CRITICAL SUPERLINEAR AMBROSETTI-PRODI PROBLEMS

Djairo G. De Figueiredo - Yang Jianfu

Abstract

We consider the existence of multiple solutions for problem (1.1) below with either $\lambda \neq \lambda$ or $\lambda=\lambda_{1}$, where $\lambda_{k}, k=1,2, \ldots$ are eigenvalues of $\left(-\Delta, H_{0}^{1}(\Omega)\right)$. The local bifurcation from $\lambda=\lambda_{k}$ is also investigated.

1. Introduction

The main purpose of this work is to investigate the existence of multiple solutions of the critical superlinear problem

$$
\begin{equation*}
-\Delta u=\lambda u+u_{+}^{2^{*}-1}+f(x) \quad \text { in } \Omega, u=0 \text { on } \partial \Omega \tag{1.1}
\end{equation*}
$$

where $2^{*}=2 N /(N-2), N \geq 3$ is the critical Sobolev exponent, and $\lambda>0$ is a constant. u^{+}denotes the positive part of $u: u^{+}(x)=\max \{u(x), 0\}$.

This problem belongs to a class of problems which are known as the Ambro-setti-Prodi type. Due to the important role of the Ambrosetti-Prodi result [2] in subsequent research and for completeness we state it next. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a C^{2}-function such that $g^{\prime \prime}(s)>0$ for all $s \in \mathbb{R}$ and

$$
0<\lim _{s \rightarrow-\infty} g^{\prime}(s)<\lambda_{1}<\lim _{s \rightarrow \infty} g^{\prime}(s)<\lambda_{2}
$$

[^0]where λ_{1} and λ_{2} are the first and second eigenvalues of $\left(-\Delta, H_{0}^{1}(\Omega)\right)$. They consider the following boundary value problem
\[

$$
\begin{equation*}
-\Delta u=g(u)+f(x) \quad \text { in } \Omega, u=0 \text { on } \partial \Omega \tag{1.2}
\end{equation*}
$$

\]

where Ω is a bounded domain in \mathbb{R}^{N} with a $C^{2, \alpha}$ boundary $\partial \Omega$. Then, there is a C^{1} manifold M in $C^{0, \alpha}(\bar{\Omega})$, which splits the space into two open sets O_{0} and O_{2} with the following properties
(i) if $f \in O_{0}$, problem (1.2) has no solution,
(ii) if $f \in M$, problem (1.2) has exactly one solution,
(iii) if $f \in O_{2}$, problem (1.2) has exactly two solutions.

A solution here means a function $u \in C^{2, \alpha}(\bar{\Omega})$.
After this work, several authors have extended this result in different directions. The literature on this problem is quite extensive; even risking the possibility of omitting some important work, we mention the following papers [1], [3], [4], [12], [17], [18], etc.

The above result shows the role that the location of the limits

$$
\begin{equation*}
g_{-}=\lim _{s \rightarrow-\infty} \frac{g(s)}{s}, \quad g_{+}=\lim _{s \rightarrow \infty} \frac{g(s)}{s} \tag{1.3}
\end{equation*}
$$

with respect to the spectrum of $\left(-\Delta, H_{0}^{1}(\Omega)\right)$ plays in the question of existence of solutions for problem (1.2). Indeed, the Ambrosetti-Prodi's result contrasts with the well-known fact that if $g_{ \pm}$are strictly between two consecutive eigenvalues, or both $g_{ \pm}$are strictly less than λ_{1}, then problem (1.2) is solvable for all f. (We are assuming that f is locally Lipschizian, and then solutions are in $\left.C^{2, \alpha}(\Omega) \cap C^{0}(\bar{\Omega})\right)$. So the interesting cases are when the interval $\left(g_{-}, g_{+}\right)$contains eigenvalues. Problems with this feature are called problems of the AmbrosettiProdi type, or problems with jumping nonlinearities in a terminology introduced by Fuc̆ik, see [17]. These Ambrosetti-Prodi type problems can be seen as a question of characterizing (or at least, describing part of) the range of a perturbation of a linear operator (say, $-\Delta$) by some nonlinear operator (say $N u:=-g(x, u)$, which in our case is $\left.g(x, u):=\lambda u+u_{+}^{2^{*}-1}\right)$. We can distinguish three different types of Ambrosetti-Prodi problems.

In type I, we have $g_{-}<\lambda_{1}<g_{+}$, where g_{-}could be $-\infty$, and g_{+}could be ∞. We write $f=t \phi_{1}+h$, where $t \in \mathbb{R}, \phi_{1}$ is a first eigenfunction of $\left(-\Delta, H_{0}^{1}(\Omega)\right)$ with $\phi_{1}>0$ and $\int_{\Omega} \phi_{1}^{2} d x=1$, and $\int_{\Omega} h \phi_{1} d x=0$. Then we can prove that in this case there is a t_{0} such that if $t<t_{0}$, problem (1.2) has at least one solution. Such a result holds under more general assumptions. Namely g can depend also on x, and the first limit in (1.3) can be replaced by limsup. Similarly the second limit can be replaced by liminf. See, for instance, the survey paper [16].

Type II is when g_{-}and g_{+}are finite, with the interval $\left(g_{-}, g_{+}\right)$containing eigenvalues. These problems are called asymptotically linear. They have been
extensively studied by Lazer-McKenna, see for instance [20]. In the treatment of this problem, via Topological and Variational Methods, it has appeared in an essential way the so-called Fučik spectrum [17].

Type III is when g_{-}is between two consecutive eigenvalues and $g_{+}=\infty$. These are superlinear problems with a crossing of all but a finite number of eigenvalues. In this case one can prove that there is a $t_{0} \in \mathbb{R}$ such that problem (1.2) with $f=t \phi_{1}+h$ has a negative solution for $t>t_{0}$. These problems have been treated in [25], and [15].

We remark that existence of a first solution for problems of type I and III does not require any growth at $\pm \infty$. So subcritical, critical or supercritical problems are treated. Observe that the reason is that: (i) in type I, one can find a subsolution and a supersolution, and then a solution of problem (1.2) comes either by the Monotone Iteration Method if, for instance, the derivative of g is bounded, or by some Variational Methods after an appropriate truncation of the nonlinearity; (ii) in the case of type III we truncate the nonlinearity g for $s>0$, getting a function \widetilde{g} in such a way that g_{-}and $\lim _{s \rightarrow \infty} \widetilde{g}(s) / s$ are between the same pair of consecutive eigenvalues.

The importance of the growth of g at infinite comes when one tries to get a second solution. The reason being that in order to have the functional associated to Equation (1.2)

$$
I(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x-\int_{\Omega} G(u) d x-\int_{\Omega} f u d x
$$

well defined in $H_{0}^{1}(\Omega)$, one has to require that

$$
|g(s)| \leq C|s|^{p}+C
$$

where $1 \leq p \leq 2^{*}-1$. The subcritical case $p<2^{*}-1$ has been discussed by several authors mentioned before. Recently, Deng [13] considered problem (1.2) with a nonlinearity of the type $g(u)=|u|^{2^{*}-1}+k(u)$, where k is a lower perturbation of the expression with the critical exponent. This problem belongs to an Ambrosetti-Prodi problem of type I. In this case, the variational tool is the Mountain Pass Theorem.

Our problem stated in the beginning of this Introduction is of type I if $\lambda<\lambda_{1}$ and of type III if $\lambda>\lambda_{1}$. In order to get a second solution, we have to recourse to a Linking Theorem. Both the geometry of functional associated to equation (1.2) and the determination of the levels where a (PS) condition fails are much more involved in type III than in type I. All along this paper we write the non-homogeneous term in the form $f=t \phi_{1}+h$, where $h \perp \phi_{1}$ in the L^{2}-sense. Let $(0<) \lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \ldots$ be the eigenvalues of $-\Delta$ subject to Dirichlet data, with corresponding eigenfunctions $\phi_{1}, \phi_{2}, \ldots$. In Section 2, we prove the following result.

Theorem 1.1 (I. Existence of a negative solution).
(i) If $0<\lambda<\lambda_{1}$ and given $h \in L^{2}$, then there exists a $t_{0}=t_{0}(h)<0$ such that if $t<t_{0}$, Problem (1.1) has a negative solution u_{t}.
(ii) If $\lambda>\lambda_{1}$, and given $h \in L^{2}$, such that $h \in \operatorname{ker}(-\Delta-\lambda)^{\perp}$ in the case that λ is an eigenvalue, then there exists $t_{0}=t_{0}(h)>0$ such that if $t>t_{0}$, Problem (1.1) has a negative solution u_{t}.
(II. Existence of a second solution). If, in addition to either of the hypotheses above, one assumes that λ is not an eigenvalue of $\left(-\Delta, H_{0}^{1}(\Omega)\right)$ and the dimension $N>6$, Problem (1.1) has a second solution.

Although the methods used here are essentially the same as for problems of Brézis-Nirenberg type, namely

$$
\begin{equation*}
-\Delta u=|u|^{2^{*}-2} u+g(x, u) \quad \text { in } \Omega, u=0 \text { on } \partial \Omega \tag{1.4}
\end{equation*}
$$

where $g(x, 0)=0$ and g is some perturbation of lower order of the critical power, the technicalities have some new features. Indeed, for problem (1.4) the first solution is $u \equiv 0$, and from there one builds up the variational approach. In case of (1.2), the first solution $u_{t} \neq 0$ and the translation of the functional to be centered at u_{t} introduces nonhomogeneities which are delicate to handle.

When one of the limits g_{-}or g_{+}is equal to an eigenvalue, we have a resonant problem. The solvability of (1.2) in this situation requires usually some additional conditions on g, like the Landesman-Lazer condition, see [20]. In Section 3 we discuss a case of resonance at $\lambda=\lambda_{1}$, where such a condition does not hold. Namely, the following result is proved.

Theorem 1.2. Suppose $\lambda=\lambda_{1}$. Then there is an $\varepsilon>0$ such that if $\|f\|_{L^{2}}<$ ε, then (1.1) has a solution.

Finally in Section 4, we discuss local bifurcation at $\lambda=\lambda_{k}, k>1$. Using the theory of bifurcation for variational problems as developed by Böhme [5] and Marino [21], we can handle eigenvalues of any algebraic multiplicity, and prove the next result.

Theorem 1.3. Let $h \in \operatorname{ker}\left(-\Delta-\lambda_{k}\right)^{\perp}$ with $k>1$. In the space $\mathbb{R} \times H_{0}^{1}(\Omega)$, let $\left(\lambda, u_{t}(\lambda)\right)$ for λ near λ_{k} be the line of negative solutions of (1.1) obtained in Theorem 1.1. Then $\left(\lambda_{k}, u_{t}\left(\lambda_{k}\right)\right)$ is a point of bifurcation.

2. The proof of Theorem 1.1

We write $f(x)=t \phi_{1}(x)+h(x)$, where ϕ_{1} is the first eigenfunction of $-\Delta$, $\phi_{1} \perp h$ in L^{2}-sense. We first prove that (1.1) has a negative solution u_{t}. Indeed, all negative solutions of (1.1) satisfies

$$
\begin{equation*}
-\Delta u=\lambda u+t \phi_{1}+h \tag{2.1}
\end{equation*}
$$

If λ is an eigenvalue of $\left(-\Delta, H_{0}^{1}(\Omega)\right)$, we suppose that $h \in \operatorname{ker}(-\Delta-\lambda)^{\perp}$. Then the problem

$$
\begin{equation*}
-\Delta u=\lambda u+h \quad \text { in } \Omega, u=0 \text { on } \partial \Omega \tag{2.2}
\end{equation*}
$$

has a solution u_{0}. Consequently, the function $w=u_{t}-u_{0}$, where u_{t} is some solution of (2.1), is a solution of

$$
\begin{equation*}
-\Delta w=\lambda w+t \phi_{1} \quad \text { in } \Omega, w=0 \text { on } \partial \Omega \tag{2.3}
\end{equation*}
$$

Problem (2.3) has a unique solution $w=\beta \phi_{1}$ where $\beta=t /\left(\lambda_{1}-\lambda\right)$. Since we look for $u_{t} \leq 0$, it follows that: (i) for $\lambda<\lambda_{1}$, we obtain such u_{t} for $t<0$ and large, which comes from a negative β; (ii) for $\lambda>\lambda_{1}$, we obtain such u_{t} for $t>0$ and large, which comes also from a negative β. So $u_{t}=w+u_{0}$ is the solution of (2.1) which we are looking for.

To find a second solution u of (1.1), we set $u=v+u_{t}$, and then v satisfies

$$
\begin{equation*}
-\Delta v=\lambda v+\left(v+u_{t}\right)_{+}^{2^{*}-1} \quad \text { in } \Omega, v=0 \text { on } \partial \Omega \tag{2.4}
\end{equation*}
$$

So the second solution of (1.1) is obtained by finding a nontrivial solution v of (2.4). Using variational methods we look for a critical point of the functional

$$
I(v)=\frac{1}{2} \int_{\Omega}\left(|\nabla v|^{2}-\lambda v^{2}\right) d x-\frac{1}{2^{*}} \int_{\Omega}\left(v+u_{t}\right)_{+}^{2^{*}} d x
$$

defined in $E=H_{0}^{1}(\Omega)$. We use a Linking Theorem without Palais-Smale condition, see Theorem 4.3 in [22], or Theorem 5.1 in [14].

Suppose $\lambda>0$ is not an eigenvalue of $\left(-\Delta, H_{0}^{1}(\Omega)\right)$. We assume $\lambda \in$ ($\lambda_{k}, \lambda_{k+1}$) from now on. The other case $0<\lambda<\lambda_{1}$ can be treated in a similar and simpler way, using the Mountain Pass Theorem. Let us denote

$$
E^{-}= \begin{cases}\emptyset & \text { if } \lambda \in\left(0, \lambda_{1}\right) \\ \operatorname{span}\left\{\phi_{1}, \ldots, \phi_{k}\right\}, & \text { otherwise }\end{cases}
$$

and $E^{+}=\left(E^{-}\right)^{\perp}$.
Let $S_{\rho}=\partial B_{\rho} \cap E^{+}$and $Q=[0, R e] \oplus\left(\bar{B}_{r} \cap E^{-}\right), e \in E^{+}$, where $\rho>0$, $R>0$ and $r>0$ will be determined later and in a way that

$$
\begin{gather*}
\left.I\right|_{S_{\rho}} \geq \alpha>0, \quad \rho<R, \tag{2.5}\\
\left.I\right|_{\partial Q}<\alpha \tag{2.6}\\
\max _{\bar{Q}} I<\frac{1}{N} S^{N / 2} \tag{2.7}
\end{gather*}
$$

where S is the best Sobolev constant. Inequalities (2.5)-(2.6) will give the geometry of the functional I required by the Linking Theorem of Rabinowitz [24]. We will use it in the version without the assumption of Palais-Smale, see Theorem 4.3 in [22] or Theorem 5.1 in [14]. For that matter, condition (2.7) is used
to prove that the solution obtained as a weak limit of a (PS)-sequence at the minimax level is not a trivial one.

LEmma 2.1. There exist $\rho_{0}>0$ and a function $\alpha>0, \alpha:\left[0, \rho_{0}\right] \rightarrow \mathbb{R}$ such that

$$
I(v) \geq \alpha(\rho) \quad \text { for all } v \in S_{\rho}=\partial B_{\rho} \cap E^{+}
$$

Explicitly, we have

$$
\begin{aligned}
\rho_{0} & =\left\{S^{N /(N-2)}\left(1-\frac{\lambda}{\lambda_{k+1}}\right)\right\}^{(N-2) / 4} \\
\alpha(\rho) & =\frac{1}{2}\left(1-\frac{\lambda}{\lambda_{k+1}}\right) \rho^{2}-\frac{1}{2^{*}} S^{-N /(N-2)} \rho^{2^{*}}
\end{aligned}
$$

and the maximum value of $\alpha(\rho)$

$$
\widehat{\alpha}=\frac{1}{N} S^{N / 2}\left(1-\frac{\lambda}{\lambda_{k+1}}\right)^{N / 2}
$$

is assumed at

$$
\widehat{\rho}=\left(1-\frac{\lambda}{\lambda_{k+1}}\right)^{(N-2) / 4} S^{N / 4}
$$

Proof. Using the fact that $u_{t}<0$ and the variational characterization of λ_{k+1} we get

$$
I(v) \geq \frac{1}{2}\left(1-\frac{\lambda}{\lambda_{k+1}}\right) \int_{\Omega}|\nabla v|^{2} d x-\frac{1}{2^{*}} \int_{\Omega} v_{+}^{2^{*}} d x
$$

By Sobolev imbedding we obtain

$$
\begin{aligned}
I(v) & \geq \frac{1}{2}\left(1-\frac{\lambda}{\lambda_{k+1}}\right) \int_{\Omega}|\nabla v|^{2} d x-\frac{1}{2^{*}} S^{-N /(N-2)}\left(\int_{\Omega}|\nabla v|^{2} d x\right)^{2^{*} / 2} \\
& =\frac{1}{2}\left(1-\frac{\lambda}{\lambda_{k+1}}\right) \rho^{2}-\frac{1}{2^{*}} S^{-N /(N-2)} \rho^{2^{*}}
\end{aligned}
$$

The result follows by maximizing the function defined by the last equality.
The best Sobolev constant S used above is defined by

$$
\begin{equation*}
S=\inf \left\{\|\nabla u\|_{2}^{2} /\|u\|_{2^{*}}^{2}: u \neq 0, u \in H^{1}\left(\mathbb{R}^{N}\right)\right\} \tag{2.8}
\end{equation*}
$$

which is assumed by the functions

$$
\begin{equation*}
\psi_{\varepsilon}(x)=\left(\frac{\varepsilon \sqrt{N(N-2)}}{\varepsilon^{2}+|x|^{2}}\right)^{(N-2) / 2}, \quad \varepsilon>0 . \tag{2.9}
\end{equation*}
$$

Let $\xi \in C_{c}^{1}\left(\mathbb{R}^{N}\right)$ be a function such that $\xi(x)=1$ on $B_{1 / 2}(0), \xi(x)=0$ on $\mathbb{R}^{N} \backslash B_{1}(0)$ and $0 \leq \xi(x) \leq 1$ on \mathbb{R}^{N}. We may assume $B_{1}(0) \subset \Omega$. Let $\phi_{\varepsilon}(x)=$ $\xi(x) \psi_{\varepsilon}(x)$, then we have following estimates.

Lemma 2.2. ([8])

$$
\begin{gather*}
\left\|\nabla \phi_{\varepsilon}\right\|_{2}^{2}=S^{N / 2}+o\left(\varepsilon^{N-2}\right) \tag{2.10}\\
\left\|\phi_{\varepsilon}\right\|_{2^{*}}^{2^{*}}=S^{N / 2}+o\left(\varepsilon^{N}\right) \tag{2.11}\\
\left\|\phi_{\varepsilon}\right\|_{2}^{2}= \begin{cases}K_{1} \varepsilon^{2}+o\left(\varepsilon^{N-2}\right) & \text { if } N \geq 5 \\
K_{1} \varepsilon^{2}\left|\log \varepsilon^{2}\right|+o\left(\varepsilon^{2}\right) & \text { if } N=4 \\
\left\|\phi_{\varepsilon}\right\|_{1} \leq K_{2} \varepsilon^{(N+2) / 2}\end{cases} \tag{2.12}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|\phi_{\varepsilon}\right\|_{2^{*}-1}^{2^{*}-1} \leq K_{3} \varepsilon^{(N-2) / 2} \tag{2.14}
\end{equation*}
$$

where $K_{1}>0, K_{2}>0$ and $K_{3}>0$ are constants.
Denote by $P_{ \pm}$the orthogonal projections of E onto $E^{ \pm}$respectively. Using arguments as in [11], we can prove the following lemma.

Lemma 2.3.

$$
\begin{gather*}
\left|\int_{\Omega}\left[\left(P_{+} \phi_{\varepsilon}\right)^{2^{*}}-\phi_{\varepsilon}^{2^{*}}\right] d x\right| \leq C \varepsilon^{N-2} \tag{2.15}\\
\left|\int_{\Omega}\left(\left|\nabla \phi_{\varepsilon}\right|^{2}-\left|\nabla\left(P_{+} \phi_{\varepsilon}\right)\right|^{2}\right) d x\right| \leq C \varepsilon^{N-2} \tag{2.16}\\
\left\|P_{+} \phi_{\varepsilon}\right\|_{2^{*}-1}^{2^{*}-1} \leq C \varepsilon^{(N-2) / 2} \tag{2.17}\\
\left\|P_{+} \phi_{\varepsilon}\right\|_{1} \leq C \varepsilon^{(N+2) / 2} \tag{2.18}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|P_{-} \phi_{\varepsilon}\right\|_{\infty} \leq C \varepsilon^{(N-2) / 2} . \tag{2.19}
\end{equation*}
$$

Define for any fixed $K>0$ the set $\Omega_{\varepsilon, K}=\left\{x \in \Omega: P_{+} \phi_{\varepsilon}(x)>K\right\}$. By (2.19) we know that

$$
P_{+} \phi_{\varepsilon}(0)=\phi_{\varepsilon}-P_{-} \phi_{\varepsilon}(0) \geq C \varepsilon^{-(N-2) / 2}-\left\|P_{-} \phi_{\varepsilon}\right\|_{\infty} \geq C \varepsilon^{-(N-2) / 2}
$$

which implies $P_{+} \phi_{\varepsilon}(0) \rightarrow \infty$ as $\varepsilon \rightarrow 0$. By the continuity of $P_{+} \phi_{\varepsilon}$, there exists $\delta>0$ such that $B_{\delta}(0) \subset \Omega_{\varepsilon, K}$. Therefore we have a result as follows.

Lemma 2.4 .

$$
\begin{align*}
\int_{\Omega_{\varepsilon, K}}\left|P_{+} \phi_{\varepsilon}\right|^{2^{*}} d x & =\int_{\Omega} \phi_{\varepsilon}^{2^{*}} d x+O\left(\varepsilon^{N-2}\right) \tag{2.20}\\
\int_{\Omega_{\varepsilon, K}}\left|P_{+} \phi_{\varepsilon}\right|^{2^{*}-1} d x & =\int_{\Omega} \phi_{\varepsilon}^{2^{*}-1} d x+O\left(\varepsilon^{(N+2) / 2}\right) \tag{2.21}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{\Omega_{\varepsilon, K}}\left|P_{+} \phi_{\varepsilon}\right| d x=\int_{\Omega} \phi_{\varepsilon} d x+O\left(\varepsilon^{N}\right) \tag{2.22}
\end{equation*}
$$

LEmma 2.5. Let $u, v \in L^{p}(\Omega)$ with $2 \leq p \leq 2^{*}$. If $\omega \subset \Omega$ and $u+v>0$ on ω, then
(2.23) $\left.\left|\int_{\omega}(u+v)^{p} d x-\int_{\omega}\right| u\right|^{p} d x-\int_{\omega}|v|^{p} d x \mid \leq C \int_{\omega}\left(|u|^{p-1}|v|+|u||v|^{p-1}\right) d x$,
where C depends only on p.
Proof. By the Fundamental Theorem of Calculus the left side of (2.23) is equal to

$$
\left|p \int_{0}^{1} d \tau \int_{\omega}\left[|v+\tau u|^{p-2}(v+\tau u)-|\tau u|^{p-2} \tau u\right] u d x\right|,
$$

which by its turn is equal to, using the mean value theorem

$$
p(p-1)\left|\int_{0}^{1} d \tau \int \omega\right| \tau u+\left.v \theta(x)\right|^{p-2} u v d x \mid, \quad 0<\theta(x)<1
$$

This last expression can be estimated by
$C \int_{0}^{1} d \tau \int_{\omega}\left(\tau^{p-2}|u|^{p-1}|v|+|u||v|^{p-1}\right) d x \leq C \int_{\omega}\left(|u|^{p-2}|v|+|u \| v|^{p-1}\right) d x$.
Lemma 2.6. Let A, B, C and α be positive numbers. Consider the function

$$
\Phi_{\varepsilon}(s)=\frac{1}{2} s^{2} A-\frac{1}{2^{*}} s^{2^{*}} B+s^{2^{*}} \varepsilon^{\alpha} C, \quad s>0 .
$$

Then

$$
s_{\varepsilon}=\left(\frac{A}{B-2^{*} \varepsilon^{\alpha} C}\right)^{1 /\left(2^{*}-2\right)}
$$

is the point where Φ_{ε} achieves its maximum. Write $s_{\varepsilon}=\left(1+t_{\varepsilon}\right) s_{0}$, where $s_{0}=$ $(A / B)^{1 /\left(2^{*}-2\right)}$ is the point at which Φ_{0} achieves its maximum. Then $t_{\varepsilon}=O\left(\varepsilon^{\alpha}\right)$, and

$$
\Phi_{\varepsilon}(s) \leq \Phi_{\varepsilon}\left(s_{\varepsilon}\right)=\frac{1}{2}\left(\frac{A^{N}}{B^{N-2}}\right)^{1 / 2}+O\left(\varepsilon^{\alpha}\right)
$$

Proof. It is clear that Φ_{ε} achieves its maximum at s_{ε} and s_{ε} satisfies

$$
\begin{equation*}
s_{\varepsilon} A-s_{\varepsilon}^{2^{*}-1} B+2^{*} C \varepsilon^{\alpha} s_{\varepsilon}^{2^{*}-1}=0 \tag{2.24}
\end{equation*}
$$

This implies

$$
\begin{equation*}
s_{\varepsilon} \geq s_{0} \tag{2.25}
\end{equation*}
$$

Writing $s_{\varepsilon}=\left(1+t_{\varepsilon}\right) s_{0}$, we derive from (2.24) that

$$
\begin{equation*}
s_{\varepsilon} \rightarrow s_{0}, \quad t_{\varepsilon} \rightarrow 0 \quad \text { as } \varepsilon \rightarrow 0 \tag{2.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1+t_{\varepsilon}\right) s_{0} A-\left(1+t_{\varepsilon}\right)^{2^{*}-1} s_{0}^{2^{*}-1} B+2^{*} C \varepsilon^{\alpha}\left(1+t_{\varepsilon}\right)^{2^{*}-1} s_{0}^{2^{*}-1}=0 . \tag{2.27}
\end{equation*}
$$

That is

$$
\left(\frac{A^{2^{*}-1}}{B}\right)^{1 /\left(2^{*}-2\right)}\left[\left(1+t_{\varepsilon}\right)-\left(1+t_{\varepsilon}\right)^{2^{*}-1}\right]+2^{*} C \varepsilon^{\alpha}\left(1+t_{\varepsilon}\right)^{2^{*}-1} s_{0}^{2^{*}-1}=0 .
$$

Expanding for t_{ε} we obtain

$$
\begin{equation*}
\left[\frac{4}{N-2} t_{\varepsilon}+o\left(t_{\varepsilon}\right)\right]\left(\frac{A^{2^{*}-1}}{B}\right)^{1 /\left(2^{*}-2\right)}=2^{*} C \varepsilon^{\alpha}\left(1+t_{\varepsilon}\right)^{2^{*}-1} s_{0}^{2^{*}-1} \tag{2.28}
\end{equation*}
$$

Hence

$$
\begin{equation*}
t_{\varepsilon}=O\left(\varepsilon^{\alpha}\right) \tag{2.29}
\end{equation*}
$$

Our aim is to choose Q and ρ such that (2.5), (2.6) and (2.7) hold. So choose e as a function of $\varepsilon: e_{\varepsilon}=P_{+} \phi_{\varepsilon}$.

Lemma 2.7. There exist $r_{0}>0, R_{0}>0$, and $\varepsilon_{0}>0$ such that for $r \geq r_{0}$, $R \geq R_{0}$ and $0<\varepsilon \leq \varepsilon_{0}$ we have

$$
\left.I\right|_{\partial Q}<\alpha,
$$

where $\alpha>0$ is determined in Lemma 2.1.
Proof. We may write $\partial Q=\Gamma_{1} \cup \Gamma_{2} \cup \Gamma_{3}$ with

$$
\begin{aligned}
& \Gamma_{1}=\bar{B}_{r} \cap E^{-} \\
& \Gamma_{2}=\left\{v \in E: v=w+s e_{\varepsilon}, w \in E^{-},\|w\|=r, 0 \leq s \leq R\right\} \\
& \Gamma_{3}=\left\{v \in E: v=w+\operatorname{Re}_{\varepsilon}, w \in E^{-} \cap B_{r}(0)\right\}
\end{aligned}
$$

We will show that on each Γ_{i}, we have $\left.I\right|_{\Gamma_{i}}<\alpha, i=1,2,3$.
For any $v \in E^{-}$we have

$$
\begin{equation*}
\int_{\Omega}|\nabla v|^{2} d x \leq \lambda_{k} \int_{\Omega} v^{2} d x \tag{2.30}
\end{equation*}
$$

So, for $v \in \Gamma_{1}$,

$$
I(v)=\frac{1}{2}\left(1-\frac{\lambda}{\lambda_{k}}\right) \int_{\Omega}|\nabla v|^{2} d x-\frac{1}{2^{*}} \int_{\Omega}\left(v+u_{t}\right)_{+}^{2^{*}} d x \leq 0 .
$$

For $v \in \Gamma_{2}$, we distinguish two cases.
Define $\delta^{2}=\sup _{0<\varepsilon \leq 1} \int_{\Omega}\left|\nabla e_{\varepsilon}\right|^{2} d x$. If $0 \leq s \leq s_{0}:=\sqrt{2 \widehat{\alpha}} / \delta$, then

$$
\begin{aligned}
I(v) \leq \frac{1}{2}\left(1-\frac{\lambda}{\lambda_{k}}\right) r^{2}+\frac{1}{2} s^{2} \int_{\Omega}\left|\nabla e_{\varepsilon}\right|^{2} d x-\frac{1}{2^{*}} \int_{\Omega}\left(w+s e_{\varepsilon}+\right. & \left.u_{t}\right)_{+}^{2^{*}} d x \\
& \leq \frac{1}{2} s^{2} \delta^{2}<\widehat{\alpha}
\end{aligned}
$$

If $s \geq s_{0}=\sqrt{2 \widehat{\alpha}} / \delta$, denote

$$
K=\sup \left\{\left\|\frac{w+u_{t}}{s}\right\|_{L^{\infty}}: s_{0} \leq s \leq R,\|w\|_{E}=r, w \in E^{-}\right\}
$$

K is independent of R. Since $P_{+} \phi_{\varepsilon}(0) \rightarrow \infty$ as $\varepsilon \rightarrow 0$, there exists $\varepsilon_{0}^{\prime}>0$ such that for all $\varepsilon, 0<\varepsilon<\varepsilon_{0}^{\prime}$ and $s \geq s_{0}$

$$
\Omega_{\varepsilon}=\left\{x \in \Omega: e_{\varepsilon}(x)>K\right\} \neq \emptyset
$$

Whence by Lemma 2.5

$$
\begin{align*}
& \int_{\Omega}\left(e_{\varepsilon}+\frac{w+u_{t}}{s}\right)_{+}^{2^{*}} d x \geq \int_{\Omega_{\varepsilon}}\left(e_{\varepsilon}+\frac{w+u_{t}}{s}\right)^{2^{*}} d x \tag{2.31}\\
& \geq \int_{\Omega_{\varepsilon}}\left|e_{\varepsilon}\right|^{2^{*}} d x+\int_{\Omega_{\varepsilon}}\left|\frac{w+u_{t}}{s}\right|^{2^{*}} d x \\
& \quad-C \int_{\Omega_{\varepsilon}}\left(\left|e_{\varepsilon}\right|^{2^{*}-1}\left|\frac{w+u_{t}}{s}\right|+\left|e_{\varepsilon}\right|\left|\frac{w+u_{t}}{s}\right|^{2^{*}-1}\right) d x \\
& \geq \int_{\Omega_{\varepsilon}}\left|e_{\varepsilon}\right|^{2^{*}} d x+\int_{\Omega_{\varepsilon}}\left|\frac{w+u_{t}}{s}\right|^{2^{*}} d x-C\left(\left\|e_{\varepsilon}\right\|_{L^{2^{*}-1}\left(\Omega_{\varepsilon}\right)}^{2^{*}-1}+\left\|e_{\varepsilon}\right\|_{L^{1}\left(\Omega_{\varepsilon}\right)}\right) .
\end{align*}
$$

By Lemmas 2.2, 2.3 and 2.4 and (2.31) we obtain

$$
\begin{align*}
I(v) & \leq \frac{1}{2}\left(1-\frac{\lambda}{\lambda_{k}}\right) r^{2}+\frac{1}{2} s^{2} S^{N / 2}-\frac{s^{2^{*}}}{2^{*}} S^{N / 2}+C s^{2^{*}} \varepsilon^{(N-2) / 2} \tag{2.32}\\
& :=\frac{1}{2}\left(1-\frac{\lambda}{\lambda_{k}}\right) r^{2}+\Phi_{\varepsilon}(s) .
\end{align*}
$$

Applying Lemma 2.6 to $\Phi_{\varepsilon}(s)$, we obtain

$$
I(v) \leq \frac{1}{2}\left(1-\frac{\lambda}{\lambda_{k}}\right) r^{2}+\frac{1}{N} S^{N / 2}+O\left(\varepsilon^{(N-2) / 2}\right)
$$

We may choose $r>0$ such that $I(v)<0$. This determines r_{0}.
For $v \in \Gamma_{3}$ we have $v=w+R e_{\varepsilon}, w \in E^{-} \cap B_{r}(0)$ and

$$
I(v) \leq \frac{1}{2}\left(1-\frac{\lambda}{\lambda_{k}}\right)\|w\|_{E}^{2}+\frac{1}{2} R^{2} \int_{\Omega}\left|\nabla e_{\varepsilon}\right|^{2} d x-\frac{1}{2^{*}} R^{2^{*}} \int_{\Omega}\left(e_{\varepsilon}+\frac{u_{t}+w}{R}\right)_{+}^{2^{*}} d x .
$$

By the boundedness of w and u_{t}, there exists $K>0$ such that

$$
\left\|w+u_{t}\right\|_{L^{\infty}(\Omega)} \leq K
$$

Again since $P_{+} \phi_{\varepsilon}(0) \rightarrow \infty$ as $\varepsilon \rightarrow 0$, there exists $\varepsilon_{0}>0$ (take $\varepsilon_{0}<\varepsilon_{0}^{\prime}$) such that if $0<\varepsilon<\varepsilon_{0}, P_{+} \phi_{\varepsilon}(0)>2 K$. Given $\varepsilon>0,0<\varepsilon<\varepsilon_{0}$, there exist $R_{0}=R_{0}(\varepsilon)$, $\eta=\eta(\varepsilon)$ such that

$$
\left|\left\{x \in \Omega: e_{\varepsilon}+\frac{w+u_{t}}{R}>1\right\}\right| \geq \eta>0
$$

for all $R>R_{0}$. Hence we find $\varepsilon_{0}, R_{0}>0$ such that if $\varepsilon<\varepsilon_{0}$, and $R>R_{0}$, we have $I(v) \leq 0$ for $v \in \Gamma_{3}$.

Lemma 2.8.

$$
\begin{equation*}
\max _{\bar{Q}} I<\frac{1}{N} S^{N / 2} \tag{2.33}
\end{equation*}
$$

Proof. Let us fix $\varepsilon<\varepsilon_{0}$, so that the geometry of the Linking Theorem holds. For $w+s e_{\varepsilon} \in Q$, we have

$$
\begin{align*}
I\left(w+s e_{\varepsilon}\right)= & \frac{1}{2} \int_{\Omega}\left(|\nabla w|^{2}-\lambda w^{2}\right) d x \tag{2.34}\\
& +\frac{1}{2} s^{2} \int_{\Omega}\left(\left|\nabla e_{\varepsilon}\right|^{2}-\lambda e_{\varepsilon}^{2}\right) d x-\frac{1}{2^{*}} \int_{\Omega}\left(w+s e_{\varepsilon}+u_{t}\right)_{+}^{2^{*}} d x .
\end{align*}
$$

With the same notations and arguments as in the proof of Lemma 2.7, if $s<s_{0}$ we have

$$
\begin{equation*}
I\left(w+s e_{\varepsilon}\right) \leq \frac{1}{2} s^{2} \int_{\Omega}\left|\nabla e_{\varepsilon}\right|^{2} d x=\frac{1}{2} s^{2} \delta^{2}<\frac{1}{N} S^{N / 2} \tag{2.35}
\end{equation*}
$$

If $s \geq s_{0}$, using (2.31), we deduce as (2.32) that

$$
\begin{align*}
I\left(w+s e_{\varepsilon}\right) \leq & \frac{1}{2} s^{2} \int_{\Omega}\left(\left|\nabla e_{\varepsilon}\right|^{2}-\lambda e_{\varepsilon}^{2}\right) d x \tag{2.36}\\
& -\frac{1}{2^{*}} s^{2^{*}} \int_{\Omega_{\varepsilon}} e_{\varepsilon}^{2^{*}} d x+C s^{2^{*}} \varepsilon^{(N-2) / 2}:=\Phi_{\varepsilon}(s) .
\end{align*}
$$

An application of Lemma 2.6 to $\Phi_{\varepsilon}(s)$ yields
$I\left(w+s e_{\varepsilon}\right)=\frac{1}{N}\left[\int_{\Omega}\left(\left|\nabla e_{\varepsilon}\right|^{2}-\lambda e_{\varepsilon}^{2}\right) d x\right]^{N / 2}\left(\int_{\Omega_{\varepsilon}} e_{\varepsilon}^{2^{*}} d x\right)^{-(N-2) / 2}+O\left(\varepsilon^{(N-2) / 2}\right)$.
Using the estimates in Lemmas 2.2, 2.3 and 2.4 on e_{ε} we get

$$
I\left(w+s e_{\varepsilon}\right) \leq \frac{1}{N} S^{N / 2}-\frac{1}{2} \lambda\left\{\begin{array}{ll}
O\left(\varepsilon^{2}\right) & \text { if } N \geq 5 \\
O\left(\varepsilon^{2}\left|\log \varepsilon^{2}\right|\right) & \text { if } N=4
\end{array}+O\left(\varepsilon^{(N-2) / 2}\right)\right.
$$

If $N>6$, i.e. $2<(N-2) / 2$, the result follows by choosing $\varepsilon>0$ sufficiently small.

Proof of Theorem 1.1. It remains to prove the existence of a second solution of (1.1), i.e. a nontrivial solution of (2.4). Using the Linking Theorem, Lemmas 2.1 and 2.7, there exists $\left\{v_{n}\right\} \subset E$ such that

$$
\begin{align*}
I\left(v_{n}\right) & =\frac{1}{2} \int_{\Omega}\left(\left|\nabla v_{n}\right|^{2}-\lambda v_{n}^{2}\right) d x-\frac{1}{2^{*}} \int_{\Omega}\left(v_{n}+u_{t}\right)_{+}^{2^{*}} d x=c+o(1), \tag{2.37}\\
(2.38)\left\langle I^{\prime}\left(v_{n}\right), \phi\right\rangle & =\int_{\Omega}\left(\nabla v_{n} \nabla \phi-\lambda v_{n} \phi\right) d x-\int_{\Omega}\left(v_{n}+u_{t}\right)_{+}^{2^{*}-1} \phi d x=o(1)\|\phi\|_{E},
\end{align*}
$$

for all $\phi \in H_{0}^{1}(\Omega)$, where c is the minimax level in the Linking Theorem with $e_{\varepsilon}=$ $P_{+} \phi_{\varepsilon}$, and $\varepsilon<\varepsilon_{0}$ sufficientlly small in order to have the validity of Lemmas 2.7 and 2.8 , and Q as above.

First we prove that $\left\{v_{n}\right\}$ is bounded in E. It follows from (2.37) and (2.38)

$$
\frac{1}{N} \int_{\Omega}\left(v_{n}+u_{t}\right)_{+}^{2^{*}} d x-\frac{1}{2} \int_{\Omega}\left(v_{n}+u_{t}\right)_{+}^{2^{*}-1} u_{t} d x \leq c+\varepsilon_{n}\left\|v_{n}\right\|_{E}+o(1)
$$

where $\varepsilon_{n} \rightarrow \infty$ as $n \rightarrow \infty$. It implies

$$
\begin{equation*}
\int_{\Omega}\left(v_{n}+u_{t}\right)_{+}^{2^{*}} \leq c+\varepsilon_{n}\left\|v_{n}\right\|_{E}+o(1) \tag{2.39}
\end{equation*}
$$

since $u_{t} \leq 0$. Writing $v_{n}=v_{n}^{+}+v_{n}^{-}$, with $v_{n}^{ \pm} \in E^{ \pm}$we get from (2.37)-(2.38), using Hölder and Young inequalies that

$$
\begin{aligned}
\left(1-\frac{\lambda}{\lambda_{k+1}}\right)\left\|v_{n}^{+}\right\|_{E}^{2} \leq & \int_{\Omega}\left(v_{n}+u_{t}\right)_{+}^{2^{*}-1} v_{n}^{+} d x+\varepsilon\left\|v_{n}^{+}\right\| \\
\leq & \varepsilon\left(\int_{\Omega}\left|v_{n}^{+}\right|^{2^{*}} d x\right)^{2 / 2^{*}} \\
& +C_{\varepsilon}\left(\int_{\Omega}\left(v_{n}+u_{t}\right)_{+}^{2^{*}} d x\right)^{2\left(2^{*}-1\right) / 2^{*}}+\varepsilon_{n}\left\|v_{n}^{+}\right\|_{E} \\
\leq & \varepsilon\left(\int_{\Omega}\left|v_{n}^{+}\right|^{2^{*}} d x\right)^{2 / 2^{*}}+C_{\varepsilon}+\varepsilon_{n}\left(\left\|v_{n}\right\|_{E}^{(N+2) / N}+\left\|v_{n}^{+}\right\|_{E}\right)
\end{aligned}
$$

So we obtain

$$
\left\|v_{n}^{+}\right\|_{E}^{2} \leq C+\varepsilon_{n}\left(\left\|v_{n}\right\|_{E}^{(N+2) / N}+\left\|v_{n}^{+}\right\|_{E}\right)
$$

In the same way, we have

$$
\left\|v_{n}^{-}\right\|_{E}^{2} \leq C+\varepsilon_{n}\left(\left\|v_{n}\right\|_{E}^{(N+2) / N}+\left\|v_{n}^{-}\right\|_{E}\right)
$$

Consequently, $\left\|v_{n}\right\|_{E} \leq C$. Hence we may assume

$$
\begin{array}{ll}
v_{n} \rightarrow v & \text { weakly in } H_{0}^{1}(\Omega), \\
v_{n} \rightarrow v & \text { in } L^{q}(\Omega), 2 \leq q<2^{*} \tag{2.40}\\
v_{n} \rightarrow v & \text { a.e. in } \Omega
\end{array}
$$

as $n \rightarrow \infty$. It follows that v is a weak solution of

$$
\begin{equation*}
-\Delta v=\lambda v+\left(v+u_{t}\right)_{+}^{2^{*}-1} \tag{2.41}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\int_{\Omega}\left(|\nabla v|^{2}-\lambda v^{2}\right) d x-\int_{\Omega}\left(v+u_{t}\right)_{+}^{2^{*}} d x+\int_{\Omega}\left(v+u_{t}\right)_{+}^{2^{*}-1} u_{t} d x=0 . \tag{2.42}
\end{equation*}
$$

By Brézis-Lieb Lemma [7]

$$
\begin{equation*}
\int_{\Omega}\left(v_{n}+u_{t}\right)_{+}^{2^{*}} d x=\int_{\Omega}\left(v_{n}-v\right)_{+}^{2^{*}} d x+\int_{\Omega}\left(v+u_{t}\right)_{+}^{2^{*}} d x+o(1) \tag{2.43}
\end{equation*}
$$

Hence, using (2.43),

$$
\begin{equation*}
I\left(v_{n}\right)=I(v)+\frac{1}{2} \int_{\Omega}\left|\nabla\left(v_{n}-v\right)\right|^{2} d x-\frac{1}{2^{*}} \int_{\Omega}\left(v_{n}-v\right)_{+}^{2^{*}} d x+o(1) \tag{2.44}
\end{equation*}
$$

and similarly, by (2.41),

$$
\begin{align*}
\left\langle I^{\prime}\left(v_{n}\right), v_{n}\right\rangle= & \int_{\Omega}\left|\nabla\left(v_{n}-v\right)\right|^{2} d x-\int_{\Omega}\left(v_{n}-v\right)_{+}^{2^{*}} d x \tag{2.45}\\
& -\int_{\Omega}\left(v_{n}-v\right)_{+}^{2^{*}-1} u_{t} d x+o(1)
\end{align*}
$$

Since $\int_{\Omega}\left(v_{n}-v\right)_{+}^{2^{*}-1} u_{t} d x \rightarrow 0$ as $n \rightarrow \infty$, it yields

$$
\begin{equation*}
\int_{\Omega}\left|\nabla\left(v_{n}-v\right)\right|^{2} d x=\int_{\Omega}\left(v_{n}-v\right)_{+}^{2^{*}} d x+o(1) \tag{2.46}
\end{equation*}
$$

Let $w_{n}=v_{n}-v$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega}\left|\nabla w_{n}\right|^{2}=k \geq 0 \tag{2.47}
\end{equation*}
$$

If $k=0$, then $v_{n} \rightarrow v$ strongly in $H_{0}^{1}(\Omega)$ as $n \rightarrow \infty$, then $\alpha \leq c=I(v), v$ is a nontrivial solution of (2.4).

If $k>0$, we claim that $v \neq 0$. Indeed, using (2.46) and the Sobolev inequality we obtain

$$
\begin{align*}
\left\|w_{n}\right\|_{H_{0}^{1}}^{2} & \geq S\left(\int_{\Omega}\left|w_{n}\right|^{2^{*}} d x\right)^{2 / 2^{*}} \geq S\left(\int_{\Omega}\left(w_{n}\right)_{+}^{2^{*}} d x\right)^{2 / 2^{*}} \tag{2.48}\\
& \geq S\left[\int_{\Omega}\left|\nabla w_{n}\right|^{2} d x+o(1)\right]^{2 / 2^{*}}
\end{align*}
$$

which gives

$$
\begin{equation*}
k \geq S k^{(N-2) / N} \quad \text { i.e. } k \geq S^{N / 2} \tag{2.49}
\end{equation*}
$$

From (2.44), (2.46) and (2.49), if $v \equiv 0$ we have

$$
c+o(1)=\frac{k}{N} \geq \frac{1}{N} S^{N / 2}
$$

It contradicts to the statement of Lemma 2.8. Therefore $v \not \equiv 0$. By (2.41) we know v is not negative.
3. Existence of solutions for the case $\lambda=\lambda_{1}$

We consider

$$
\begin{cases}-\Delta u=\lambda_{1} u+u_{+}^{2^{*}-1}+f & \text { in } \Omega \tag{3.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

A necessary condition for the solvability of (3.1) is given by

$$
\begin{equation*}
\int_{\Omega} f \phi_{1} d x<0 \tag{3.2}
\end{equation*}
$$

where ϕ_{1} is the first eigenfunction of $-\Delta$. Although one expects that (3.2) would be a sufficient condition for the solvability of (3.1), we have not been
able to prove it. Indeed, we require in addition that f has small L^{2}-norm. Let $E^{-}=\operatorname{span}\left\{\phi_{1}\right\}$ and $E^{+}=\left(E^{-}\right)^{\perp}$. For any $u \in E$ there are $t \in \mathbb{R}$ and $v \in E$ such that $u=t \phi_{1}+v$. The functional $I: E \rightarrow \mathbb{R}$ associated with equation (3.1) can be written as

$$
I(u)=\frac{1}{2} \int_{\Omega}\left[|\nabla v|^{2}-\lambda_{1} v^{2}\right] d x-\frac{1}{2^{*}} \int_{\Omega}\left(v+t \phi_{1}\right)_{+}^{2^{*}} d x-\int_{\Omega} f\left(v+t \phi_{1}\right) d x
$$

where $u=v+t \phi_{1}, t=\int_{\Omega} u \phi_{1} d x$.
Lemma 3.1. For any given $v \in E^{+}$, the functional I is bounded above in E^{-}.
Proof. Given $v \in E^{+}$, let us define the real-valued function

$$
\begin{equation*}
g(t)=I\left(v+t \phi_{1}\right) . \tag{3.3}
\end{equation*}
$$

For $t<0$ we have

$$
g(t) \leq \frac{1}{2} \int_{\Omega}\left[|\nabla v|^{2}-\lambda_{1} v^{2}\right] d x+\|f\|_{L^{2}}\|v\|_{L^{2}} .
$$

For $t>0$, we claim

$$
\begin{equation*}
\lim _{t \rightarrow \infty}\left\{\frac{1}{2^{*}} \int_{\Omega}\left(v+t \phi_{1}\right)_{+}^{2^{*}} d x+\int_{\Omega} f\left(v+t \phi_{1}\right) d x\right\}=\infty \tag{3.4}
\end{equation*}
$$

which completes the proof, since g is continuous.
To prove (3.4) we proceed as follows: let $a=\max \left\{\phi_{1}(x): x \in \Omega\right\}$. Choose $\Omega_{0} \subset \subset \Omega$ such that $\phi_{1}(x)>a / 2$ for $x \in \Omega_{0}$. By Lusin's theorem, given any $\delta>0$ (choose $\delta=\left|\Omega_{0}\right| / 2$) there exists a continuous function $h(x)$ in Ω_{0} such that

$$
\operatorname{meas}\{x: h(x) \neq v(x)\}<\delta
$$

So the set $G=\{x: h(x)=v(x)\}$ has measure greater than $\left|\Omega_{0}\right|-\delta$. Let $M=\sup \{|v(x)|: x \in G\}$. Then, for $x \in G$ we have

$$
\phi_{1}(x)+\frac{v(x)}{t} \geq \frac{a}{2}-\frac{M}{t} \geq \frac{a}{4}
$$

if $t \geq t_{0}:=4 M / a$. So there is $\eta>0$ such that

$$
\int_{\Omega}\left(\phi_{1}+\frac{v}{t}\right)_{+}^{2^{*}} d x \geq \eta \quad \text { for } t \geq t_{0}
$$

Then the first term in (3.4) is larger than $C t^{2^{*}}$ which proves the claim.
Next we claim that, for each $v \in E^{+}$, there is a unique $t(v)$ such that

$$
\begin{equation*}
g(t(v))=\max \{g(t): t \in \mathbb{R}\} \tag{3.5}
\end{equation*}
$$

At a point t_{0} of maximum we have $g^{\prime}\left(t_{0}\right)=0$, i.e.

$$
\begin{equation*}
g^{\prime}\left(t_{0}\right)=-\int_{\Omega}\left(t_{0} \phi_{1}+v\right)_{+}^{2^{*}-1} \phi_{1} d x-\int_{\Omega} f \phi_{1} d x=0 \tag{3.6}
\end{equation*}
$$

If $t \geq t_{0}, g^{\prime}(t) \leq g^{\prime}\left(t_{0}\right)$ and if $t \leq t_{0}, g^{\prime}(t) \geq g^{\prime}\left(t_{0}\right)$, hence

$$
g\left(t_{0}\right)=\max _{\{t \in \mathbb{R}\}} g(t) \text {, i.e. } I\left(t \phi_{1}+v\right) \leq I\left(t_{0} \phi_{1}+v\right) .
$$

The second derivative of g is given by

$$
g^{\prime \prime}(t)=-\int_{\Omega}\left(t \phi_{1}+v\right)_{+}^{2^{*}-2} \phi_{1}^{2} d x \leq 0
$$

which says that g is concave. So the set of maxima is a closed interval, and we show it is a single point. At a point t_{0} of maximum $g^{\prime \prime}\left(t_{0}\right)$ cannot be 0 . Indeed, if this were the case, then $\left(t_{0} \phi_{1}+v\right)_{+}=0$, which would imply by (3.6) that $\int_{\Omega} f \phi_{1} d x=0$, a contradiction. So g is strictly concave at t_{0}. This also proves, as a consequence of the Implicit Function Theorem that the mapping

$$
v \in E^{+} \rightarrow t(v) \in \mathbb{R}
$$

is continuous and differentiable. Therefore

$$
\begin{equation*}
I\left(t \phi_{1}+v\right) \leq I\left(t(v) \phi_{1}+v\right) \quad \text { if } t \neq t(v) \tag{3.7}
\end{equation*}
$$

and from (3.6) we have

$$
\begin{equation*}
\int_{\Omega}\left(v+t(v) \phi_{1}\right)_{+}^{2^{*}-1} \phi_{1}+\int_{\Omega} f \phi_{1}=0, \quad \text { for all } v \in E^{+} \tag{3.8}
\end{equation*}
$$

The relation (3.6) for $v=0$ gives

$$
\begin{equation*}
\int_{\Omega}\left(t(0) \phi_{1}\right)_{+}^{2^{*}-1} \phi_{1} d x=-\int_{\Omega} f \phi_{1} d x \tag{3.9}
\end{equation*}
$$

and the function $g(t)$ in this case is

$$
\begin{equation*}
-\frac{1}{2^{*}} \int_{\Omega}\left(t \phi_{1}\right)_{+}^{2^{*}} d x-t \int_{\Omega} f \phi_{1} d x \tag{3.10}
\end{equation*}
$$

which shows that $t(0)$ has to be greater than 0 . So the relation (3.9) can be written as

$$
\begin{equation*}
t(0)^{2^{*}-1} \int_{\Omega} \phi_{1}^{2^{*}} d x=-\int_{\Omega} f \phi_{1} d x \tag{3.11}
\end{equation*}
$$

Let us introduce the notations

$$
\begin{equation*}
A=-\int_{\Omega} f \phi_{1} d x, \quad B=\int_{\Omega} \phi_{1}^{2^{*}} d x \tag{3.12}
\end{equation*}
$$

Our next step is to show that the functional $F: E^{+} \rightarrow \mathbb{R}$ given by

$$
F(v)=I\left(v+t(v) \phi_{1}\right)
$$

has a minimum in the interior of certain ball B_{ρ} centered at the origin.
It is easy to see that

$$
\begin{equation*}
F(0)=\frac{N+2}{2 N} \frac{A^{2 N /(N+2)}}{B^{(N-2) /(N+2)}}, \tag{3.13}
\end{equation*}
$$

and next we estimate $F(v)$:

$$
\begin{align*}
F(v)= & \frac{1}{2} \int_{\Omega}\left[|\nabla v|^{2}-\lambda_{1} v^{2}\right] d x \tag{3.14}\\
& -\frac{1}{2^{*}} \int_{\Omega}\left(v+t(v) \phi_{1}\right)_{+}^{2^{*}} d x-\int_{\Omega} f\left(v+t(v) \phi_{1}\right) d x .
\end{align*}
$$

Let

$$
\begin{align*}
M_{1}= & \frac{1}{N+1} \lambda_{2}^{-N / 4} S^{N / 4}\left(\frac{N}{N+2}\right)^{(N-2) / 4}\left(\lambda_{2}-\lambda_{1}\right)^{(N+2) / 4}, \tag{3.15}\\
M_{2}= & \min \left\{\left(\frac{2}{N+2}\right)^{(N+2) / 2 N} S^{(N+2) / 4},\right. \tag{3.16}\\
& \left.\left(\frac{2}{N+2}\right)^{(N+2) / 2 N}\left\|\phi_{1}\right\|_{2^{*}}\left[\frac{N}{N+2}\left(1-\frac{\lambda_{1}}{\lambda_{2}}\right) S\right]^{(N+2) / 4}\right\} .
\end{align*}
$$

In addition to (3.2), we suppose that f satisfies

$$
\begin{equation*}
\|f\|_{2} \leq M_{1} \quad \text { and } \quad-\int_{\Omega} f \phi_{1} d x<M_{2} \tag{3.17}
\end{equation*}
$$

Lemma 3.2. Suppose (3.2) and (3.17), there is an $\alpha>0$ such that

$$
\begin{equation*}
F(v) \geq \alpha>F(0) \tag{3.18}
\end{equation*}
$$

provided that $\|v\|_{E}=\rho_{0}$ with $\rho_{0}=\left[\frac{N}{N+2}\left(1-\frac{\lambda_{1}}{\lambda_{2}}\right)\right]^{(N-2) / 4} S^{N / 4}$.
Proof. It follows from (3.6) and the inequality

$$
\int_{\Omega}|\nabla v|^{2} d x \geq \lambda_{2} \int_{\Omega} v^{2} d x, \quad \text { for all } v \in E^{+}
$$

that

$$
\begin{align*}
F(v) \geq I(v) & =\frac{1}{2} \int_{\Omega}\left(|\nabla v|^{2}-\lambda_{1} v^{2}\right) d x-\frac{1}{2^{*}} \int_{\Omega} v_{+}^{2^{*}} d x-\int_{\Omega} f v d x \tag{3.19}\\
& \geq \frac{1}{2}\left(1-\frac{\lambda_{1}}{\lambda_{2}}\right) \int_{\Omega}|\nabla v|^{2} d x-\frac{1}{2^{*}} \int_{\Omega}|v|^{2^{*}} d x-\|f\|_{2}\|v\|_{2}
\end{align*}
$$

Using Sobolev inequality and (3.19) we obtain

$$
\begin{equation*}
F(v) \geq \frac{1}{2}\left(1-\frac{\lambda_{1}}{\lambda_{2}}\right) \rho-\frac{1}{2^{*}} S^{-N /(N-2)} \rho^{2^{*}}-\|f\|_{2} \lambda_{2}^{-1 / 2} \rho, \tag{3.20}
\end{equation*}
$$

where S is the best Sobolev constant and $\rho=\left(\int_{\Omega}|\nabla v|^{2} d x\right)^{1 / 2}$. Consider the real function

$$
k(\rho)=\frac{1}{2} a \rho^{2}-\frac{1}{2^{*}} b \rho^{2^{*}}-c \rho:=\rho j(\rho) .
$$

The maximum point ρ of $j(\rho)$ on \mathbb{R}_{+}satisfies

$$
j^{\prime}\left(\rho_{0}\right)=\frac{1}{2} a-\frac{2^{*}-1}{2^{*}} b \rho_{0}^{2^{*}-2}=0 .
$$

Then we have

$$
\rho_{0}=\left[\frac{N}{N+2}\left(1-\frac{\lambda_{1}}{\lambda_{2}}\right)\right]^{(N-2) / 4} S^{N / 4}
$$

and

$$
\begin{equation*}
k\left(\rho_{0}\right)=\rho_{0}\left[\frac{2}{N+2}\left(\frac{N}{(N+2) b}\right)^{(N-2) / 4} a^{(N+2) / 4}-c\right] . \tag{3.21}
\end{equation*}
$$

With $a=1-\lambda_{1} / \lambda_{2}, b=S^{-N /(N-2)}$ and $c=\|f\|_{2} \lambda_{2}^{-1 / 2}$ in (3.21) and by the assumption (3.17) we obtain

$$
\begin{equation*}
F(v) \geq \frac{\rho_{0}}{N+2}\left[\frac{N}{(N+2) b}\right]^{(N-2) / 4} a^{(N+2) / 4} \tag{3.22}
\end{equation*}
$$

if $\|v\|_{E}=\rho_{0} .(3.22)$ and (3.17) imply $F(v)>F(0)$ provided that $\|v\|_{E}=\rho_{0}$. The proof is complete.

It follows from (3.17) that

$$
\begin{equation*}
F(0)<\frac{1}{N} S^{N / 2} \tag{3.23}
\end{equation*}
$$

We consider the problem

$$
\begin{equation*}
m:=\min \left\{F(v): v \in B_{\rho_{0}}\right\} . \tag{3.24}
\end{equation*}
$$

Lemma 3.3. Problem (3.1) has a nontrivial solution $v_{0} \in B_{\rho_{0}}$.
Proof. By (3.23) we have

$$
\begin{equation*}
m<\frac{1}{N} S^{N / 2} \tag{3.25}
\end{equation*}
$$

Let $\left\{v_{n}\right\}$ be a minimizing sequence of (3.24). Since $\left\|v_{n}\right\|_{E} \leq \rho_{0}$ we may assume

$$
\begin{array}{ll}
v_{n} \rightarrow v_{0} & \text { weakly in } E, \\
v_{n} \rightarrow v_{0} & \text { in } L^{q}(\Omega), 2 \leq q<2^{*}, \tag{3.26}\\
v_{n} \rightarrow v_{0} & \text { a.e. in } \Omega,
\end{array}
$$

as $n \rightarrow \infty$. The weak continuity of norm gives

$$
\begin{equation*}
\left\|v_{0}\right\|_{E} \leq \lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{E} \leq \rho_{0} \tag{3.27}
\end{equation*}
$$

By the Ekeland's variational principle, we may assume that

$$
\begin{equation*}
F\left(v_{n}\right) \rightarrow m, \quad F^{\prime}\left(v_{n}\right) \rightarrow 0 \tag{3.28}
\end{equation*}
$$

as $n \rightarrow \infty$. Because of

$$
\begin{equation*}
F^{\prime}\left(v_{n}\right) \rightarrow 0 \Leftrightarrow J^{\prime}\left(v_{n}+t\left(v_{n}\right) \phi_{1}\right) \rightarrow 0 \tag{3.29}
\end{equation*}
$$

as $n \rightarrow \infty$, we have

$$
\begin{align*}
\frac{1}{2} \int_{\Omega}\left(\left|\nabla v_{n}\right|^{2}-\lambda_{1} v_{n}^{2}\right) d x-\frac{1}{2^{*}} \int_{\Omega} & \left(v+t\left(v_{n}\right) \phi_{1}\right)_{+}^{2^{*}} d x \tag{3.30}\\
& -\int_{\Omega} f\left(v_{n}+t\left(v_{n}\right) \phi_{1}\right) d x=m+o(1)
\end{align*}
$$

and
(3.31) $\int_{\Omega}\left(\left|\nabla v_{n}\right|^{2}-\lambda_{1} v_{n}^{2}\right) d x-\int_{\Omega}\left(v_{n}+t\left(v_{n}\right) \phi_{1}\right)_{+}^{2^{*}-1} v_{n} d x-\int_{\Omega} f v_{n} d x=o(1)$.

By the weak convergence we know that v_{0} satisfies

$$
\begin{equation*}
-\Delta v=\lambda_{1} v+\left(v+t(v) \phi_{1}\right)_{+}^{2^{*}-1}+f \tag{3.32}
\end{equation*}
$$

and then

$$
\begin{gather*}
\int_{\Omega}\left(\left|\nabla v_{0}\right|^{2}-\lambda_{1} v_{0}^{2}-\left(v_{0}+t\left(v_{0}\right) \phi_{1}\right)_{+}^{2^{*}-1} v_{0}-f v_{0}\right) d x=0 \tag{3.33}\\
\int_{\Omega}\left[\left(v_{0}+t\left(v_{0}\right) \phi_{1}\right)_{+}^{2^{*}-1} \phi_{1}+f \phi_{1}\right] d x=0 \tag{3.34}
\end{gather*}
$$

The proof will be complete if we may show $v_{0} \not \equiv 0$. First we claim that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} t\left(v_{n}\right)=t\left(v_{0}\right) . \tag{3.35}
\end{equation*}
$$

If not, we would have $\lim _{n} t\left(v_{n}\right)=t_{1} \neq t\left(v_{0}\right)$. By (3.6)

$$
\int_{\Omega}\left(v_{n}+t\left(v_{n}\right) \phi_{1}\right)_{+}^{2^{*}-1} \phi_{1} d x=-\int_{\Omega} f \phi_{1} d x=\int_{\Omega}\left(v_{0}+t\left(v_{0}\right) \phi_{1}\right)_{+}^{2^{*}-1} \phi_{1} d x
$$

it follows

$$
\int_{\Omega}\left(v_{0}+t_{1} \phi_{1}\right)_{+}^{2^{*}-1} \phi_{1} d x=\int_{\Omega}\left(v_{0}+t\left(v_{0}\right) \phi_{1}\right)_{+}^{2^{*}-1} \phi_{1} d x
$$

giving a contradiction. Letting $w_{n}=v_{n}-v_{0}$. By (3.30), (3.31) and Brézis-Lieb Lemma, we obtain

$$
\begin{align*}
& \frac{1}{2} \int_{\Omega}\left|\nabla w_{n}\right|^{2} d x-\frac{1}{2^{*}} \int_{\Omega}\left(w_{n}\right)_{+}^{2^{*}} d x+\frac{1}{2} \int_{\Omega}\left(\left|\nabla v_{0}\right|^{2}-\lambda_{1} v_{0}^{2}\right) d x \tag{3.36}\\
& \quad-\frac{1}{2^{*}} \int_{\Omega}\left(v_{0}+t\left(v_{0}\right) \phi_{1}\right)_{+}^{2^{*}} d x-\int_{\Omega} f\left(v_{0}+t\left(v_{0}\right) \phi_{1}\right) d x=m+o(1)
\end{align*}
$$

i.e.

$$
\begin{equation*}
F\left(v_{0}\right)+\frac{1}{2} \int_{\Omega}\left|\nabla w_{n}\right|^{2} d x-\frac{1}{2^{*}} \int_{\Omega}\left(w_{n}\right)_{+}^{2^{*}} d x=m+o(1) \tag{3.37}
\end{equation*}
$$

Similarly by (3.31), (3.34) and Brézis-Lieb Lemma we deduce

$$
\begin{aligned}
& \int_{\Omega}\left|\nabla w_{n}\right|^{2} d x-\int_{\Omega}\left(w_{n}\right)_{+}^{2^{*}} d x-\int_{\Omega}\left(v_{0}+t\left(v_{0}\right) \phi_{1}\right)_{+}^{2^{*}} d x \\
&+\int_{\Omega}\left(\left|\nabla v_{0}\right|^{2}-\lambda_{1} v_{0}^{2}\right) d x-\int_{\Omega} f\left(v_{0}+t\left(v_{0}\right) \phi_{1}\right) d x=o(1)
\end{aligned}
$$

namely

$$
\begin{equation*}
\int_{\Omega}\left|\nabla w_{n}\right|^{2} d x-\int_{\Omega}\left(w_{n}\right)_{+}^{2^{*}} d x=o(1) \tag{3.38}
\end{equation*}
$$

Let $\lim _{n \rightarrow \infty} \int_{\Omega}\left|\nabla w_{n}\right|^{2} d x=k \geq 0$. If $k=0$, we have done. If $k>0$, by the Sobolev inequality

$$
\begin{equation*}
\int_{\Omega}\left|\nabla w_{n}\right|^{2} d x \geq S\left(\int_{\Omega}\left(w_{n}\right)_{+}^{2^{*}} d x\right)^{2 / 2^{*}} \tag{3.39}
\end{equation*}
$$

Taking the limit in (3.39) we obtain by (3.38) and (3.39) that

$$
k \geq S k^{(N-2) / N}
$$

i.e.

$$
\begin{equation*}
k \geq S^{N / 2} \tag{3.40}
\end{equation*}
$$

It yields by (3.37), (3.39) and (3.40)

$$
\frac{1}{N} S^{N / 2}>m \geq F\left(v_{0}\right)+\frac{1}{N} k \geq F\left(v_{0}\right)+\frac{1}{N} S^{N / 2}
$$

So $F\left(v_{0}\right)<0$ and $v_{0} \not \equiv 0$. Since $F(v) \geq \alpha>0$ if $\|v\|_{E}=\rho_{0}$, we have $v_{0} \in B_{\rho_{0}}$. The proof is complete.

4. Bifurcations at $\lambda=\lambda_{k}$

In this section we discuss the bifurcation of the set of solutions of (1.1). Let $u_{t}(\lambda)=u_{t}$ be the negative solution obtained in Section 2. If $f=t \phi_{1}+h$ and $h \in \operatorname{ker}(-\Delta-\lambda)^{\perp}, u_{t}(\lambda)$ is well defined for all $\lambda \neq \lambda_{1}$. In the case $\lambda=\lambda_{k}, k \neq 1$, the set of solutions of (1.1) bifurcating from $\left(\lambda_{k}, u_{t}\left(\lambda_{k}\right)\right)$ is equivalent to the set of solutions of (2.4) bifurcating from $\left(\lambda_{k}, 0\right)$. Let

$$
E^{-}=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{k}\right\}, \quad E^{+}=\left(E^{-}\right)^{\perp}
$$

Now we state a bifurcation result.
Proposition 4.1. Every eigenvalue λ_{k} of $-\Delta$ gives rise to a bifurcation point of $\left(\lambda_{k}, 0\right)$ of (2.4). As a result, we obtain Theorem 1.3.

Proof. The conclusion follows from an abstract bifurcation theorem due to Böhme [5] and Marino [21], see also Theorem 11.4 in [24]. Let $\chi(\xi) \in C^{\infty}(\mathbb{R}, \mathbb{R})$ satisfy $\chi(\xi)=1$ for $|\xi| \leq 1, \chi(\xi)=0$ and $|\xi| \geq 2$, and $0 \leq \chi(\xi) \leq 1$ for all ξ. Define

$$
g(\lambda, \xi)=\chi(\xi)\left(\xi+u_{t}(\lambda)\right)_{+}^{2^{*}-1}+(1-\chi(\xi))
$$

Then $g \in C^{1}$, and $g(\lambda, \xi)=o(|\xi|)$ for λ bounded. Set

$$
\Phi(v)=\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\int_{\Omega} G(\lambda, v) d x
$$

with $u \in E:=W_{0}^{1,2}(\Omega)$, where $G(\lambda, v)=\int_{0}^{v} g(\lambda, t) d t$. It is standard to show that $\Phi \in C^{2}$. A critical point u of Φ on the manifold $M:=\left\{u \in E: \int_{\Omega}|u|^{2} d x=r^{2}\right\}$ is a weak solution of

$$
-\Delta u-g(\lambda, u)=\gamma u
$$

for some Lagrange multiplier γ. Define the operator L by

$$
(L v, \phi)=\int_{\Omega} \nabla v \nabla \phi d x
$$

and H by

$$
H(v) \phi=\int_{\Omega} g(\lambda, v) \phi d x
$$

for $\phi \in E$. For any ν satisfies $2<\nu<2^{*}$ and $\omega:=\{x \in \Omega: v(x) \geq 2\}$ with $v \in E$, we have

$$
\int_{\Omega}|v|^{\nu} d x \geq 2^{\nu} \operatorname{meas} \omega
$$

Hence

$$
|H(v) \phi| \leq \int_{\Omega / \omega}|v|^{2^{*}-1}|\phi| d x+\int_{\omega}|\phi| d x \leq C\|v\|^{\nu}\|\phi\|_{E} .
$$

It concludes

$$
\|H(v)\|=o(\|v\|)
$$

So by Theorem 11.4 in [24], each eigenvalue of $-\Delta$ provides a bifurcation point of

$$
\begin{equation*}
-\Delta v-g(\lambda, v)=\lambda v \tag{4.1}
\end{equation*}
$$

Since $g(\lambda, v)=o(|v|)$ and λ is bounded, it follows from (4.1) that

$$
\|v\|_{E} \leq C\|v\|_{L^{2}(\Omega)}=C r
$$

Arguments from elliptic regularity theory [6] show if r is small enough,

$$
\|v\|_{L^{\infty}(\Omega)}<1 \quad \text { and } \quad g(\lambda, v)=\left(v+u_{t}(\lambda)\right)_{+}^{2^{*}-1}
$$

The proof is complete.
Next, we show that the bifurcation branch bends locally to the left.
Proposition 4.2. If $(\lambda, v(\lambda)), v(\lambda) \neq 0$, is a solution of (2.4) such that $\lambda \rightarrow \lambda_{k}, k \neq 1, v(\lambda) \rightarrow 0$, then $\lambda<\lambda_{k}$. Consequently, if $h \in \operatorname{ker}\left(-\Delta-\lambda_{k}\right)^{\perp}$ and $(\lambda, u(\lambda)), u(\lambda) \neq 0$, is a solution of (1.1) such that $\lambda \rightarrow \lambda_{k}, k \neq 1$ and $u(\lambda) \rightarrow u_{t}\left(\lambda_{k}\right)$, then $\lambda<\lambda_{k}$.

Proof. Let $u=v+w$ be a solution of (2.4) with $v \in E^{-}$and $w \in E^{+}$. Multiplying (2.4) by $w-v$ and integrating by part, we obtain

$$
\begin{align*}
\int_{\mathbb{R}^{N}}\left(|\nabla w|^{2}-|\nabla v|^{2}\right) d x & =\int_{\mathbb{R}^{N}}\left[\lambda u+\left(u+u_{t}(\lambda)\right)_{+}^{2^{*}-1}\right] d x \tag{4.2}\\
& =\int_{\mathbb{R}^{N}}\left[\lambda\left(w^{2}-v^{2}\right)+\left(v+w+u_{t}(\lambda)\right)_{+}^{2^{*}-1}\right] d x
\end{align*}
$$

It follows

$$
\begin{align*}
\left(1-\frac{\lambda}{\lambda_{k+1}}\right) \int_{\mathbb{R}^{N}}|\nabla w|^{2} d x-(1- & \left.\frac{\lambda}{\lambda_{k}}\right) \int_{\mathbb{R}^{N}}|\nabla v|^{2} d x \tag{4.3}\\
& \leq \int_{\mathbb{R}^{N}}\left(v+w+u_{t}(\lambda)\right)_{+}^{2^{*}-1}(w-v) d x
\end{align*}
$$

By the convexity of the function $\left(v+w+u_{t}(\lambda)\right)_{+}^{2^{*}-1}$ and since u_{t} is negative

$$
\begin{align*}
\int_{\mathbb{R}^{N}}(v+ & \left.w+u_{t}(\lambda)\right)_{+}^{2^{*}-1}(w-v) d x \tag{4.4}\\
& =\int_{\mathbb{R}^{N}}\left(v+w+u_{t}(\lambda)\right)_{+}^{2^{*}-1}(2 w-u) d x \\
& \leq \int_{\mathbb{R}^{N}}\left(2 w+u_{t}(\lambda)\right)_{+}^{2^{*}} d x-\int_{\mathbb{R}^{N}}\left(u+u_{t}(\lambda)\right)_{+}^{2^{*}} d x \\
& \leq \int_{\mathbb{R}^{N}}\left(2 w+u_{t}(\lambda)\right)_{+}^{2^{*}} d x \leq \int_{\mathbb{R}^{N}}|2 w|^{2^{*}} d x \leq C\|w\|_{E}^{2^{*}}
\end{align*}
$$

(4.3) and (4.4) imply

$$
\begin{equation*}
\left[\left(1-\frac{\lambda}{\lambda_{k+1}}\right)-C\|w\|_{E}^{2^{*}-2}\right]\|w\|_{E}^{2}-\left(1-\frac{\lambda}{\lambda_{k}}\right)\|v\|_{E}^{2} \leq 0 \tag{4.5}
\end{equation*}
$$

Suppose by contradiction that $\lambda \geq \lambda_{k}$. Since $\lambda / \lambda_{k}-1>0$ and $u=v+w \neq 0$ we must have $w \neq 0$. Hence

$$
\begin{equation*}
\left(1-\frac{\lambda}{\lambda_{k+1}}\right) \leq C\|w\|_{E}^{2^{*}-2} \leq C\|u\|_{E}^{2^{*}-2} \tag{4.6}
\end{equation*}
$$

It yields a contradition when we let $\lambda \rightarrow \lambda_{k}$.

References

[1] H. Amann and P. Hess, A multiplicity result for a class of elliptic boundary value problems, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), 145-151.
[2] A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Math. Pura Appl. 93 (1972), 231-247.
[3] H. Berestycki, Le nombre de solutions de certains problèmes semi-linéaire elliptiques, J. Funct. Anal. 40 (1981), 1-29.
[4] M. S. Berger and E. Podolak, On the solutions of a nonlinear Dirichlet problem, Indiana Univ. Math. J. 24 (1975), 837-846.
[5] R. Bӧнме, Die Lösung der Verzwergungsgleichungen für nichtlineare Eigenwertprobleme, Math. Z. 127 (1972), 105-126.
[6] H. Brézis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials, J. Math. Pures Appl. 58 (1978), 137-151.
[7] H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of integrals, Proc. Amer. Math. Soc. 88 (1983), 486-490.
[8] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 24 (1983), 437-477.
[9] A. Castro, Metodos variacionales y analisis funcional no lineal, X Coloquio Colombiano de Matematicos 1980.
[10] A. Castro, Reduction via minimax, Lecture Notes in Math. 957, Springer.
[11] J. Chabrowski and Yang Jianfu, Existence theorems for the Schrödinger equation involving a critical Sobolev exponent, Z. Angev. Math. Phys. 48 (1998), 276-293.
[12] E. N. Dancer, On the ranges of certain weakly nonlinear elliptic partial differential equations, J. Math. Pures Appl. 57 (1978), 351-366.
[13] Deng Yinbin, On the superlinear Ambrosetti-Prodi problem involving critical Sobolev exponents, Nonlinear Anal. 17 (1991), 1111-1124.
[14] D. G. De Figueiredo, The Ekeland variational principle with applications and detours, Tata Inst. Fund. Res. Lectures on Math. and Phys. 81 (1989).
[15] D. G. De Figueiredo, On superlinear elliptic problems with nonlinearities interacting only with higher eigenvalues, Rocky Mountain J. Math. 18 (1988), 287-303.
[16] D. G. de Figueiredo, Lectures on Boundary Value Problems of Ambrosetti-Prodi Type, Atas do 12° Seminario Brasileiro de Análise, São Paulo, 1980.
[17] S. FUC̆IK, Solvability of Nonlinear Equations and Boundary Value Problems, D. Reidel Publ. Co., Dordrecht, 1980.
[18] J. L. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. XXVIII (1975), 567-597.
[19] T. Küpper and C. A. Stuart, Bifurcation into gaps in the essencial spectrum, J. Reine Angew. Math. 409 (1990), 1-34.
[20] A. C. Lazer and P. J. McKenna, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1973), 63-72.
[21] A. Marino, La biforcazione nel caso variazionale, Confer. Sem. Mat. Univ. Bari 132 (1977).
[22] J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems, SpringerVerlag, 1989.
[23] D. Mitrović and D. Zubrinić, Fundamentals of Applied Functional Analysis, Pitman Mongraphs and Surveys in Pure and Applied Mathematics No 91, Addison Wesley Longman, 1998.
[24] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations (1989), 65 AMS Conf. Ser. Math..
[25] B. Ruf and P. N. Srikanth, Multiplicity results for superlinear elliptic problems with partial interference with spectrum, J. Math. Anal. Appl. 118 (1986), 15-23.
[26] G. Tarantello, On nonhomogeneous elliptic equations involving critical Sobolev exponent, Ann. Inst.H. Poincaré Anal. Non Linéaire 9 (1992), 281-304.
[27] M. Willem, Minimax Theorems, Progr. in Nonlinear Differential Equations Appl., 1996.

Manuscript received July 25, 1999

[^1]
[^0]: 1991 Mathematics Subject Classification. 35J20, 35J25.
 Key words and phrases. Elliptic differential equations, variational methods, multiplicity of solutions.

 The work was partially supported by CNPq.

[^1]: Djairo G. De Figueiredo and Yang Jianfu
 IMECC-UNICAMP
 Caixa Postal 6065
 13083-970 Campinas, S.P., BRAZIL
 E-mail address: djairo@ime.unicamp.br, jfuang@ime.inicamp.br

