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CRITICAL SUPERLINEAR AMBROSETTI-PRODI PROBLEMS

DJaAIRO G. DE FIGUEIREDO — YANG JIANFU

ABSTRACT. We consider the existence of multiple solutions for problem
(1.1) below with either A # X or A = A1, where \g, k = 1,2,... are
eigenvalues of (—A, H}(Q)). The local bifurcation from A = )y is also
investigated.

1. Introduction

The main purpose of this work is to investigate the existence of multiple
solutions of the critical superlinear problem

(1.1) —Au=Au+uZ '+ f(zr) inQ u=0ondQ,

where 2* = 2N /(N —2), N > 3 is the critical Sobolev exponent, and A > 0 is
a constant. ut denotes the positive part of u : ut(z) = max{u(z),0}.

This problem belongs to a class of problems which are known as the Ambro-
setti-Prodi type. Due to the important role of the Ambrosetti-Prodi result [2]
in subsequent research and for completeness we state it next. Let g : R — R be
a C%-function such that g”(s) > 0 for all s € R and

0< lim ¢'(s) <\ < sli_)rgog’(s) < Ag,
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where \; and Ay are the first and second eigenvalues of (—A, Hi(£2)). They
consider the following boundary value problem

(1.2) —Au=g(u)+ f(z) inQ, u=0on 9N,

where €2 is a bounded domain in RY with a C?® boundary 0. Then, there is
a C! manifold M in C%(Q), which splits the space into two open sets Oy and
O with the following properties

(i) if f € Op, problem (1.2) has no solution,
(i) if f € M, problem (1.2) has exactly one solution,
(iii) if f € Og, problem (1.2) has exactly two solutions.

A solution here means a function u € C*%(Q).

After this work, several authors have extended this result in different di-
rections. The literature on this problem is quite extensive; even risking the
possibility of omitting some important work, we mention the following papers
1], [3], [4], [12], [17], [18], etc.

The above result shows the role that the location of the limits

(1.3) g_ = lim ﬁ, g+ = lim 9(s)

s——00 8§ s—oo0 8

with respect to the spectrum of (—A, H}(Q)) plays in the question of existence
of solutions for problem (1.2). Indeed, the Ambrosetti-Prodi’s result contrasts
with the well-known fact that if g4 are strictly between two consecutive eigen-
values, or both g4 are strictly less than A;, then problem (1.2) is solvable for
all f. (We are assuming that f is locally Lipschizian, and then solutions are in
C%(Q)NCY(Q)). So the interesting cases are when the interval (g_, g4 ) contains
eigenvalues. Problems with this feature are called problems of the Ambrosetti—
Prodi type, or problems with jumping nonlinearities in a terminology introduced
by Fuéik, see [17]. These Ambrosetti-Prodi type problems can be seen as a ques-
tion of characterizing (or at least, describing part of ) the range of a perturbation
of a linear operator (say, —A) by some nonlinear operator (say Nu := —g(x, u),
which in our case is g(z,u) = Au + ui*fl). We can distinguish three different
types of Ambrosetti-Prodi problems.

In type I, we have g_ < A1 < g4, where g_ could be —oo, and g could be oo.
We write f = t¢1 + h, where t € R, ¢; is a first eigenfunction of (—A, H}(Q2))
with ¢y > 0 and [, ¢7dx = 1, and [, h¢y dz = 0. Then we can prove that in
this case there is a ¢y such that if ¢t < to, problem (1.2) has at least one solution.
Such a result holds under more general assumptions. Namely g can depend also
on z, and the first limit in (1.3) can be replaced by limsup. Similarly the second
limit can be replaced by liminf. See, for instance, the survey paper [16].

Type IT is when g_ and g, are finite, with the interval (¢g_, g+ ) containing
eigenvalues. These problems are called asymptotically linear. They have been
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extensively studied by Lazer-McKenna, see for instance [20]. In the treatment
of this problem, via Topological and Variational Methods, it has appeared in
an essential way the so-called Fuéik spectrum [17].

Type III is when g_ is between two consecutive eigenvalues and gy = oo.
These are superlinear problems with a crossing of all but a finite number of eigen-
values. In this case one can prove that there is a tg € R such that problem (1.2)
with f = t¢1 + h has a negative solution for ¢t > t;. These problems have been
treated in [25], and [15].

We remark that existence of a first solution for problems of type I and III
does not require any growth at +oco. So subcritical, critical or supercritical
problems are treated. Observe that the reason is that: (i) in type I, one can find
a subsolution and a supersolution, and then a solution of problem (1.2) comes
either by the Monotone Iteration Method if, for instance, the derivative of g is
bounded, or by some Variational Methods after an appropriate truncation of the
nonlinearity; (ii) in the case of type III we truncate the nonlinearity g for s > 0,
getting a function g in such a way that g_ and lims_, g(s)/s are between the
same pair of consecutive eigenvalues.

The importance of the growth of ¢g at infinite comes when one tries to get
a second solution. The reason being that in order to have the functional associ-
ated to Equation (1.2)

I(u):%/Q|Vu\2dzf/QG(u)dx7/qudx

well defined in H}(Q), one has to require that
lg(s)| < Cls]” + C,

where 1 < p < 2* — 1. The subcritical case p < 2* — 1 has been discussed by
several authors mentioned before. Recently, Deng [13] considered problem (1.2)
with a nonlinearity of the type g(u) = |u|>" ' 4 k(u), where k is a lower per-
turbation of the expression with the critical exponent. This problem belongs to
an Ambrosetti-Prodi problem of type I. In this case, the variational tool is the
Mountain Pass Theorem.

Our problem stated in the beginning of this Introduction is of type Lif A < A\;
and of type IIT if A > A;. In order to get a second solution, we have to recourse
to a Linking Theorem. Both the geometry of functional associated to equa-
tion (1.2) and the determination of the levels where a (PS) condition fails are
much more involved in type III than in type I. All along this paper we write the
non-homogeneous term in the form f = t¢1 + h, where h L ¢; in the L2-sense.
Let (0 <)A1 < A2 < A3 < ... be the eigenvalues of —A subject to Dirich-
let data, with corresponding eigenfunctions ¢1, ¢2,.... In Section 2, we prove
the following result.



62 D. G. DE FIGUEIREDO Y. JIANFU

THEOREM 1.1 (I. Existence of a negative solution).

(i) If 0 < A < A1 and given h € L?, then there exists a ty = to(h) < 0 such
that if t < to, Problem (1.1) has a negative solution u;.

(i) If X > A1, and given h € L%, such that h € ker(—=A — \)* in the case
that A is an eigenvalue, then there exists to = to(h) > 0 such that if
t > to, Problem (1.1) has a negative solution u.

(II. Existence of a second solution). If, in addition to either of the hypotheses
above, one assumes that X is not an eigenvalue of (—A, H3(Q2)) and the dimen-
sion N > 6, Problem (1.1) has a second solution.

Although the methods used here are essentially the same as for problems of
Brézis—Nirenberg type, namely

(1.4) —Au=|u)* "2u+g(z,u) nQ, u=0ondQ,

where g(x,0) = 0 and g is some perturbation of lower order of the critical power,
the technicalities have some new features. Indeed, for problem (1.4) the first
solution is u = 0, and from there one builds up the variational approach. In
case of (1.2), the first solution u; # 0 and the translation of the functional to be
centered at u; introduces nonhomogeneities which are delicate to handle.

When one of the limits g_ or gy is equal to an eigenvalue, we have a res-
onant problem. The solvability of (1.2) in this situation requires usually some
additional conditions on g, like the Landesman-Lazer condition, see [20]. In
Section 3 we discuss a case of resonance at A\ = A1, where such a condition does
not hold. Namely, the following result is proved.

THEOREM 1.2. Suppose A = A\1. Then there is an e > 0 such that if || f|| 2 <
g, then (1.1) has a solution.

Finally in Section 4, we discuss local bifurcation at A = \;, £ > 1. Using
the theory of bifurcation for variational problems as developed by Béhme [5] and
Marino [21], we can handle eigenvalues of any algebraic multiplicity, and prove
the next result.

THEOREM 1.3. Let h € ker(—A — \i)* with k > 1. In the space R x H3 (),
let (A, ut(X)) for A near \i, be the line of negative solutions of (1.1) obtained in
Theorem 1.1. Then (Mg, us(Ax)) is a point of bifurcation.

2. The proof of Theorem 1.1

We write f(z) = t¢1(z) + h(z), where ¢; is the first eigenfunction of —A,
¢1Lh in L2-sense. We first prove that (1.1) has a negative solution u;. Indeed,
all negative solutions of (1.1) satisfies

(2.1) —Au = Au+to1 + h.
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If X is an eigenvalue of (—A, H}(f2)), we suppose that h € ker(—A — \)*. Then
the problem

(2.2) —Au=Au+h inQ, u=0on o

has a solution ug. Consequently, the function w = u; — ug, where u; is some
solution of (2.1), is a solution of

(2.3) —Aw = w+tp inQ, w=0on .

Problem (2.3) has a unique solution w = f¢; where 8 = t/(A1 — A). Since we
look for u; < 0, it follows that: (i) for A < A1, we obtain such wu; for ¢ < 0 and
large, which comes from a negative §; (ii) for A > A1, we obtain such u; for ¢t > 0
and large, which comes also from a negative 8. So u; = w + ug is the solution
of (2.1) which we are looking for.

To find a second solution u of (1.1), we set u = v + wu, and then v satisfies

(2.4) —Av =X+ (v+ ut)i*_l in Q, v =0 on 0f.

So the second solution of (1.1) is obtained by finding a nontrivial solution v
of (2.4). Using variational methods we look for a critical point of the functional

I(v) = 1/(|Vv|2 — \?) dx — 1 (v+ ut)i dx
2 Ja 2* Jq
defined in E = H}(€). We use a Linking Theorem without Palais—Smale condi-
tion, see Theorem 4.3 in [22], or Theorem 5.1 in [14].
Suppose A > 0 is not an eigenvalue of (—A, H}(Q)). We assume \ €
(Aky Ag+1) from now on. The other case 0 < A < A1 can be treated in a similar

and simpler way, using the Mountain Pass Theorem. Let us denote

- {@ if A € (0,\1),

span{¢1, ..., bk}, otherwise,

and Et = (E7)+.
Let S, = 0B,NE*T and Q = [0,Re] & (B, N E~), e € ET, where p > 0,
R > 0 and r > 0 will be determined later and in a way that

Ils,>a>0, p<R,
(2.6) 1 |5Q< «,
1
2.7 5l < SN2
(2.7) maxgl < N ,
where S is the best Sobolev constant. Inequalities (2.5)—(2.6) will give the ge-
ometry of the functional I required by the Linking Theorem of Rabinowitz [24].

We will use it in the version without the assumption of Palais-Smale, see Theo-
rem 4.3 in [22] or Theorem 5.1 in [14]. For that matter, condition (2.7) is used
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to prove that the solution obtained as a weak limit of a (PS)-sequence at the
minimax level is not a trivial one.

LEMMA 2.1. There exist pg > 0 and a function a > 0, « : [0, pg] — R such
that
I(v) > alp) forallveS,=0B,NET.

Lo\ (V-
el )
Akt1

1 A 1 .
— (1= 2_ - g-N/(N-2) 2
alp) = 5 < /\kH)p o p

Ezxplicitly, we have

and the mazimum value of a(p)

1 A N/2
a=-—85N? (1 - )
N Akt1

18 assumed at

N\ (V-2
p= <1 - > SN/,
Ak+1

ProOF. Using the fact that u; < 0 and the variational characterization of

1 .
/ |Vo|? do — —/ vy da.
Q 2% Ja
By Sobolev imbedding we obtain

1 A 1 2°/2
I(v) > (1— ) / V’U|2d$—S_N/(N_2)(/ |V112dx>
2 A1/ Ja 2% Q

1 A 1 .
_(1_ 2 _ L g-N/(N-2) 27
2( )\k+1>p o p

The result follows by maximizing the function defined by the last equality. [

Ak+1 we get

1 A
I(v)>=(1-—
<>_2( -

The best Sobolev constant .S used above is defined by
(2.8) § = inf{|Vull3/ull3. : u#0, ue H'(RY)}
which is assumed by the functions

TR o (N-2)/2
(2.9) be(w) = <EN(N2)> . e>0.

2 [xf?

Let & € CH(RY) be a function such that £(z) = 1 on By/»(0), £(z) = 0 on
RM\ B;(0) and 0 < £(x) < 1 on RY. We may assume B;(0) C Q. Let ¢.(x) =
&(x)e (), then we have following estimates.
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(2.10) IVl = 52 +o(eV2),

(2.11) ell5- = SN/? +o(e™),

(212) oz ={ S T V25
‘ 2\ Kie?|loge?| + o(e?) if N =4,

(2.13) elly < Kpe™ /2,

and

(2.14) locl3-21 < KaeMTD/2,

where K1 > 0, Ko > 0 and K3 > 0 are constants.

Denote by Py the orthogonal projections of E onto E* respectively. Using

arguments as in [11], we can prove the following lemma.

LEMMA 2.3.
(2.15) [P =6 10| < 0¥,
(2.16) | [96. = 9P as] < 0¥,
(2.17) |Pyoell- "3 < V=272,
(2.18) |Pyoelly < CeWNHD/2,
and
(2.19) 1P-¢e]|oc < CeN 7272,

Define for any fixed K > 0 the set Q. x = {z € Q: Py¢.(z) > K}. By (2.19)
we know that

Pi6:(0) = ¢ — P_po(0) > Ce=N=2/2 _||P_g ||, > Ce=N=2/2

which implies Py ¢.(0) — oo as € — 0. By the continuity of Py ¢., there exists
d > 0 such that B5(0) C Q¢ x. Therefore we have a result as follows.

LEMMA 2.4.
(2.20) [P de = [ 2 do s o),
Qe K Q
(2.21) / |Pyoe|? ~Ldx :/¢§*’1dx+0(6(N+2)/2),
Qe K Q
and

(2.22) /Q |Py ¢.| dx :L¢de+0(sN).



66 D. G. DE FIGUEIREDO Y. JIANFU

LEMMA 2.5. Let u,v € LP(Q) with2 < p < 2*. Ifw C Q andu+v >0
on w, then

(2.23) ‘/w(u+v)pdx—/w|updx—/w|v”dx

where C' depends only on p.

<c / (P~ o] + Jullolr ) de,

ProOF. By the Fundamental Theorem of Calculus the left side of (2.23) is
equal to

7

1
p/ dr/[\v + 7ulP72 (v + Tu) — |TulP 2 rulu dr
0 w

which by its turn is equal to, using the mean value theorem

1
p(p — 1)‘/ dr/w|ru+1}0(x)|p72uv dz|, 0<6(z)<l1.
0

This last expression can be estimated by
1
¢ [ dr [ 2 ol 4ol ) do < © [ (ulP 2ol +ulloP ) do. O
0 w w

LEMMA 2.6. Let A, B, C and « be positive numbers. Consider the function

1
)

A 1/(2*=2)
e = <B - 2*5&0)

is the point where ®. achieves its mazimum. Write s. = (1 4 t.)so, where so =
(A/B)" " =2) s the point at which ®o achieves its mazimum. Thent. = O(e®),
and

]. * *
D (s) s2A — 532 B+s*eC, s>0.

Then

1/ AN \1/2
0.(6) < 0o = 3 (s +OE)
PROOF. It is clear that ®, achieves its maximum at s, and s, satisfies

(2.24) 5cA—s2 TIB4+2°Ce%s? Tl = 0.
This implies
(2.25) S¢ > 5.
Writing s, = (1 + t.)so, we derive from (2.24) that
(2.26) Se =80, te—0 ase—0

and

(227) (14t)soAd— (1 +t.)¥ 12 1B+ 2"Ce®(1+1.)> 12 1 = 0.
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That is

4271\ 1/(2"=2) X ) )
( B ) [(L+t) — (1+t)* 7 +2° 01+ 1) L3 ' = 0.

Expanding for t. we obtain

4 4271\ 1/(@27=2) . .
(228) |:]V—2t€ + O(ts):| < B > = 2*060‘(1 =+ t5)2 7153 —1.

Hence

(2.29) t. = O(e?). O
Our aim is to choose @ and p such that (2.5), (2.6) and (2.7) hold. So

choose e as a function of €: e, = Py ¢..

LEMMA 2.7. There exist 7o > 0, Ry > 0, and €9 > 0 such that for r > rg,
R> Ry and 0 < € < g we have

Ilog < a,
where a > 0 is determined in Lemma 2.1.
ProOOF. We may write 0Q =Ty UT'y UT'3 with
I'n=B,NE",
Ip={veE:v=w+se, we E™, |w|=r 0<s <R},
I's={ve E:v=w+ Re., we E~NB(0)}.

We will show that on each I';, we have I|p, < a, i =1,2,3.
For any v € E~ we have

(2.30) / Vo2 dx < )\k/ v? da.
Q Q
So, for v € 'y,

1 1 .
2 A/ Ja 2% Ja

For v € T'y, we distinguish two cases.
Define 6% = supy..<; [ [Vec|*dz. If 0 < s < 50 := V/2@/4, then

1 A 1 1 .
Iv)<-|1-— r2_|_732/|Ve€|2dx——/(w+se€+ut)i dx
2 )\k 2 0 2* 9]

1
< 2s%8%’ < a.
28 [0

If s > sp = V2a/4, denote

K:sup{HuH—ut
s

180 < s <R, |w|g=r wEE_}.
LO()



68 D. G. DE FIGUEIREDO Y. JIANFU

K is independent of R. Since P ¢.(0) — oo as ¢ — 0, there exists g, > 0 such
that for all e, 0 < e < gj and s > s

Q.={xeQ:e(x)> K} #0.

Whence by Lemma 2.5

2% 2%
(2.31) /(es+w+“t> de/ (e5+w+ut> da
Q S + Q. S
2/ |e5|2*dx+/
Q Q
2% —1
)da:

€ €
2" —1

—C/ (|e€
Qe
L2 -1(Q,) + ”eE”Ll(QE))'

2/ |65|2*d$+/
Q Q

e e

By Lemmas 2.2, 2.3 and 2.4 and (2.31) we obtain

o9
w + Uy dr

S

9% _1 W + U

+ |ee]

w + U
S

S

2
w ~+ Uy

dx — C(]|ee

1 A 1 2" .
(232) I(v) < 3 <1 — )\>7,2 + 55251\7/2 _ 527*51\//2 1 0g2 s (N-2)/2
k

LY PR
= 2(1 )\k)r + D.(s).

Applying Lemma 2.6 to ®.(s), we obtain

PRy 1 oy (N=2)/2y
I(v) < 2(1 )\k>r + NS +O0(e )

We may choose r > 0 such that I(v) < 0. This determines rq.
For v € I's we have v = w + Re., w € E~ N B,(0) and

1 A 1 1, up+w\
Iy <=(1-= 2 fRQ/V 2d ——RQ/ ——— ) dx
(v)_2< )\k>||wE+2 Q| ec|”dx 5 i et —¢ X T

By the boundedness of w and wu,, there exists K > 0 such that
||w + ’UJtHLac(Q) S K.

Again since P, ¢.(0) — 0o as € — 0, there exists g > 0 (take g¢ < €f)) such that
if 0 < e <ep, Prop-(0) > 2K. Given € > 0, 0 < € < g¢, there exist Ry = Ry(e),
n = n(e) such that

w + U

HxEQ:eE+ >1H277>O

for all R > Ry. Hence we find g, Ry > 0 such that if ¢ < g, and R > Ry, we
have I(v) <0 for v € T's. O
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LEMMA 2.8.

1
(2.33) max | < —SN/2,
o N

PrOOF. Let us fix € < &g, so that the geometry of the Linking Theorem
holds. For w + se. € @, we have

(2.34) I(w+ se:.) = % /Q(|Vw|2 — \w?) dx

1 1 .
+ =52 / (Ve = Xe2)dx — — [ (w+ sec + uy)? da.
2 Q 2* Jq

With the same notations and arguments as in the proof of Lemma 2.7, if s < s

we have
Lo 2 Low 1 onp
(2.35) I(w+ se.) < =s Ve |*dx = =576 < —=S"/~.
2%/, 2 N
If s > sp, using (2.31), we deduce as (2.32) that

2
1 o x «
- =5 / eZ dr + Cs? eWN=D/2 .= o_(s).
Qe

1
(2.36) I(w+ se.) < =s* / (|Ve-? — Xeé?) dz
Q

2% ¢

An application of Lemma 2.6 to ®.(s) yields

1 N/2 . —(N-2)/2
I(w+ se.) = N{/Q(|Ve€2—)\eg)d:c} (/Q e? dx) +0(eWN-2/2),

Using the estimates in Lemmas 2.2, 2.3 and 2.4 on e. we get

2 .
1)\{ O(e?) itN>5 NYRLETN

1
I(w+ se.) < —8N/2 =
( e) N 2 | O(e?loge?]) ifN=4

If N> 6,ie 2< (N —2)/2, the result follows by choosing £ > 0 sufficiently
small. 0

PrROOF OF THEOREM 1.1. It remains to prove the existence of a second
solution of (1.1), i.e. a nontrivial solution of (2.4). Using the Linking Theorem,
Lemmas 2.1 and 2.7, there exists {v,} C E such that

1

(2.37) I(v,) = = / (Vo> — ) de — i/(vn —&-ut)?: dz =c+o(1),
2 /o 2 Jg

(2.38) (I'(vn), ¢) = /Q(anWb — Avp o) dx — /Q(Un +u)T "' pde = o(1)]¢]s,

for all ¢ € H}(Q), where c is the minimax level in the Linking Theorem with e, =
P, ¢, and € < g¢ sufficientlly small in order to have the validity of Lemmas 2.7
and 2.8, and @ as above.
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First we prove that {v,} is bounded in E. It follows from (2.37) and (2.38)
1
N Jo

where €, — 00 as n — oo. It implies

« 1 .
(vn +up)% do — 3 / (vn +u)% “tugdr < e+ epllvnl| + o(1)
Q

(2.39) /(UnJrut)f_* < c+epllonlle +o(1)
Q

since u; < 0. Writing v, = v}t + v, with vF € E* we get from (2.37)-(2.38),

n?

using Holder and Young inequalies that

A *_
(1= 52 ol < [ o u oo el
k+1 Q

2/2*
S&(/ |vf{|2 d:z:)
Q

2(2* —1)/2*
+ c(/ (vn + )% da:) +enllot s
Q

2/2*
<e( [P a) +Cotanlinal L ol
Q

So we obtain

N+2)/N
o115 < €+ enllloall S 2N 4 vt |1s).

In the same way, we have

_ N+2)/N _
oy 1% < €+ enlloall & 2N 4 [loy, |15)-

Consequently, v, ||p < C. Hence we may assume
v, — v weakly in Hj(Q),
(2.40) v, — v in LY(Q), 2 < g <27,
Up — U a.e. in €,
as n — oo. It follows that v is a weak solution of
(2.41) —Av=X v+ (v+ ut)a_*_l

which implies
(2.42) /Q(|Vv\2 — M) dr — /Q(v + ut)i dz + /Q(v + ut)?:_lut dr = 0.

By Brézis-Lieb Lemma [7]

(2.43) /Q(vn + ut)i* dx = /Q(vn - v)i dx + /Q(v + ut)i dx + o(1).

Hence, using (2.43),

1

(2.44) I(v,) = I(v) + %/Q |V (vp —0))? do — —

(vp, — v)f_* dz + o(1),
2* Jq
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and similarly, by (2.41),
(2.45) (T'a)vva) = [ (90, =) do = /Q(vn — ) de

— / (v, — U)?:_lut dz + o(1).
Q

Since [,,(vn — v)3 "tugdae — 0 as n — oo, it yields

(2.46) IV (vn —v)[2dz = [ (v, —v)2 dx + o(1).
Q Q

Let w,, = v, — v and

(2.47) lim [ [Vw,|? =k >0.

n—oo

If k = 0, then v,, — v strongly in H}(Q) as n — oo, then a < ¢ = I(v), v is
a nontrivial solution of (2.4).

If k > 0, we claim that v # 0. Indeed, using (2.46) and the Sobolev inequality
we obtain

2/2% 2/2"
(2.48) l|wn |3 > S</ [wn|* dm) > S</ (wn)%r dx)
0 Q Q

2/2
> SUQ an|2dx+o(1)}
which gives
(2.49) k> SEWN=D/N e k> SN2,
From (2.44), (2.46) and (2.49), if v = 0 we have
c+o(l) = % > %SN/Q.

It contradicts to the statement of Lemma 2.8. Therefore v #Z 0. By (2.41) we
know v is not negative. O

3. Existence of solutions for the case A = \;

We consider

(3.1)

—Au=Mu+ ui*fl + f in Q,
u=0 on 0f).

A necessary condition for the solvability of (3.1) is given by

(3.2) /Q fordx <0,

where ¢ is the first eigenfunction of —A. Although one expects that (3.2)
would be a sufficient condition for the solvability of (3.1), we have not been
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able to prove it. Indeed, we require in addition that f has small L2-norm. Let
E~ =span{¢;} and E* = (E7)%. For any u € F there are t € R and v € E
such that u = t¢; +v. The functional I : E — R associated with equation (3.1)
can be written as

1 1 .
I(u) = = / [|V1}|2 _ )\1112] de — — / (v —|—t¢1)i dx — / flo+tpr) de,
2 Ja 2* Ja Q
where u = v + t¢y, t = [, ugy de.
LEMMA 3.1. For any given v € ET, the functional I is bounded above in E~.
ProOF. Given v € ET, let us define the real-valued function
(3.3) g(t) = I(v+tgy).

For t < 0 we have
1
o) < 3 [ 90 = Mol da + [ lalol

For ¢ > 0, we claim

(3.4) lim {1/Q(v+t¢1)i* dx+/Qf(v+t¢1)d:c} = 0

t—oo | 2%
which completes the proof, since g is continuous.
To prove (3.4) we proceed as follows: let a = max{¢;1(z) : x € Q}. Choose
0y CC Q such that ¢1(z) > a/2 for x € Qy. By Lusin’s theorem, given any
§ > 0 (choose § = |Q|/2) there exists a continuous function h(z) in g such
that
meas{z : h(z) # v(z)} < 0.
So the set G = {z : h(z) = v(x)} has measure greater than |Qy| — J. Let
M = sup{|v(z)| : © € G}. Then, for x € G we have
¢1(x) + —— %

if t >ty :=4M/a. So there is 7 > 0 such that

o
/(gbl—i—U) dr >n fort>tg.
Q t +

Then the first term in (3.4) is larger than C't*" which proves the claim. O

v
e

v(x) <
n >

S

Next we claim that, for each v € E™T, there is a unique t(v) such that
(3.5) g(t(v)) = max{g(t) : t € R}.

At a point ¢y of maximum we have ¢'(tp) = 0, i.e.

(3.6) g (to) = — /Q(tofbl +0)3 Ty da — /Q fordx = 0.
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If t > tg, ¢'(t) < ¢'(to) and if t < g, ¢'(t) > ¢'(to), hence

g(to) = mmax g(t), ie. I(tgr+v) < I(topr +v).

The second derivative of g is given by
g"(t) = — / (tdr +v)2 ¢ dr <0
Q

which says that g is concave. So the set of maxima is a closed interval, and we
show it is a single point. At a point ¢y of maximum g”(¢;) cannot be 0. Indeed,
if this were the case, then (tp¢1 + v)4+ = 0, which would imply by (3.6) that
fQ fo1dxr = 0, a contradiction. So g is strictly concave at ty. This also proves,
as a consequence of the Implicit Function Theorem that the mapping

veEET —tv)eR

is continuous and differentiable. Therefore

(3.7) I(tgr +v) < I(t(v)g1 +v) ift #t(v)
and from (3.6) we have
(3.8) /(v + t(v)¢1)i*71¢1 +/ fo1=0, forallve ET.
Q Q
The relation (3.6) for v = 0 gives
(39 [ @@ M6rds = - [ forda
and the function g(t) in this case is
1 x

which shows that ¢(0) has to be greater than 0. So the relation (3.9) can be
written as

(3.11) t(0)2*—1/ ¢ dx = —/ foér da.
Q Q
Let us introduce the notations
(3.12) A= —/ forde, B= / ¢ d.
Q Q

Our next step is to show that the functional F': ET — R given by
F(v) = I(v+t(v)¢1)
has a minimum in the interior of certain ball B, centered at the origin.
It is easy to see that

N +2 A2N/(N+2)
(3.13) F(0) = 5N B2/ (N3
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and next we estimate F(v):
1
(314)  F() =3 / (Vo2 = Ao?] dz

W+t dx—/fv+t)%)

2*
Let
1 N (N-2)/4
(315) Ml THA N/4SN/4(M) ()\2 - Al)(N+2)/4’

SN+2)/4

N . )\1 S (N+2)/4
INT2 p ‘

In addition to (3.2), we suppose that f satisfies

2 (N+2)/2N

9 (N+2)/2N
~ 5 1
N +2

(3.17) Ifla< My and — /Qf¢1 dx < M.

LEMMA 3.2. Suppose (3.2) and (3.17), there is an o > 0 such that

(3.18) F(v) > a> F(0)
provided that ||v||g = po with po = [NLH(I - ;\—;)](Nfz)/‘lSN/‘l,

ProoF. It follows from (3.6) and the inequality
/ |Vo|? dz > )\2/ vidx, forallve ET
Q Q
that

(3.19)  F(v) zz(u):%/Q(\W|2—Aw2)dx—2i*/ﬂvi* dx—/gfvd:v

1 A 2 1 g
1 W T 9% - .
25 (1) [ iwetar = g [ W o= isleiel

Using Sobolev inequality and (3.19) we obtain

1 A 1 -
(3:20) PWLzOgﬁ%5WN2 ~ 11125 0,

where S is the best Sobolev constant and p = ([, [Vv|? dxz)/2. Consider the
real function ) )
k(p) = 5ap” = 500" —cp = pilp).
The maximum point p of j(p) on R, satisfies
1 2*—1b 22 _ g

7' (po) = 20~ T 0P
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(N—-2)/4
[l )]

Then we have

N+2 A2
and

9 N (N-2)/4
21 k(po) = (N+2)/4 _ |
B2y ke =m| s (aes) @ :

With a = 1 — A;/Ag, b = SN/ ®=2) and ¢ = ||f[2A; /% in (3.21) and by the
assumption (3.17) we obtain

Po N = (N+2)/4
3.22 F(v) >
(3:22) (”)—N+2[(N+2)b] “

if lvllg = po- (3.22) and (3.17) imply F'(v) > F(0) provided that ||v||g = po.
The proof is complete. O

It follows from (3.17) that
1
2 F — SN2,
(3.23) (0) < NS
We consider the problem
(3.24) m :=min{F(v) : v € By, }.
LEMMA 3.3. Problem (3.1) has a nontrivial solution vy € B,,.

PRrOOF. By (3.23) we have

1
(3.25) m < NSN/Q.
Let {v,} be a minimizing sequence of (3.24). Since |jv,||g < po we may
assume
v, — vg  weakly in E|
(3.26) v, — vy in L1(Q), 2 < q <27,

vp — vg  a.e. in
as n — 0o0. The weak continuity of norm gives
(3.27) [vollz < lim |lon |z < po.
n—oo
By the Ekeland’s variational principle, we may assume that
(3.28) F(vp,) —m, F'(v,)—0
as n — 0o0. Because of

(3.29) F'(vy) = 0 J' (vp + t(vn)e1) — 0
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as n — 00, we have
1 1 .
(3.30) - / (Vo> = \v?)de — — / (v +t(vn)1)3 da
2 Ja 2* Jq

—/Qf(vn—i—t(vn)¢1)dx:m+o(1)

and
2 _\?)dx — v v 12*_111” T — U dx = o(1).
(3.31) /Q(\an\ Mv2)d /Q(n—i—t( 602 o, d /Qf dz = o1)

By the weak convergence we know that v satisfies

(3.32) —Av=XMv+ (v+ t(v)qbl)i*fl + f,

and then

(3.33) /Q(\WOP — Mg — (vo + t(vo)d1)2 tug — fuo) da =0,
(3.349) [ o0+ tw)én)2 on + Fonl da =0,

The proof will be complete if we may show vy #Z 0. First we claim that
(3.35) nllrgot(vn) = t(vp).
If not, we would have lim,, t(v,) = t1 # t(vo). By (3.6)
[ ot ttoent oo == [ fondo= [ (oot tlon)on)t o e
it follows
/Q(Uo +t161)T oy da = /Q(Uo +t(vo)¢1)3 1 da

giving a contradiction. Letting w,, = v,, — vo. By (3.30), (3.31) and Brézis-Lieb

Lemma, we obtain
1 1 . 1
(3.36) 5/ |Vwy, |* de — ?/(wn)a_ dx + 5/(|w0|2 — \wd)dx
Q Q Q
1 .
~ 5 Q(vg + t(vo)$1)2 dx — /Q fvo + t(vo)p1) de = m + o(1),

ie.
1 1 .

(3.37) F(uvo) + f/ |Vw, > de — — / (wn)? dz =m+ o(1).
2 Ja 2* Jq

Similarly by (3.31), (3.34) and Brézis-Lieb Lemma we deduce

[ VP dn [ @) do = [ o+ ten)on)? do
Q Q Q
+ [Vl = Moy da = [ fen + t{u)on) di = o),
Q Q
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namely

(3.38) /Q|an|2d:c _ /Q(wn)?; dz = o1).

Let limy, o [, |Vw,|?dz = k > 0. If k = 0, we have done. If k > 0, by the
Sobolev inequality

2/2*
(3.39) / \Vw,|? dz > s(/(wn)?: dx> .
Q Q

Taking the limit in (3.39) we obtain by (3.38) and (3.39) that
k Z Sk(N*Z)/N

ie.
(3.40) k> SN2,
It yields by (3.37), (3.39) and (3.40)

1 1 1

NSN/Q >m > F(vo) + 1k > Flvo) + NSN/%
So F(vg) < 0 and vy # 0. Since F'(v) > a > 0 if ||v||g = po, we have vy € B,,,.
The proof is complete. O

4. Bifurcations at A = )

In this section we discuss the bifurcation of the set of solutions of (1.1). Let
ut(A) = u; be the negative solution obtained in Section 2. If f = t¢1 + h and
h € ker(—A— X)L, us(N) is well defined for all X # A;. In the case X = g, k # 1,
the set of solutions of (1.1) bifurcating from (A, u¢(Ax)) is equivalent to the set
of solutions of (2.4) bifurcating from (Ag,0). Let

E~ =span{¢1,...,¢r}, ET =(E7)*
Now we state a bifurcation result.

PROPOSITION 4.1. Every eigenvalue A\, of —A gives rise to a bifurcation
point of (Ag,0) of (2.4). As a result, we obtain Theorem 1.3.

PRrROOF. The conclusion follows from an abstract bifurcation theorem due to
Boéhme [5] and Marino [21], see also Theorem 11.4 in [24]. Let x(§) € C*°(R,R)
satisfy x(§) = 1 for [¢] < 1, x(§) = 0 and |£| > 2, and 0 < x(§) < 1 for all &.
Define

g &) = x(O(E+u(M)F "+ (1= x(€)).
Then g € C!, and g(\, &) = o(|€]) for A bounded. Set

/|Vv|2d:c—/G)\v
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withu € E := Wy*(€), where G(\, v) = Jo 9(A,t)dt. 1t is standard to show that
® € C?. A critical point u of ® on the manifold M :={u € E : [, |u|*dz = r?}
is a weak solution of

—Au— g\ u) =~vyu
for some Lagrange multiplier . Define the operator L by

(Lv, @) :/VUV¢CZ$
Q
and H by

H@wzlyuwwm

for ¢ € E. For any v satisfies 2 < v < 2* and w := {z € Q : v(z) > 2} with
v € F, we have

/ [v]” dz > 2"measw.
Hence ’
1@ 1< [ 6 iglde+ [ folde <Ol ol
It concludes

1H (0)]| = o([[v]])-

So by Theorem 11.4 in [24], each eigenvalue of —A provides a bifurcation point of
(4.1) —Av —g(A,v) = Av.
Since g(A,v) = o(|v]) and A is bounded, it follows from (4.1) that
[vlle < Cllvl[r2e) = Cr.
Arguments from elliptic regularity theory [6] show if 7 is small enough,
[vllLe@) <1 and  g(Av) = (v+u(N)F "
The proof is complete. a
Next, we show that the bifurcation branch bends locally to the left.

PROPOSITION 4.2. If (A, v(N)),v(A) # 0, is a solution of (2.4) such that
A= A, b # 1, v(\) — 0, then A < \. Consequently, if h € ker(—A — \p)*+
and (A, u(N)),u(X) # 0, is a solution of (1.1) such that A — Mg, k # 1 and
u(A) = ue(Ag), then X < Ag.

PROOF. Let u = v + w be a solution of (2.4) with v € E~ and w € E™.
Multiplying (2.4) by w — v and integrating by part, we obtain

(4.2) /RN(WU’P —|Vu?) dz = /RN D+ (u+u (V)3 ] da

_ /RN A(w? — v2) + (v + w +u (\)2 Y] da.
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It follows

(4.3) (1 A )/ vw2dz(1’\)/ |Vo|? da
)\k;+1 RN )\k RN

271 —v)dx.
< [ vt w0

By the convexity of the function (v 4+ w + ut()\))i*fl and since u; is negative

(4.4) /RN (v w + u (N2~ (w — v) de
:/RN(v—i—w+ut()\))?:_1(2w—u)dx
g/RN(2w+ut(/\))§: da:—/RN(u+ut(>\))§: do
< [ CotuOn do< [ 2 do < Clulf.

(4.3) and (4.4) imply

A . A
(4.5) 1- — Cllwlly 2| wlE — (1 -+ )llvll% < 0.
Akt1 Ak

Suppose by contradiction that A > Ag. Since A/A\y —1>0and u =v+w #0
we must have w # 0. Hence

A . .
(4.6) 1— ) <Cluly ™ < Cllullz
Akt1
It yields a contradition when we let A — Ag. 0
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