}, 0 < εn →∞, φεn(x) /∈ B},
B− := {x ∈ B : ∃{εn}, 0 < εn →∞, φ−εn

(x) /∈ B}
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are compact. The compactness condition imposed on B± is equivalent to the
continuity of the maps

σ+
B : B 3 x → sup{t ≥ 0 : φ(x, [−t, 0]) ⊂ B} ∈ [0,∞],

σ−B : B 3 x → sup{t ≥ 0 : φ(x, [0, t]) ⊂ B} ∈ [0,∞],

see the proof of the Ważewski Theorem in [2, p. 25]. The notion of isolating block
was introduced in [3], where smooth flows was considered. In the topological
setting its definition was stated in [1]. Our definition is slightly less restrictive
then the one in [1], but it does not affect the results presented below.

In the sequel we put S := Inv B. Let H∗ denote the Alexander–Spanier
cohomology functor having coefficients in some fixed abelian group. We consider
the following problem:

Problem. Determine properties of H∗(S) by a finite number of data on
topology of B and B±.

Almost the same question was posed in [5, Problem 2]; it concerned sets
arising in filtrations of vector-fields on manifolds. Actually, those sets are also
isolating blocks in the above sense.

Below we formulate some results on the Problem (reversing of the time-
variable leads to the corresponding results in which B− is replaced by B+). The
simplest situation arises if one of the sets B± is empty. Using the tautness of
Alexander–Spanier cohomology and continuity of the map σ−B it is easy to prove:

Theorem 1. If B− = ∅ then H∗(S) = H∗(B).

As simple examples show, in general H∗(S) cannot be completly calculated
by the data on B and B± only, and one can try to get “lower bound” estimates.
A version of the classical Ważewski Retract Theorem delivers such an estimate
on H0(S):

Theorem 2. If B− is not a strong deformation retract of B then S 6= ∅, i.e.
H0(S) 6= 0.

Corollary 1. If H∗(B,B−) 6= 0 then S 6= ∅.

For the block B define

A := {x ∈ B : σ+
B(x) + σ−B(x) = ∞} and A± := A ∩B±.

The next result comes from [1].

Theorem 3. There exists a long exact sequence

· · · → Hq(B,B−) → Hq(S) → Hq(A−) → Hq+1(B,B−) → · · · .
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As one can easily check, the above result is more general then Corollary 1.
Nevertheless, it has limited application to our problem since usually the topology
of the set A− is not a priori known.

In order to state other results on the problem we define the notion of coho-
mological category (see [4]). Assume that H∗ has real coefficients. Let q ≥ 1
and k ≥ 0 be fixed integers. Define

(a) cq,k(∅) = 0.
(b) cq,k(X) = 1 if and only if X 6= ∅ and dim H

q
(X) ≤ k.

(c) cq,k(X) ≤ n if and only if there exists a closed cover {A1, . . . , An} of X

such that rank e∗i ≤ k for i = 1, . . . , n, where e∗i : H∗(X) → H∗(Ai) is
induced by the inclusion.

(d) cq,k(X) = ∞ if and only if cq,k(X) 6= n for every integer n.

The following two results were proved in [4].

Theorem 4. If B is an ANR and cq,k(B/B−) ≥ 3 then dim Hq(S) > k.

Theorem 5. If B is an ANR and B/B− has the homotopy type of a compact
oriented 2q-dimensional manifold then

dim Hq(S) ≥ 1
2

dim Hq(B/B−).

Now we assume that H∗ has coefficients in a ring-with-unit. The last result
presented here was stated in [6].

Theorem 6. If for u ∈ H∗(B) there exists v ∈ H∗(B,B−) such that u∪v 6=
0 then the restriction u|S ∈ H∗(S) is nonzero.

In particular, if v ∈ H∗(B,B−) is nonzero then 1 ∪ v = v 6= 0 (where
1 ∈ H0(B) is the unit element), hence 1|S 6= 0 which means S 6= 0. Thus
Theorem 6 is a generalization of Corollary 1.

Proof of Theorem 6. The diagram

H∗(B) ⊗ H∗(B,B−) ∪−−−−→ H∗(B,B−)y y y
H∗(A) ⊗ H∗(A,A−) ∪−−−−→ H∗(A,A−)

(in which the vertical arrows are generated by the inclusions) commutes and
(A,A−) ↪→ (B,B−) induces an isomorphism by [1, Lemma 4.3], hence

u|A ∪ v|(A,A−) = (u ∪ v)|(A,A−) 6= 0.

Thus u|A 6= 0. Since S ↪→ A induces an isomorphism by [1, Proposition 4.6], one
gets

u|S = (u|A)|S 6= 0. �
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Example. Let Kr denote the r-dimensional unit ball and let Sr−1 be its
boundary. Assume that a block B is homeomorphic to (Km × Kn) × S1 such
that B− is transformed onto (Km × Sn−1) × S1. If u is a generator of H1(B)
and v is a generator of Hn(B,B−) then u ∪ v 6= 0. It follows by Theorem 6
that u|S 6= 0, hence H

1
(S) 6= 0. That result cannot be obtained directly from

Theorem 3 because no information on A− is provided, and from Theorem 4
because cq,k(B/B−) ≤ 2 for each q and k.
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