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MULTIPLE PERIODIC SOLUTIONS
FOR AUTONOMOUS CONSERVATIVE SYSTEMS

Silvia Cingolani – Monica Lazzo

Abstract. We consider an autonomous conservative second order system
defined by a potential which admits a connected set Γ of critical points at

level zero. We prove the existence of multiple periodic solutions of large
period which are located near Γ.

1. Introduction and statement of the results

In the present paper, we deal with an autonomous conservative second order
Hamiltonian system defined by a potential V which admits a connected set Γ
of critical points at level zero. We are interested in finding periodic orbits with
large period T , namely T -periodic solutions to

(P) ẍ(t) = V ′(x(t)) in R,

where V ∈ C1(R2, R) and V ′ denotes the gradient of V .
Plainly, any point in Γ is a trivial solution to (P); as a consequence, looking

for nontrivial solutions to (P) requires avoiding the constant solutions at level
zero.

When the problem has a suitable symmetry, namely V is even, a Z2-version
of Ljusternik–Schnirelman theory can be applied. If Γ is a circle or an annulus in
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the plane, it has a finite Z2-index; as far as large period solutions are concerned,
this allows avoiding trivial solutions. We refer to Remark 5.2 for some details
on such an approach.

In the general case, (P) has still an intrinsic symmetry, i.e. it is S1-invariant.
Nevertheless, in the situations we are interested in the S1-index of Γ (see [2])
is not finite, hence an S1-version of Ljusternik–Schnirelman theory cannot be
successfully applied.

In order to prove existence of multiple nontrivial periodic solutions of large
period to (P), without evenness assumptions on V , our idea consists in regarding
(P) as a problem with a singular potential. Indeed, a simple change of variable
proves that T -periodic solutions for (P) correspond to 1–periodic solutions for

(PT ) ẍ(t) = T 2V ′(x(t)) in R.

Since, for any point ξ ∈ R2 with V (ξ) > 0, the nonlinear term T 2V (ξ) becomes
larger and larger as T increases, we can say that (PT ) looks like a problem
with singular potential. As a consequence, we obtain our multiplicity result by
a standard minimization argument in a class of functions which wind around
some point ξ with V (ξ) > 0. Let us recall that existence and multiplicity of
periodic solutions with singular potential have been extensively investigated by
many authors; for instance, see [1], [4], [9] for strong-force potential, [7], [12],
[13] for weak-force potential and references therein.

Before stating our main results, we need some notations and definitions. We
say that Γ ⊂ R2 is an admissible set if it is bounded and its complementary Γc

has exactly two connected components. Remark that, by its very definition, an
admissible set is not simply connected in the plane.

For any admissible set Γ we denote by B and U , respectively, the bounded
and the unbounded connected component of Γc. Moreover, for any r > 0 we set
Br = {ξ ∈ B : dist(ξ, Γ) ≤ r}, Ur = {ξ ∈ U : dist(ξ,Γ) ≤ r}.

Theorem 1.1. Let Γ be an admissible set such that V ≡ 0 on Γ. Assume
that for some r > 0

(1.1) V (x) > 0 for any x ∈ Br ∪ Ur.

Moreover, assume that Γ contains the support of a noncontractible closed curve
of class H1. Then, for any k ∈ N there exists Tk > 0 such that (P) has at least
k distinct nontrivial T -periodic solutions, for any T > Tk.

As a model situation, one can consider V (x1, x2) = (|x|2 − 1)2ex1 , x =
(x1, x2); in this case, Γ = S1 and all the assumptions in Theorem 1.1 are fulfilled
for any 0 < r < 1.

We point out that in Theorem 1.1 no assumptions on the behaviour of the
potential at infinity are required. In our approach, the existence of nontrivial
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T -periodic solutions of (P) depends only on the behaviour of the potential in
a neighbourhood of Γ.

As concerns the hypothesis about the existence of a noncontractible closed
curve of class H1 with support in Γ, let us note that it is satisfied in many
situations. For example, it holds if Γ is diffeomorphic to S1 or to an annulus in the
plane; more in general, if there exists a piecewise differentiable homeomorphism
between S1 or an annulus and Γ. Moreover such an hypothesis is plainly satisfied
if B∩U = ∅; roughly speaking, this means that Γ is a “thick” set. The existence of
such a curve in Γ is needed for technical reasons; as it will be clear in Section 3,
we use it to obtain a uniform control on the minima of the action functional
associated to (PT ). In this sense, such a curve can be considered as a “comparison
term”.

In the next theorem we consider a particular case, namely we assume that the
exterior boundary of Γ (that is, Γ∩U) is a circle in the plane. Such a geometrical
hypothesis has two main consequences. Firstly, it guarantees the existence of a
comparison term, in the sense of the previous remark. Secondly, it allows an
easy modification of V in U such that the solutions of the modified equation still
solve (PT ). As a result, the behaviour of V in the unbounded component of Γc

is not influent, and assumption (1.1) in Theorem 1.1 can be weakened.

Theorem 1.2. Let Γ be an admissible set such that V ≡ V ′ ≡ 0 on Γ.
Assume that Γ ∩ U is a circle in the plane and

(1.2) V (x) > 0 for any x ∈ Br.

Then, for any k ∈ N there exists Tk > 0 such that (P) has at least k distinct
nontrivial T–periodic solutions, for any T > Tk.

Let us remark that in Theorem 1.1 the condition V ′ ≡ 0 is obviously satisfied.
In Theorem 1.2, V can exhibit any behaviour outside Γ, provided it is flat on Γ.

Finally, in this paper we describe the qualitative behaviour of T -periodic
solutions to (P) as the period becomes larger and larger. Precisely, we show
that if xT is any solution found via Theorem 1.1 or 1.2, then as T → ∞ xT

approaches a curve x0, such that x0(t) ∈ Γ for any t (we refer to Remark 5.1 for
details). As a consequence, the long period periodic solutions of (P) are located
near Γ. Since each point in Γ is a constant periodic solution of (P), in some
sense we can say that we obtain a “Birkhoff–Lewis” type result (see the classical
paper [5] and also [3] and references therein).

2. Variational setting and preliminaries

Let us introduce some notations. Let H be the Sobolev space of the ab-
solutely continuous 1-periodic curves in R2 with square integrable derivative,
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endowed with the usual norm ‖ · ‖. The action functional associated with prob-
lem (PT ) is

fT (x) =
1
2

∫ 1

0

|ẋ(t)|2dt + T 2

∫ 1

0

V (x(t)) dt, x ∈ H.

Remark 2.1. For any T > 0, fT is weakly lower semicontinuous in H, as
it is the sum of a weakly lower semicontinuous functional (the quadratic term)
and a weakly continuous one. Indeed, xn ⇀ x in H implies xn → x uniformly
and the continuity of V yields

∫ 1

0
V (xn(t)) dt →

∫ 1

0
V (x(t)) dt as n →∞.

We aim to find critical points of fT as minima in suitable homotopy classes
and to this end we shall adapt the arguments in [6].

Let r > 0 be fixed as in Theorem 1.1. Let 0 < ρ < r and define

Λ = {x ∈ H : dist(x(t),Γ) < ρ for all t ∈ [0, 1]};

plainly, Λ is an open subset of H whose boundary is ∂Λ = {x ∈ H : exists t ∈
[0, 1] s.t. dist(x(t),Γ) = ρ}. Any x ∈ Λ is a closed curve in the plane that does
not cross any point in the set B \ Br (cf. Section 1 for notations); therefore, we
can consider the winding number of x around any such point, which we shall
denote by Ind(x). Finally, for any q ∈ Z define

Λq = {x ∈ Λ : Ind(x) = q}.

Let γ ∈ H be a noncontractible closed curve such that γ([0, 1]) ⊂ Γ; the existence
of such a curve is one of the assumptions in Theorem 1.1. With no restrictions,
we can suppose Ind(γ|[0,1]) = 1. Plainly, the curve γq(t) = γ(qt), t ∈ [0, 1],
belongs to Λq. The main properties of Λq are collected in the following lemma.

Lemma 2.2. For any q ∈ Z, Λq is an open connected subset of Λ. Further-
more, Λq is weakly closed in Λ.

Proof. Let q ∈ Z. The first assertions follow from the elementary properties
of the winding number. To prove the last statement, let {xn} ⊂ Λq and x ∈ Λ be
such that xn weakly converges to x in Λ. Choose ξ ∈ B \ Br; plainly, |x(t)− ξ| >
r−ρ for any t. On the other hand, as xn converges to x uniformly in [0, 1], for n

large we have |xn(t)− x(t)| < r− ρ for any t; thus Ind(xn) = Ind(x) for n large,
whence x ∈ Λq. �

The next result is analogous to the well known Gordon Lemma [8], concerning
singular strong-force potential.

Lemma 2.3. For any M > 0 there exists T > 0 such that the sublevel set
fM

T = {x ∈ Λ : fT (x) ≤ M} is weakly sequentially compact, for any T ≥ T .

Proof. By contradiction, assume that there exist M > 0, Tk → ∞ and a
sequence {xn,k} ⊂ fM

Tk
which has no subsequences weakly converging in fM

Tk
. As
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{xn,k} is bounded in H, it certainly has a subsequence, still denoted by {xn,k},
which converges to some xk weakly in H, strongly in L2 and uniformly in [0, 1].
By weak lower semicontinuity, fTk

(xn,k) ≤ M , so necessarily xk ∈ ∂Λ. As a
result, there exists tk ∈ [0, 1] such that dist(xk(tk),Γ) = ρ. Let 0 < ρ1 < ρ be
such that 0 < α ≤ V (ξ) if ρ1 ≤ dist(ξ,Γ) ≤ ρ. For any t ∈ [0, 1] we have

(2.1) |xk(t)− xk(tk)| ≤ c|t− tk|1/2‖ẋk‖2.

Since ‖xk‖2 ≤ lim infn→∞ ‖xn,k‖2 ≤ ‖xk‖2
2 + 2M , we get ‖ẋk‖2

2 ≤ 2M . Then
(2.1) implies ρ1 ≤ dist(xk(t),Γ) ≤ ρ for any t ∈ [tk − δ, tk + δ], for some δ > 0.
Hence

M ≥ T 2
k

∫ 1

0

V (xk(t)) dt ≥ T 2
k

∫ tk+δ

tk−δ

V (xk(t)) dt

≥ 2δT 2
k min

[tk−δ,tk+δ]
V (xk(t)) ≥ δαT 2

k

which yields a contradiction as k →∞. �

3. Proof of Theorem 1.1

The curve γ we introduced in Section 2 plays a relevant role in the following
result.

Proposition 3.1. For any q ∈ Z, there exists Tq > 0 such that fT attains
its infimum in Λq, for any T ≥ Tq.

Proof. Let q ∈ Z; as in Section 2, let γq(t) = γ(qt). Let Mq ≡ fT (γq) =
(q2/2)

∫ 1

0
|γ̇(t)|2 dt. Let T q > 0 be associated with 2Mq > 0 as in Lemma 2.3.

Let T ≥ T q and let {xn,T } ⊂ Λq be a minimizing sequence, namely fT (xn,T ) →
infΛq

fT as n → ∞. For n sufficiently large fT (xn,T ) ≤ 2Mq. By Lemmas 2.2
and 2.3, {xn,T } weakly converges to some xT ∈ Λq. Finally, Remark 2.1 gives
fT (xT ) ≤ lim infn→∞ fT (xn,T ) = infΛq fT , whence xT is a minimum point for
fT in Λq. �

Proof of Theorem 1.1. Let k ∈ N and 0 < q1 < . . . < qk. By Propo-
sition 3.1, for any j = 1, . . . , k there exists Tqj > 0 such that for any T ≥
Tqj

the functional fT has a critical point xqj
with Ind(xqj

) = qj . Let T =
max{Tq1 , . . . , Tqk

}. Then, for any T ≥ T the functional fT has k critical points
xqj , j = 1, . . . , k with Ind(xqj ) = qj . Therefore there exist k nontrivial distinct
periodic solutions of (PT ), for any T ≥ T . �

4. Proof of Theorem 1.2

Without restrictions, in Theorem 1.2 we can assume Γ ∩ U = S1. Before
proving the theorem, some remarks are in order. In the proof of Theorem 1.1,
the key point consists in proving that, for large T , the H1-weak limit x of any
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sequence {xn} in Λ, satisfying fT (xn) ≤ const, is again in Λ (this is substantially
the meaning of Lemma 2.3). Roughly speaking, x ∈ ∂Λ if for some t either
x(t) ∈ B and dist(x(t),Γ) = ρ or x(t) ∈ U and the same equality holds. In
order to prove that none of these cases can occur, we take advantage of the
behaviour of V around Γ, as prescribed in (1.1). In Theorem 1.2, the behaviour
of V around Γ is prescribed only on the bounded component of Γc. Therefore,
we are no more able to prevent the case x(t) ∈ U and dist(x(t),Γ) = ρ. To
overcome such a difficulty, we look for critical points of fT in a set different
from Λ. Precisely, let r > 0 be fixed as in Theorem 1.2, let 0 < ρ < r and
Γ̃ = {ξ ∈ B : dist(ξ,Γ) < ρ} ∪ Γ ∪ U ; we define

Λ̃ = {x ∈ H : x(t) ∈ Γ̃ for all t ∈ [0, 1]}.

Again, Λ̃ is an open subset of H whose boundary is ∂Λ̃ = {x ∈ H : exists t ∈
[0, 1] s.t. x(t) ∈ B, dist(x(t),Γ) = ρ}. Exactly as before, we can define Ind(x)
and consider Λ̃q = {x ∈ Λ̃ : Ind(x) = q}, for q ∈ Z. Plainly, Lemma 2.2 still
holds for any Λ̃q; let us just point out that every such set is nonempty because
it contains the curve exp(i2πqt), t ∈ [0, 1].

As concerns Lemma 2.3, in the present situation a crucial ingredient is miss-
ing. Indeed, in the proof of Lemma 2.3 we use the fact that any sequence
{xn} ⊂ Λ satisfying fT (xn) ≤ C, for some C > 0, is bounded in H. This follows
from the very definition of the action functional and the fact that Λ is bounded
in L∞, hence in L2. This last assertion does not hold for Λ̃. To get round this
difficulty, we replace V by a coercive potential in such a way that the critical
points of the modified action functional are still critical points of fT . At this
point, the assumption Γ ∩ U = S1 is used to construct the modified potential; a
similar modification is used in [10].

Lemma 4.1. Let Ṽ ∈ C1(R2, R+) be such that Ṽ (x) = V (x) for |x| ≤ 1 and
(Ṽ ′(x), x) > 0 for any |x| > 1. For any x ∈ H let

f̃T (x) =
1
2

∫ 1

0

|ẋ(t)|2 dt + T 2

∫ 1

0

Ṽ (x(t)) dt.

Then any x ∈ H critical point for f̃T is a critical point for fT .

Proof. Let x ∈ H be a critical point for f̃T and let us define

x0(t) =

{
x(t) if |x(t)| ≤ 1,

x(t)/|x(t)| if |x(t)| > 1.

We have

(4.1) 0 = 〈f̃ ′T (x), x− x0〉 =
∫ 1

0

(ẋ, ẋ− ẋ0) dt + T 2

∫ 1

0

(Ṽ ′(x), x− x0) dt.
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Furthermore,

(4.2)
∫ 1

0

(ẋ, ẋ− ẋ0) dt =
∫
|x(t)|>1

(ẋ, ẋ− ẋ0) dt

=
∫
|x(t)|>1

(
ẋ, ẋ− ẋ

|x|
+

(ẋ, x)
|x|3

x

)
dt

=
∫
|x(t)|>1

((
1− 1

|x|

)
|ẋ|2 +

(ẋ, x)2

|x|3

)
dt ≥ 0.

If x 6≡ x0, then∫ 1

0

(Ṽ ′(x), x− x0) dt =
∫
|x(t)|>1

(
1− 1

|x|

)
(Ṽ ′(x), x) dt > 0;

the last inequality, (4.1) and (4.2) give a contradiction. �

It is very easy to give examples of C1 maps Ṽ satisfying the hypotheses of
Lemma 4.1. For instance, one can consider

Ṽ (x) =

{
V (x) for |x| ≤ 1,

2|x|3 − 3|x|2 + 1 for |x| > 1,

note that Ṽ is C1 because V ≡ V ′ ≡ 0 on S1.
By Lemma 4.1, we can now assume V coercive at infinity; moreover, any

critical point xT of the modified functional satisfies ‖xT ‖∞ ≤ 1. At this point,
with minor changes in the proof of Lemma 2.3 we obtain

Lemma 4.2. For any M > 0 there exists T > 0 such that the sublevel set
{x ∈ Λ̃ : fT (x) ≤ M} is weakly sequentially compact, for any T ≥ T .

As a result, we can easily prove

Proposition 4.3. For any q ∈ Z, there exists Tq > 0 such that fT attains
its infimum in Λ̃q, for any T ≥ Tq.

Let us point out that in the proof of Proposition 4.3 the natural comparison
term exp(i2πqt), t ∈ [0, 1], can be used. Finally, arguing exactly as in the proof
of Theorem 1.1 we can conclude the proof of Theorem 1.2.

5. Final remarks

In the following remark we describe the qualitative behaviour of the T -
periodic solutions found via Theorem 1.1 and 1.2 as the period increases.

Remark 5.1. Let q ∈ Z and Tq > 0 be as in Proposition 3.1 (respectively,
in Proposition 4.3). For any T ≥ Tq, let xT be a minimum point for fT in Λq

(respectively in Λ̃q). As the minimum level of the action functional is bounded
by a positive constant C = C(q) which depends on q and is independent of T ,
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the same holds for ‖xT ‖. Then there exists a function x0 such that xT → x0,
as T → ∞, weakly in H and uniformly in [0, 1]. We claim that x0(t) ∈ Γ
for any t ∈ [0, 1]. By contradiction, assume dist(x0(t),Γ) > β > 0 for any
t in some interval [t1, t2] ⊂ [0, 1]. Therefore, for T large, dist(xT (t),Γ) ≥ β

in [t1, t2]; on the other hand, by construction, dist(xT (t),Γ) ≤ ρ. If we set
m = min{V (ξ) : ξ ∈ R2, β ≤ dist(ξ, Γ) ≤ ρ} (respectively m = min{V (ξ) : |ξ| ≤
1, β ≤ dist(ξ,Γ) ≤ ρ}), then m > 0 and

C ≥ T 2

∫ 1

0

V (xT (t)) dt ≥ T 2

∫ t2

t1

V (xT (t)) dt ≥ mT 2(t2 − t1)

for any T large, a contradiction.

Remark 5.2. As we noted in the Introduction, when V has a suitable sym-
metry a Z2-version of Ljusternik–Schnirelman theory can be easily applied to find
multiple solutions to (PT ). Let us give an example, referring to [2,11], where
similar situations are dealt with, for some details. For the sake of simplicity,
assume that V ≥ 0 in R2 and V (ξ) = 0 iff |ξ| = 1. Assume V (−ξ) = V (ξ) for
any |ξ| ≤ 1. Furthermore, suppose that V is of class C2 around the origin, ξ = 0
is a local maximum of V and the Hessian matrix V ′′(0) has at least one nonzero
eigenvalue. Let us explicitly remark that the assumptions on V involve only the
unit disc; indeed, as shown in Section 4 we can modify V outside the unit circle
in such a way that the action functional fT satisfies Palais–Smale condition. Let
Σ be the set of closed, symmetric subset of H which do not contain 0; for A ∈ Σ,
let γ(A) be the Z2-genus of A. Standard theory implies that the inf-max levels
defined by

cq = inf
A∈Σ

γ(A)≥q

max
x∈A

fT (x), q ≥ 1,

are critical levels for fT . To distinguish cq from the trivial critical levels 0 and
fT (0), some remarks on the genus of suitable sets are in order. Firstly, observe
that cq > 0 for any q ≥ 3; indeed, if 0 = c1 = . . . = cl for some l, then
l is less than the genus of the set of critical points of fT at level 0, that is
γ(S1) = 2. Secondly, let LT be the self–adjoint realization in L2(0, 1) of the
operator x 7→ −ẍ + T 2V ′′(0)x, with 1-periodicity conditions, and ZT be the
subspace of H spanned by the nonconstant eigenfunctions of LT corresponding
to strictly negative eigenvalues. It is easy to see that there exists δ(T ) > 0
such that sup

{
fT (x) : x ∈ ZT ∩ ∂Bδ(T )

}
< T 2V (0) = fT (0). Remark that qT ≡

γ(ZT ∩ ∂Bδ(T )) = dimZT ; as a consequence, qT increases to +∞ as T increases
to +∞. Therefore, for any fixed integer k, there exists Tk > 0 such that for any
T > Tk we have 0 < c3 ≤ c2+k ≤ cqT

< fT (0), which implies that (PT ) has at
least k nontrivial periodic solutions. Let us finally remark that this result still
holds if the plane is replaced by Rm, m ≥ 2.
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