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FIXED POINT THEOREMS AND FIXED POINT
INDEX FOR COUNTABLY CONDENSING MAPS

Martin Väth

Abstract. It is proved that there exists a fixed point index theory for
operators which are condensing on the countable subsets of the space only.

Even weaker compactness assumptions on countable subsets suffice, e.g.

conditions with respect to classes of measures of noncompactness, or if me-
asures of noncompactness of countable noncompact sets are not preserved

(not necessarily decreased). As an application, we prove a generalization of

the Fredholm alternative.

0. Introduction

The celebrated fixed point theorem of Darbo [9] states that a condensing
operator in a Banach space has a fixed point if it maps a nonempty, closed,
bounded, and convex set into itself. For applications to e.g. differential equations
in Banach spaces it is desirable to have a fixed point theory for operators which
are condensing on the countable subsets only. For example, for countably many
uniformly bounded measurable functions xn : [0, 1]→ X with a Hilbert space X

1991 Mathematics Subject Classification. Primary 47H09, 47H10, 47H11; Secondary 47A53,
47B07, 47H07, 34A60.

Key words and phrases. Fixed point theorem, countably condensing operator, fixed point
index, degree theory, measure of noncompactness, sequential measure of noncompactness, mul-
tivalued mapping, fundamental set, ultimately compact operator, Fredholm operator, positive
operator.
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the estimate

χ

({∫ 1
0
xn(s) ds : n = 1, 2, . . .

})
≤
∫ 1
0
χ({xn(s) : n = 1, 2, . . . }) ds

is known where χ denotes the Hausdorff measure of noncompactness in X (defi-
ned below). This was first proved in [28], see also [27]. (Be aware that the proof
contains a minor mistake which however can be avoided, see [2], [36]. Different
approaches may be found in [21], [25]). In contrast, an estimate as above need not
hold for uncountable families of functions: without further assumptions one even
runs into measurability problems; consider e.g. the family xn,t = enχ{t} indexed
by (n, t) ∈ N ×M with a nonmeasurable set M ⊆ [0, 1] and an orthonormal
sequence en ∈ X.
The apparently first fixed point theorem for countably condensing operators

was proved in [7] (see also [8]). Multivalued versions can be found in [22], [34].
However, all known fixed point theorems for countably condensing operators have
the disadvantage that one has to know a priori a nonempty, closed, bounded and
convex set which is mapped into itself. Only in [27] a fixed point theorem has
been given which requires only the so-called Leray–Schauder boundary condition
(defined below).
In particular, it is yet unknown whether there exists a fixed point index or

at least a degree theory for countably condensing maps. It is the aim of this
paper to show that such a fixed point index exists. More precisely, we will show
that countably condensing maps are fundamentally restrictible (see below) which
allows to define a fixed point index. The approach is even possible without further
difficulties for multivalued maps in (locally convex) Fréchet spaces.
The plan of this paper is as follows: in Section 1, we define the fixed po-

int index under certain compactness assumptions on countable sets. It will fol-
low almost immediately from the definition that countably condensing operators
(which we define in Section 2) satisfy these assumptions. However, the mentio-
ned assumptions are even less restrictive: they lead to fixed point theorems if
the operator does e.g. not preserve (not necessarily decrease) the measure of
noncompactness. We will discuss such topics in Section 2. There we also lay the
fundamentals to a different (more constructive) approach to the fixed point in-
dex for a slightly smaller class of maps. In Section 3, we show as an application
a generalization of the Fredholm alternative.

1. The fixed point index by ultimately fundamental sets

It is well-known that a definition of a degree theory in infinite-dimensional
Banach spaces is not possible without additional compactness assumptions, be-
cause all maps are homotopic. In particular, for a homotopy H, the map H(0, · )
may have precisely one “essential” fixed point although H(1, · ) has no fixed
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points. Roughly speaking, H can “loose” the “essential” fixed point by moving
it “in infinite dimensions”. One might suspect that this cannot happen, if one
requires that all fixed points of H stay in some compact (and convex) set U .
But this alone is not sufficient: think of a homotopy H with U = {x0}; except
for the fact that H has no fixed points outside U , we have no control over the
behavior of H. In particular, x0 might be an “essential” fixed point for H(0, · ),
but inessential for e.g. H(1−ε, · ) and thus it might happen that x0 is not a fixed
point of H(1, · ) anymore.
Thus, instead of the compactness of the convex hull of all fixed points of H,

one needs the compactness of a “slightly larger” invariant convex set. It appears
that the best definition for such a set is the following.
Throughout this paper, let X be a Fréchet space, and K ⊆ X be closed and

convex.

Definition 1.1. Let D ⊆ K, and H : [0, 1]×D → 2K . A closed convex set
U ⊆ K is called fundamental for H, if

(a) H([0, 1]× (U ∩D)) ⊆ U , and
(b) x0 ∈ conv(U ∪H([0, 1]× {x0})) implies x0 ∈ U .

The map H is called fundamentally restrictible, if convH([0, 1] × (U ∩ D)) is
compact for some fundamental set U .

For fundamentally restrictible homotopies (more precisely, for the correspon-
ding mappings H(λ, · )), one may define a fixed point index (and a degree
theory). Such a degree based on fundamental sets is given for single-valued
maps in [24]. For multivalued maps, the corresponding theory was developed
by V. V. Obukhovskĭı and others, see e.g. the surveys [4]–[6] or the monograph
[23].
We now intend to show that under certain compactness assumptions on co-

untable sets on a homotopy H, this homotopy is fundamentally restrictible. It
turns out that under reasonable assumptions on H any set U which satisfies the
inclusion U ⊆ convH([0, 1] × (U ∩D)) is automatically compact. However, this
inclusion is converse to the inclusion in Definition 1.1. For this reason, we are
interested in fundamental sets where we even have equality. These are the sets
which we get for V = ∅ in the following definition.

Definition 1.2. Let D ⊆ K, and H : [0, 1] ×D → 2K . Given V ⊆ K, we
call a set U ⊆ K V -stably fundamental for H if the following holds:

(a) we have the relation

(1) U = conv(H([0, 1]× (U ∩D)) ∪ V ),

(b) x0 ∈ conv(U ∪H([0, 1]× {x0})) implies x0 ∈ U .
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Thus, U is V -stably fundamental for H if and only if U is fundamental for H
and (1) holds. We will soon see that such sets U always exist. Roughly speaking,
the inclusion H([0, 1] × (U ∩D)) ⊆ U in the Definition 1.1 of fundamental sets
will be needed to prove the existence of a fixed point index, but the converse
inclusion U ⊆ conv(H([0, 1]× (U ∩D))∪V ) from (1) will enable us to verify the
compactness of such sets U easier.
For historical reasons, we recall a classical “construction” of an ∅-stably fun-

damental set. However, we will not make use of that construction, since it requ-
ires the axiom of choice: given a multivalued map H : [0, 1]×D → 2K , define a
transfinite sequence of sets Uα ⊆ X by induction:

(a) U0 = convH([0, 1]×D),
(b) Uα+1 = convH([0, 1]× (Uα ∩D)),
(c) Uα =

⋂
β<α Uβ if α is a limit ordinal.

A simple transfinite induction shows that Uα is a decreasing sequence of closed
convex sets. The axiom of choice implies that the decreasing transfinite sequence
Uα must stabilize. The limit set U =

⋂
Uα is called the ultimate range of H. It

follows from the definition that U satisfies (1) (with V = ∅). One may verify by
transfinite induction that each Uα (and so U) is a fundamental set for H.
Sadovskĭı [33] (see also the text book [1]) has defined a degree theory for

functions which are compact on their ultimate range. However, as we have re-
marked, it is even possible to define a degree theory for functions which are just
fundamentally restrictible. The latter has not only the advantage that this con-
dition is slightly less restrictive, but also the transfinite induction can be avoided
in the proofs: in contrast to the above construction, the axiom of choice is not
required to prove the existence of a V -stably fundamental set. This was first
observed by Obukhovskĭı (see e.g. [6], [23]).

Proposition 1.1. For each multivalued map H : [0, 1] × D ⊆ K → 2K

and each V ⊆ K there exists a V -stably fundamental set. Moreover, there is
precisely one V -stably fundamental set U with the additional property that each
fundamental set which contains V also contains U .

Proof. Let U be the collection of all fundamental sets for H which con-
tain V . The family U is not empty, because it contains K. Now U =

⋂
U is the

desired set. �

Definition 1.3. We call the set U from Proposition 1.1 the V -ultimately
fundamental set of H. When V = ∅, we say that U is the ultimately fundamental
set of H and denote it by U∞.
We say that the multivalued map H is V -fundamentally restrictible if there is

some fundamental set U ⊇ V such that H([0, 1]× (U ∩D)) is relatively compact.



Fixed Points of Countably Condensing Maps 345

Corollary 1.1. H is V -fundamentally restrictible if and only if its V -ultimately
fundamental set is compact. H is fundamentally restrictible if and only if its ul-
timately fundamental set is compact.

Proof. If U ⊇ V is fundamental such that H([0, 1]× (U ∩D)) is relatively
compact, then the V -ultimately fundamental set UV ⊆ U is relatively compact
by UV = convH([0, 1] × (UV ∩ D)) ⊆ convH([0, 1] × (U ∩ D)). For the second
statement observe that by Proposition 1.1 the ultimately fundamental set is
contained in UV for any V ⊆ K. �

The crucial observation for us is that to check that H is V -fundamentally
restrictible, it suffices to consider countable subsets of its V -ultimately funda-
mental set which satisfy (1) up to closures.

Theorem 1.1. Let D ⊆ K, and H : [0, 1]×D → 2K be upper semicontinuous
and such that each value H(λ, x) is separable. Let V ⊆ K be separable, and
U ⊆ K satisfy (1). Let G ⊆ D be such that

(2) H([0, 1]× (U ∩D)) ⊆ conv(H([0, 1]× (U ∩G)) ∪ V ).

Suppose that for each countable subset C ⊆ U the relations

(3) C = conv(H([0, 1]× (C ∩G)) ∪ V )

and

G ∩ conv(H([0, 1]× (C ∩G)) ∪ V ) ⊆ C ∩G
imply that C is precompact. Then U is compact.

Remark 1.1. Observe that the condition in Theorem 1.1 is trivially ne-
cessary for the compactness of U . If U is compact, then each countable subset
C ⊆ U is precompact, of course.
For the proof of Theorem 1.1, we need a simple lemma.

Lemma 1.1. An upper semicontinuous multivalued map F in metric spaces
with separable values F (x) maps separable sets into separable sets.

Proof. Without loss of generality, we may assume that F : X → 2Y where
X is a separable metric space, and Y is a metric space. Given some n, let Ux be
the union of all open balls in Y with radius n−1 whose center belongs to F (x).
Since X is a separable metric space, its topology has a countable base V1, V2, . . . .
Let K denote the set of all indices k with the following property: there is some
x ∈ Vk such that F (Vk) ⊆ Ux. Since F is upper semicontinuous, each x ∈ X
is contained in some set Vk with this property, and so X =

⋃
k∈K Vk. For any

k ∈ K choose some xk ∈ Vk with F (Vk) ⊆ Uxk . Then F (X) ⊆
⋃
Uxk . Thus, if

Cn is a countable and dense subset of
⋃
F (xk), we find for any y ∈ F (X) some
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c ∈ Cn with d(y, c) ≤ 2n−1. Hence, the set
⋃
Cn is a countable and dense subset

of F (X). �

Proof of Theorem 1.1. Assume that U is not compact. Then there exists
a sequence xn ∈ U without a Cauchy subsequence. Put C1 = {x1, x2, . . . }.
We now define inductively countable sets Cn ⊆ U with the properties:

Cn ⊆ Cn+1,(5)

Cn+1 ⊇ conv(H([0, 1]× (Cn ∩G)) ∪ V ),(6)

Cn+1 ∩G ⊇ G ∩ conv(H([0, 1]× (Cn ∩G)) ∪ V ),(7)

and

Cn ⊆ conv(H([0, 1]× (Cn+1 ∩G)) ∪ V ).(8)

This is indeed possible. If Cn is already defined, we have by (1) and (2) that
Cn ⊆ U = conv(H([0, 1]× (U ∩G)) ∪ V ). In particular, each x ∈ Cn is the limit
of a sequence of (finite) convex combinations of points fromH([0, 1]×(U∩G))∪V .
We thus find a countable set An ⊆ U ∩G with Cn ⊆ conv(H([0, 1]×An)∪V ). In
particular, any set Cn+1 ⊇ An satisfies (8). To fulfill also the other requirements,
observe that H([0, 1] × (Cn ∩ G)) is separable by Lemma 1.1. Thus, the sets
Hn = conv(H([0, 1]× (Cn∩G))∪V ) and G∩Hn are separable. Let Bn ⊆ Hn be
countable and dense in Hn, and Dn ⊆ G∩Hn be countable and dense in G∩Hn.
Then we may choose Cn+1 = An ∪ Bn ∪ Cn ∪ Dn. Observe that Cn+1 ⊆ U ,
because Bn ∪Dn ⊆ Hn ⊆ conv(H([0, 1]× (U ∩D)) ∪ V ) = U by (1).
Consider now the set C =

⋃
Cn. By (8), we have Cn ⊆ conv(H([0, 1]× (C ∩

G)) ∪ V ) for each n, and so

(9) C ⊆ conv(H([0, 1]× (C ∩G)) ∪ V ).

Conversely, if x ∈ conv(H([0, 1]×(C∩G))∪V ), then x is the convex combination
of finitely many points from H([0, 1]× (C∩G))∪V =

⋃
H([0, 1]× (Cn∩G))∪V .

In view of (5), we find some index n such that x is the convex combination
of finitely many points from H([0, 1] × (Cn ∩ G)) ∪ V , and so (6) implies x ∈
conv(H([0, 1] × (Cn ∩ G)) ∪ V ) ⊆ C. Moreover, if additionally x ∈ G, we have
by (7) that x ∈ G∩conv(H([0, 1]×(Cn∩G))∪V ) ⊆ C ∩G. We thus have proved
that C satisfies

(10) conv(H([0, 1]× (C ∩G)) ∪ V ) ⊆ C

and (4). Taking the closures of both sides of the inclusions (9) and (10), we find
that C also satisfies (3). Hence, the assumptions of the theorem imply that C
is precompact which contradicts the fact that C1 ⊆ C contains a sequence xn
without a Cauchy subsequence. �
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Note that the assumption U ⊆ convH([0, 1] × (U ∩ D)) is essential in the
above proof for the definition of the set An.
For the natural situation that D is closed, H takes compact values, and V is

precompact, we may formulate the conditions in Theorem 1.1 in a way which is
much easier to verify:

Lemma 1.2. Let X be a Fréchet space, K ⊆ X closed and convex, D ⊆ K
closed, and H : [0, 1] × D → 2K be upper semicontinuous with compact values
H(λ, x). Let V ⊆ K be precompact. Then for any set G ⊆ D and any U ⊆ K
with

(11) conv(H([0, 1]× (G ∩ U)) ∪ V ) ⊆ U

the following statements are equivalent:

(a) Each countable set C ⊆ U which satisfies (3) and (4) is precompact.
(b) Each countable set C ⊆ U which satisfies (3) and (4) has the property
that C ∩G is precompact.

(c) Each countable set C ⊆ G ∩ U which satisfies

(12) G ∩ conv(H([0, 1]× C) ∪ V ) ⊆ C ⊆ G ∩ conv(H([0, 1]× C) ∪ V )

is precompact.
(d) (If G is open in K) Each countable set C ⊆ G ∩ U which satisfies

(13) C = G ∩ conv(H([0, 1]× C) ∪ V )

is precompact.

Proof. The equivalence of (a) and (b) follows from the fact that H maps
compact sets into compact sets. If C satisfies (3), and C ∩G is precompact, then
C ∩G is a compact subset of D, and so C ⊆ conv(H([0, 1] × (C ∩G)) ∪ V ) is
contained in a compact set.
Let (c) be satisfied. If C ⊆ U is countable and (3) and (4) hold, then C0 =

C ∩G satisfies

G ∩ conv(H([0, 1]× C0) ∪ V ) ⊆ C0 ⊆ G ∩ C = G ∩ conv(H([0, 1]× C0) ∪ V ).

Hence, condition (c) implies that C0 is compact, and so condition (b) holds.
Now, let condition (a) be satisfied. Let C ⊆ G ∩ U be countable and sa-

tisfy (12). By Lemma 1.1, the set M = conv(H([0, 1] × C) ∪ V ) is separable.
Let A ⊆ M \ G be countable and dense in M \ G, and put C0 = A ∪ C. Then
C0 = (M \G) ∪ C implies in view of (12) that

M ⊆ (M \G) ∪ (G ∩M) ⊆ C0 ⊆ (M \G) ∪ (G ∩M) ⊆M,



348 M. Väth

and so we have C0 =M which in view of C0 ∩G = C means that

C0 = conv(H([0, 1]× (C0 ∩G)) ∪ V ).

The relations C0 ∩G = C and (12) imply also

G ∩ conv(H([0, 1]× (C0 ∩G)) ∪ V ) = G ∩M ⊆ C = C0 ∩G.

We have C0 ⊆ U , because (11) implies A ⊆ M ⊆ U . By condition (a), the set
C0 thus is precompact, and so the subset C ⊆ C0 is also precompact.
Since condition (c) evidently implies (d), it only remains to show that con-

dition (d) is sufficient, if G is open in K. But if G is open in K, we have

(14) A ∩G = A ∩G (A ⊆ K).

Indeed, since A ⊆ (A∩G)∪ (K \G) and K \G is closed, we have A ⊆ (A ∩G)∪
(K \G), and so A ∩G ⊆ A ∩G which implies (14).
By (14) we have in particular, that if C ⊆ U is countable and satisfies (3),

then C0 = C ∩G satisfies

C0 = C ∩G = C ∩G = conv(H([0, 1]× C0) ∪ V ) ∩G
= conv(H([0, 1]× C0) ∪ V ) ∩G.

By condition (d), the set C ∩ G = C0 is compact. Hence, condition (d) implies
that condition (b) is satisfied. �

Now we can summarize the main result of this section.

Theorem 1.2. Let X be a Fréchet space, K ⊆ X closed and convex, D ⊆ K
be closed, and H : [0, 1]×D → 2K be upper semicontinuous with compact values
H(λ, x). Let V ⊆ K be precompact, and U ⊆ K be the corresponding V -ultimately
fundamental set. Let G ⊆ D be such that (2) holds. Then the following statements
are equivalent:

(a) H is V -fundamentally restrictible.
(b) U is compact.
(c) Each countable set C ⊆ U which satisfies (3) and (4) is precompact.
(d) Each countable set C ⊆ U which satisfies (3) and (4) has the property
that C ∩G is precompact.

(e) Each countable set C ⊆ G ∩ U which satisfies (12) is precompact.
(f) (If G is open in K) Each countable set C ⊆ G ∩ U which satisfies (13)
is precompact.

Proof. The equivalence of the first three statements follows from Corol-
lary 1.1 and Theorem 1.1. The equivalence of the last four statements follows
from Lemma 1.2. �
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We will see in Section 2 that the equivalent statements in Theorem 1.1 are
all satisfied for countable condensing homotopies H.
The definition of the fixed point index for fundamentally restrictible maps

is based on a result on the extension of continuous functions in Fréchet spaces.
More precisely, we need a special case of Dugundji’s extension theorem [12] (see
also [13, Chapter IX, Theorem 6.1]). However, Dugundji’s extension theorem
relies essentially on the axiom of choice. But one may give a simpler and more
constructive proof without the (uncountable) axiom of choice, if one supposes a
separability assumption which is satisfied for our applications. The construction
of the following proof is well-known in finite-dimensional spaces for maps with
bounded images (see e.g. [11, Proposition 1.1]). However, it seems that it has
never been explicitly carried out in Fréchet spaces and without any boundedness
assumption. So let us provide some details.

Lemma 1.3. Let X be a metric space, Y be a Fréchet space, D ⊆ X be closed
and separable, and f : D → Y be continuous. Then there exists an extension of
f to a continuous map F : X → conv(f(D)).

Proof. Let the metric in Y be generated by the countable family ‖ · ‖k
of seminorms. Recall that a sequence converges (resp. is bounded or a Cauchy
sequence) in Y if and only if it converges (resp. is bounded or a Cauchy sequence)
with respect to each seminorm ‖ · ‖k.
Since D is separable, there exists a dense subset {d1, d2, . . . } ⊆ D. Choose a

sequence of numbers an > 0 such that
∑
anmax({1}∪{‖f(dk)‖k : k = 1, . . . , n})

converges. For x ∈ D, put F (x) = f(x), and for x /∈ D, put λn(x) = max{2 −
d(x, dn)/dist(x,D), 0} and

F (x) =
∑∞
n=1 anλn(x)f(dn)∑∞
n=1 anλn(x)

.

Observe that we do not divide by 0 since {d1, d2, . . . } is dense in D. Moreover,
the series converges in Y , since the partial sums form a Cauchy sequence with
respect to each seminorm ‖ · ‖k (since λn is bounded by 2, and

∑
an‖f(dn)‖k

converges). Let us prove now that F is continuous at each x0 ∈ X, i.e. that
for each ε > 0 and each k we find some δ > 0 such that d(x, x0) ≤ δ implies
‖F (x)− F (x0)‖k ≤ ε.
In case x0 /∈ D, this follows immediately from the continuity of the functions

λn, the uniform boundedness of the sequence λn(x), and the fact that
∑
an and∑

an‖f(dn)‖k converge.
Since the continuity of F at interior points x0 of D is trivial, it remains

to consider the case x0 ∈ ∂D. Thus, let ε > 0 and some k be given. By the
continuity of f , we find some δ > 0 such that d0 ∈ D and d(x0, d0) ≤ 3δ implies
‖f(d0)− f(x0)‖k ≤ ε.
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If x ∈ X \D and n are such that λn(x) 6= 0, then d(x, dn) ≤ 2dist(x,D) ≤
2d(x, x0), and so d(x0, dn) ≤ d(x0, x) + d(x, dn) ≤ 3d(x, x0). Hence, we have for
each x ∈ X \D with d(x, x0) ≤ δ that for each n the estimate

λn(x)‖f(dn)− f(x0)‖k ≤ λn(x)ε

holds, and so

‖F (x)− F (x0)‖k =
∥∥∥∥∑∞n=1 anλn(x)(f(dn)− f(x0))∑∞

n=1 anλn(x)

∥∥∥∥∥
k

≤ ε.

Since also ‖F (x)− F (x0)‖k ≤ ε for each x ∈ D with d(x, x0) ≤ δ, we may
conclude that F is continuous at x0. �

Let us now recall the definition of the fixed point index for fundamentally
restrictible maps. For simplicity, we will restrict ourselves to the case of maps
with convex values (but we indicate at the end of Section 2 how a generalization
is possible).

Definition 1.4. Let X be a Fréchet space, K ⊆ X closed and convex, and
Ω ⊆ K be open in K. We call a multivalued map H : [0, 1] × Ω → 2K \ ∅ an
admissible homotopy, if the following holds:

(a) H is upper semicontinuous, and each value H(λ, x) is convex and com-
pact.

(b) For each x ∈ ∂Ω := Ω \ Ω we have x /∈ H([0, 1]× {x}).
(c) H is fundamentally restrictible on Ω. By our above results, it is equiva-
lent to require that there is some precompact V ⊆ K with the following
properties: If C ⊆ Ω is countable and contained in the V -ultimately
fundamental set of H, then the relation

(15) Ω ∩ conv(H([0, 1]× C) ∪ V ) ⊆ C ⊆ Ω ∩ conv(H([0, 1]× C) ∪ V )

implies that C is precompact.

If F : Ω→ 2K \∅ is such that the constant homotopyH(λ, x) = F (x) (0 ≤ λ ≤ 1)
is admissible, we call the pair (F,Ω) admissible.

The definition immediately implies:

Proposition 1.2. If H is an admissible homotopy, and λ : [0, 1]→ [0, 1] is
continuous, then H̃(t, x) = H(λ(t), x) is an admissible homotopy. In particular,
each of the pairs (H(λ, · ),Ω) is admissible.

The definition of the fixed point index is as follows: let (F,Ω) be an admissible
pair, and U∞ denote the compact ultimately fundamental set of the constant
homotopy H(λ, x) = F (x). If U∞ = ∅, then F has no fixed points, and we put
indK(F,Ω) = 0. Otherwise, let U be a convex and compact set containing U∞
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such that F (U ∩ Ω) ⊆ U (for example, one may put U = U∞). Let R be some
retraction from X onto U (such a retraction exists by Lemma 1.3). Then we
define

indK(F,Ω) = deg(id− FR,R−1(Ω), 0),

where the right-hand side denotes the degree for multivalued upper semicontinu-
ous compact maps with convex values. That this definition is independent of the
particular choice of U and R, can be proved analogously to [15, Proposition 2.1].
Observe that the proof of this fact (see also [31, Lemma 2.2]) uses the convexity
of the values of H.
Actually, the proofs in the cited papers [15], [31] use the ultimate range in

place of the ultimately fundamental set, but an inspection of the proofs shows
that the above claim is true. Moreover, we get analogously to [15, Theorem 2.1
and Remark 2.1] the following Theorem 1.3.
We remark that an alternative (although similar and actually equivalent)

definition of the fixed point index can be found in [23] (in that monograph only
Banach spaces are considered but the results which are essential for us hold also
for Fréchet spaces). From that reference, we also take the restriction property:

Theorem 1.3. Let X be a Fréchet space, K ⊆ X closed and convex, and
(F,Ω) be admissible. Then indK(F,Ω) has the following properties:

(a) (Fixed point property) If indK(F,Ω) 6= 0, then F has a fixed point
x ∈ Ω, i.e. x ∈ F (x).

(b) (Homotopy invariance) If H is an admissible homotopy, then

indK(H(0, · ),Ω) = indK(H(1, · ),Ω).

(c) (Additivity) If Ω1,Ω2 ⊆ Ω are disjoint and open in K such that Ω1∪Ω2
contains all fixed points of F in Ω, then

indK(F,Ω) = indK(F,Ω1) + indK(F,Ω2).

(d) (Normalization) indK(F0,Ω) = 1 if F0(x) ≡ {x0} ⊆ Ω.
(e) (Restriction) If K0 ⊆ K is closed and convex with F (Ω) ⊆ K0, then

indK(F,Ω) = indK0(F,Ω ∩K0).

The additivity in [15] is formulated less generally than in Theorem 1.3, but
the proof shows (see the proof of [31, Theorem 2.3]) that the above formulation
is correct (even a more general result holds, see [23]).
A generalization of Borsuk’s theorem for multivalued fundamentally restric-

tible maps can be found in [6, Theorem 2.3.16]. We mention only the following
special case of that result:
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Theorem 1.4. Let X be a Fréchet space, K = X, and (F,Ω) be admissi-
ble. If Ω is a symmetric neighbourhood of 0 and F is odd with 0 ∈ F (0), then
indX(F,Ω) is odd.

Proof. By [6, Theorem 2.3.16], we only have to check that there is a sym-
metric fundamental set U with U ∩ Ω 6= ∅ and such that F (U ∩ Ω) is relatively
compact. It thus suffices to prove that the ultimate fundamental set U∞ is no-
nempty and symmetric. But since 0 is a fixed point by assumption, we have
0 ∈ U∞. Moreover, since F is odd also U0 = U∞ ∩ (−U∞) is fundamental and so
U∞ ⊆ U0. This implies U∞ = U0, i.e. U∞ is symmetric. �

The unsymmetry in the relation (15) is rather dissatisfying. It would be
much more natural to consider (13) with G = Ω instead. However, for the choice
G = Ω, the relation (2) need not hold, which is required for Theorem 1.2. Recall
that fundamental sets U have to satisfy the inclusion H([0, 1] × (U ∩ Ω)) ⊆ U .
Let us for a moment call the set U weakly fundamental, if we require only

H([0, 1]× (U ∩ Ω)) ⊆ U

instead. Using a similar reasoning as before, we can prove that under an assump-
tion of the type (13) with G = Ω, the map H has a weakly fundamental compact
set. However, we do not know whether the latter is sufficient to define a fixed
point index. At least, this property is sufficient to prove the homotopy invariance
of certain essential fixed points. We employ this idea in a more general setting
in the forthcoming paper [35].

2. The fixed point index for countably condensing maps

We now formulate special cases of the results in Section 1 for countably
condensing maps. We use the following definitions which are similar to those
from [1] (see also [33]).

Definition 2.1. Let X be a Fréchet space, and K ⊆ X be closed and
convex. A measure of noncompactness on K is a map γ from the system of
bounded subsets of K into a partially ordered set which satisfies

γ(M) = γ(convM).

Such a function γ is called

(a) monotone, if M ⊆ N implies γ(M) ≤ γ(N) (for bounded N ⊆ K),
(b) V -stable (for fixed bounded V ⊆ K), if γ(M ∪ V ) = γ(M) for each
bounded set M ⊆ K.

If D ⊆ K, we call a function F : D → 2K condensing on D (with respect to γ),
if the relation

(16) γ(F (C)) 6≥ γ(C)
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holds for each bounded but not precompact subset C ⊆ D (in particular, F (C)
is bounded for such sets C). We call a homotopy H : [0, 1]×D → 2K condensing
on D, if

(17) γ(H([0, 1]× C)) 6≥ γ(C)

holds for each bounded but not precompact subset C ⊆ D. We call F (resp.
H) countably condensing on D, if (16) (resp. (17)) holds for each subset C ⊆ D
which is countable and bounded but not precompact. Moreover, we say that
F (resp. H) is (countably) condensing with respect to a class Γ of measures of
noncompactness, if for each (countable) bounded but not precompact subset
C ⊆ D one can find some γ ∈ Γ with (16) (resp. (17)).

In particular, each operator which is condensing with respect to some γ is
condensing with respect any class Γ ⊇ {γ}. Typical examples for γ are:
(a) The Hausdorff measure γ = χA of noncompactness for some A ⊇ K:
χA(M) is the infimum of all ε > 0 such that M has a finite ε-net in A.

(b) The Kuratowski measure γ = α of noncompactness: α(M) is the infi-
mum of all ε > 0 such thatM has a finite covering of sets with diameter
smaller than ε.

χA and α are monotone and V -stable for each precompact V ⊆ X.
In Fréchet spaces, it is important that we allow γ to take also values in

sets R 6= [0,∞): for example if the metric in X is generated by the countable
family of seminorms ‖ · ‖k, one may define γ(M) = (α1(M), α2(M), . . . ) where
αk(M) denotes the Kuratowski measure of noncompactness with respect to the
seminorm ‖ · ‖k. This choice is more natural (and usually provides better results)
than the Kuratowski measure of noncompactness with respect to the metric. For
more details we refer to [33].
Theorem 1.2 immediately implies:

Corollary 2.1. Assume that D ⊆ K is bounded and closed, and H :
[0, 1]×D → 2K is upper semi-continuous and takes compact values. If V ⊆ K is
precompact and H is countably condensing on D with respect to a class Γ of mo-
notone V -stable measures of noncompactness on K, then H is V -fundamentally
restrictible.
In particular, if H is countably condensing on D with respect to a class of

monotone measures of noncompactness on K, then H is fundamentally restric-
tible.

Proof. Let a countable set C ⊆ D be given which is not precompact. Since
C is bounded (because D is bounded), we must have (17) for some γ ∈ Γ. But if
C satisfied (12), we would have γ(C) ≤ γ(H([0, 1]×C)∪ V ) = γ(H([0, 1]×C)),
a contradiction. �
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Theorem 1.3 implies the following fixed point theorem.

Theorem 2.1. Let X be a Fréchet space, K ⊆ X be closed and convex,
and Ω ⊆ K be nonempty and open in K. Assume that there exists an upper
semicontinuous homotopy H : [0, 1] × Ω → 2K \ ∅ with convex and compact
values such that the following holds:

(a) The range of H(0, · ) is contained in a compact and convex set V0 ⊆ Ω.
(b) None of the mappings H(λ, · ) (0 ≤ λ ≤ 1) has a fixed point in ∂Ω :=
Ω \ Ω.

(c) H is fundamentally restrictible, i.e. there is a precompact V ⊆ K with
the following property: any countable C ⊆ Ω which is contained in the
V -ultimately fundamental set of H and satisfies (15) is precompact.
This condition is satisfied if Ω is bounded and H is countably con-

densing on Ω with respect to a class of monotone measures of noncom-
pactness on K.

Then indK(H(1, · ),Ω) = 1, and H(1, · ) has a fixed point in Ω.

Proof. H is an admissible homotopy. Put F = H(0, · ). Then (F,Ω) is
admissible. The homotopy invariance and the restriction property of the fixed
point index imply

indK(H(1, · ),Ω) = indK(F,Ω) = indV0(F,Ω ∩ V0).

Let Ω0 ⊆ K be open in K with V0 ⊆ Ω0, and R be a retraction of Ω0 onto
V0. Then (FR,Ω0) is admissible, and the restriction property of the fixed point
index gives

indK(FR,Ω0) = indV0(FR,Ω0 ∩ V0) = indV0(F,Ω0 ∩ V0) = indV0(F,Ω ∩ V0).

For the last equality we have used the additivity of the fixed point index, since
by assumption, all fixed points of F are contained in Ω ∩ V0. Fix some x0 ∈ V0.
Since V0 is convex, the homotopy H0(λ, x) = λx0+(1−λ)FR(x) takes values in
the compact set V0 ⊆ Ω0 and thus is admissible on Ω0. The homotopy invariance
and normalization of the fixed point index thus imply

indK(FR,Ω0) = indK(H0(1, · ),Ω0) = 1.

Combining the above formulas, the statement follows. �

We note that the proof of the previous result could be simplified, if we assu-
med the slightly more restrictive condition that V0 ⊆ Ω. Then the homotopy H0
in the proof is even admissible on Ω, and we do not have to pass to a larger set
Ω0.
Observe that V need not be closed or convex, and even the choice V = ∅ is

allowed.
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As a consequence of Theorem 2.1, we get the following multivalued variant
of the main fixed point theorem from [27] (see also [11, Theorem 18.1]):

Corollary 2.2. Let X be a Fréchet space, K ⊆ X closed and convex, and
Ω ⊆ K be nonempty and open in K. Let F : Ω→ 2K \∅ be upper semicontinuous
with convex and compact values. Assume there is some x0 ∈ Ω with the following
properties:

(a) The Leray–Schauder boundary condition holds on ∂Ω := Ω \ Ω:

F (x)− x0 63 λ(x− x0) (x ∈ ∂Ω, λ ≥ 1).

(b) If C ⊆ Ω is countable and satisfies

(18) Ω ∩ conv(F (C) ∪ {x0}) ⊆ C ⊆ Ω ∩ conv(F (C) ∪ {x0}),

then C is precompact.
This holds if Ω is bounded and F is countably condensing on Ω with

respect to a class of monotone {x0}-stable measures of noncompactness
on K.

Then indK(F,Ω) = 1, and F has a fixed point in Ω.

Proof. Put V = {x0}, and H(λ, x) = λF (x) + (1 − λ)x0 in Theorem 2.1,
and observe that convH([0, 1]× C) = conv(F (C) ∪ {x0}) for each C ⊆ Ω. �

Observe that for the choice Ω = K the Leray–Schauder boundary condition
is satisfied by definition. In this case, F maps the nonempty, closed, bounded,
and convex set Ω = K into itself, and so Corollary 2.2 contains Darbo’s fixed
point theorem as a special case.

But if we have such an invariant set Ω = K, Corollary 2.2 implies even more:
if F is not condensing but, quite the opposite, if it is “expanding”, we also have
a fixed point theorem. F may even be condensing on some sets and expanding
on others:

Definition 2.2. Let D ⊆ K. We say that a map F : D → 2K is countably
unpreserving with respect to a class Γ of measures of noncompactness on K, if
for each countable bounded but not precompact C ⊆ D with bounded image
F (C), there is some γ ∈ Γ such that

γ(F (C)) 6= γ(C).

Corollary 2.3. Let X be a Fréchet space, K ⊆ X nonempty, closed, co-
nvex, and bounded, and F : K → 2K \ ∅ be upper semi-continuous with convex
and compact values. Fix some x0 ∈ K. If F is countably unpreserving on K
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with respect to a class Γ of {x0}-stable measures of noncompactness on K, then
indK(F,K) = 1, and F has a fixed point.

Proof. Apply Corollary 2.2 with Ω = K: if C ⊆ K is countable and sa-
tisfies (18), then the sets C and F (C) ∪ {x0} have the same convex hull. Since
C is bounded, we find γ(C) = γ(F (C)) for each γ ∈ Γ which implies that C is
precompact. �

Recall the induction process used to define the ultimate range of a homotopy
H. Let us stop this induction process already at the first limit ordinal ω (= N):
we have U0 = convH([0, 1] × D), Un+1 = convH([0, 1] × (Un ∩ D)), and Uω =⋂∞
n=0 Un. Since Uω is a fundamental set for H, the compactness of Uω allows to
define the fixed point index (this is the first approach to the fixed point index
for noncompact maps and was developed in [29]).

We now present a result which shows that Uω is compact for countable
condensing homotopies. The approach from Section 1 can not be used to this
end, since it is not clear whether Uω also satisfies the converse inclusion Uω ⊆
convH([0, 1]× (Uω ∩D)). We need some auxiliary definitions:

Definition 2.3. We call a measure γ of noncompactness on K

(a) finitely stable, if γ(M ∪ {x}) = γ(M) (i.e. if γ is V -stable for any finite
set V ⊆ X),

(b) almost lower semicontinuous, if for any bounded set M ⊆ K the follo-
wing holds: if B ⊆ K is bounded and Mn ⊆ B satisfy

lim
n→∞

sup
x∈M
dist(x,Mn) = 0,

and if c = γ(Mn) is independent of n, then γ(M) ≤ c.

The Hausdorff and Kuratowski measures of noncompactness are even lower
semicontinuous in the sense that one may drop the additional assumption c =
γ(Mn) and may conclude instead γ(M) ≤ supn γ(Mn). Observe that for general
measures of noncompactness not even the existence of a supremum is trivial.

Recall that a partially ordered set R is called super Dedekind complete, if
each nonempty order bounded from above subset M ⊆ R has a supremum s and
a countable subset M0 ⊆M with s = supM0.

Theorem 2.2. Let D be bounded, and H : [0, 1]×D → 2K have the property
that H([0, 1] × A) is precompact for any precompact A ⊆ D. Assume that H is
countably condensing with respect to a countable family Γ of monotone, finitely
stable, and almost lower semicontinuous measures of noncompactness on K. As-
sume that each γ ∈ Γ takes its values in a super Dedekind complete set (which



Fixed Points of Countably Condensing Maps 357

may depend on γ). Then each set M ⊆ X with the property that M \Un is finite
for each n is precompact. In particular, Uω is compact.

Proof. Let F denote the family of all sets M ⊆ X such that each of the
sets M \ Un is finite, and FD denote the family of all countable C ∈ F with
C ⊆ D.
Step 1. Let us first show that there is some B ∈ FD with γ(B) ≥ γ(C) for

each C ∈ FD and each γ ∈ Γ:
Let Γ = {γ1, γ2, . . . }. Since γn is monotone, and

⋃
FD ⊆ D, the set Mn =

{γn(C) : C ∈ FD} is order bounded from above by γn(D). Consequently, sn =
supMn exists, and there is a countable subset {C1,n, C2,n, . . . } ⊆ FD with sn =
supk γn(Ck,n). Put Cm =

⋃
k,n≤m Ck,n, and Bm = Cm ∩ Um. Since Ck,n ∈ FD,

the set Cm \Um is finite, and so γ(Cm) = γ(Bm ∪ (Cm \Um)) = γ(Bm) for each
γ ∈ Γ and each m, since γ is finitely stable. The set B =

⋃
Bm belongs to FD,

because for m ≥ n we have Um ⊆ Un, and so the set

B \ Un ⊆
n−1⋃
m=1

(Cm \ Un) ∪
∞⋃
m=n

(Bm \ Un) =
n−1⋃
m=1

(Cm \ Un)

is finite for each n. For each n and k, we have γn(B) ≥ γn(Bmax{k,n}) =
γn(Cmax{k,n}) ≥ γn(Ck,n), i.e. γn(B) ≥ supk γn(Ck,n) = sn, and so γn(B) =
maxMn.
Step 2. We show now the following: let M ∈ F , and xn ∈ M such that no

element in the sequence occurs infinitely many often. Then there is some A ∈ FD
and a sequence yn ∈ conv(H([0, 1]×A)) with d(xn, yn)→ 0.
To see this, observe first thatM \U1 is finite by assumption and thus contains

xn only for finitely many n. Hence, it is no loss of generality to assume that
xn ∈ U1 for all n.
Given some n, let kn ≥ 1 be the largest index with xn ∈ Ukn ; if no largest

index with this property exists, put kn = n. For any k, the set M \ Uk is finite
by assumption and thus the set Jk = {n : xn /∈ Uk} is finite. The relation
U1 ⊇ U2 ⊇ . . . implies that Ik = {n : kn ≤ k} is contained in Jk+1∪{1, 2, . . . , k}
and thus finite for any k.
We have xn ∈ Ukn = convH([0, 1] × (Ukn−1 ∩ D)) for any n. Hence, there

is some yn which is the convex combination of (finitely many) elements from
H([0, 1] × (Ukn−1 ∩D)) such that d(xn, yn) < n−1. In particular, we find some
finite An ⊆ Ukn−1 ∩ D with yn ∈ convH([0, 1] × An). Now A =

⋃
An is the

required set. We have to check that A ∈ FD. Since U0 ⊇ U1 ⊇ . . . implies
An ⊆ Uk for k ≤ kn−1, we have A\Uk =

⋃
n(An \Uk) =

⋃
n:k>kn−1(An \Uk) ⊆⋃

n∈Ik An. But the last set is finite for each k, since Ik and An are finite.
Step 3. We prove now that all sets in FD are precompact. Let C ∈ FD

be arbitrary. We have to prove that C is precompact. If C is finite, we are
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done already. Thus assume that C is infinite. Moreover, replacing C by the set
C ∪ B ∈ FD with B from Step 1 if necessary, it is no loss of generality to
assume that γ(C) ≥ γ(F ) for each F ∈ FD and each γ ∈ Γ. In particular, if
xn denotes an enumeration of the elements of M := C, and if A and yn are
chosen as in Step 2, we have A ∪ C ∈ FD and so γ(C) ≥ γ(A ∪ C) (γ ∈ Γ).
Put Cn = {x1, . . . , xn, yn+1, yn+2, . . . }, and C0 = {y1, y2, . . . }. Since each γ ∈ Γ
is finitely stable, we have γ(Cn) = γ(C0) for each n. Moreover, d(xn, yn) → 0
implies supx∈C dist(x,Cn)→ 0. Since γ is almost lower semicontinuous, we may
conclude that γ(C) ≤ γ(C0). Hence,

γ(A ∪ C) ≤ γ(C) ≤ γ(C0) ≤ γ(convH([0, 1]×A)) ≤ γ(H([0, 1]× (A ∪ C)))

for each γ ∈ Γ. Since H is countably condensing and A ∪ C is countable and
bounded (since D is bounded) this implies that A ∪ C is precompact. Hence, C
is precompact, as claimed.
Step 4. Now we prove that any set M ∈ F is precompact. We prove that

any sequence xn ∈ M contains a Cauchy subsequence. If one element of this
sequence occurs infinitely many often, we are done already. Otherwise, choose
yn and A ∈ FD as in Step 2 of the proof. By Step 3, the set A is precompact.
This implies by assumption that convH([0, 1]×A) is precompact The sequence
yn belongs to this precompact set and thus contains a Cauchy subsequence.
By d(xn, yn) → 0, this implies that also xn contains a Cauchy subsequence, as
claimed. �

Remark 2.1. The assumption that H([0, 1]×A) be precompact for precom-
pact A ⊆ D is satisfied, if D is closed and H is upper semicontinuous and all
values H(x, λ) are compact. Indeed, since A is a compact subset of D, the image
H([0, 1]×A) is compact.

The idea for the proof of Theorem 2.2 is taken from the proof of [22, The-
orem 3.1] (be aware that in the proof of [22, Theorem 3.1] there is a mistake,
since it need not necessarily be the case that the sequence M considered there
belongs to Z; however the problem can be avoided as can be seen in Step 1 from
our above proof).

For deeper results in the fixed point index theory of fundamentally restrictible
maps, a role is played by so-called 1- and 2-completely fundamentally restrictible
maps, see e.g. [6], [23]. These are maps which are V -fundamentally restrictible for
each set V ⊆ Ω which consists of 1 resp. 2 points. Of course, Theorem 1.2 may be
used to verify this property. In particular, Corollary 2.1 implies that maps which
are countably condensing with respect to a class of monotone and finitely stable
measures of noncompactness are 1- and 2-completely fundamentally restrictible.
We note that there exists a fixed point theory for the case then H(λ, x) is

not convex but only acyclic (with respect to the Čech cohomology with rational
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coefficients). This theory was initiated with the fixed point theorem in [14] and is
now rather developed (see in particular [17]); for historical surveys see [4], [6], see
also [20]. Such a theory exists even if H is generalized acyclic in the sense from
[6], in particular if H = ϕ◦h where h : [0, 1]×D → 2Y \∅ is upper semicontinuous
with compact acyclic values, and ϕ : Y → K is continuous. The latter is e.g. of
interest for the existence of periodic solutions of differential inclusions, since the
translation operator usually has this property, see e.g. [6], [10].

The definition of the fixed point index in Section 1 does not transfer to (al-
most) acyclic maps. However, for 2-completely fundamentally restrictible such
maps in Banach spaces a degree theory was introduced in [30]; see also [23].
The degree was generalized to locally convex spaces in [37]; see also [6]. Since
Theorem 1.2 can be used to verify that a map is 2-completely fundamentally
restrictible (see above), one can combine these results to define a fixed point
index for countably condensing acyclic homotopies. One has to pay for this ap-
proach by more restrictive compactness assumptions (compared to the theory
for convex-valued homotopies).

Another approach to define a fixed point index for maps with nonconvex
values is rather new and consists in approximating such maps by single-valued
maps (which is somewhat analogous to the convex-valued case), see e.g. [3], [18],
[19]. We do not know whether it is possible to take advantage of this approach
in connection with fundamentally restrictible maps.

3. An application

In this section, we consider only single-valued maps. Recall that an operator
is called proper, if preimages of compact sets are compact. Any continuous proper
operator F in metric spaces maps closed sets into closed sets. Indeed, let M be
closed, and yn ∈ F (M) with yn → y. There are xn ∈M with yn = F (xn). Since
the preimage of the compact set {y, y1, y2, . . . } is compact, the sequence xn ∈M
has a convergent subsequence; the limit x belongs to M , because M is closed.
The continuity of F implies Fx = y, and so F (M) is closed.

We say that a function γ defined on the system of countable bounded subsets
ofK ⊆ X with values in a partially ordered set is (algebraic) countably compactly
stable, if γ(A + C) = γ(A) for any countable bounded subsets A,C ⊆ K with
precompact C.

For example, the Hausdorff and Kuratowski measures of noncompactness are
countably compactly stable, because they are monotone, algebraic semi-additive
(i.e. γ(A+ C) ≤ γ(A) + γ(C)) and vanish on precompact sets.

Proposition 3.1. Let X be a Fréchet space, K ⊆ X, D ⊆ K bounded
and closed in X, and Γ be a class of monotone and countably compactly stable
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functions on K. If F : D → K is countably unpreserving with respect to Γ, then
id− F is proper.

Proof. Let M ⊆ X be compact. Then B = (id − F )−1(M) is closed in X
(since D is closed), and we only have to prove that B is precompact. Other-
wise, B contains a sequence xn ∈ B without a Cauchy subsequence. Then
A = {x1, x2, . . . } ⊆ D is bounded but not precompact, and yn = xn−Fxn ∈M .
Hence, C = {y1, y2, . . . } is precompact, and we have A ⊆ F (A) + C and
F (A) ⊆ A+(−C). In particular, F (A) is bounded, and we have γ(A) ≤ γ(F (A))
and γ(F (A)) ≤ γ(A) for each γ ∈ Γ. This is not possible, since F is countably
unpreserving. �

We are now in a position to prove the following generalization of the Fredholm
alternative.

Theorem 3.1. Let X be a Banach space, and A : X → X. Assume that A
is continuous and countably condensing on a neighbourhood of 0 with respect to a
class Γ of monotone and countably compactly stable measures of noncompactness
on X. Then the following holds:

(a) If F = id−A is odd and F−1({0}) = {0}, then F maps any neighbour-
hood of 0 onto a neighbourhood of 0. In particular, if A is linear or at
least homogeneous, then F−1({0}) = {0} implies that F is onto.

(b) If A is linear, then the operator F = id − A has a finite-dimensional
null space and a closed range.

Proof. Let K = X, and Ω0 ⊆ K be an open neighbourhood of 0 such that
A is continuous and countably condensing on Ω0. Without loss of generality, let
Ω0 be bounded (X is a Banach space).
(a) Let a neighbourhood U of 0 be given. Then Ω = (U ∩Ω0)∩ (−(U ∩Ω0))

is a symmetric neighbourhood of 0 which is contained in Ω0. By Proposition 3.1,
the setM = F (∂Ω) is closed. Since 0 /∈M by assumption, we find a convex open
neighbourhood V of 0 with V ∩M = ∅. We claim that V ⊆ F (Ω) ⊆ F (U).
Let y ∈ V be given. Consider the homotopy H(λ, x) = A(x)+λy. None of the

maps H(λ, · ) (0 ≤ λ ≤ 1) has a fixed point x ∈ ∂Ω, for otherwise λy = x−Ax ∈
M in contradiction to λy ∈ V . Let C ⊆ Ω be countable but not precompact. If
Λ ⊆ [0, 1] is countable and dense, then H(Λ× C) is dense in H([0, 1]× C), and
so these sets have the same closed and convex hull. Consequently, we have for
each γ ∈ Γ that

γ(H([0, 1]× C)) = γ(H(Λ× C)) = γ(A(C) + Λy) = γ(A(C)).

For the last equality we have used the fact that γ is countably compactly sta-
ble. We may conclude that γ(H([0, 1] × C)) 6≥ γ(C) for some γ ∈ Γ. We thus
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have proved that H is countably condensing with respect to Γ. In view of Corol-
lary 2.1, the homotopy H is admissible, and so indX(H(1, · ),Ω) = indX(A,Ω).
By Theorem 1.4, indX(A,Ω) is odd, and so H(1, x) = x for some x ∈ Ω. But
this means F (x) = y, and so y ∈ F (Ω), as claimed.
(b) Let D = Ω0. By Corollary 2.1, the constant homotopy H(t, x) = A(x) is

fundamentally restrictible (on D), i.e. its ultimate fundamental set U∞ is com-
pact. But each fundamental set contains all fixed points of A in D. In particular,
U∞ contains F−1({0})∩D. Hence, U∞∩F−1({0}) is a compact neighbourhood of
0 in the space N = F−1({0}). But this space has only compact neighbourhoods
if it has finite dimension, see e.g. [32, Theorem 1.22].
With the following reasoning we can prove that F has closed range without

appealing to the theorem of Hahn–Banach (and thus avoiding the (uncountable)
axiom of choice). There is some ρ > 0 such that M = {x ∈ X : ‖x‖ ≤ 2ρ} is
contained in D. For x ∈ X, let [x] denote the equivalence class of X in the factor
space X/N , i.e. ‖[x]‖ = inf{‖x+ y‖ : y ∈ N}. Let

S0 = {[x] ∈ X/N : ‖[x]‖ = ρ} and S = {x ∈M : [x] ∈ S0}.

Since N has a finite dimension, the set S is closed: indeed, if xn ∈ S converges
to x, then x ∈M , and

ρ ≤ ‖xn + y‖ → ‖x+ y‖ for each y ∈ N.

Moreover, if yn ∈ N are such that ‖xn + yn‖ → ρ, then the triangle inequality
implies that yn is bounded, and so a subsequence of yn converges to some y0 ∈ N ;
hence we must have ‖x+ y0‖ = ρ, and so x ∈ S.
Now, let F0 : X/N → X be defined by F0[x] = Fx. Observe that for each

[x] ∈ S0, we find some y ∈ N with x + y ∈ M , and so x + y ∈ S. Hence,
F0(S0) ⊆ F (S). Since S ⊆M is bounded and closed, Proposition 3.1 implies that
F (S) is closed. In view of S ∩F−1({0}) = S ∩N = ∅, we have 0 /∈ F (S) = F (S),
and so

d = dist(0, F0(S0)) ≥ dist(0, F (S)) > 0.
We may conclude that the inverse of F0 is bounded by d−1ρ, and so the range
of F0 (which is the range of F ) is complete and thus closed. �

Considering the remark in the above proof, note that the Hahn–Banach
extension theorem can be proved without the (uncountable) axiom of choice
for a large class of spaces, e.g. for separable spaces [16, p. 183], but not for all
spaces (see e.g. [26]).
For linear operators A under more restrictive countable compactness assump-

tions on A, the Fredholm property of id−A follows from [1, Theorem 2.3.7] (which
is proved by purely linear arguments and needs the Hahn–Banach extension the-
orem for the proof).
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