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CRITICAL SUPERLINEAR AMBROSETTI–PRODI PROBLEMS

Djairo G. De Figueiredo — Yang Jianfu

Abstract. We consider the existence of multiple solutions for problem

(1.1) below with either λ 6= λ or λ = λ1, where λk, k = 1, 2, . . . are

eigenvalues of (−∆, H1
0 (Ω)). The local bifurcation from λ = λk is also

investigated.

1. Introduction

The main purpose of this work is to investigate the existence of multiple
solutions of the critical superlinear problem

(1.1) −∆u = λu+ u2∗−1
+ + f(x) in Ω, u = 0 on ∂Ω,

where 2∗ = 2N/(N − 2), N ≥ 3 is the critical Sobolev exponent, and λ > 0 is
a constant. u+ denotes the positive part of u : u+(x) = max{u(x), 0}.

This problem belongs to a class of problems which are known as the Ambro-
setti–Prodi type. Due to the important role of the Ambrosetti–Prodi result [2]
in subsequent research and for completeness we state it next. Let g : R → R be
a C2-function such that g′′(s) > 0 for all s ∈ R and

0 < lim
s→−∞

g′(s) < λ1 < lim
s→∞

g′(s) < λ2,
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where λ1 and λ2 are the first and second eigenvalues of (−∆,H1
0 (Ω)). They

consider the following boundary value problem

(1.2) −∆u = g(u) + f(x) in Ω, u = 0 on ∂Ω,

where Ω is a bounded domain in RN with a C2,α boundary ∂Ω. Then, there is
a C1 manifold M in C0,α(Ω), which splits the space into two open sets O0 and
O2 with the following properties

(i) if f ∈ O0, problem (1.2) has no solution,
(ii) if f ∈M , problem (1.2) has exactly one solution,
(iii) if f ∈ O2, problem (1.2) has exactly two solutions.

A solution here means a function u ∈ C2,α(Ω).
After this work, several authors have extended this result in different di-

rections. The literature on this problem is quite extensive; even risking the
possibility of omitting some important work, we mention the following papers
[1], [3], [4], [12], [17], [18], etc.

The above result shows the role that the location of the limits

(1.3) g− = lim
s→−∞

g(s)
s
, g+ = lim

s→∞

g(s)
s

with respect to the spectrum of (−∆,H1
0 (Ω)) plays in the question of existence

of solutions for problem (1.2). Indeed, the Ambrosetti–Prodi’s result contrasts
with the well-known fact that if g± are strictly between two consecutive eigen-
values, or both g± are strictly less than λ1, then problem (1.2) is solvable for
all f . (We are assuming that f is locally Lipschizian, and then solutions are in
C2,α(Ω)∩C0(Ω)). So the interesting cases are when the interval (g−, g+) contains
eigenvalues. Problems with this feature are called problems of the Ambrosetti–
Prodi type, or problems with jumping nonlinearities in a terminology introduced
by Fuc̆ik, see [17]. These Ambrosetti–Prodi type problems can be seen as a ques-
tion of characterizing (or at least, describing part of) the range of a perturbation
of a linear operator (say, −∆) by some nonlinear operator (say Nu := −g(x, u),
which in our case is g(x, u) := λu + u2∗−1

+ ). We can distinguish three different
types of Ambrosetti–Prodi problems.

In type I, we have g− < λ1 < g+, where g− could be −∞, and g+ could be∞.
We write f = tφ1 + h, where t ∈ R, φ1 is a first eigenfunction of (−∆,H1

0 (Ω))
with φ1 > 0 and

∫
Ω
φ2

1 dx = 1, and
∫
Ω
hφ1 dx = 0. Then we can prove that in

this case there is a t0 such that if t < t0, problem (1.2) has at least one solution.
Such a result holds under more general assumptions. Namely g can depend also
on x, and the first limit in (1.3) can be replaced by limsup. Similarly the second
limit can be replaced by liminf. See, for instance, the survey paper [16].

Type II is when g− and g+ are finite, with the interval (g−, g+) containing
eigenvalues. These problems are called asymptotically linear. They have been
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extensively studied by Lazer–McKenna, see for instance [20]. In the treatment
of this problem, via Topological and Variational Methods, it has appeared in
an essential way the so-called Fuc̆ik spectrum [17].

Type III is when g− is between two consecutive eigenvalues and g+ = ∞.
These are superlinear problems with a crossing of all but a finite number of eigen-
values. In this case one can prove that there is a t0 ∈ R such that problem (1.2)
with f = tφ1 + h has a negative solution for t > t0. These problems have been
treated in [25], and [15].

We remark that existence of a first solution for problems of type I and III
does not require any growth at ±∞. So subcritical, critical or supercritical
problems are treated. Observe that the reason is that: (i) in type I, one can find
a subsolution and a supersolution, and then a solution of problem (1.2) comes
either by the Monotone Iteration Method if, for instance, the derivative of g is
bounded, or by some Variational Methods after an appropriate truncation of the
nonlinearity; (ii) in the case of type III we truncate the nonlinearity g for s > 0,
getting a function g̃ in such a way that g− and lims→∞ g̃(s)/s are between the
same pair of consecutive eigenvalues.

The importance of the growth of g at infinite comes when one tries to get
a second solution. The reason being that in order to have the functional associ-
ated to Equation (1.2)

I(u) =
1
2

∫
Ω

|∇u|2 dx−
∫

Ω

G(u) dx−
∫

Ω

fu dx

well defined in H1
0 (Ω), one has to require that

|g(s)| ≤ C|s|p + C,

where 1 ≤ p ≤ 2∗ − 1. The subcritical case p < 2∗ − 1 has been discussed by
several authors mentioned before. Recently, Deng [13] considered problem (1.2)
with a nonlinearity of the type g(u) = |u|2∗−1 + k(u), where k is a lower per-
turbation of the expression with the critical exponent. This problem belongs to
an Ambrosetti–Prodi problem of type I. In this case, the variational tool is the
Mountain Pass Theorem.

Our problem stated in the beginning of this Introduction is of type I if λ < λ1

and of type III if λ > λ1. In order to get a second solution, we have to recourse
to a Linking Theorem. Both the geometry of functional associated to equa-
tion (1.2) and the determination of the levels where a (PS) condition fails are
much more involved in type III than in type I. All along this paper we write the
non-homogeneous term in the form f = tφ1 + h, where h ⊥ φ1 in the L2-sense.
Let (0 <)λ1 < λ2 ≤ λ3 ≤ . . . be the eigenvalues of −∆ subject to Dirich-
let data, with corresponding eigenfunctions φ1, φ2, . . . . In Section 2, we prove
the following result.
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Theorem 1.1 (I. Existence of a negative solution).

(i) If 0 < λ < λ1 and given h ∈ L2, then there exists a t0 = t0(h) < 0 such
that if t < t0, Problem (1.1) has a negative solution ut.

(ii) If λ > λ1, and given h ∈ L2, such that h ∈ ker(−∆ − λ)⊥ in the case
that λ is an eigenvalue, then there exists t0 = t0(h) > 0 such that if
t > t0, Problem (1.1) has a negative solution ut.

(II. Existence of a second solution). If, in addition to either of the hypotheses
above, one assumes that λ is not an eigenvalue of (−∆,H1

0 (Ω)) and the dimen-
sion N > 6, Problem (1.1) has a second solution.

Although the methods used here are essentially the same as for problems of
Brézis–Nirenberg type, namely

(1.4) −∆u = |u|2
∗−2u+ g(x, u) in Ω, u = 0 on ∂Ω,

where g(x, 0) = 0 and g is some perturbation of lower order of the critical power,
the technicalities have some new features. Indeed, for problem (1.4) the first
solution is u ≡ 0, and from there one builds up the variational approach. In
case of (1.2), the first solution ut 6= 0 and the translation of the functional to be
centered at ut introduces nonhomogeneities which are delicate to handle.

When one of the limits g− or g+ is equal to an eigenvalue, we have a res-
onant problem. The solvability of (1.2) in this situation requires usually some
additional conditions on g, like the Landesman–Lazer condition, see [20]. In
Section 3 we discuss a case of resonance at λ = λ1, where such a condition does
not hold. Namely, the following result is proved.

Theorem 1.2. Suppose λ = λ1. Then there is an ε > 0 such that if ‖f‖L2 <

ε, then (1.1) has a solution.

Finally in Section 4, we discuss local bifurcation at λ = λk, k > 1. Using
the theory of bifurcation for variational problems as developed by Böhme [5] and
Marino [21], we can handle eigenvalues of any algebraic multiplicity, and prove
the next result.

Theorem 1.3. Let h ∈ ker(−∆−λk)⊥ with k > 1. In the space R×H1
0 (Ω),

let (λ, ut(λ)) for λ near λk be the line of negative solutions of (1.1) obtained in
Theorem 1.1. Then (λk, ut(λk)) is a point of bifurcation.

2. The proof of Theorem 1.1

We write f(x) = tφ1(x) + h(x), where φ1 is the first eigenfunction of −∆,
φ1⊥h in L2-sense. We first prove that (1.1) has a negative solution ut. Indeed,
all negative solutions of (1.1) satisfies

(2.1) −∆u = λu+ tφ1 + h.
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If λ is an eigenvalue of (−∆,H1
0 (Ω)), we suppose that h ∈ ker(−∆− λ)⊥. Then

the problem

(2.2) −∆u = λu+ h in Ω, u = 0 on ∂Ω

has a solution u0. Consequently, the function w = ut − u0, where ut is some
solution of (2.1), is a solution of

(2.3) −∆w = λw + tφ1 in Ω, w = 0 on ∂Ω.

Problem (2.3) has a unique solution w = βφ1 where β = t/(λ1 − λ). Since we
look for ut ≤ 0, it follows that: (i) for λ < λ1, we obtain such ut for t < 0 and
large, which comes from a negative β; (ii) for λ > λ1, we obtain such ut for t > 0
and large, which comes also from a negative β. So ut = w + u0 is the solution
of (2.1) which we are looking for.

To find a second solution u of (1.1), we set u = v + ut, and then v satisfies

(2.4) −∆v = λv + (v + ut)2
∗−1

+ in Ω, v = 0 on ∂Ω.

So the second solution of (1.1) is obtained by finding a nontrivial solution v

of (2.4). Using variational methods we look for a critical point of the functional

I(v) =
1
2

∫
Ω

(|∇v|2 − λv2) dx− 1
2∗

∫
Ω

(v + ut)2
∗

+ dx

defined in E = H1
0 (Ω). We use a Linking Theorem without Palais–Smale condi-

tion, see Theorem 4.3 in [22], or Theorem 5.1 in [14].
Suppose λ > 0 is not an eigenvalue of (−∆,H1

0 (Ω)). We assume λ ∈
(λk, λk+1) from now on. The other case 0 < λ < λ1 can be treated in a similar
and simpler way, using the Mountain Pass Theorem. Let us denote

E− =

{
∅ if λ ∈ (0, λ1),

span{φ1, . . . , φk}, otherwise,

and E+ = (E−)⊥.
Let Sρ = ∂Bρ ∩ E+ and Q = [0, Re] ⊕ (Br ∩ E−), e ∈ E+, where ρ > 0,

R > 0 and r > 0 will be determined later and in a way that

I |Sρ
≥ α > 0, ρ < R,(2.5)

I |∂Q< α,(2.6)

maxQI <
1
N
SN/2,(2.7)

where S is the best Sobolev constant. Inequalities (2.5)–(2.6) will give the ge-
ometry of the functional I required by the Linking Theorem of Rabinowitz [24].
We will use it in the version without the assumption of Palais–Smale, see Theo-
rem 4.3 in [22] or Theorem 5.1 in [14]. For that matter, condition (2.7) is used
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to prove that the solution obtained as a weak limit of a (PS)-sequence at the
minimax level is not a trivial one.

Lemma 2.1. There exist ρ0 > 0 and a function α > 0, α : [0, ρ0] → R such
that

I(v) ≥ α(ρ) for all v ∈ Sρ = ∂Bρ ∩ E+.

Explicitly, we have

ρ0 =
{
SN/(N−2)

(
1− λ

λk+1

)}(N−2)/4

,

α(ρ) =
1
2

(
1− λ

λk+1

)
ρ2 − 1

2∗
S−N/(N−2)ρ2∗

and the maximum value of α(ρ)

α̂ =
1
N
SN/2

(
1− λ

λk+1

)N/2

is assumed at

ρ̂ =
(

1− λ

λk+1

)(N−2)/4

SN/4.

Proof. Using the fact that ut < 0 and the variational characterization of
λk+1 we get

I(v) ≥ 1
2

(
1− λ

λk+1

) ∫
Ω

|∇v|2 dx− 1
2∗

∫
Ω

v2∗

+ dx.

By Sobolev imbedding we obtain

I(v) ≥ 1
2

(
1− λ

λk+1

) ∫
Ω

|∇v|2 dx− 1
2∗
S−N/(N−2)

( ∫
Ω

|∇v|2 dx
)2∗/2

=
1
2

(
1− λ

λk+1

)
ρ2 − 1

2∗
S−N/(N−2)ρ2∗ .

The result follows by maximizing the function defined by the last equality. �

The best Sobolev constant S used above is defined by

(2.8) S = inf{‖∇u‖22/‖u‖22∗ : u 6= 0, u ∈ H1(RN )}

which is assumed by the functions

(2.9) ψε(x) =
(
ε
√
N(N − 2)
ε2 + |x|2

)(N−2)/2

, ε > 0.

Let ξ ∈ C1
c (RN ) be a function such that ξ(x) = 1 on B1/2(0), ξ(x) = 0 on

RN \ B1(0) and 0 ≤ ξ(x) ≤ 1 on RN . We may assume B1(0) ⊂ Ω. Let φε(x) =
ξ(x)ψε(x), then we have following estimates.
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Lemma 2.2. ([8])

‖∇φε‖22 = SN/2 + o(εN−2),(2.10)

‖φε‖2
∗

2∗ = SN/2 + o(εN ),(2.11)

‖φε‖22 =

{
K1ε

2 + o(εN−2) if N ≥ 5,

K1ε
2| log ε2|+ o(ε2) if N = 4,

(2.12)

‖φε‖1 ≤ K2ε
(N+2)/2,(2.13)

and

‖φε‖2
∗−1

2∗−1 ≤ K3ε
(N−2)/2,(2.14)

where K1 > 0, K2 > 0 and K3 > 0 are constants.

Denote by P± the orthogonal projections of E onto E± respectively. Using
arguments as in [11], we can prove the following lemma.

Lemma 2.3. ∣∣∣∣ ∫
Ω

[(P+φε)2
∗
− φ2∗

ε ] dx
∣∣∣∣ ≤ CεN−2,(2.15) ∣∣∣∣ ∫

Ω

(|∇φε|2 − |∇(P+φε)|2) dx
∣∣∣∣ ≤ CεN−2,(2.16)

‖P+φε‖2
∗−1

2∗−1 ≤ Cε(N−2)/2,(2.17)

‖P+φε‖1 ≤ Cε(N+2)/2,(2.18)

and

‖P−φε‖∞ ≤ Cε(N−2)/2.(2.19)

Define for any fixed K > 0 the set Ωε,K = {x ∈ Ω : P+φε(x) > K}. By (2.19)
we know that

P+φε(0) = φε − P−φε(0) ≥ Cε−(N−2)/2 − ‖P−φε‖∞ ≥ Cε−(N−2)/2

which implies P+φε(0) → ∞ as ε → 0. By the continuity of P+φε, there exists
δ > 0 such that Bδ(0) ⊂ Ωε,K . Therefore we have a result as follows.

Lemma 2.4. ∫
Ωε,K

|P+φε|2
∗
dx =

∫
Ω

φ2∗

ε dx+O(εN−2),(2.20) ∫
Ωε,K

|P+φε|2
∗−1 dx =

∫
Ω

φ2∗−1
ε dx+O(ε(N+2)/2),(2.21)

and ∫
Ωε,K

|P+φε| dx =
∫

Ω

φε dx+O(εN ).(2.22)
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Lemma 2.5. Let u, v ∈ Lp(Ω) with 2 ≤ p ≤ 2∗. If ω ⊂ Ω and u + v > 0
on ω, then

(2.23)
∣∣∣∣ ∫

ω

(u+ v)p dx−
∫

ω

|u|p dx−
∫

ω

|v|p dx
∣∣∣∣ ≤ C

∫
ω

(|u|p−1|v|+ |u||v|p−1) dx,

where C depends only on p.

Proof. By the Fundamental Theorem of Calculus the left side of (2.23) is
equal to ∣∣∣∣p∫ 1

0

dτ

∫
ω

[|v + τu|p−2(v + τu)− |τu|p−2τu]u dx
∣∣∣∣,

which by its turn is equal to, using the mean value theorem

p(p− 1)
∣∣∣∣ ∫ 1

0

dτ

∫
ω|τu+ vθ(x)|p−2uv dx

∣∣∣∣, 0 < θ(x) < 1.

This last expression can be estimated by

C

∫ 1

0

dτ

∫
ω

(τp−2|u|p−1|v|+ |u||v|p−1) dx ≤ C

∫
ω

(|u|p−2|v|+ |u||v|p−1) dx. �

Lemma 2.6. Let A, B, C and α be positive numbers. Consider the function

Φε(s) =
1
2
s2A− 1

2∗
s2
∗
B + s2

∗
εαC, s > 0.

Then

sε =
(

A

B − 2∗εαC

)1/(2∗−2)

is the point where Φε achieves its maximum. Write sε = (1 + tε)s0, where s0 =
(A/B)1/(2∗−2) is the point at which Φ0 achieves its maximum. Then tε = O(εα),
and

Φε(s) ≤ Φε(sε) =
1
2

(
AN

BN−2

)1/2

+O(εα).

Proof. It is clear that Φε achieves its maximum at sε and sε satisfies

(2.24) sεA− s2
∗−1

ε B + 2∗Cεαs2
∗−1

ε = 0.

This implies

(2.25) sε ≥ s0.

Writing sε = (1 + tε)s0, we derive from (2.24) that

(2.26) sε → s0, tε → 0 as ε→ 0

and

(2.27) (1 + tε)s0A− (1 + tε)2
∗−1s2

∗−1
0 B + 2∗Cεα(1 + tε)2

∗−1s2
∗−1

0 = 0.
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That is(
A2∗−1

B

)1/(2∗−2)

[(1 + tε)− (1 + tε)2
∗−1] + 2∗Cεα(1 + tε)2

∗−1s2
∗−1

0 = 0.

Expanding for tε we obtain

(2.28)
[

4
N − 2

tε + o(tε)
](

A2∗−1

B

)1/(2∗−2)

= 2∗Cεα(1 + tε)2
∗−1s2

∗−1
0 .

Hence

(2.29) tε = O(εα). �

Our aim is to choose Q and ρ such that (2.5), (2.6) and (2.7) hold. So
choose e as a function of ε: eε = P+φε.

Lemma 2.7. There exist r0 > 0, R0 > 0, and ε0 > 0 such that for r ≥ r0,
R ≥ R0 and 0 < ε ≤ ε0 we have

I|∂Q < α,

where α > 0 is determined in Lemma 2.1.

Proof. We may write ∂Q = Γ1 ∪ Γ2 ∪ Γ3 with

Γ1 = Br ∩ E−,
Γ2 = {v ∈ E : v = w + seε, w ∈ E−, ‖w‖ = r, 0 ≤ s ≤ R},
Γ3 = {v ∈ E : v = w +Reε, w ∈ E− ∩Br(0)}.

We will show that on each Γi, we have I|Γi < α, i = 1, 2, 3.
For any v ∈ E− we have

(2.30)
∫

Ω

|∇v|2 dx ≤ λk

∫
Ω

v2 dx.

So, for v ∈ Γ1,

I(v) =
1
2

(
1− λ

λk

) ∫
Ω

|∇v|2 dx− 1
2∗

∫
Ω

(v + ut)2
∗

+ dx ≤ 0.

For v ∈ Γ2, we distinguish two cases.
Define δ2 = sup0<ε≤1

∫
Ω
|∇eε|2 dx. If 0 ≤ s ≤ s0 :=

√
2α̂/δ, then

I(v) ≤ 1
2

(
1− λ

λk

)
r2 +

1
2
s2

∫
Ω

|∇eε|2 dx−
1
2∗

∫
Ω

(w + seε + ut)2
∗

+ dx

≤ 1
2
s2δ2 < α̂.

If s ≥ s0 =
√

2α̂/δ, denote

K = sup
{∥∥∥∥w + ut

s

∥∥∥∥
L∞

: s0 ≤ s ≤ R, ‖w‖E = r, w ∈ E−
}
.
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K is independent of R. Since P+φε(0) → ∞ as ε → 0, there exists ε′0 > 0 such
that for all ε, 0 < ε < ε′0 and s ≥ s0

Ωε = {x ∈ Ω : eε(x) > K} 6= ∅.

Whence by Lemma 2.5

(2.31)
∫

Ω

(
eε +

w + ut

s

)2∗

+

dx ≥
∫

Ωε

(
eε +

w + ut

s

)2∗

dx

≥
∫

Ωε

|eε|2
∗
dx+

∫
Ωε

∣∣∣∣w + ut

s

∣∣∣∣2∗ dx
− C

∫
Ωε

(
|eε|2

∗−1

∣∣∣∣w + ut

s

∣∣∣∣ + |eε|
∣∣∣∣w + ut

s

∣∣∣∣2∗−1)
dx

≥
∫

Ωε

|eε|2
∗
dx+

∫
Ωε

∣∣∣∣w + ut

s

∣∣∣∣2∗ dx− C(‖eε‖2
∗−1

L2∗−1(Ωε)
+ ‖eε‖L1(Ωε)).

By Lemmas 2.2, 2.3 and 2.4 and (2.31) we obtain

(2.32) I(v) ≤ 1
2

(
1− λ

λk

)
r2 +

1
2
s2SN/2 − s2

∗

2∗
SN/2 + Cs2

∗
ε(N−2)/2

:=
1
2

(
1− λ

λk

)
r2 + Φε(s).

Applying Lemma 2.6 to Φε(s), we obtain

I(v) ≤ 1
2

(
1− λ

λk

)
r2 +

1
N
SN/2 +O(ε(N−2)/2).

We may choose r > 0 such that I(v) < 0. This determines r0.
For v ∈ Γ3 we have v = w +Reε, w ∈ E− ∩Br(0) and

I(v) ≤ 1
2

(
1− λ

λk

)
‖w‖2E +

1
2
R2

∫
Ω

|∇eε|2 dx−
1
2∗
R2∗

∫
Ω

(
eε +

ut + w

R

)2∗

+

dx.

By the boundedness of w and ut, there exists K > 0 such that

‖w + ut‖L∞(Ω) ≤ K.

Again since P+φε(0) →∞ as ε→ 0, there exists ε0 > 0 (take ε0 < ε′0) such that
if 0 < ε < ε0, P+φε(0) > 2K. Given ε > 0, 0 < ε < ε0, there exist R0 = R0(ε),
η = η(ε) such that ∣∣∣∣{x ∈ Ω : eε +

w + ut

R
> 1

}∣∣∣∣ ≥ η > 0

for all R > R0. Hence we find ε0, R0 > 0 such that if ε < ε0, and R > R0, we
have I(v) ≤ 0 for v ∈ Γ3. �
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Lemma 2.8.

(2.33) max
Q

I <
1
N
SN/2.

Proof. Let us fix ε < ε0, so that the geometry of the Linking Theorem
holds. For w + seε ∈ Q, we have

(2.34) I(w + seε) =
1
2

∫
Ω

(|∇w|2 − λw2) dx

+
1
2
s2

∫
Ω

(|∇eε|2 − λe2ε) dx−
1
2∗

∫
Ω

(w + seε + ut)2
∗

+ dx.

With the same notations and arguments as in the proof of Lemma 2.7, if s < s0
we have

(2.35) I(w + seε) ≤
1
2
s2

∫
Ω

|∇eε|2 dx =
1
2
s2δ2 <

1
N
SN/2.

If s ≥ s0, using (2.31), we deduce as (2.32) that

(2.36) I(w + seε) ≤
1
2
s2

∫
Ω

(|∇eε|2 − λe2ε) dx

− 1
2∗
s2
∗
∫

Ωε

e2
∗

ε dx+ Cs2
∗
ε(N−2)/2 := Φε(s).

An application of Lemma 2.6 to Φε(s) yields

I(w+ seε) =
1
N

[ ∫
Ω

(|∇eε|2− λe2ε) dx
]N/2( ∫

Ωε

e2
∗

ε dx

)−(N−2)/2

+O(ε(N−2)/2).

Using the estimates in Lemmas 2.2, 2.3 and 2.4 on eε we get

I(w + seε) ≤
1
N
SN/2 − 1

2
λ

{
O(ε2) if N ≥ 5

O(ε2| log ε2|) if N = 4
+O(ε(N−2)/2).

If N > 6, i.e. 2 < (N − 2)/2, the result follows by choosing ε > 0 sufficiently
small. �

Proof of Theorem 1.1. It remains to prove the existence of a second
solution of (1.1), i.e. a nontrivial solution of (2.4). Using the Linking Theorem,
Lemmas 2.1 and 2.7, there exists {vn} ⊂ E such that

I(vn) =
1
2

∫
Ω

(|∇vn|2 − λv2
n) dx− 1

2∗

∫
Ω

(vn + ut)2
∗

+ dx = c+ o(1),(2.37)

(2.38) 〈I ′(vn), φ〉 =
∫

Ω

(∇vn∇φ− λvnφ) dx−
∫

Ω

(vn + ut)2
∗−1

+ φdx = o(1)‖φ‖E ,

for all φ ∈ H1
0 (Ω), where c is the minimax level in the Linking Theorem with eε =

P+φε, and ε < ε0 sufficientlly small in order to have the validity of Lemmas 2.7
and 2.8, and Q as above.
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First we prove that {vn} is bounded in E. It follows from (2.37) and (2.38)

1
N

∫
Ω

(vn + ut)2
∗

+ dx− 1
2

∫
Ω

(vn + ut)2
∗−1

+ ut dx ≤ c+ εn‖vn‖E + o(1)

where εn →∞ as n→∞. It implies

(2.39)
∫

Ω

(vn + ut)2
∗

+ ≤ c+ εn‖vn‖E + o(1)

since ut ≤ 0. Writing vn = v+
n + v−n , with v±n ∈ E± we get from (2.37)–(2.38),

using Hölder and Young inequalies that(
1− λ

λk+1

)
‖v+

n ‖2E ≤
∫

Ω

(vn + ut)2
∗−1

+ v+
n dx+ ε‖v+

n ‖

≤ ε
( ∫

Ω

|v+
n |2

∗
dx

)2/2∗

+ Cε

( ∫
Ω

(vn + ut)2
∗

+ dx

)2(2∗−1)/2∗

+ εn‖v+
n ‖E

≤ ε
( ∫

Ω

|v+
n |2

∗
dx

)2/2∗

+ Cε + εn(‖vn‖(N+2)/N
E + ‖v+

n ‖E).

So we obtain
‖v+

n ‖2E ≤ C + εn(‖vn‖(N+2)/N
E + ‖v+

n ‖E).

In the same way, we have

‖v−n ‖2E ≤ C + εn(‖vn‖(N+2)/N
E + ‖v−n ‖E).

Consequently, ‖vn‖E ≤ C. Hence we may assume

(2.40)

vn → v weakly in H1
0 (Ω),

vn → v in Lq(Ω), 2 ≤ q < 2∗,

vn → v a.e. in Ω,

as n→∞. It follows that v is a weak solution of

(2.41) −∆v = λv + (v + ut)2
∗−1

+

which implies

(2.42)
∫

Ω

(|∇v|2 − λv2) dx−
∫

Ω

(v + ut)2
∗

+ dx+
∫

Ω

(v + ut)2
∗−1

+ ut dx = 0.

By Brézis–Lieb Lemma [7]

(2.43)
∫

Ω

(vn + ut)2
∗

+ dx =
∫

Ω

(vn − v)2
∗

+ dx+
∫

Ω

(v + ut)2
∗

+ dx+ o(1).

Hence, using (2.43),

(2.44) I(vn) = I(v) +
1
2

∫
Ω

|∇(vn − v)|2 dx− 1
2∗

∫
Ω

(vn − v)2
∗

+ dx+ o(1),
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and similarly, by (2.41),

〈I ′(vn), vn〉 =
∫

Ω

|∇(vn − v)|2 dx−
∫

Ω

(vn − v)2
∗

+ dx(2.45)

−
∫

Ω

(vn − v)2
∗−1

+ ut dx+ o(1).

Since
∫
Ω
(vn − v)2

∗−1
+ ut dx→ 0 as n→∞, it yields

(2.46)
∫

Ω

|∇(vn − v)|2 dx =
∫

Ω

(vn − v)2
∗

+ dx+ o(1).

Let wn = vn − v and

(2.47) lim
n→∞

∫
Ω

|∇wn|2 = k ≥ 0.

If k = 0, then vn → v strongly in H1
0 (Ω) as n→∞, then α ≤ c = I(v), v is

a nontrivial solution of (2.4).
If k > 0, we claim that v 6= 0. Indeed, using (2.46) and the Sobolev inequality

we obtain

(2.48) ‖wn‖2H1
0
≥ S

( ∫
Ω

|wn|2
∗
dx

)2/2∗

≥ S

( ∫
Ω

(wn)2
∗

+ dx

)2/2∗

≥ S

[ ∫
Ω

|∇wn|2 dx+ o(1)
]2/2∗

which gives

(2.49) k ≥ Sk(N−2)/N i.e. k ≥ SN/2.

From (2.44), (2.46) and (2.49), if v ≡ 0 we have

c+ o(1) =
k

N
≥ 1
N
SN/2.

It contradicts to the statement of Lemma 2.8. Therefore v 6≡ 0. By (2.41) we
know v is not negative. �

3. Existence of solutions for the case λ = λ1

We consider

(3.1)

{
−∆u = λ1u+ u2∗−1

+ + f in Ω,

u = 0 on ∂Ω.

A necessary condition for the solvability of (3.1) is given by

(3.2)
∫

Ω

fφ1 dx < 0,

where φ1 is the first eigenfunction of −∆. Although one expects that (3.2)
would be a sufficient condition for the solvability of (3.1), we have not been
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able to prove it. Indeed, we require in addition that f has small L2-norm. Let
E− = span{φ1} and E+ = (E−)⊥. For any u ∈ E there are t ∈ R and v ∈ E

such that u = tφ1 + v. The functional I : E → R associated with equation (3.1)
can be written as

I(u) =
1
2

∫
Ω

[|∇v|2 − λ1v
2] dx− 1

2∗

∫
Ω

(v + tφ1)2
∗

+ dx−
∫

Ω

f(v + tφ1) dx,

where u = v + tφ1, t =
∫
Ω
uφ1 dx.

Lemma 3.1. For any given v ∈ E+, the functional I is bounded above in E−.

Proof. Given v ∈ E+, let us define the real-valued function

(3.3) g(t) = I(v + tφ1).

For t < 0 we have

g(t) ≤ 1
2

∫
Ω

[|∇v|2 − λ1v
2] dx+ ‖f‖L2‖v‖L2 .

For t > 0, we claim

(3.4) lim
t→∞

{
1
2∗

∫
Ω

(v + tφ1)2
∗

+ dx+
∫

Ω

f(v + tφ1) dx
}

= ∞

which completes the proof, since g is continuous.
To prove (3.4) we proceed as follows: let a = max{φ1(x) : x ∈ Ω}. Choose

Ω0 ⊂⊂ Ω such that φ1(x) > a/2 for x ∈ Ω0. By Lusin’s theorem, given any
δ > 0 (choose δ = |Ω0|/2) there exists a continuous function h(x) in Ω0 such
that

meas{x : h(x) 6= v(x)} < δ.

So the set G = {x : h(x) = v(x)} has measure greater than |Ω0| − δ. Let
M = sup{|v(x)| : x ∈ G}. Then, for x ∈ G we have

φ1(x) +
v(x)
t

≥ a

2
− M

t
≥ a

4
if t ≥ t0 := 4M/a. So there is η > 0 such that∫

Ω

(
φ1 +

v

t

)2∗

+

dx ≥ η for t ≥ t0.

Then the first term in (3.4) is larger than Ct2
∗

which proves the claim. �

Next we claim that, for each v ∈ E+, there is a unique t(v) such that

(3.5) g(t(v)) = max{g(t) : t ∈ R}.

At a point t0 of maximum we have g′(t0) = 0, i.e.

(3.6) g′(t0) = −
∫

Ω

(t0φ1 + v)2
∗−1

+ φ1 dx−
∫

Ω

fφ1 dx = 0.



Critical Superlinear Ambrosetti–Prodi Problems 73

If t ≥ t0, g′(t) ≤ g′(t0) and if t ≤ t0, g′(t) ≥ g′(t0), hence

g(t0) = max
{t∈R}

g(t), i.e. I(tφ1 + v) ≤ I(t0φ1 + v).

The second derivative of g is given by

g′′(t) = −
∫

Ω

(tφ1 + v)2
∗−2

+ φ2
1 dx ≤ 0

which says that g is concave. So the set of maxima is a closed interval, and we
show it is a single point. At a point t0 of maximum g′′(t0) cannot be 0. Indeed,
if this were the case, then (t0φ1 + v)+ = 0, which would imply by (3.6) that∫
Ω
fφ1 dx = 0, a contradiction. So g is strictly concave at t0. This also proves,

as a consequence of the Implicit Function Theorem that the mapping

v ∈ E+ → t(v) ∈ R

is continuous and differentiable. Therefore

(3.7) I(tφ1 + v) ≤ I(t(v)φ1 + v) if t 6= t(v)

and from (3.6) we have

(3.8)
∫

Ω

(v + t(v)φ1)2
∗−1

+ φ1 +
∫

Ω

fφ1 = 0, for all v ∈ E+.

The relation (3.6) for v = 0 gives

(3.9)
∫

Ω

(t(0)φ1)2
∗−1

+ φ1 dx = −
∫

Ω

fφ1 dx

and the function g(t) in this case is

(3.10) − 1
2∗

∫
Ω

(tφ1)2
∗

+ dx− t

∫
Ω

fφ1 dx

which shows that t(0) has to be greater than 0. So the relation (3.9) can be
written as

(3.11) t(0)2
∗−1

∫
Ω

φ2∗

1 dx = −
∫

Ω

fφ1 dx.

Let us introduce the notations

(3.12) A = −
∫

Ω

fφ1 dx, B =
∫

Ω

φ2∗

1 dx.

Our next step is to show that the functional F : E+ → R given by

F (v) = I(v + t(v)φ1)

has a minimum in the interior of certain ball Bρ centered at the origin.
It is easy to see that

(3.13) F (0) =
N + 2
2N

A2N/(N+2)

B(N−2)/(N+2)
,
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and next we estimate F (v):

F (v) =
1
2

∫
Ω

[|∇v|2 − λ1v
2] dx(3.14)

− 1
2∗

∫
Ω

(v + t(v)φ1)2
∗

+ dx−
∫

Ω

f(v + t(v)φ1) dx.

Let

(3.15) M1 =
1

N + 1
λ
−N/4
2 SN/4

(
N

N + 2

)(N−2)/4

(λ2 − λ1)(N+2)/4,

(3.16) M2 = min
{(

2
N + 2

)(N+2)/2N

S(N+2)/4,(
2

N + 2

)(N+2)/2N

‖φ1‖2∗
[

N

N + 2

(
1− λ1

λ2

)
S

](N+2)/4}
.

In addition to (3.2), we suppose that f satisfies

(3.17) ‖f‖2 ≤M1 and −
∫

Ω

fφ1 dx < M2.

Lemma 3.2. Suppose (3.2) and (3.17), there is an α > 0 such that

(3.18) F (v) ≥ α > F (0)

provided that ‖v‖E = ρ0 with ρ0 = [ N
N+2 (1− λ1

λ2
)](N−2)/4SN/4.

Proof. It follows from (3.6) and the inequality∫
Ω

|∇v|2 dx ≥ λ2

∫
Ω

v2 dx, for all v ∈ E+

that

(3.19) F (v) ≥ I(v) =
1
2

∫
Ω

(|∇v|2 − λ1v
2) dx− 1

2∗

∫
Ω

v2∗

+ dx−
∫

Ω

fv dx

≥ 1
2

(
1− λ1

λ2

) ∫
Ω

|∇v|2 dx− 1
2∗

∫
Ω

|v|2
∗
dx− ‖f‖2‖v‖2.

Using Sobolev inequality and (3.19) we obtain

(3.20) F (v) ≥ 1
2

(
1− λ1

λ2

)
ρ− 1

2∗
S−N/(N−2)ρ2∗ − ‖f‖2λ−1/2

2 ρ,

where S is the best Sobolev constant and ρ = (
∫
Ω
|∇v|2 dx)1/2. Consider the

real function
k(ρ) =

1
2
aρ2 − 1

2∗
bρ2∗ − cρ := ρj(ρ).

The maximum point ρ of j(ρ) on R+ satisfies

j′(ρ0) =
1
2
a− 2∗ − 1

2∗
bρ2∗−2

0 = 0.
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Then we have

ρ0 =
[

N

N + 2

(
1− λ1

λ2

)](N−2)/4

SN/4

and

(3.21) k(ρ0) = ρ0

[
2

N + 2

(
N

(N + 2)b

)(N−2)/4

a(N+2)/4 − c

]
.

With a = 1 − λ1/λ2, b = S−N/(N−2) and c = ‖f‖2λ−1/2
2 in (3.21) and by the

assumption (3.17) we obtain

(3.22) F (v) ≥ ρ0

N + 2

[
N

(N + 2)b

](N−2)/4

a(N+2)/4

if ‖v‖E = ρ0. (3.22) and (3.17) imply F (v) > F (0) provided that ‖v‖E = ρ0.
The proof is complete. �

It follows from (3.17) that

(3.23) F (0) <
1
N
SN/2.

We consider the problem

(3.24) m := min{F (v) : v ∈ Bρ0}.

Lemma 3.3. Problem (3.1) has a nontrivial solution v0 ∈ Bρ0 .

Proof. By (3.23) we have

(3.25) m <
1
N
SN/2.

Let {vn} be a minimizing sequence of (3.24). Since ‖vn‖E ≤ ρ0 we may
assume

(3.26)

vn → v0 weakly in E,

vn → v0 in Lq(Ω), 2 ≤ q < 2∗,

vn → v0 a.e. in Ω,

as n→∞. The weak continuity of norm gives

(3.27) ‖v0‖E ≤ lim
n→∞

‖vn‖E ≤ ρ0.

By the Ekeland’s variational principle, we may assume that

(3.28) F (vn) → m, F ′(vn) → 0

as n→∞. Because of

(3.29) F ′(vn) → 0 ⇔ J ′(vn + t(vn)φ1) → 0
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as n→∞, we have

(3.30)
1
2

∫
Ω

(|∇vn|2 − λ1v
2
n) dx− 1

2∗

∫
Ω

(v + t(vn)φ1)2
∗

+ dx

−
∫

Ω

f(vn + t(vn)φ1) dx = m+ o(1)

and

(3.31)
∫

Ω

(|∇vn|2 − λ1v
2
n) dx−

∫
Ω

(vn + t(vn)φ1)2
∗−1

+ vn dx−
∫

Ω

fvn dx = o(1).

By the weak convergence we know that v0 satisfies

(3.32) −∆v = λ1v + (v + t(v)φ1)2
∗−1

+ + f,

and then

(3.33)
∫

Ω

(|∇v0|2 − λ1v
2
0 − (v0 + t(v0)φ1)2

∗−1
+ v0 − fv0) dx = 0,

(3.34)
∫

Ω

[(v0 + t(v0)φ1)2
∗−1

+ φ1 + fφ1] dx = 0.

The proof will be complete if we may show v0 6≡ 0. First we claim that

(3.35) lim
n→∞

t(vn) = t(v0).

If not, we would have limn t(vn) = t1 6= t(v0). By (3.6)∫
Ω

(vn + t(vn)φ1)2
∗−1

+ φ1 dx = −
∫

Ω

fφ1 dx =
∫

Ω

(v0 + t(v0)φ1)2
∗−1

+ φ1 dx,

it follows ∫
Ω

(v0 + t1φ1)2
∗−1

+ φ1 dx =
∫

Ω

(v0 + t(v0)φ1)2
∗−1

+ φ1 dx

giving a contradiction. Letting wn = vn − v0. By (3.30), (3.31) and Brézis–Lieb
Lemma, we obtain

(3.36)
1
2

∫
Ω

|∇wn|2 dx−
1
2∗

∫
Ω

(wn)2
∗

+ dx+
1
2

∫
Ω

(|∇v0|2 − λ1v
2
0) dx

− 1
2∗

∫
Ω

(v0 + t(v0)φ1)2
∗

+ dx−
∫

Ω

f(v0 + t(v0)φ1) dx = m+ o(1),

i.e.

(3.37) F (v0) +
1
2

∫
Ω

|∇wn|2 dx−
1
2∗

∫
Ω

(wn)2
∗

+ dx = m+ o(1).

Similarly by (3.31), (3.34) and Brézis–Lieb Lemma we deduce∫
Ω

|∇wn|2 dx−
∫

Ω

(wn)2
∗

+ dx−
∫

Ω

(v0 + t(v0)φ1)2
∗

+ dx

+
∫

Ω

(|∇v0|2 − λ1v
2
0) dx−

∫
Ω

f(v0 + t(v0)φ1) dx = o(1),
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namely

(3.38)
∫

Ω

|∇wn|2 dx−
∫

Ω

(wn)2
∗

+ dx = o(1).

Let limn→∞
∫
Ω
|∇wn|2 dx = k ≥ 0. If k = 0, we have done. If k > 0, by the

Sobolev inequality

(3.39)
∫

Ω

|∇wn|2 dx ≥ S

( ∫
Ω

(wn)2
∗

+ dx

)2/2∗

.

Taking the limit in (3.39) we obtain by (3.38) and (3.39) that

k ≥ Sk(N−2)/N ,

i.e.

(3.40) k ≥ SN/2.

It yields by (3.37), (3.39) and (3.40)

1
N
SN/2 > m ≥ F (v0) +

1
N
k ≥ F (v0) +

1
N
SN/2.

So F (v0) < 0 and v0 6≡ 0. Since F (v) ≥ α > 0 if ‖v‖E = ρ0, we have v0 ∈ Bρ0 .
The proof is complete. �

4. Bifurcations at λ = λk

In this section we discuss the bifurcation of the set of solutions of (1.1). Let
ut(λ) = ut be the negative solution obtained in Section 2. If f = tφ1 + h and
h ∈ ker(−∆−λ)⊥, ut(λ) is well defined for all λ 6= λ1. In the case λ = λk, k 6= 1,
the set of solutions of (1.1) bifurcating from (λk, ut(λk)) is equivalent to the set
of solutions of (2.4) bifurcating from (λk, 0). Let

E− = span{φ1, . . . , φk}, E+ = (E−)⊥.

Now we state a bifurcation result.

Proposition 4.1. Every eigenvalue λk of −∆ gives rise to a bifurcation
point of (λk, 0) of (2.4). As a result, we obtain Theorem 1.3.

Proof. The conclusion follows from an abstract bifurcation theorem due to
Böhme [5] and Marino [21], see also Theorem 11.4 in [24]. Let χ(ξ) ∈ C∞(R,R)
satisfy χ(ξ) = 1 for |ξ| ≤ 1, χ(ξ) = 0 and |ξ| ≥ 2, and 0 ≤ χ(ξ) ≤ 1 for all ξ.
Define

g(λ, ξ) = χ(ξ)(ξ + ut(λ))2
∗−1

+ + (1− χ(ξ)).

Then g ∈ C1, and g(λ, ξ) = o(|ξ|) for λ bounded. Set

Φ(v) =
1
2

∫
Ω

|∇v|2 dx−
∫

Ω

G(λ, v) dx
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with u ∈ E := W 1,2
0 (Ω), whereG(λ, v) =

∫ v

0
g(λ, t) dt. It is standard to show that

Φ ∈ C2. A critical point u of Φ on the manifold M := {u ∈ E :
∫
Ω
|u|2 dx = r2}

is a weak solution of
−∆u− g(λ, u) = γu

for some Lagrange multiplier γ. Define the operator L by

(Lv, φ) =
∫

Ω

∇v∇φdx

and H by

H(v)φ =
∫

Ω

g(λ, v)φdx

for φ ∈ E. For any ν satisfies 2 < ν < 2∗ and ω := {x ∈ Ω : v(x) ≥ 2} with
v ∈ E, we have ∫

Ω

|v|ν dx ≥ 2νmeasω.

Hence
| H(v)φ |≤

∫
Ω/ω

|v|2
∗−1|φ| dx+

∫
ω

|φ| dx ≤ C‖v‖ν‖φ‖E .

It concludes
‖H(v)‖ = o(‖v‖).

So by Theorem 11.4 in [24], each eigenvalue of −∆ provides a bifurcation point of

(4.1) −∆v − g(λ, v) = λv.

Since g(λ, v) = o(|v|) and λ is bounded, it follows from (4.1) that

‖v‖E ≤ C‖v‖L2(Ω) = Cr.

Arguments from elliptic regularity theory [6] show if r is small enough,

‖v‖L∞(Ω) < 1 and g(λ, v) = (v + ut(λ))2
∗−1

+ .

The proof is complete. �

Next, we show that the bifurcation branch bends locally to the left.

Proposition 4.2. If (λ, v(λ)), v(λ) 6= 0, is a solution of (2.4) such that
λ → λk, k 6= 1, v(λ) → 0, then λ < λk. Consequently, if h ∈ ker(−∆ − λk)⊥

and (λ, u(λ)), u(λ) 6= 0, is a solution of (1.1) such that λ → λk, k 6= 1 and
u(λ) → ut(λk), then λ < λk.

Proof. Let u = v + w be a solution of (2.4) with v ∈ E− and w ∈ E+.
Multiplying (2.4) by w − v and integrating by part, we obtain

(4.2)
∫

RN

(|∇w|2 − |∇v|2) dx =
∫

RN

[λu+ (u+ ut(λ))2
∗−1

+ ] dx

=
∫

RN

[λ(w2 − v2) + (v + w + ut(λ))2
∗−1

+ ] dx.



Critical Superlinear Ambrosetti–Prodi Problems 79

It follows

(4.3)
(

1− λ

λk+1

) ∫
RN

|∇w|2 dx−
(

1− λ

λk

) ∫
RN

|∇v|2 dx

≤
∫

RN

(v + w + ut(λ))2
∗−1

+ (w − v) dx.

By the convexity of the function (v + w + ut(λ))2
∗−1

+ and since ut is negative∫
RN

(v+w + ut(λ))2
∗−1

+ (w − v) dx(4.4)

=
∫

RN

(v + w + ut(λ))2
∗−1

+ (2w − u) dx

≤
∫

RN

(2w + ut(λ))2
∗

+ dx−
∫

RN

(u+ ut(λ))2
∗

+ dx

≤
∫

RN

(2w + ut(λ))2
∗

+ dx ≤
∫

RN

|2w|2
∗
dx ≤ C‖w‖2

∗

E .

(4.3) and (4.4) imply

(4.5)
[(

1− λ

λk+1

)
− C‖w‖2

∗−2
E

]
‖w‖2E −

(
1− λ

λk

)
‖v‖2E ≤ 0.

Suppose by contradiction that λ ≥ λk. Since λ/λk − 1 > 0 and u = v + w 6= 0
we must have w 6= 0. Hence

(4.6)
(

1− λ

λk+1

)
≤ C‖w‖2

∗−2
E ≤ C‖u‖2

∗−2
E .

It yields a contradition when we let λ→ λk. �
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