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EFFECT OF THE DOMAIN GEOMETRY
ON THE EXISTENCE OF MULTIPEAK SOLUTIONS

FOR AN ELLIPTIC PROBLEM

E. Norman Dancer — Shusen Yan

Abstract. In this paper, we construct multipeak solutions for a singu-

larly perturbed Dirichlet problem. Under the conditions that the distance
function d(x, ∂Ω) has k isolated compact connected critical sets T1, . . . , Tk

satisfying d(x, ∂Ω) = cj = const., for all x ∈ Tj , mini6=j d(Ti, Tj) >

2max1≤j≤k d(Tj , ∂Ω), and the critical group of each critical set Ti is non-
trivial, we construct a solution which has exactly one local maximum point

in a small neighbourhood of Ti, i = 1, . . . , k.

1. Introduction

Let Ω be a bounded domain in RN . Consider

(1.1)


−ε2∆u+ u = up−1 in Ω,

u > 0 in Ω,

u = 0 in ∂Ω,

where ε is a small positive number, 2 < p < 2N/(N−2) if N ≥ 3 and 2 < p <∞
if N = 2.

In the past few years, a lot of work has been done on the existence and mul-
tiplicity of the solutions for (1.1). First, Ni and Wei [27] proved that as ε → 0,
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the least energy solution has exactly one local maximum point and this local
maximum point tends to a point which attains the global maximum of the dis-
tance function d(x, ∂Ω). From then, the effect of the distance function on the
existence of single peak solution, that is, solution which has exactly one local
maximum point, has been extensively studied and single peak solutions with the
peak near various kind of critical points of the distance function have been con-
structed. See [21], [23], [28], [32], [33]. On the other hand, if the distance function
has several critical points, there are a few works concerning the construction of
multipeak solutions (see [6], [7], [18]).

There is another direction to study the multiplicity of the single peak solu-
tions and the existence of multipeak solution: the effect of the domain topology.
In [2], Benci and Cerami proved that (1.1) has at least CatΩ(Ω) single peak
solution if ε > 0 is small enough. Later, Benci, Cerami and Pasasseo proved
in [3] that if Ω is not contractible, the number of the solutions of (1.1) is at least
CatΩ(Ω) + 1. Concerning the effect of the domain topology on the existence
of multipeak solution, we proved in [17] that if the homology of the domain is
nontrivial, then for any positive integer k, (1.1) has at least one k-peak solution
provided ε > 0 is small enough. The method in [17] can also be modified to
show that there is a two-peak solution for small ε > 0 if Ω is not contractible.
See also [14] for an early result on the existence of two-peak solutions.

The aim of this paper is to construct multipeak solutions for (1.1) provided
that d(x, ∂Ω) has several critical points whose critical groups are nontrivial. We
first give some definitions and recall some basic results.

Let f(x) be a Lipschitz continuous function defined on RN . The Clarke
derivative of f is defined as follows (see [10]):

∂f(x) = {α ∈ RN : f0(x, v) ≥ 〈α, v〉, for all v ∈ RN},

where

f0(x, v) = lim
h→0,λ→0+

f(x+ h+ λv)− f(x+ h)
λ

.

A point x0 is called a critical point of f if 0 ∈ ∂f(x0). Let T be an isolated
connected critical set of f in the following sense: 0 ∈ ∂f(x), f(x) = c for each
x ∈ T , and f has no other critical point in a small neighbourhood U of T . Then
we define the critical group of f on T as follows:

Cq(f, T ) = Hq(fc ∩ U , (fc \ T ) ∩ U),

where q = 0, 1, . . . , fc = {x : f(x) ≤ c}.
We stress here that all the cohomologies in this paper are with the coefficients

in the same field.
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The distance function d(x, ∂Ω) is Lipschitz continuous and its Clarke deriv-
ative is

(1.2) ∂d(x, ∂Ω) = −co (Π∂Ω(x)− {x}),

where Π∂Ω(x) = {y : y ∈ ∂Ω, |y − x| = d(x, ∂Ω)} and coS denotes the convex
hull of the set S (see [10]).

Let U(y) be the unique positive solution (see [22]) of
−∆u+ u = up−1 in RN ,

u ∈ H1(RN ),

u(0) = maxy∈RN u(y).

It is well known that U(y) is radially symmetric about the origin, decreasing
and

lim
|y|→∞

U(y)e|y||y|(N−1)/2 = c0 > 0.

Define 〈u, v〉ε =
∫
Ω
ε2Du · Dv + uv, for all u, v ∈ H1

0 (Ω), ‖u‖ε = 〈u, u〉1/2
ε .

For any z ∈ RN , ε > 0, let Uε,z(y) =: U((y − z)/ε).
We denote by Pε,Ωv the solution of the following problem:{

−ε2∆u+ u = |v|p−2v in Ω,

u ∈ H1
0 (Ω).

By the maximum principle, we know Pε,ΩUε,z > 0.
For any xj ∈ Ω, j = 1, . . . , k, define

Eε,x,k =
{
v ∈ H1

0 (Ω) : 〈Pε,ΩUε,xj
, v〉ε =

〈
∂Pε,ΩUε,xj

∂xji
, v

〉
ε

= 0,

j = 1, . . . , k, i = 1, . . . , N
}
.

The main results of this paper are the following.

Theorem 1.1. Suppose that k ≥ 1 is an integer. Let Tj be an isolated
critical set of the distance function d(x, ∂Ω) with d(x, ∂Ω) = cj for all x ∈ Tj,
and Dj be a small neighbourhood of Tj such that d(x, ∂Ω) has no critical point in
Dj\Tj, j = 1, . . . , k. Suppose that the critical group C(d(x, ∂Ω), Tj) is nontrivial
for j = 1, . . . , k. If

(1.3) min
i 6=j

d(Di, Dj) > 2 max
1≤j≤k

max
x∈Dj

d(x, ∂Ω),

then there is an ε0 > 0, such that for each ε ∈ (0, ε0], (1.1) has a solution of the
form

(1.4) uε =
k∑

j=1

αε,jPε,ΩUε,xε,j
+ vε,
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where vε ∈ Eε,xε,k, and as ε→ 0,

(1.5) αε,j → 1, xε,j → xj ∈ Tj , ‖vε‖ε = o(εN/2), j = 1, . . . , k.

Usually, we call the solution of the form (1.4) satisfying (1.5) a k-peak solu-
tion. Apart from the above existence result, we have the following nonexistence
result.

Theorem 1.2. Suppose that Ω is strictly convex. Then for each integer
k ≥ 2, there is an ε0 > 0, such that for each ε ∈ (0, ε0], (1.1) does not have any
k-peak solution.

Remark 1.3. It can be proved that a domain Ω is strictly convex if and
only if for each point x ∈ ∂Ω, Tx ∩ (Ω \ {x}) = ∅, where Tx is the tangent plane
of ∂Ω at x.

Remark 1.4. In [33], Wei proved Theorem 1.2 for the case k = 2 and asked
whether the conclusion was still true for k ≥ 3.

Using (1.2), we can check that the peak of any single peak solution must
converge to a critical point of the distance function as ε→ 0. See the discussion
in the beginning of Section 3. So it is natural to ask what kind of critical point of
the distance function can generate a single peak solution with its peak near this
critical point. The example given in Section 4 shows that some of the critical
points of the distance function may not generate a single peak solution. On the
other hand, for an isolated strict local maximum point, or a critical point such
that the distance function is differentiable on the boundary of a small neighbour-
hood of this point and the degree of Dd(x, ∂Ω) in this small neighbourhood is
not zero, then there is a single peak solution with its peak nearby (see [6], [18],
[21], [23], [28], [32], [34]). In Section 3, we prove some results on the nontriviality
of the critical group. These results enable us to conclude that the critical groups
of local maximum points, or some kind of saddle points, or critical point with
nonzero degree are nontrivial. We also give in Section 3 an example where the
isolated critical point of the distance function is not the kind of saddle point
defined in [9], and the distance function is not differentiable on the boundary of
any small neighbourhood of this point, but whose corresponding critical group
is nontrivial. This example also shows that the structure of d(x, ∂Ω) in a small
neighbourhood of an isolated critical point may be very complicated even if its
corresponding critical group is nontrivial.

As we shall see, to construct a single peak solution for (1.1) with its peak
near a designated critical point x0 of d(x, ∂Ω) essentially reduces to find a con-
dition under which x0 is stable subject to suitable small perturbations (see [23]
for the precise definition). Thus we need to discuss the stability problem for the
critical point of a function f(x). In order to make it possible to glue together
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the single peak solutions, we also need to study whether (x1, x2) is a stable crit-
ical point of f1(x1) + f(x2) if xi is a stable critical point of fi(xi), i = 1, 2. In
the smooth case, we know that if the corresponding critical group is nontrivial,
then the critical point is stable. Moreover, C(f1 + f2, (x1, x2)) is nontrivial and
thus (x1, x2) is a stable critical point of f1(x1) + f(x2), if C(fi, xi) is nontrivial,
i = 1, 2. In the smooth case, it is also well known that the corresponding critical
groups of strict local maximum points, strict local minimum points, nondegen-
erate critical points, critical points with nonzero degree are nontrivial. For the
distance function, we know it has no minimum point inside Ω. Wei in [34] gave
the definition for a critical point of d(x, ∂Ω) to be nondegenerate. However, we
prove in Section 4 that under Wei’s definition, a nondegenerate critical point
of d(x, ∂Ω) must be a strict local maximum point. On the other hand, the dis-
advantage to use classical degree theory to deal with the stability problem is
that in many cases, it may not be possible to find a small neighbourhood for the
isolated critical point such that d(x, ∂Ω) is differentiable on the boundary of this
neighbourhood and d(x, ∂Ω) has no other critical point in this neighbourhood.
For these reasons, to deal with the stability problem for a critical point of the
distance function, which is not a local maximum point, we need to generalize
the degree theory and the critical group theory to the nonsmooth problems. Our
result in Section 3 shows that as in the smooth case, the nonzero degree implies
the nontriviality of the critical groups. This is one of the reasons we use critical
groups to deal with the stability problem for the critical points. There is another
advantage to use the critical groups in the nonsmooth problems. To calculate
the degree of the Clarke derivative of a Lipschitz continuous function, one needs
to choose a smooth approximating vector field and calculate the degree of this
smooth vector field, while the calculation of the critical groups does not involve
the choice of a smooth approximating vector field. So in practice, the critical
group is calculable. In addition, we can also construct an example of a critical
set which has zero degree but whose critical group is non-zero. See Section 3.

In [21], Grossi and Pistoia gave the definition for a critical value to be topo-
logically nontrivial. But it is not clear whether c1 + c2 is a critical value of
f1(x1) + f2(x2) topologically nontrivial if ci is a critical value of fi(xi), i = 1, 2,
which is topologically nontrivial. Thus it seems difficult to glue together the sin-
gle peak solutions constructed in [21]. Another disadvantage of using this idea
to construct single peak solution with its peak near a designated critical point
is that extra conditions on this critical point are needed.

The basic idea to construct multipeak solutions with their peaks close to some
specific critical points is to glue some single peak solutions together. To make
this idea work, usually it is required that different critical points be suitably
separated. In [6], [7], [18], condition (1.3) is imposed so the contribution from
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the interaction between different peaks is negligible. It seems that (1.3) is almost
necessary for Theorem 1.1 to hold, at least this is true if d(Pj , ∂Ω) = d(Pi, ∂Ω),
i 6= j. In [6], [7], reduction methods were used to construct k-peak solutions
with the peaks near the local maximum points or saddle points (in the strong
sense) P1, . . . , Pk of d(x, ∂Ω). But in these two papers, it is required that

(1.6) d(Pj , ∂Ω) = d(Pi, ∂Ω), i, j = 1, . . . , k.

In [18], del Pino, Felmer and Wei used a variational method to construct a k-
peak solution with its peaks close to some local maximum points P1, . . . , Pk

without assuming (1.6). But it seems that the variational method is not easy
to use to construct multipeak solutions with the peaks near some critical points
which are not local maximum points. In this paper, we still use the reduction
method to construct multipeak solution for (1.1). Without condition (1.6), the
first small order term of the energy of the single peak solution with its peak
near Pi is of different order from that of the single peak solution with its peak
near Pj . To glue together single peak solutions involving different small order
terms needs a lot of work. The new idea here is to split the small part vε into k
different part, each of which is very close to the corresponding small part of
a single peak solution. By this result, we are able to prove that the reduced
problem is just a small perturbation of that corresponding to a single peak
solution, provided (1.3) holds. In Section 4, we will give an example showing
that the nontriviality of the critical group is almost necessary to obtain the result
of Theorem 1.1. Theorem 1.1 is new even if all the critical points are saddle points
in the strong sense. The nontriviality of C(d, xi), i = 1, . . . , k, is the weakest
condition we know to guarantee the existence of a k-peak solution which has
exactly one peak near each xi. Our methods have a number of advantages over
other work. Firstly, it applies to critical points which are not saddle points in
the sense of Rabinowitz. Moreover, unlike a number of other recent works [2],
[14], [17], we can also control the location of the peaks of the solutions.

Note that to obtain our results, we construct the Conley index, critical groups
and degree of an isolated critical point of a locally Lipschitz function. This seems
of independent interest.

The method to prove Theorem 1.1 can be used to obtain the same result
for the Dirichlet problem in exterior domains under the condition that the dis-
tance function has some critical points with nontrivial critical group. Unlike the
bounded domain case, the distance function on exterior domain does not always
have a critical point. However we proved in [16] that the Dirichlet problem in
an exterior domain always has a two peak solution and if the domain is the
complement of a bounded convex set, then the peaks of any two peak solution
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move to infinity. For other results on the Dirichlet problem in exterior domains,
the readers can refer to [4], [5], [26].

We can also use this technique to glue together a boundary peak solution
and an interior peak solution for the singularly perturbed Neumann problem.
This is discussed briefly in Section 5.

This paper is organised as follows. In Section 2, we reduce the problem
of finding a multipeak solution for (1.1) to a finite dimensional problem. The
main ingredient of Section 2 is to split the small term into different parts. This
technique is important in gluing different single peak solutions involving differ-
ent order small terms. Section 3 contains the discussion of the Conley index
of the generalized gradient of a Lipschitz function and its critical group. Theo-
rems 1.1 and 1.2 are proved in Section 4. Some basic estimates are presented in
the appendix.

2. Reduction of the problem

Let

(2.1) I(u) =
1
2

∫
Ω

(ε2|Du|2 + u2)− 1
p

∫
Ω

|u|p, u ∈ H1
0 (Ω).

For fixed integer k > 0, let

α(k) = (α1, . . . , αk) ∈ Rk,(2.2)

x = (x1, . . . , xk) ∈ RkN , xi ∈ RN , i = 1, . . . , k.(2.3)

Define Dk,δ = {x : xi ∈ Ω, d(xi, ∂Ω) ≥ δ, i = 1, . . . , k, |xi − xj | ≥ 2δ, i 6= j},
and Mε,δ = {(α(k), x, v) : |αi−1| ≤ δ, i = 1, . . . , k; x ∈ Dk,δ, v ∈ Eε,x,k, ‖v‖ε ≤
δεN/2}. Let

(2.4) J(α(k), x, v) = I

( k∑
i=1

αiPε,ΩUε,xi
+ v

)
, (α, x, v) ∈Mε,δ.

It is well known that if δ > 0 is small enough, (α(k), x, v) ∈ Mε,δ is a critical
point of J(α(k), x, v) if and only if u =

∑k
i=1 αiPε,ΩUε,xi +v is a positive critical

point of I(u) (see [30]). So we just need to find (α(k), x, v) ∈ Mε,δ and Al, Bli,
l = 1, . . . , k, i = 1, . . . , N , such that

(2.5)
∂J(α(k), x, v)

∂xli
=

N∑
j=1

Blj

〈
∂2Pε,ΩUε,xl

∂xli∂xlj
, v

〉
ε

, i = 1, . . . , N, l = 1, . . . , k,

(2.6)
∂J(α(k), x, v)

∂αl
= 0, l = 1, . . . , k,

(2.7)
∂J(α(k), x, v)

∂v
=

k∑
l=1

AlPε,ΩUε,xl
+

k∑
l=1

N∑
j=1

Blj
∂Pε,ΩUε,xl

∂xlj
.
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The aim of this section is to reduce the problem of finding a critical point for
J(α(k), x, v) to that of finding a critical point for a function defined in a finite
dimensional domain. The proof of the existence of (α(k), v) satisfying (2.6)
and (2.7) for each fixed x is quite standard. The crucial part of this section is
to split the small term v into different parts.

Proposition 2.1. There are ε0 > 0 and δ > 0, such that for each ε ∈ (0, ε0],
there is a unique C1-map (αε(k, x), vε,k(x)) : Dk,δ → Rk × H1

0 (Ω), satisfying
vε,k(x) ∈ Eε,x,k, (2.6) and (2.7). Besides, if k ≥ 2 and l = 1, . . . , k, then

(2.8) |αε,l − 1| = O

( k∑
j=1

e−(1+σ)d(xj ,∂Ω)/ε +
∑
i 6=j

e−(1+σ)|xi−xj |/2ε

)
,

‖vε,k‖ε = O

(
εN/2

( k∑
j=1

e−(1+σ)d(xj ,∂Ω)/ε +
∑
i 6=j

e−(1+σ)|xi−xj |/2ε

))
,(2.9)

and if k = 1, then

(2.10) |αε,l − 1|εN/2 + ‖vε,1‖ε = O(εN/2e−(1+σ)d(x,∂Ω)/ε),

where σ is some positive constant. Moreover, for l = 1, . . . , k, i = 1, . . . , N ,
we have

(2.11) εAl, Bli = O

(
ε

k∑
j=1

e−(2−θ)d(xj ,∂Ω)/ε + ε
∑
h6=j

U

(
|xh − xj |

ε

))
.

Proof. The proof of the existence part is standard (see [6], [15], and also
[1], [30]). The estimates (2.8) and (2.9) or (2.10) follow from the same procedure
as in Proposition 2.3 of [15] and Lemmas A.l and A.2. Finally, we can solve
an appropriate system as in [30, pp. 22–23], to get (2.11). We thus omit the
details. �

We also need the following pointwise estimate for vε,k(x, y).

Lemma 2.2. Let vε,k(x, y) be the map obtained in Proposition 2.1. For any
small θ > 0, there is a σ > 0 such that

vε,k(x, y) = O

(
e−θσ/ε

k∑
j=1

U1−θ

(
|y − xj |

ε

))
.
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Proof. For fixed x, let w(y) = vε,k(x, εy). By (2.7), we know that vε,k(x, y)
satisfies〈

∂J

∂v
, ϕ

〉
=

k∑
j=1

Aj〈PΩε
Uε,xj

, ϕ〉+
k∑

j=1

N∑
i=1

Bij

〈
∂PΩε

Uε,xj

∂xji
, ϕ

〉

=
k∑

j=1

Aj

∫
Ω

Up−1
ε,xj

ϕ+
k∑

j=1

N∑
i=1

(p− 1)Bij

∫
Ω

Up−2
ε,xj

∂Uε,xj

∂xji
ϕ.

Thus, w satisfies

−∆w + w =
( k∑

j=1

αjPΩε
Uxj/ε + w

)p−1

−
k∑

j=1

αjU
p−1
xj/ε

+
k∑

j=1

AjU
p−1
xj/ε +

k∑
j=1

N∑
i=1

(p− 1)BijU
p−2
xj/ε

∂Uxj/ε

∂xij
=: F (y),

y ∈ Ωε =: {y : εy ∈ Ω}; w = 0, y ∈ ∂Ωε. Moreover, we have the following
estimate

‖w‖ = O

( k∑
j=1

e−(1+σ)d(xj ,∂Ω)/ε +
∑
i 6=j

e−(1+σ)|xi−xj |/2ε

)
,

and
|F (y)| ≤ C(1 + |w|p−2)|w|+ |g(y)|,

where

g(y) =C

( k∑
j=1

|PΩε
Uxj/ε − Uxj/ε|+

∑
j 6=i

U
(p−1)/2
xi/ε U

(p−1)/2
xj/ε

+
k∑

j=1

AjU
p−1
xj/ε +

k∑
j=1

N∑
i=1

(p− 1)BijU
p−2
xj/ε

∂Uxj/ε

∂xij

)
.

Choose q > N/2 satisfying q(p − 2) < 2N/(N − 2). Thus, for any z ∈ Ωε,
we have ∫

B1(z)

(1 + |w|p−2)q ≤ C ′,

and

|g|Lq(B1(z)) ≤C
k∑

j=1

|PΩε
Uxj/ε − Uxj/ε|Lq(B1(z))

+ C

[ k∑
j=1

e−(2−θ)d(xj ,∂Ω)/ε +
∑
h6=j

U

(
|xh − xj |

ε

)]

≤C
k∑

j=1

e−d(xj ,∂Ω)/ε + C
∑
i 6=j

e−(1+σ)|xi−xj |/2ε.
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So it follows from Theorem 8.17 in [20] that

|w(y)| ≤C|w|L2N/(N−2)(B1(z)) + C|g|Lq(B1(z))

≤C
k∑

j=1

e−d(xj ,∂Ω)/ε + C
∑
i 6=j

e−(1+σ)|xi−xj |/2ε, for all y ∈ B1/2(z).

Especially, we see

|vε,k(x, y)| = O

(
e−θl/ε

k∑
j=1

U1−θ

(
|y − xj |

ε

))
, y ∈

k⋃
j=1

Bl(xj),

where l = min(d(xj , ∂Ω)/4, |xi − xj |/8).
On the other hand, for θ > 0 small, and y ∈ Ω \

⋃k
j=1Bl(xj), we have

|Pε,ΩUε,xj
(y)| ≤ Ce−|y−xj |/ε = o(1). As a result,

F

(
y

ε

)
= o(1)vε,k +O

( k∑
j=1

e−(p−1)|y−xj |/ε

)
,

where o(1) → 0 as ε→ 0.
Let η =

∑k
j=1 e

−(1−θ/2)|y−xj |/ε. By direct calculation, we see −ε2∆η + η ≥
c′η, where c′ > 0 is a constant depending on θ. Let ω = η ± vε,k. Since

−ε2∆vε,k + vε,k = F

(
y

ε

)
= o(1)vε,k +O

( k∑
j=1

e−(p−1)|y−xj |/ε

)
for any y ∈ Ω \

⋃k
j=1Bl(xj), we have

−ε2∆ω + (1− o(1))ω = −ε2∆η + (1− o(1))η −O

( k∑
j=1

e−(p−1)|y−xj |/ε

)

≥ c0

k∑
j=1

e−(1−θ/2)|y−xj |/ε −O

( k∑
j=1

e−(p−1)|y−xj |/ε

)
> 0,

where c0 > 0 is a constant depending on θ. Moreover, for any y ∈ ∂Ω or
y ∈ ∂Bl(xj), |vε,k(y)| ≤ η(y). So it follows from the comparison theorem that

|vε,k(x, y)| ≤ η(y), y ∈ Ω \
k⋃

j=1

Bl(xj),

and hence the result. �

For each k ≥ 2 and x = (x1, . . . , xk), by Proposition 2.1, we can deter-
mine a map (αε(k, x), vε,k(x)) satisfying (2.6) and (2.7). Let 1 ≤ m ≤ k,
x′ = (x1, . . . , xm) and x′′ = (xm+1, . . . , xk). Our next result shows that as
min1≤i≤m<m+1≤j≤k |xi − xj | becomes large, (αε(k, x), vε,k(x)) will eventually
split into two parts. To be more precisely, we have
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Proposition 2.3. For each k ≥ 2 and x = (x1, . . . , xk), the map

(αε(k, x), vε,k(x))

obtained in Proposition 2.1 satisfies
m∑

j=1

|αε,j(k, x)− αε,j(m,x′)|+
k∑

j=m+1

|αε,j(k, x)− αε,j(k −m,x′′)|

= O(U (1+σ)/2(η/ε)),

‖vε,k(x)− vε,m(x′)− vε,k−m(x′′)‖ε = O(εN/2U (1+σ)/2(η/ε)),

where η = min1≤i≤m<m+1≤j≤k |xi − xj |.

Proof. By (2.6), for any 1 ≤ i ≤ m, we have

(2.12)
〈 k∑

j=1

αε,j(k, x)Pε,ΩUε,xj
, Pε,ΩUε,xi

〉
ε

−
∫

Ω

( k∑
j=1

αε,j(k, x)Pε,ΩUε,xj
+ vε,k(x)

)p−1

Pε,ΩUε,xi
= 0

and

(2.13)
〈 m∑

j=1

αε,j(m,x′)Pε,ΩUε,xj
, Pε,ΩUε,xi

〉
ε

−
∫

Ω

( m∑
j=1

αε,j(m,x′)Pε,ΩUε,xj
+ vε,m(x′)

)p−1

Pε,ΩUε,xi
= 0.

Let

G(x) =
m∑

j=1

αε,j(m,x′)Pε,ΩUε,xj
+ vε,m(x′) + vε,k−m(x′′).

Since
〈Pε,ΩUε,xj

, Pε,ΩUε,xi
〉ε = O(εNU(η/ε))

and (by Lemma 2.2)∫
Ω

vp−1
ε,k−m(x′′)Pε,ΩUε,xi

= O(εNU(η/ε))

for j > m and 1 ≤ i ≤ m, we have

(2.14)
〈 m∑

j=1

(αε,j(k, x)− αε,j(m,x′))Pε,ΩUε,xj
, Pε,ΩUε,xi

〉
ε

+O(εNU(η/ε))

=
∫

Ω

( k∑
j=1

αε,j(k, x)Pε,ΩUε,xj
+ vε,k(x)

)p−1

Pε,ΩUε,xi

−
∫

Ω

( m∑
j=1

αε,j(m,x′)Pε,ΩUε,xj
+ vε,m(x′)

)p−1

Pε,ΩUε,xi
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=
∫

Ω

( m∑
j=1

αε,j(k, x)Pε,ΩUε,xj
+ vε,k(x)

)p−1

Pε,ΩUε,xi

−
∫

Ω

Gp−1(x)Pε,ΩUε,xi
+O(εNU(η/ε))

= (p− 1)
∫

Ω

Gp−2(x)
m∑

j=1

(αε,j(k, x)− αε,j(m,x′))Pε,ΩUε,xj
Pε,ΩUε,xi

+ (p− 1)
∫

Ω

Gp−2(x)(vε,k(x)− vε,m(x′)− vε,k−m(x′′))Pε,ΩUε,xi

+O

(
εN

m∑
j=1

|αε,j(k, x)− αε,j(m,x′)|1+σ

)
+O(‖vε,k(x)− vε,m(x′)− vε,k−m(x′′)‖1+σ

ε ) +O(εNU(η/ε)),

for some σ > 0. Noting that

‖Pε,ΩUε,xi
‖2

ε − (p− 1)
∫

Ω

(Pε,ΩUε,xi
)p = −(p− 2)εN (A+ o(1)),

〈Pε,ΩUε,xj
, Pε,ΩUε,xi

〉ε = o(1)

and ∫
Ω

Gp−2(x)Pε,ΩUε,xiPε,ΩUε,xj = o(1) for i 6= j,

where o(1) → 0 as ε→ 0, we can solve (2.14) to get

(2.15) |αε,j(k, x)− αε,j(m,x′)|
= O(U(η/ε) + ε−N/2‖vε,k(x)− vε,m(x′)− vε,k−m(x′′)‖ε).

Similarly,

(2.16) |αε,j(k, x)− αε,j(k −m,x′′)|
= O(U(η/ε) + ε−N/2‖vε,k(x)− vε,m(x′)− vε,k−m(x′′)‖ε).

On the other hand, by (2.7), we have

(2.17)
〈 k∑

j=1

αε,j(k, x)Pε,ΩUε,xj
+ vε,k(x), φ

〉
ε

−
∫

Ω

( k∑
j=1

αε,j(k, x)Pε,ΩUε,xj + vε,k(x)
)p−1

φ = 0, φ ∈ Eε,x,k,

(2.18)
〈 m∑

j=1

αε,j(m,x′)Pε,ΩUε,xj
+ vε,m(x′), φ

〉
ε

−
∫

Ω

( m∑
j=1

αε,j(m,x′)Pε,ΩUε,xj + vε,m(x′)
)p−1

φ = 0,
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for φ ∈ Eε,x′,m, and

(2.19)
〈 k∑

j=m+1

αε,j(k −m,x′′)Pε,ΩUε,xj + vε,k−m(x′′), φ
〉

ε

−
∫

Ω

( k∑
j=m+1

αε,j(k −m,x′′)Pε,ΩUε,xj + vε,k−m(x′′)
)p−1

φ = 0,

for φ ∈ Eε,x′′,k−m. Thus,

(2.20) 〈vε,k(x)− vε,m(x′)− vε,k−m(x′′), φ〉ε

=
∫

Ω

( k∑
j=1

αε,j(k, x)Pε,ΩUε,xj + vε,k(x)
)p−1

φ

−
∫

Ω

( m∑
j=1

αε,j(m,x′)Pε,ΩUε,xj
+ vε,m(x′)

)p−1

φ

−
∫

Ω

( k∑
j=m+1

αε,j(k −m,x′′)Pε,ΩUε,xj
+ vε,k−m(x′′)

)p−1

φ,

for all φ ∈ Eε,x,k. Let

(2.21) G1(x) =
m∑

j=1

αε,j(m,x′)Pε,ΩUε,xj
+ vε,m(x′)

+
k∑

j=m+1

αε,j(k −m,x′′)Pε,ΩUε,xj
+ vε,k−m(x′′).

Then, by Lemma 2.2,

(2.22)
∫

Ω

Gp−1
1 (x)φ =

∫
Ω

( m∑
j=1

αε,j(m,x′)Pε,ΩUε,xj + vε,m(x′)
)p−1

φ

+
∫

Ω

( k∑
j=m+1

αε,j(k −m,x′′)PUε,xj
+ vε,k−m(x′′)

)p−1

φ

+O(U (p−1)/2(η/ε))εN/2‖φ‖ε.

Combining (2.20) and (2.22), we obtain

(2.23) 〈vε,k(x)− vε,m(x′)− vε,k−m(x′′), φ〉ε

=
∫

Ω

(( k∑
j=1

αε,j(k, x)Pε,ΩUε,xj
+ vε,k(x)

)p−1

−Gp−1
1 (x)

)
φ

+O(U (p−1)/2(η/ε))εN/2‖φ‖ε

=(p− 1)
∫

Ω

Gp−2
1 (x)(vε,k(x)− vε,m(x′)− vε,k−m(x′′))φ
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+ (p− 1)
∫

Ω

Gp−2
1 (x)

m∑
j=1

(αε,j(k, x)− αε,j(m,x′))Pε,ΩUε,xj
φ

+ (p− 1)
∫

Ω

Gp−2
1 (x)

k∑
j=m+1

(αε,j(k, x)− αε,j(k −m,x′′))Pε,ΩUε,xj
φ

+ εN/2O

( m∑
j=1

|αε,j(k, x)− αε,j(m,x′)|1+σ

+
k∑

j=m+1

|αε,j(k, x)− αε,j(m− k, x′′)|1+σ

)
‖φ‖ε

+O(‖vε,k(x)− vε,m(x′)− vε,k−m(x′′)‖1+σ
ε )‖φ‖ε

+O(U (p−1)/2(η/ε))εN/2‖φ‖ε.

Since for any φ ∈ Eε,x,k, we have

(2.24)
∫

Ω

Gp−2
1 (x)Pε,ΩUε,xj

φ =
∫

Ω

(Gp−2
1 (x)− (Pε,ΩUε,xj

)p−2)Pε,ΩUε,xj
φ

+
∫

((Pε,ΩUε,xj
)p−1 − Up−1

ε,xj
)φ = o(1)εN/2‖φ‖ε,

for j = 1, . . . , k. Consequently, from (2.23), (2.15), (2.16) and (2.24), we obtain

(2.25) 〈vε,k(x) − vε,m(x′)− vε,k−m(x′′), φ〉ε

=(p− 1)
∫

Ω

Gp−2
1 (x)(vε,k(x)− vε,m(x′)− vε,k−m(x′′))φ

+ o(‖vε,k(x)− vε,m(x′)− vε,k−m(x′′))‖ε‖φ‖ε)

+O(εN/2U (p−1)/2(η/ε)‖φ‖ε), for all φ ∈ Eε,x,k.

Choose βj and γij such that

φ = vε,k(x)− vε,m(x′)− vε,k−m(x′′)

+
k∑

j=1

βjPε,ΩUε,xj +
k∑

j=1

N∑
i=1

γij

∂Pε,ΩUε,xj

∂xij
∈ Eε,x,k.

Noting that

〈vε,m(x′), Pε,ΩUε,xj
〉,

〈
vε,m(x′),

∂Pε,ΩUε,xj

∂xij

〉
= O(U(η/ε))

for j ≥ m+ 1, we obtain
βj , γij = O(U(η/ε)).

So we find from (2.25) that

‖φ‖2
ε ≤ CUp−1(η/ε)

and the result follows. �
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As a direct consequence of Proposition (2.3), we have the following expansion:

Proposition 2.4. Let (αε(k, x), vε,k(x)) be the map obtained in Proposi-
tion 2.3. Then for each fixed i, we have

(2.26)
∂J

∂xil
=(p− 1)

∫
Ω

Up−2
ε,xi

∂Uε,xi

∂xil
ϕε,xi

− (p− 1)
∑
j 6=i

∫
Ω

Up−2
ε,xi

Pε,ΩUε,xj

∂Uε,xi

∂xil

+O(εN−1e−(2+σ)d(xi,∂Ω)/ε) +O

(
εN−1

∑
j 6=i

U1+σ

(
|xi − xj |

ε

)

+ εN−1
∑
j 6=i

e−σd(xj ,∂Ω)/εU

(
|xi − xj |

ε

))
.

(2.27)
〈
∂J

∂v
, PUε,xi

〉
= O

(
εNe−(2−θ)d(xi,∂Ω)/ε + εN

∑
j 6=i

U

(
|xi − xj |

ε

))
.

Proof. We assume i = 1. Let H(y) =
∑k

j=1 αε,j(k, x)Pε,ΩUε,xj . Then

(2.28)
∂J

∂x1l
=

∫
Ω

k∑
j=1

αε,j(k, x)Up−1
ε,xj

∂Pε,ΩUε,x1

∂x1l

−
∫

Ω

(
H(y) + vε,k(x)

)p−1
∂Pε,ΩUε,x1

∂x1l

= −
∫

Ω

[
(H(y) + vε,k(x))p−1 −Hp−1(y)

− (p− 1)Hp−2(y)vε,k(x)
]
∂Pε,ΩUε,x1

∂x1l

− (p− 1)
∫

Ω

(
Hp−2(y)− (αε,1(k, x)Pε,ΩUε,x1)

p−2

)
· vε,k(x)

∂Pε,ΩUε,x1

∂x1l

− (p− 1)
∫

Ω

(
αε,1(k, x)Pε,ΩUε,x1

)p−2
∂Pε,ΩUε,x1

∂x1l
vε,k(x)

−
∫

Ω

(
Hp−1(y)−

k∑
j=1

αε,j(k, x)Up−1
ε,xj

)
∂Pε,ΩUε,x1

∂x1l

=: I1 + I2 + I3 + I4,

where Ii, i = 1, 2, 3, 4, is the natural splitting of the last formula. Denote
η = minj≥2 |xj − x1|. We have
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I1 = −
∫

Ω∩Bη/2(x1)

[
(H(y) + vε,k(x))p−1 −Hp−1(y)(2.29)

− (p− 1)Hp−2(y)vε,k(x)
]
∂Pε,ΩUε,x1

∂x1l

−
∫

Ω\Bη/2(x1)

[
(H(y) + vε,k(x))p−1 −Hp−1(y)

− (p− 1)Hp−2(y)vε,k(x)
]
∂Pε,ΩUε,x1

∂x1l
=: I11 + I12.

By Lemmas A.2, 2.2 and Proposition 2.3, we have

(2.30) |I11| ≤Cε−1

∫
Ω∩Bη/2(x1)

|vε,k(x)|2Up−2
ε,x1

≤Cε−1

∫
Ω∩Bη/2(x1)

|vε,1(x1)|2Up−2
ε,x1

+ Cε−1

∫
Ω∩Bη/2(x1)

|vε,k−1(x′′)|2Up−2
ε,x1

+ Cε−1

∫
Ω∩Bη/2(x1)

|vε,k(x)− vε,1(x1)− vε,k−1(x′′)|2Up−2
ε,x1

≤CεN−1e−(2+σ)d(x1,∂Ω)/ε + CεN−1U1+σ(η/ε).

Also, by Lemma 2.2 and Proposition 2.3, we have

(2.31) |I12| ≤ ε−1

∫
Ω\Bη/2(x1)

|vε,k(x)|p−1Uε,x1

≤Cε−1

∫
Ω\Bη/2(x1)

|vε,1(x1)|p−1Uε,x1

+ Cε−1

∫
Ω\Bη/2(x1)

|vε,k−1(x′′)|p−1Uε,x1

+ Cε−1

∫
Ω\Bη/2(x1)

|vε,k(x)− vε,1(x1)− vε,k−1(x′′)|p−1Uε,x1

≤CεN−1U1+σ(η/ε).

Combining (2.29), (2.30) and (2.31), we obtain

(2.32) |I1| ≤ CεN−1e−(2+σ)d(x1,∂Ω)/ε + CεN−1
k∑

j=2

U1+σ(η/ε).

Now we estimate I2.

(2.33) |I2| ≤Cε−1

∫
Ω∩Bη/2(x1)

∣∣∣∣Hp−2(y)− (αε,1(k, x)Pε,ΩUε,x1)
p−2

∣∣∣∣
· |vε,k(x)|Pε,ΩUε,x1
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+ Cε−1

∫
Ω\Bη/2(x1)

∣∣∣∣Hp−2(y)− (αε,1(k, x)Pε,ΩUε,x1)
p−2

∣∣∣∣
· |vε,k(x)|Pε,ΩUε,x1

≤Cε−1

∫
Ω∩Bη/2(x1)

k∑
j=2

Up−2
ε,x1

Uε,xj
|vε,k(x)|

+ Cε−1

∫
Ω\Bη/2(x1)

( k∑
j=2

Uε,xj

)p−2

|vε,k(x)|Uε,x1 =: I21 + I22.

But

(2.34) I21 ≤Cε−1

∫
Ω∩Bη/2(x1)

k∑
j=2

Up−2
ε,x1

Uε,xj |vε,k(x)− vε,1(x1)− vε,k−1(x′′)|

+ Cε−1

∫
Ω∩Bη/2(x1)

k∑
j=2

Up−2
ε,x1

Uε,xj |vε,1(x1)|

+ Cε−1

∫
Ω∩Bη/2(x1)

k∑
j=2

Up−2
ε,x1

Uε,xj |vε,k−1(x′′)|

≤Cε−1+N/2‖vε,k(x)− vε,1(x1)− vε,k−1(x′′)‖εe
−η/2ε

+ |vε,1(x1)|σ∞
∫

Ω∩Bη/2(x1)

k∑
j=2

Up−1−σ
ε,x1

Uε,xj + CεN−1U1+σ(η/ε)

=O(εN−1e−σ/εU(η/ε)).

Similarly,

(2.35) I22 ≤Cε−1

∫
Ω\Bη/2(x1)

( k∑
j=2

Uε,xj

)p−2

· |vε,k(x)− vε,1(x1)− vε,k−1(x′′)|Uε,x1

+ Cε−1

∫
Ω\Bη/2(x1)

( k∑
j=2

Uε,xj

)p−2

|vε,1(x1)|Uε,x1

+ Cε−1

∫
Ω\Bη/2(x1)

( k∑
j=2

Uε,xj

)p−2

|vε,k−1(x′′)|Uε,x1

=O(εN−1e−σ/εU(η/ε)).

Combining (2.33), (2.34) and (2.35), we obtain

(2.36) I2 = O(εN−1e−σ/εU(η/ε)).

As for the estimate of I3, by Proposition 2.1, Lemma 2.2 and Proposition 2.3,
we have
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(2.37) I3 = − (p− 1)αε,1(k, x)
∫

Ω

(Pε,ΩUε,x1)
p−2 ∂ϕε,1

∂x1l
vε,k(x)

− (p− 1)αε,1(k, x)
∫

Ω

(
(Pε,ΩUε,x1)

p−2 − Up−2
ε,x1

)
∂Uε,x1

∂x1l
vε,k

=O

(
ε−1

∫
Ω

Up−2
ε,x1

|ϕε,x1 ||vε,k(x)|
)

=O

(
ε−1

∫
Ω

Up−2
ε,x1

|ϕε,x1 ||vε,1(x1)|+ ε−1

∫
Ω

Up−2
ε,x1

|ϕε,x1 ||vε,k−1(x′′)|

+ ε−1

∫
Ω

Up−2
ε,x1

|ϕε,x1 ||vε,k(x)− vε,1(x1)− vε,k−1(x′′)|
)

=O(εN−1e−(2+σ)d(x1,∂Ω)/ε) +O

(
ε−1|ϕε,x1 |σ∞

k∑
j=2

∫
Ω

Up−1−σ
ε,x1

Uε,xj

)

+O

(
ε−1

∫
Ω

Up(p−2)/(p−1)
ε,x1

|ϕε,x1 |p/(p−1)

)
+O

(
ε−1

∫
Ω

|vε,k(x)− vε,1(x1)− vε,k−1(x′′)|p
)

=O(εN−1e−(2+σ)d(x1,∂Ω)/ε) +O(e−σ/εεN−1U(η/ε)).

Finally, we estimate I4.

I4 =
∫

Ω

[
Hp−1(y)−

( k∑
j=2

αε,j(k, x)Pε,ΩUε,xj

)p−1

(2.38)

− αε,1(k, x)Up−1
ε,x1

]
∂Pε,ΩUε,x1

∂x1l

+
∫

Ω

[( k∑
j=2

αε,j(k, x)Pε,ΩUε,xj

)p−1

−
k∑

j=2

αε,j(k, x)Up−1
ε,xj

]
∂Pε,ΩUε,x1

∂x1l
=: I41 + I42.

We have

(2.39) I41 =
∫

Ω∩Bη/2(x1)

(
Hp−1(y)−

( k∑
j=2

αε,j(k, x)Pε,ΩUε,xj

)p−1

− αε,1(k, x)Up−1
ε,x1

)
∂Pε,ΩUε,x1

∂x1l

+
∫

Ω\Bη/2(x1)

(
Hp−1(y)−

( k∑
j=2

αε,j(k, x)Pε,ΩUε,xj

)p−1

− αε,1(k, x)Up−1
ε,x1

)
∂Pε,ΩUε,x1

∂x1l
=: I43 + I44.
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But

(2.40) I44 = O

( ∫
Ω\Bη/2(x1)

[( k∑
j=2

αε,j(k, x)PUε,xj

)p−2

Pε,ΩUε,x1 + Up−1
ε,x1

]

·
∣∣∣∣∂Pε,ΩUε,x1

∂x1l

∣∣∣∣) = O(εN−1U1+σ(η/ε)).

By Lemma A.6, we see

(2.41) I43 =
∫

Ω∩Bη/2(x1)

(Hp−1(y)− αε,1(k, x)Up−1
ε,x1

)
∂Pε,ΩUε,x1

∂x1l

+O(εN−1U1+σ(η/ε))

=
∫

Ω∩Bη/2(x1)

[(
αε,1(k, x)Pε,ΩUε,x1

)p−1

− αε,1(k, x)Up−1
ε,x1

]
∂Pε,ΩUε,x1

∂x1l

+
∫

Ω∩Bη/2(x1)

(αε,1(k, x)Pε,ΩUε,x1)
p−2

·
k∑

j=2

αε,j(k, x)Pε,ΩUε,xj

∂Pε,ΩUε,x1

∂x1l
+O(εN−1U1+σ(η/ε))

=− (p− 1)
∫

Ω

Up−2
ε,x1

ϕε,x1

∂Pε,ΩUε,x1

∂x1l

+
∫

Ω

(Pε,ΩUε,x1)
p−2

k∑
j=2

Pε,ΩUε,xj

∂Pε,ΩUε,x1

∂x1l

+O(εN−1e−(2+σ)d(x1,∂Ω)/ε + εN−1U1+σ(η/ε))

=− (p− 1)
∫

Ω

Up−2
ε,x1

ϕε,x1

∂Uε,x1

∂x1l
+

∫
Ω

Up−2
ε,x1

k∑
j=2

Pε,ΩUε,xj

∂Uε,x1

∂x1l

+O

(
εN−1e−(2+σ)d(x1,∂Ω)/ε + εN−1U1+σ(η/ε)

+ εN−1
k∑

j=2

e−σd(xj ,∂Ω)/εU(η/ε)
)
.

Combining (2.39), (2.40) and (2.41), we obtain

(2.42) I41 = − (p− 1)
∫

Ω

Up−2
ε,x1

ϕε,x1

∂Uε,x1

∂x1l
+

∫
Ω

Up−2
ε,x1

k∑
j=2

Pε,ΩUε,xj

∂Uε,x1

∂x1l

+O

(
εN−1e−(2+σ)d(x1,∂Ω)/ε + εN−1U1+σ(η/ε)

+ εN−1
k∑

j=2

e−σd(xj ,∂Ω)/εU(η/ε)
)
.
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On the other hand,

I42 =O

( ∫
Ω

∑
2≤i<j≤k

U (p−1)/2
ε,xi

U (p−1)/2
ε,xj

∣∣∣∣∂Uε,x1

∂x1l

∣∣∣∣)(2.43)

+O

( ∫
Ω

k∑
j=2

Up−2
ε,xj

ϕε,xj

∣∣∣∣∂Uε,x1

∂x1l

∣∣∣∣)
=O(εN−1e−|xi−x1|/2ε−|xj−x1|/2ε−(p−2−θ)|xj−xi|/ε)

+O

(
εN−1

k∑
j=2

e−σd(xj ,∂Ω)/εU(η/ε)
)

=O

(
εN−1e−(2+σ)d(x1,∂Ω)/ε + εN−1U1+σ(η/ε)

+ εN−1
k∑

j=2

e−σd(xj ,∂Ω)/εU(η/ε)
)
.

Combining (2.38), (2.42) and (2.43), we obtain

(2.44) I4 = − (p− 1)
∫

Ω

Up−2
ε,x1

ϕε,x1

∂Uε,x1

∂x1l
+

∫
Ω

Up−2
ε,x1

k∑
j=2

Pε,ΩUε,xj

∂Uε,x1

∂x1l

+O

(
εN−1e−(2+σ)d(x1,∂Ω)/ε + εN−1U1+σ(η/ε)

+ εN−1
k∑

j=2

e−σd(xj ,∂Ω)/εU(η/ε)
)
.

So (2.26) follows from (2.32), (2.36), (2.37) and (2.44). We can prove (2.27) in
a similar way. �

Lemma 2.5. Let Al, Blj be the constants in Proposition 2.1. Then for each l,
we have

εAl, Blj = O

(
εe−(2−θ)d(xl,∂Ω)/ε + ε

∑
i 6=l

U

(
|xi − xl|

ε

))
.

Proof. Without loss of generality, we assume l = 1. We have

(2.45) A1〈Pε,ΩUε,x1 , Pε,ΩUε,x1〉+
N∑

j=1

B1j

〈
∂Pε,ΩUε,x1

∂x1j
, Pε,ΩUε,x1

〉

=
〈
∂J

∂v
, Pε,ΩUε,x1

〉
+O

( k∑
l=2

U

(
|x1 − xl|

ε

))
.
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(2.46) A1

〈
Pε,ΩUε,x1 ,

∂Pε,ΩUε,x1

∂x1i

〉
+

N∑
j=1

B1j

〈
∂Pε,ΩUε,x1

∂x1j
,
∂Pε,ΩUε,x1

∂x1i

〉

=
∂J

∂x1i
+O

( k∑
l=2

U

(
|x1 − xl|

ε

))
.

Using Proposition (2.4), we can solve the above system to obtain the desired
estimates. �

As a direct consequence of Proposition 2.4 and Lemma 2.5, we have

Proposition 2.6. Let (αε(k, x), vε,k(x)) be the map obtained in Proposi-
tion 2.3. Then for each fixed i, we have

(2.47)
∂K(x)
∂xil

=(p− 1)
∫

Ω

Up−2
ε,xi

∂Uε,xi

∂xil
ϕε,xi

(p− 1)
∑
j 6=i

∫
Ω

Up−2
ε,xi

Pε,ΩUε,xj

∂Uε,xi

∂xil

+O(εN−1e−(2+σ)d(xi,∂Ω)/ε)

+O

(
εN−1

∑
j 6=i

U1+σ

(
|xi − xj |

ε

)

+ εN−1
∑
j 6=i

e−σd(xj ,∂Ω)/εU

(
|xi − xj |

ε

))
.

By Proposition 2.6, Lemmas A.3 and A.4, we have

Proposition 2.7. Suppose that mini 6=j |xi − xj | > 2 max1≤j≤k d(xj , ∂Ω).
Then

(2.48)
∂K(x)
∂xji

=
∫

Ω

∂Pε,ΩUε,xj

∂n

∂Uε,xj

∂r


∫

Ω

∂Pε,ΩUε,xj

∂n

∂Uε,xj

∂xji∫
Ω

∂Pε,ΩUε,xj

∂n

∂Uε,xj

∂r

− φji(x)

 ,

where r = |y − xl| and φji(x) satisfies φji(x) = O(e−σd(xj ,∂Ω)/ε).

3. Conley index and critical groups

Suppose that D1, . . . , Dk are disjoint open sets compactly contained in Ω
and satisfy mini 6=j d(Di, Dj) > 2 max1≤j≤k maxxj∈Dj

d(xj , ∂Ω). Let D = D1 ×
. . . × Dk. In order to prove that (1.1) has a k-peak solution with exactly one
peak in Dj , j = 1, . . . , k, we need to prove that K(x) has a critical point x ∈ D.
A sufficient condition to guarantee that K(x) has a critical point x ∈ D is that
the Conley index h(DK,D) is not trivial. Let

(3.1) Xj(xj) =


∫

Ω

∂Pε,ΩUε,xj

∂n

∂Uε,xj

∂xj1∫
Ω

∂Pε,ΩUε,xj

∂n

∂Uε,xj

∂r

, . . . ,

∫
Ω

∂Pε,ΩUε,xj

∂n

∂Uε,xj

∂xjN∫
Ω

∂Pε,ΩUε,xj

∂n

∂Uε,xj

∂r

 ,
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and X(x) = (X1(x1), . . . , Xk(xk)). Since

∂Pε,ΩUε,xj

∂n

∂Uε,xj

∂r∫
Ω

∂Pε,ΩUε,xj

∂n

∂Uε,xj

∂r

is uniformly bounded in L1(∂Ω), we may assume that there is a measure µ on ∂Ω
such that as ε→ 0 (at least for suitable subsequences),

∂Pε,ΩUε,xj

∂n

∂Uε,xj

∂r∫
Ω

∂Pε,ΩUε,xj

∂n

∂Uε,xj

∂r

⇀ µj .

It is easy to check that
∫

∂Ω
dµj = 1 and spt (µj) ⊂ Π∂Ω(xj) = {y : y ∈ ∂Ω, |y −

xj | = d(xj , ∂Ω)}. Thus, as ε→ 0, the limit of the vector field in (3.1) is∫
Ω

xj − y

|x− y|
dµj = −

∫
Ω

n(y) dµj ,

where n(y) is the outward unit normal of ∂Ω at y, since spt (µj) ⊂ Π∂Ω(xj) and
(y − xj)/|y − xj | = n(y) for any y ∈ Π∂Ω(xj). From the result in [10], we see∫
Ω
((xj − y)/|xj − y|)dµj ∈ ∂d(xj , ∂Ω), the Clarke gradient of d(xj , ∂Ω).
Let o(1) denote any vector field whose norm tends to zero as ε → 0. Since

d(x, ∂Ω) has no critical point on ∂Dj , it is easy to check that there is a c0 > 0,
such that |Xj(xj)| ≥ c0 for all xj ∈ ∂Dj . Using homotopy invariance, we deduce
from Proposition 2.7 that h(DK,D) = h(X + o(1), D) = h(X,D).

From the above discussion, we know that the limit of the vector field in (3.1)
belongs to the Clarke gradient of the Lipschitz function d(xj , ∂Ω). So in order
to see the effect of the domain geometry on the Conley index of the vector field
in (3.1), it is much more convenient to discuss the Conley index of the Clarke
gradient of d(xj , ∂Ω).

The aim of this section is to discuss the Conley index of the Clarke gradient of
any Lipschitz function. From now on, we assume that f(x) is a locally Lipschitz
function on Rm.

We assume that T is a set of critical points of f satisfying that f is constant
on T . We also assume that T is isolated in the sense that there is an open
neighbourhood W of T such that 0 /∈ ∂f(x) for all x ∈ W \ T . It is convenient
to add a constant to f so f(x) = 0 for x ∈ T .

Since ∂f(x) is set valued, we need to do more work before we can define the
Conley index h(∂f,W ). As in [8], for two open sets W1 and W2 satisfying

T ⊂W2 ⊂W 2 ⊂W1 ⊂W 1 ⊂W,



Multipeak Solutions 23

there is a locally Lipschitz map V (x) → Rm such that ‖V (x)‖ ≤ 1 for all x and

〈V (x), t(x)〉 ≥ α1, for all x ∈W \W1 and t(x) ∈ ∂f(x),(3.2)

〈V (x), t(x)〉 ≥ α2, for all x ∈W \W2 and t(x) ∈ ∂f(x),(3.3)

where αi is a positive constant depending on Wi. Suppose that x(t) is a solution
of dx(t)/dt = V (x(t)) satisfying x(t1) ∈ ∂W and x(t2) ∈ ∂W1 for some t1 and t2,
then

0 < δ ≤ |x(t1)− x(t2)| =
∣∣∣∣ ∫ t1

t2

V (x(t)) dt
∣∣∣∣ ≤ |t1 − t2|.

So if the flow x(t) satisfies x(t) ∈ W \ W 1 for all t ∈ (t1, t2), x(t1) ∈ ∂W

and x(t2) ∈ ∂W1 for some t1 and t2, then

f(x(t2))− f(x(t1)) =
∫ t2

t1

df(x(t))
dt

dt ≥ c0(t2 − t1) ≥ c0δ = β > 0,

since by [8], df(x(t))/dt ≥ c0 > 0 for almost all t ∈ [t1, t2]. Now for fixed W1,
we choose W2 such that |f(y)| ≤ β/2 for all y ∈ W 2. For this W , W1 and W2,
we have a vector field V (x) satisfying 3.2 and 3.3. Define the Conley index
h(−∂f,W ) to be h(−V (x),W ).

Proposition 3.1. h(−∂f,W ) is well defined.

Proof. To prove that h(−∂f,W ) is well defined, we need to check that W is
an isolating neighbourhood of V and h(−V (x),W ) is independent of the choice
of V (x) satisfying (3.2) and (3.3).

First, we prove that W is an isolating neighbourhood of V . We argue by
contradiction. Suppose that there is a solution x(t) of dx(t)/dt = −V (x(t)) such
that x(t) always stays in W and touch ∂W at some time t∗. If x(t) lies in W \W2

for all t ≤ t∗, then by (3.3), we get

C ≥ f(x(t))− f(x(t∗)) =
∫ t

t∗

df(x(t))
dt

dt ≥ α1(t∗ − t) →∞,

as t → −∞. This is impossible. So we can find a t3 < t∗ such that x(t3) ∈ W2

and thus f(x(t3)) ≤ β/2. Choose t1 ∈ (t3, t∗) such that x(t1) ∈ ∂W1 and
x(t) stays in W \W1 for all t ∈ (t1, t∗). From the above discussion, we have
f(x(t1))− f(x(t∗)) ≥ β. As a result,

f(x(t∗)) ≤ f(x(t1))− β ≤ f(x(t3))− β = −β/2.

Similarly, we can find t4 > t2 > t∗, such that x(t4) ∈ W2, x(t2) ∈ ∂W1 and
f(x(t∗))− f(x(t2)) ≥ β. Thus

f(x(t4)) ≤ f(x(t2) ≤ f(x(t∗))− β ≤ −3β/2.

This is a contradiction. So we have proved that W is an isolating neighbourhood
of V .
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Since the class of V satisfying (3.2) and (3.3) is convex, the homotopy in-
variance of the usual Conley index shows that our definition is independent of
the choice of V . �

Remark 3.2. By standard properties of the usual Conley index, h(−∂f,W )
is independent of the choice of W and W1. Note that our construction seems to
bear some relation to Mischaikov’s construction of the Conley index for multi-
valued maps.

Remark 3.3. If f(x) = f1(x1) + f2(x2), x1 ∈ Rl, x2 ∈ Rm−l, then

h(∂f,W 1 ×W 2) = h(∂f1,W 1)× h(∂f2,W 2),

where W 1 ⊂ Rl and W 2 ⊂ Rm−l. In fact, for each fi(xi), i = 1, 2, we choose
Vi(xi) satisfying (3.2) and (3.3). By ∂f(x) ⊂ ∂f1(x1)×∂f2(x2) (in fact, equality
holds in this case), we see that V (x) = (V1(x1), V2(x2)) satisfies (3.2) and (3.3).
Thus, by the Conley index formula for products (as in [11]),

h(∂f,W 1 ×W 2) = h(V1(x1)× V2(x2),W 1 ×W 2)

= h(V1(x1),W 1)× h(V2(x2),W 2) = h(∂f1,W 1)× h(∂f2,W 2).

Hence by the Künneth theorem for products in cohomology, the homotopy index
of f is nontrivial if the cohomology of f1 and f2 are nontrivial (for the same field
of coefficients). This is where the Conley index method has advantages.

Definition 3.4. Let f satisfy the conditions mentioned in the begining of
this section. We define the critical group C(f, T ) of f on T to be the cohomology
of h(−V,W ) for V and W satisfying (3.2) and (3.3). As usual, we choose a field
as the coefficients.

Now we want to prove an alternative formula for the critical groups, which
in practice is easier to calculate with. Let U be a neighbourhood of T .

Proposition 3.5. We have C(f, T ) = H∗(f0 ∩ U , (f0 \ T ) ∩ U), where
fc = {x : f(x) ≤ c}.

Proof. To prove our claim above, we make a special choice of W . We follow
the idea in [13]. By using an inductive procedure in the Chang’s construction,
we can construct V (x) locally Lipschitz on U \ T , so that ‖V (x)‖ ≤ 1 and
〈V (x), t(x)〉 > 0 on U \ T and 〈V (x), t(x)〉 ≥ α > 0 on any compact subset S of
U\T , for any t(x) ∈ ∂f(x). Here α depends on S. Choose a small neighbourhood
Z of T and suppose that δ > 0 is relatively small.

Let x(t) be a solution of x′(t) = −V (x(t)), x(0) ∈ Z \T . If f(x(0)) ≤ 0, then
since f(x(t)) is strictly decreasing in t, we see there is a positive lower bound for
the distance between T and {x(t) : t ≥ 0}. As a result, df(x(t))/dt ≤ −η < 0.
So we see that x(t) hits f−1(−δ). Backwards in time, if there is a positive lower
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bound for the distance between T and {x(t) : t ≤ 0}, then x(t) hits f−1(δ). So
we have proved that either x(t) hits both f−1(δ) and f−1(−δ), or the flow goes
to T . A similar result is also true for the case f(x(0)) ≥ 0. Now we form a set W
by taking all these flow lines starting in Z and choosing the part of the flow line
till it hits {x : f(x) = ±δ} or hits T , together with T . It is easily seen that W
is a neighbourhood of T and contains no other critical points of ∂f . Moreover,
(W,W ∩ f−1(−δ)) is an index pair in the sense of Conley.

Now we calculate h(−V (x),W ). By our construction, we see that the exit
set for the flow of −V on W is W ∩ f−1(−δ). Thus,

h(−V (x),W ) = [W/(W ∩ f−1(−δ))].

From the above discussion, we know that W = fδ ∩W can be deformed into
fs ∩W along the flow line for −V for any s ∈ (0, δ). Hence, noting that fs ∩W
decreases to f0∩W , we see by results on direct limits for Alexander cohomology
(see p. 238 in [25]) that

H([W/(W ∩ f−1(−δ))]) = H(W,W ∩ f−1(−δ)) = H(f0 ∩W,W ∩ f−1(−δ))
= H

(
f0 ∩W, f0 ∩W \ T

)
,

since f0 ∩W \ T can be deformed into f−1(−δ) ∩W . Thus the result follows.�

By the homotopy invariance of the degree, we can also use the vector field
V (x) to define the degree of the Clarke gradient of a Lipschitz function.

Definition 3.6. Let f satisfy the conditions mentioned in the begining
of this section. We define deg(∂f,W, 0) = deg(V,W, 0), where V and W sat-
isfy (3.2) and (3.3).

For a smooth function, we have

deg(Df,W, 0) =
m∑

i=0

(−1)irankCi(f, x0),

where x0 is an isolated critical point f and W is a small neighbourhood of x0.
Our next result shows that the above relation is still true for a Lipschitz function.

Proposition 3.7. Let f be a Lipschitz function and let x0 be the unique
critical point of f in a neighbourhood W of x0. Then

deg(∂f,W, 0) =
m∑

i=0

(−1)irankCi(f, x0).

Proof. First, by Rademacher’s Theorem, f is differentiable almost every-
where. Besides, by Proposition 2.2.2 in [10], if f is differentiable at x0, then
Df(x0) ∈ ∂f(x0).
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Let φ ∈ C∞
0 (B1(0)) be a function with 0 ≤ φ ≤ 1 and

∫
RN φ(y) dy = 1. Let

φτ (x) = τ−Nφ(τ−1y) for τ > 0 small. Define

fτ (x) =
∫

RN

φτ (y)f(x− y) dy.

Then by the dominated convergence theorem, we have

Dfτ (x) =
∫

RN

φτ (y)Dxf(x− y) dy.

Let V and W satisfy (3.2) and (3.3). Since Df(x) ∈ ∂f(x) almost everywhere
and V (x) is continuous, we have

〈Dxf(x− y), V (x)〉 = 〈Dxf(x− y), V (x− y)〉+ o(1) ≥ α/2

for almost y ∈ Bτ (x) if τ > 0 is small. As a result,

〈Dfτ (x), V (x)〉 =
∫

RN

φτ (y)〈Dxf(x− y), V (x)〉 dy

=
∫

Bτ (x)

φτ (y)〈Dxf(x− y), V (x)〉 dy ≥ α

2
> 0,

So we obtain

deg(∂f,W, 0) = deg(V,W, 0) = deg(Dfτ ,W, 0)

and
h(∂f,W ) = h(V,W ) = h(Dfτ ,W ).

Now since fτ is a smooth function, we can argue in exactly the same way as
in [13, p. 14] to find that

deg(Dfτ ,W, 0) =
m∑

i=1

(−1)irankHi(h(Dfτ ,W )).

Thus the result follows. �

Remark 3.8. In [23], Li and Nirenberg used classical degree theory to study
the single peak solution. The main result in [23] states that if A is an open set
compactly contained in Ω and d(x, ∂Ω) is differentiable on ∂A, then (1.1) has
a single peak solution with its peak inside A provided deg(Dd(x, ∂Ω), A, 0) 6= 0.
It is worth pointing out that for an isolated critical point x0 of d(x, ∂Ω) , it is not
always possible to find a small neighbourhood A of x0 such that x0 is the unique
critical point of d(x, ∂Ω) in A and d(x, ∂Ω) is differentiable on ∂A. For example,
if Ω is a symmetric dumbell, then d(x, ∂Ω) is not differentiable on the segment
joining the centers of the balls. Thus any A containing one of the center of the
ball (the local maximum point of d(x, ∂Ω)), or the middle of the handle (the
saddle point of d(x, ∂Ω)) must contains the whole segment joining the centers
of the balls if d(x, ∂Ω) is differentiable on ∂A. Here we generalize the classical
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degree theory to the Clarke gradient of any Lipschitz function f and the above
proposition shows that if deg(∂f,W, 0) 6= 0, then C(f, x0) is nontrivial.

Now we give some examples where the critical points have nontrivial critical
groups.

Proposition 3.9. Suppose that T is a set of local maximum points of f such
that f is constant on T and T is an isolated set of critical points of f . In this
case, Ci(f, T ) = HN−i(T ), where the homology is non-reduced and is Steenrod
homology as in [25]. In particular, CN (f, T ) is nontrivial.

Proof. This follows from Theorem 11.15 in [25] and Proposition 3.5 here.�

Proposition 3.10. Suppose that x0 = 0 is a saddle point in the following
sense: there is an integer l ≥ 1 and an l-dimensional C1 manifold Y and an
m − l dimensional C1 manifold Z such that Y ∩ Z = {0}, Rm = T0,Y ⊕ T0,Z ,
where T0,Y and T0,Z are the tangent spaces of Y at 0 and Z at 0 respectively,
f(x) > f(0) if x ∈ Bδ(0) ∩ Z \ {0}, f(x) < f(0) if x ∈ Bδ(0) ∩ Y \ {0} for
some small δ > 0. Then if x0 = 0 is the unique critical point of f in Bδ(0),
Cl(f, x0) 6= 0.

Proof. It is easy to see that there is a C1 local diffeomorphism φ : Rm →
Rm such that φ(Y ) and φ(Z) are subspaces near the origin. Then the proof of
the claim is similar to that of Theorem 2.1 in [24]. �

We can relax the above definition for saddle point a little bit so that it is
much easier to check in practice.

Proposition 3.11. Suppose that x0 = 0 is a saddle point in the following
sense: there is an integer l ≥ 1 and an l-dimensional C1 manifold Y and an
m − l dimensional C1 manifold Z such that Y ∩ Z = {0}, Rm = T0,Y ⊕ T0,Z ,
where T0,Y and T0,Z are the tangent spaces of Y at 0 and Z at 0 respectively,
f(x) ≥ f(0) if x ∈ Bδ(0)∩Z, f(x) ≤ f(0) if x ∈ Bδ(0)∩Y for some small δ > 0.
Then if x0 = 0 is the unique critical point of f in Bδ(0), we have Cl(f, x0) 6= 0.

Proof. We just need to find an l-dimensional manifold Y ′ and an m − l

dimensional manifold Z ′ such that Y ′ ∩ Z ′ = {0}, Rm = T0,Y ′ ⊕ T0,Z′ , where
T0,Y ′ and T0,Z′ are the tangent spaces of Y ′ at 0 and Z ′ at 0 respectively,
f(x) > f(0) if x ∈ Bδ(0)∩Z ′ \ {0}, f(x) < f(0) if x ∈ Bδ(0)∩ Y ′ \ {0} for some
small δ > 0. This claim follows if we can choose a C1 vector field V (x) satisfying
V (0) = 0, DV (0) = 0, 〈V (x), t(x)〉 > 0 for x ∈ Bδ(0) \ {0} and t(x) ∈ ∂f(x). In
fact, let Y ′ = {x = x(η, x0), x0 ∈ Y }, where x(t, x0) is a solution of

x′(t) = −V (x(t)), x(0) = x0
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and η > 0 is a small constant, and let Z ′ = {x = x(η, x0), x0 ∈ Z}, where x(t, x0)
is a solution of

x′(t) = V (x(t)), x(0) = x0

and η > 0 is a small constant. Then by using DV (0) = 0, it is easy to check
that T0,Z′ = T0,Y and T0,Z′ = T0,Z . Thus Y ′ and Z ′ satisfy the requirements.

To prove the existence of such vector field V (x), since 0 is an isolated crit-
ical point of f , by using the construction in [8], we know that there is vec-
tor field V ′(x) which is locally C1 in Bδ(0) \ {0} and satisfying ‖V ′(x)‖ ≤ 1,
〈V ′(x), t(x)〉 > 0 for x ∈ Bδ(0) \ {0} and t(x) ∈ ∂f(x). For each integer
j > 0, we can find a increasing sequence of Lj > j such that |DV ′(x)| ≤ Lj

for x ∈ Bδ(0) \ B1/j(0). Let ψ(t) is a C1 function satisfying ψ(0) = 0, ψ(t) > 0
for t > 0 and ψ′(t) ≤ 1/L2

j+1 for t ≤ j−1. Let V (x) = ψ(|x|)V ′(x). Then for
any x ∈ Bδ(0) \ {0}, we can find a j, such that x ∈ B1/j(0) \B1/(j+1)(0). Thus,
|DV ′(x)| ≤ Lj+1. As a result, we have

|DV (x)| ≤ ψ(|x|)|DV ′(x)|+ |Dψ(|x|)| ≤ |x|
L2

j+1

Lj+1 + 1/L2
j+1 = O(|x|).

So V (x) is the vector field we need. �

Remark 3.12. According to the above results, it is easy to check that the
critical groups of the critical points in examples 1.12, 1.13 and 1.14 given in [21]
are nontrivial.

Remark 3.13. In [33], a point x0 ∈ Ω is called a nondegenerate peak point if∫
∂Ω

e〈z−x0,a〉(z − x0) dµx0 = 0

and the matrix ( ∫
∂Ω

e〈z−x0,a〉(zi − x0,i)(zj − x0,j) dµx0

)
is nonsingular, where a is some point in RN , µx0 is a weak limit of

e−|z−x0|/ε

( ∫
∂Ω

e−|z−x0|/ε

)−1

as ε→ 0. It is proved in [28] that a point x0 ∈ Ω is a nondegenerate peak point
if and only if x0 ∈ int(coΠ∂Ω(x0)). Here, we want to point out a nondegenerate
peak point is a strictly local maximum point of the distance function. To see
this, let e be any unit vector in RN . We claim that there is a δ > 0, independent
of e, such that 〈y, e〉 ≥ δ for some y ∈ Π∂Ω(x0). We argue by contradiction.
Suppose that there is a sequence of unit vector ei such that 〈y, ei〉 ≤ o(1) for any
y ∈ Π∂Ω(x0) as i→∞. Assume ei → e0. Hence, 〈y, e0〉 ≤ 0 for any y ∈ Π∂Ω(x0).
By translation and rotation, we may assume that x0 = 0 and e0 = (0, . . . , 0, 1).
Since 0 ∈ int(coΠ∂Ω(0)), we can find a point y ∈ Π∂Ω(0) satisfying 〈y, e0〉 > 0.
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Otherwise, co Π∂Ω(0) ⊂ {yN ≤ 0}, which contradicts 0 ∈ int(coΠ∂Ω(0)). Thus
our claim follows. So, for t > 0 small (independent of e), we have

|y − te|2 = |y|2 − 2t〈y, e〉+ t2 < |y|2,

which implies d(te, ∂Ω) ≤ |y − te| < |y| = d(0, ∂Ω).

Before we close this section, let us look at the following examples.

Example 3.14. Now we give an example where the critical point of the dis-
tance function is not the kind of saddle point defined in [9], but the corresponding
critical group is nontrivial.

Let g(x1, x2) = 1 + δr2 cos aθ, where δ > 0 is a small constant such that
normal line of the surface x3 = g(x1, x2) at (x1, x2, g(x1, x2)) does not intersect
with the normal line of this surface at other point within the region |x3| ≤ 2,
a is prime, r = (x2

1 + x2
2)

1/2 and θ is the polar angle of x1 − x2 plane. Define
a domain in R3 as follows:

Ω = {(x1, x2, x3) : |x3| ≤ g(x1, x2), r ≤ R},

where R > 0 is a large constant. Then it is easy to check Ω is invariant under
rotation of 2π/a in x1 − x2 plane.

Firstly we claim that x = 0 is an isolated critical point of d(x, ∂Ω). In fact, let
x 6= 0 be a point in a small neighbourhood of the origin. If x is not in the x1−x2

plane, then Π∂Ω(x) contains just one point and thus is not a critical point. If x
is in the x1 − x2 plane, then Π∂Ω(x) contains exactly two points y = (y1, y2, y3)
and y∗ = (y1, y2,−y3) with y3 = g(y1, y2) and y2

1 + y2
2 6= 0. Direct calculation

shows that Dg(y1, y2) 6= 0 if y2
1 + y2

2 6= 0. But y − x = c0(Dg(y1, y2), 1) and
y∗ − x = c0(Dg(y1, y2),−1). As a result, y − x 6= −(y∗ − x) which implies
0 /∈ co(Π∂Ω(x)− {x}).

Secondly, we show x = 0 is not the kind of saddle point defined in [9].
Suppose that X1 and X2 are two subspaces in R3 such that R3 = X1 ⊕ X2,
maxx∈X1∩∂Bτ (0) d(x, ∂Ω) < minx∈X2∩Bτ (0) d(x, ∂Ω); maxx∈X1∩Bτ (0) d(x, ∂Ω) <
minx∈X2∩∂Bτ (0) d(x, ∂Ω). For any x ∈ Ω with polar angle θ satisfying cos aθ ≤ 0
and r 6= 0, it is easy to check d(x, ∂Ω) < g(x1, x2) ≤ 1. On the other hand, for
any small τ > 0, there exists x ∈ X2 with its polar angle satisfying cos aθ ≤ 0
and |x| = τ . So we see d(x, ∂Ω) < 1. As a result, maxx∈X1∩Bτ (0) d(x, ∂Ω) ≥
d(0, ∂Ω) > d(x, ∂Ω) ≥ minx∈X2∩∂Bτ (0) d(x, ∂Ω). This is a contradiction.

In addition, let x = (x1, x2, 0) be a point such that cos aθ > c0 > 0. It is easy
to check d(x, ∂Ω) > 1. This shows that x = 0 is not a local maximum point.

Finally, to calculate the Conley index, we see easily that we can choose the
approximating vector fields to preserve the symmetry of rotation of 2π/a in the
x1−x2 plane. Hence we can apply the results in Remark (ii) on page 672 of [12]
(using a remark on page 14 in [13] to remove a side condition). We see that
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if the Clarke gradient of the distance function had Conley index trivial at 0,
then it would also have to have trivial homology with Za coefficients on the one
dimensional subspace x1 = x2 = 0, which is the fixed point set of the rotation.
However, this is impossible since 0 is a maximum point of the distance function
on this space.

Using a similar argument, we can also prove that in this example, d(x, ∂Ω)
does not satisfy the conditions in Proposition 3.11.

Example 3.15. Let Ω1 be a bounded domain in x1 − x3 plane such that
x1 > 0 if (x1, x3) ∈ Ω1. Suppose that x∗ = (x∗1, x

∗
3) ∈ Ω1 is a saddle point of the

distance function in the strong sense, that is, for fixed x1, d(x, ∂Ω1) is increasing
in x3 > x∗3 and decreasing in x3 < x∗3, while for each fixed x3, d(x, ∂Ω1) is
increasing in x1 < x∗1 and decreasing in x1 > x∗1. The three dimensional domain
Ω is obtained by rotating Ω1 around the x3-axis. So Ω has an isolated critical
set T = (x∗1 cos θ, x∗1 sin θ, x∗3), θ ∈ [0, 2π].

Let d0 = d(x∗, ∂Ω1), x∗ = (x∗1, x
∗
3). It is easy to see the pair (dd0 ∩

Bτ (x∗), (dd0 \{x∗})∩Bτ (x∗)) can be deformed into (I, ∂I), where I = {(x1, x
∗
3) :

x1 ∈ [x∗1 − τ, x∗1 + τ ]}. As a result, we have

C(d, T ) = H∗(S × I, S × ∂I) = H∗(S)⊗H∗(I, ∂I),

where S is the unit circle in R2. Hence, C(d, T ) is nontrivial.
To calculate the degree of Dd, we use the symmetries again. By using a S1

equivariant approximation and a theorem of Nussbaum [29], we see that the
degree of Dd is the same as on the symmetric subspace x1 = x2 = 0. But the
intersection of this subspace with Ω is empty and hence the degree is zero.

We can also calculate the degree of Dd by proving the natural analogue of
Proposition 3.7.

Remark 3.16. We can obtain even more complicated four dimensional ex-
amples by rotating the sets in Example 3.14 around an axis (much as in Exam-
ple 3.15).

4. Proof of the main results

In this section, we will use the results in Section 2 to get some existence
result for (1.1).

Proof of Theorem 1.1. LetXj(xj) be the vector field defined in Section 3.
Since it is not clear whether Xj(xj) converges uniformly in a neighbourhood of
∂Dj , we cannot conclude immediately that h(X(xj), Dj) = h(∂d(x, ∂Ω), Dj).
To check h(X(xj), Dj) = h(∂d(x, ∂Ω), Dj), we choose the vector field V (xj)
satisfying (3.2) and (3.3). We claim that 〈V (xj), Xj(xj)〉 ≥ η > 0 in a neigh-
bourhood of ∂Dj . By the homotopy invariance of the Conley index, we then
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obtain h(X(xj), Dj) = h(V (xj), Dj). Thus

H∗(h(X(xj), Dj)) = H∗h(V (xj), Dj)) = C(dcj ∩Dj , (dcj ∩Dj) \ Tj).

By assumption, H∗(h(X(xj), Dj)) is nontrivial. But

h(X,D) = h(X(x1), D1)× . . .× h(X(xk), Dk).

Thus it follows from the Künneth formula that H∗(h(X,D)) is nontrivial. So
h(X,D) is nontrivial and the result follows.

It remains to prove the claim. We argue by contradiction. Suppose that there
is a sequence xj,m in a neighbourhood of ∂Dj , such that 〈V (xj,m), Xj(xj,m)〉 →
−c0 ≤ 0 as m→∞. Assume xj,m → x0. Since

µm(y) =:

∂Pε,ΩUε,xj,m

∂n

∂Uε,xj,m

∂r∫
Ω

∂Pε,ΩUε,xj,m

∂n

∂Uε,xj,m

∂r

is uniformly bounded in L1(∂Ω), we may assume that there is a measure µ on ∂Ω
such that as m→∞, µm ⇀ µ. Thus,

〈V (xj,m), Xj(xj,m)〉 = 〈V (x0), Xj(xj,m)〉+ o(1)

=
∫

∂Ω

〈
y − x0

|y − x0|
, V (x0)

〉
µm(y) dy

+
∫

∂Ω

〈
y − xj,m

|y − xj,m|
− y − x0

|y − x0|
, V (x0)

〉
µm(y) dy + o(1)

→
〈 ∫

∂Ω

y − x0

|y − x0|
dµ, V (x0)

〉
= −c0 ≤ 0.

It is easy to check that
∫

∂Ω
dµ = 1 and spt(µ) ⊂ Π∂Ω(x0). Thus,

∫
∂Ω

(y −
x0)/|y − x0| dµ ∈ ∂d(x0, ∂Ω). This is a contradiction to (3.2). �

Proof of Theorem 1.2. First we claim that in a strictly convex domain,
d(x, ∂Ω) has exactly one critical point. Thus this critical point is the global
maximum point of d(x, ∂Ω). We argue by contradiction. Suppose that d(x, ∂Ω)
has two critical points x1 and x2. By translation and rotation, we may assume
that x1 = 0, x2 = (l, 0, . . . , 0) and d1 = d(x1, ∂Ω) ≤ d2 = d(x2, ∂Ω). From [10],
we know that

∂d(x, ∂Ω) ⊂ co
{
y − x

|y − x|
: y ∈ Π∂Ω(x)

}
,

where co denotes the convex hull. Since 0 ∈ ∂d(x1, ∂Ω), we see that

Π∂Ω(x1) ∩ {y = (y1, . . . , yN ) ∈ RN , y1 ≥ 0} 6= ∅.

Take y ∈ Π∂Ω(x1) ∩ {y = (y1, . . . , yN ) ∈ RN , y1 ≥ 0}. It is easy to check that
Ty ∩ (Ω \ {y}) 6= ∅. This is a contradiction.
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Since Ω is convex, using the moving plane method of Gidas, Ni and Nirenberg,
we know that there is a d0 > 0, such that any local maximum point x0 of the
solution of (1.1) satisfies d(x0, ∂Ω) ≥ d0. Suppose that (1.1) has a solution of
the form (1.4) satisfying (1.5). Since there is always a local maximum point in
a small neighbourhood of xε,j , we know that d(xε,j , ∂Ω) ≥ d0. Arguing as in [17],
we obtain mini 6=j |xε,i − xε,j | ≥ d0.

Without loss of generality, we assume d(xε,1, ∂Ω) = min1≤j≤k d(xε,j , ∂Ω).
We also assume xε,j → xj as ε→ 0. As in Section 2, we have

∂K(xε)
∂xji

= 0.

Since Ω is convex, it follows from Proposition 2.6 and Lemma A.7 that the above
relation is equivalent to

0 = (p− 1)
∫

Ω

Up−2
ε,xε,1

∂Uε,xε,1

∂x1l
ϕε,xε,1(4.1)

− (p− 1)
k∑

j=2

∫
Ω

Up−2
ε,xε,1

Uε,xε,j

∂Uε,xε,1

∂x1l

+O(εN−1e−(2+σ)d(xε,1,∂Ω)/ε)

+ o

(
εN−1

k∑
j=2

U

(
|xε,1 − xε,j |

ε

))
.

Thus, by Lemma A.4, we have

(4.2) 0 =
∫

Ω

∂Pε,ΩUε,x1

∂n

∂Uε,x1

∂r

( ∫
∂Ω

y − x1

|y − x1|
dµ+ o(1)

)
+ c0ε

N−1
k∑

j=2

U

(
|xε,1 − xε,j |

ε

)(
x1 − xj

|x1 − xj |
+ o(1)

)

+O(εN−1e−(2+σ)d(xε,1,∂Ω)/ε) + o

(
εN−1

k∑
j=2

U

(
|xε,1 − xε,j |

ε

))
,

where µ is a measure satisfying
∫
Ω
dµ = 1 and sptµ ⊂ Π∂Ω(x1).

Since d(x1, ∂Ω) = min1≤j≤k d(xj , ∂Ω) and min2≤j≤k |xj − x1| > 0, we know
x1 is not the global maximum point of d(x, ∂Ω) and thus is not a critical point
of d(x, ∂Ω). So ∣∣∣∣ ∫

∂Ω

y − x1

|y − x1|
dµ

∣∣∣∣ ≥ δ > 0.

By (4.2), we obtain
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(4.3) 0 =
∫

Ω

∂Pε,ΩUε,x1

∂n

∂Uε,x1

∂r

(∣∣∣∣ ∫
∂Ω

y − x1

|y − x1|
dµ

∣∣∣∣2 + o(1)
)

+ c0ε
N−1

k∑
j=2

U

(
|xε,1 − xε,j |

ε

)(〈
x1 − xj

|x1 − xj |
,

∫
∂Ω

y − x1

|y − x1|
dµ

〉
+ o(1)

)

+O(εN−1e−(2+σ)d(xε,1,∂Ω)/ε) + o

(
εN−1

k∑
j=2

U

(
|xε,1 − xε,j |

ε

))
,

We claim that

(4.4)
〈
x1 − xj

|x1 − xj |
,

∫
∂Ω

y − x1

|y − x1|
dµ

〉
≥ δ > 0.

So by Lemma A.3, we see (4.3) is impossible and thus the result follows.
It remains to check (4.4). Without loss of generality, we assume that x1 = 0

and x2 = (l, 0, . . . , 0). Arguing as in the proof of the uniqueness of critical point
for d(x, ∂Ω), we obtain

Π∂Ω(x1) ⊂ {y = (y1, . . . , yN ) ∈ RN , y1 < 0},

which clearly implies (4.4). �

Finally, we give an example which shows that if the critical group of an
isolated critical point x0 of d(x, ∂Ω) is trivial, there may be no positive solution
of (1.1) such that one of its local maximum point is close to x0.

Example 4.1. Let Ω = Ω1 ∪ Ω2, where Ω1 = B1(0) ∩ {x = (x1, . . . , xN ) ∈
RN , x1 ≤ 0}, Ω2 is any open domain such that ∂Ω is smooth and the reflection
of Ω ∩ {x1 ≤ t} about x1 = t is contained in Ω for all t ≤ δ, where δ > 0 is
a constant. Then x0 = 0 is a critical point of d(x, ∂Ω) and the corresponding
critical group is trivial. By using the moving plane method of Gidas, Ni and
Nirenberg, we conclude that any positive solution of (1.1) is increasing in the
direction x1 till x1 = δ and thus there is no local maximum point in Ω∩{x1 ≤ δ}.

5. Remark on the Neumann problem

Let Ω be a bounded domain in RN with smooth boundary. Consider the
following Neumann problem:

(5.1)


−ε2∆u+ u = up−1 in Ω,

u > 0 in Ω,
∂u

∂n
= 0 in ∂Ω,

where ε is a small positive number, n is the unit outward normal of ∂Ω at y,
2 < p < 2N/(N − 2) if N ≥ 3 and 2 < p <∞ if N = 2.
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We denote Pε,Ω,Nv the solution of the following problem:
−ε2∆u+ u = |v|p−2v y ∈ Ω,
∂u

∂n
= 0 y ∈ ∂Ω,

u ∈ H1(Ω).

By the maximum principle, we know Pε,Ω,NUε,z > 0.
For any xi ∈ Ω, i = 1, 2, . . . , k, define

E∗
ε,x,k =

{
v ∈ H1(Ω) : 〈Pε,Ω,NUε,xi

, v〉ε = 0,〈
∂Pε,Ω,NUε,xi

∂τi
, v

〉
ε

= 0, i = 1, 2, . . . , k
}
,

where τi is any unit vector in RN if xi ∈ Ω; τi is any tangent vector of ∂Ω at xi.
Let H(x) be the mean curvature function of ∂Ω. We use I or J to denote

a finite index set and use |I| to denote the number of points I contains. Using
the techniques in Section 2 and the results in Section 3, we can get the following
result:

Theorem 5.1. Let I and J be two finite index sets where one of the sets may
be empty. Suppose that xi ∈ ∂Ω, i ∈ I, are different critical points of H(x) with
C(H,xi) nontrivial and zj ∈ Ω, j ∈ J , are different critical points of d(x, ∂Ω)
with C(d, zj) nontrivial. If

min
i∈I,l,j∈J,l 6=j

(|xi − zj |, |zl − zj |) > 2 max
j∈J

d(xj , ∂Ω),

then there exists an ε0 > 0, such that for each ε ∈ (0, ε0], (5.1) has at least one
solution of the form

(5.2) uε =
∑
i∈I

αεiPε,Ω,NUε,xεi
+

∑
j∈J

αεjPε,Ω,NUε,zεj
+ vε

where, as ε→ 0, αεi → 1, xεi → xi, xεi ∈ ∂Ω, i ∈ I, αεj → 1, zεj → zj, j ∈ J ,
vε ∈ E∗

ε,xε,|I|+|J| and ‖v‖2
ε = o(εN ).

Appendix A. Basic estimates

In this section, we present some basic estimates needed in the proof of the
main results. First, let us recall the well known fact on the asymptotic behaviours
of U(y):

lim
|y|→∞

|y|(N−1)/2e|y|U(y) = c0 > 0.

From now on, we always assume that d(x, ∂Ω)/ε ≥M for some large constant
M > 0. Let ϕε,x = Uε,x − Pε,ΩUε,x. Then ϕε,x satisfies

(A.1)

{
−ε2∆ϕε,x + ϕε,x = 0 y ∈ Ω,

ϕε,x = Uε,x y ∈ ∂Ω.
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We denote

τε,x =
∫

Ω

Up−1
ε,x ϕε,x.

We have the following estimate for τε,x.

Lemma A.1. For any θ > 0, there exist C2 > C1 > 0, such that

(A.2) C1ε
Ne−(2+θ)d(x,∂Ω)/ε ≤ τε,x ≤ C2ε

Ne−(2−θ)d(x,∂Ω)/ε.

Lemma A.2. There is a σ > 0, such that∫
Ω

ϕ2
ε,xU

p−2
ε,x = O(e−σd(x,∂Ω)/ετε,x),(A.3) ∫

Ω

ϕp
ε,x = O

(
e−σd(x,∂Ω)/ετε,x

)
.(A.4)

Define

τ ′ε,x = ε2
∫

∂Ω

∂Pε,ΩUε,x

∂n

∂Uε,x

∂r
,

where r = |y − x| and n is the outward unit normal to ∂Ω at y.

Lemma A.3. For any θ > 0, there exist c1 > c0 > 0, such that

c0ε
N−1e−(2+θ)d(x,∂Ω)/ε ≤ τ ′ε,x ≤ c1ε

N−1e−(2−θ)d(x,∂Ω)/ε.

Lemma A.4. We have∫
Ω

Up−2
ε,x

∂Uε,x

∂xi
ϕε,x = −ε2

∫
∂Ω

∂Pε,ΩUε,x

∂n

∂Uε,x

∂xi
+O(εN−1e−pd(x,∂Ω)/ε).

Moreover, if ∂Ω ∩ ∂Bd(x,∂Ω)(x) contain exactly one point q, then

N∑
i=1

∫
Ω

Up−2
ε,x

∂Uε,x

∂xi
ϕε,xνi ≥ c0ε

N−1e−(2+θ)d(x,∂Ω)/ε,

for any θ > 0, where ν is the outward unit normal to ∂Ω at q and c0 > 0 is
a constant.

Lemma A.5. For i 6= j, we have

(A.5)
∫

Ω

Up−1
ε,xi

ϕε,xj = O

(
εN

N∑
j=1

e−(2+σ)d(xj ,∂Ω)/ε + εN
∑
i 6=j

e−(1+σ)|xi−xj |/ε

)
.

The proof of the above lemmas can be found in [16]. So we omit the proof
of these lemmas.
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Lemma A.6. There is a σ > 0, such that for i 6= j,∫
Ω

Uε,xi
Up−2

ε,xj
ϕε,xj

= O

(
εNe−σd(xj ,∂Ω)/ε

∑
i 6=j

e−|xi−xj |/ε

)
.

Proof. Choose σ > 0 small enough so that p−2−σ > 0. Since ϕε,xj
≤ Uε,xj

,
we have ∫

Ω

Uε,xiU
p−2
ε,xj

ϕε,xj ≤ C

∫
Ω

e−|y−xi|/εUp−2
ε,xj

ϕε,xj

≤ Ce−|xj−xi|/ε

∫
Ω

e|y−xj |/εUp−2
ε,xj

ϕε,xj

≤ Ce−|xj−xi|/ε

∫
Ω

Up−2−σ
ε,xj

ϕσ
ε,xj

≤ Ce−|xj−xi|/εe−σd(xj ,∂Ω)/ε

∫
Ω

Up−2−σ
ε,xj

= O

(
εNe−σd(xj ,∂Ω)/ε

∑
i 6=j

e−|xi−xj |/ε

)
. �

Lemma A.7. Suppose that Ω is convex. For i 6= j, if d(xl, ∂Ω) ≥ δ > 0,
l = i, j, we have

(A.6)
∫

Ω

Up−1
ε,xi

ϕε,xj
= O(εNe−(1+σ)|xi−xj |/ε).

Proof. Let G(z, y) be the Green’s function of −ε2∆u + u on Ω subject to
Dirichlet boundary conditions. Then

ϕε,xj
(y) = ε2

∫
∂Ω

∂G(z, y)
∂n

Uε,xj
(z) dz,

where n is the outward unit normal of ∂Ω at y. But for any θ > 0 small, we have

ε

∣∣∣∣∂G(z, y)
∂n

∣∣∣∣ ≤ Ce−(1−θ)|z−y|/ε.

Since Ω is convex, we have that there is a σ > 0 such that |y − z| + |z − x| ≥
(1 + σ)|x− y| for any z ∈ ∂Ω and x, y ∈ Ω with d(x, ∂Ω) ≥ δ and d(y, ∂Ω) ≥ δ.
As a result,

ϕε,xj (y) ≤ ε

∫
∂Ω

e−(1−θ)|z−y|/εe−|z−x|/ε dz ≤ Ce−(1+σ)|xj−y|/ε,

and the result follows. �
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häuser, Boston, 1993.

[10] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley and Sons, 1983.

[11] C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference

No. 38, Amer. Math. Soc., Providence, 1978.

[12] E. N. Dancer, Symmetries, degree, homotopy indices and asymptotically homogeneous

problems, Nonlinear Anal. 6 (1982), 667–686.

[13] , Degenerate critical points, homotopy indices and Morse inequalities, J. Reine

Angew. Math. 350 (1984), 1–22.

[14] E. N. Dancer and J. Wei, On the effect of domain topology in a singular perturbation

problem, Topol. Methods Nonlinear Anal. 11 (1998), 227–248.

[15] E. N. Dancer and S. Yan, Multipeak solutions for a singularly perturbed Neumann
problem, Pacific J. Math. 189 (1999), 241–262.

[16] , Singularly perturbed elliptic problem in exterior domains, J. Differential Int.
Equations (to appear).

[17] , A singularly perturbed elliptic problem in bounded domains with nontrivial
topology, Adv. Differential Equations 4 (1999), 347–368.

[18] M. delPino, P. Felmer and J. Wei, Multiple peak solutions of singular perturbation

problems; preprint.

[19] B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the

maximum principle, Comm. Math. Phys. 68 (1979), 209–243.

[20] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second

Order, Springer-Verlag, 1983.

[21] M. Grossi and A. Pistoia, On the effect of critical points of distance function in

superlinear elliptic problems; preprint.

[22] M. K. Kwong, Uniqueness of positive solutions of −∆u+u = up in Rn, Arch. Rational
Mech. Anal. 105 (1989), 243–266.



38 E. N. Dancer — S. Yan

[23] Y. Y. Li and L. Nirenberg, The Dirichlet problem for singularly perturbed elliptic

equation, Comm. Pure Appl. Math 51 (1998), 1445–1490.

[24] J. Liu, The Morse index of a saddle point, Systems Sci. Math. Sci. 2 (1989), 32–39.

[25] W. Massey, Homology and Cohomology Theory, Marcel Dekker, Basel, 1978.

[26] R. Molle and D. Passaseo, On the behaviour of the solutions for a class of nonlinear
elliptic problems in exterior domains, Discrete Contin. Dynam. Systems (to appear).

[27] W. M. Ni and J. Wei, On the location and profile of spike-layer solutions to singularly

perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math. 48 (1995), 731–768.

[28] E .S. Noussair and S. Yan, The effect of the domain geometry in singular perturbation

problems, Proc. London Math. Soc. 76 (1998), 427–452.

[29] R. Nussbaum, Some generalizations of the Borsuk-Ulam theorem, Proc. London Math.

Soc. 35 (1977), 136–158.

[30] O. Rey, The role of the Green’s function in a non-linear elliptic equation involving the

critical Sobolev exponent, J. Funct. Anal. 89 (1990), 1–52.

[31] J. Wei, On the construction of single-peaked solutions to a singularly perturbed semi-

linear Dirichlet problem, J. Differential Equations 129 (1996), 315–333.

[32] , On the construction of single-peaked solutions to a singularly perturbed semi-

linear Dirichlet problem, J. Differential Equations 129 (1996), 315–333.

[33] , Necessary geometric conditions for two-peaked solutions, Manuscripta Math.

96 (1998), 113–131.

[34] , On the effect of the domain geometry in singular perturbation problems, pre-

print.

Manuscript received July 10, 1999

E. Norman Dancer and Shusen Yan

School of Mathematics and Statistics,
University of Sydney,

NSW 2006, AUSTRALIA

E-mail address: normd@maths.usyd.edu.au, shusen@maths.usyd.edu.au

TMNA : Volume 14 – 1999 – No 1


