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A FIXED POINT INDEX FOR EQUIVARIANT MAPS

Davide L. Ferrario

Abstract. The purpose of the paper is to define a fixed point index for
equivariant maps of G-ENR’s and to state and prove some of its properties,
such as the compactly fixed G-homotopy property, the Lefschetz property,
its converse, and the retraction property. At the end, some examples are
given of equivariant self-maps which have a nonzero index (hence cannot
be deformed equivariantly to be fixed point free) but have a zero G-Nielsen
invariant.

1. Introduction

The aim of the paper is to define an equivariant fixed point index for com-
pactly fixed G-maps f : U → X , where U is an open G-subset of the G-ENR X ,
and G is a compact Lie group. The main point is to try to mix the ideas of the
Hopf–Dold (equivariant) fixed point index I (see e.g. [5], [7], [21]) with Nielsen
fixed point theory (as done in [9]). While the Hopf–Dold fixed point index is
invariant under suspension, i.e. it is defined up to stable equivalence of maps,
the Nielsen number relies on a more truly homotopical approach, being invariant
only up to homotopy. The motivation in introducing the Nielsen number is the
following: if I(f) �= 0 then each (compactly fixed) map f ′ stably equivalent to
f has at least one fixed point, and this implies that every map f ′′ homotopic
to f has at least a fixed point; one wants to know when the converse of this
last statement is true (i.e. when I(f) = 0 implies that f can be homotopically
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deformed to be fixed point free), and to compute a lower bound of the number
of its fixed points.

The (local) Nielsen number N(f) of a compactly fixed map f plays a central
role whenever dealing with both these problems (for the definition and details
please refer to [16], [2], [9] and [13]; for more recent surveys see [3], [12]): it is
an integer, invariant up to (unstable) homotopy, with the following two main
properties:

(1) N(f) is a lower bound of the number of fixed points of f .
(2) (Wecken property): if M is a manifold of dimension ≥ 3 then there

exists a compactly fixed homotopy ft such that f0 = f and f1 has
exactly N(f) fixed points.

As a consequence, the Converse of the Lefschetz property holds whenever
the dimension of M is ≥ 3 and I(f) = 0 implies N(f) = 0 (e.g. if M is a Jiang
space of dimension ≥ 3). On the other hand it is not difficult to find examples
of maps with I(f) = 0 and N(f) �= 0. As the Hopf–Dold fixed point index is
therefore the best index in the stable category, somehow the Nielsen number
(and the related algebraic generalized Lefschetz number) is more adequate to the
ordinary unstable homotopy category.

The same happens in the equivariant settings: the Lefschetz–Dold equiva-
riant fixed point index is stable, and it is unique among all the indexes with this
property (cf. e.g. [5], [7], [21]), as e.g. the equivariant Lefschetz class defined by
Laitinen and Lück in [19], or Komiya [17], [18], while other invariants such as
the equivariant Lefschetz number defined by Wilczyński in [25] or the G-Nielsen
invariant and the equivariant Nielsen number by Wong in [26], [27] are unstable.

Here we define an unstable equivariant fixed point index (i.e. it is invariant
up to compactly fixed G-homotopy but not up to stable G-equivalence), and we
prove some of its properties, following the lines of [5]. It is very close to the
equivariant Nielsen number of [26], [27], but it is not the same index, as it is
readily seen from the definition. One of the differences is that it does not count
the number of fixed points, as local Nielsen numbers do, but it only tries to
detect when there must be at least one fixed point (the Lefschetz property in
Proposition 4.13). Also, under some mild assumptions a kind of converse of the
Lefschetz property holds, as shown in Section 4.4. Another difference is that it
is invariant up to compactly fixed G-homotopy, whereas the equivariant Nielsen
number needs the homotopy to be G-compactly fixed.

In Section 2 we start by defining the Reidemeister set; we follow a non-
traditional approach, suggested by M. Citterio in [4], allows to simplify some
proofs of its properties. Section 3 is devoted to the definition of the non-
equivariant fixed point index, which is very close to the local Nielsen number
of Fadell and Husseini in [9]. The equivariant fixed point index is then defined
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in Section 4, with some of its common properties. At the end, in Section 5, some
examples are given, which can be of some interest by themselves. It is shown
that even if for every isotropy group H ⊂ G the G-map fH : XH → XH can be
deformed to be fixed point free, where X is a smooth G-manifold and G a finite
group, the G-map f may not be deformed equivariantly to be fixed point free.

The paper was written in the Mathematisches Institut der Universität Hei-
delberg; I wish to thank the Institut for its hospitality. Furthermore, I am greatly
in debt with A. Dold, for his patient help, advice and suggestions; I also wish to
thank D. L. Gonçalves, B. J. Jiang, F. Petersen, R. Piccinini, S. Priddy, A. Vi-
dal, P. Wong, and many others for their kind help. Special thanks are due to
the referee, whose remarks have significatively improved the paper.

2. The Reidemeister set R(f)

There are several ways to define the Reidemeister trace and the Nielsen
number: using covering spaces, obstruction theory and others. Here we modify
a little the standard definitions, in order to simplify some proofs. Instead of
considering the Reidemeister classes in the fundamental group, or as classes of
liftings to the universal covering space of the given map, we give an alternate
equivalent definition after introducing the (equalizer) space E(f). Further details
can be found in [4].

2.1. The space E(f). Let X be a topological space, U ⊂ X a subset of
X and f : U → X a continuous map. Let I denote the unit interval I =
{t ∈ R : 0 ≤ t ≤ 1} and XI the space of all the maps λ : I → X with the
compact-open topology. Then the evaluation map ε0,1 : XI → X × X defined
by ε0,1(λ) = (λ(0), λ(1)) for all λ ∈ XI is a fibration, and we can look at the
pull-back diagram

E(f)
—|

��

ε0,1

��

XI

ε0,1

��

U
(i,f)

�� X ×X

where the map (i, f) is defined by (i, f)(x) = (x, f(x)) for all x ∈ U and E(f) :=
U � XI is homeomorphic to the space of all the paths λ : I → X such that
λ(0) ∈ U and λ(1) = f(λ(0)).

2.2. Properties of E(f). The space E(f) has a quasi-functorial behavior,
in the following sense. Let X and Y spaces, U ⊂ X and V ⊂ Y subsets of
X and Y , and f : U → X , g : V → Y two maps. Let W ⊂ X be another
subset of X , and k : W → Y a map. Then the composite maps kf and gk are
defined resp. on f−1W and k−1V . We write kf = gk when kf(x) = gk(x) for
all x ∈ f−1W ∩ k−1V .
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Under these hypotheses, we are going to define a map

kE : D(kE) ⊂ E(f |f−1W ∩ k−1V ) → E(g)

from a suitable domain D(kE). By definition, f(f−1W ∩ k−1V ) ⊂ W , hence
there is a pull-back diagram

E(f : f−1W ∩ k−1V →W )
—|

��

ε0,1

��

W I

ε0,1

��

f−1W ∩ k−1V
(i,f)|f−1W∩k−1V

�� W ×W

and an inclusion map φ : E(f : f−1W ∩ k−1V → W ) → E(f |f−1W ∩ k−1W )
induced by the inclusion W → X . On the other hand, there is a map φ′ :
E(f : f−1W ∩ k−1V → W ) → E(g) induced by the map k : W → Y . Let
D(kE) := Im(φ). We define the map kE by setting kE := φ′φ−1 : D(kE) → E(g).

A particular case is e.g. when U ⊂ V ⊂ X = Y , and f : V → X . Then
the identity map 1X : X → X induces a map which we denote with ρV := 1E

X :
E(f |U) → E(f) (it might be not an inclusion). When X ⊂ Y and f : U = V →
X , the inclusion i : X → Y induces an inclusion iE : E(f) → E(if).

Let {ft} : U × I → X be a homotopy. Let F : U × I → X × I be the fat
homotopy, defined by F (x, t) = (ft(x), t) for all (x, t) ∈ U × I. Then for each
t ∈ I the inclusion it : X → X × I, which sends x to (x, t), induces a map
iEt : E(ft) → E(F ).

Proposition 2.1. For all t ∈ I, the map iEt : E(ft) → E(F ) is a homotopy
equivalence.

Proof. It is a consequence of the co-gluing lemma (see e.g. [20, p. 71]),
applied to the pull-back diagrams defining E(ft) and E(F ), in which the vertical
arrows are fibrations. �

Remark 2.2. As it will be seen in the next section, this approach is equi-
valent to the classical one in [9]. The main difference is that the notation here is
slightly more compact (especially with non-connected spaces) and the homotopy
property is a direct consequence of Proposition 2.1. Thus the functorial-type
properties are easier to prove with such a categorical approach. For example,
Proposition 3.13 can give a simpler proof of the pushout formula for generalized
Lefschetz numbers of [8].

2.3. Definition of R(f). Given a map f : U → X , where U is a subset
of X , the Reidemeister set R(f) is the set of connected components of E(f),
namely, π0(E(f)). The elements of E(f) are paths w : I → X such that w(1) =
fw(0) and w(0) ∈ U . It is easy to see that two paths w1 and w2 belong to the
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same component in E(f) if and only if there is a path λ : I → U such that
λw2 = w1f(λ) (in our notation, given two paths λ1 and λ2, the path λ1λ2 is
the path defined by λ1λ2(t) = λ1(2t) when t ∈ [0, 1/2] and = λ2(2t − 1) when
t ∈ [1/2, 1]). Given an element w of E(f), we will denote with [w] its component
in R(f), also called class, as [w].

For any path-connected component Ui of U such that fUi is in the same
path-connected component of Ui in X , let us choose a base-path wi, i.e. a path
in X such that wi(0) ∈ Ui and fwi(0) = wi(1). Let A denote such a set of
components of U . Then for every i ∈ A, the fundamental group π1(U,wi(0))
acts on π1(X,wi(0)) as follows (this action can be called fundamental action, or
Reidemeister action): given the elements g ∈ π1(U,wi(0)) and α ∈ π1(X,wi(0)),

g · α := gαwif(g−1)w−1
i

where we denote a path and the corresponding homotopy class of paths with the
same symbol.

Proposition 2.3. There is a bijection between the Reidemeister set R(f)
and the disjoint union of the orbit sets

R(f) ∼=
∐
i∈A

π1(X,wi(0))/∼ .

Proof. Let us consider the following maps: for any point w in E(f), w(0)
belongs to exactly one Ui. Therefore there exists a path

λ : (I, 0, 1) → (Ui, wi(0), w(0)).

Let us define ψ(w) = λwf(λ−1)w−1
i . It is easy to see that the orbit of this ele-

ment in π1(X,wi(0)) does not depend upon the choice of λ; moreover, this map is
locally constant for all i, hence induces a map ψ : R(f) → ∐

i∈A π1(X,wi(0))/∼.
On the other hand, for each i ∈ A, there is a map ϕ′ : π1(X,wi(0)) →

R(f), which sends a loop α to the connected component of αwi in E(f). But
for any g ∈ π1(U,wi(0)) the corresponding point g · αwi = gαwif(g−1) is in
the same path-connected component of αwi, and hence ϕ′ induces a map on∐

i∈A π1(X,wi(0))/∼.
It is now easy to see that ϕ is the inverse of ψ and vice-versa. �

2.4. Properties of R(f). The properties of E(f) give rise to properties of
R(f) in a natural way. The first thing to do is to observe its quasi-functorial
behavior. Let U ⊂ X , V ⊂ Y and f : U → X , g : V → Y be maps. If W ⊂ X is
a subspace and k : W → Y is a map such that kf = gk (where it is defined, in
f−1W∩k−1V ), then the map kE : D(kE) ⊂ E(f |f−1W∩k−1V ) → E(g), defined
above, induces a function k∗ : D(k) ⊂ R(f |f−1W ∩ k−1V ) → R(g), where D(k)
is the image of the map π0E(f : f−1W ∩ k−1V →W ) → π0E(f |f−1W ∩ k−1V )
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induced by the inclusion. The map k∗ is well-defined, because whenever w1

and w2 are points of E(f : f−1W ∩ k−1V → W ) in the same path-connected
component of E(f |f−1W ∩k−1V ), their images k(w1) and k(w2) are in the same
path-connected component of E(g).

If U ⊂ V ⊂ X = Y and f : V → X , then we obtain the localization function
ρU := 1X∗ : R(f |U) → R(f).

Proposition 2.4 (Localization). If U ⊂ V and f : V → X is a map, then
there is a function ρU : R(f |U) → R(f).

Let {ft} : U × I → X be a homotopy. Let F : U × I → X × I be the fat
homotopy, defined by F (x, t) = (ft(x), t) for all (x, t) ∈ U × I. Then for each
t ∈ I the inclusion it : X → X × I, which sends x to (x, t), induces a map
it∗ : R(ft) → R(F ). Because of Proposition 2.1, the following proposition holds.

Proposition 2.5 (Homotopy Invariance). If ft : U → X, t ∈ I, is a homo-
topy, then R(f0) ∼= R(f1).

The following two propositions are easy consequences of the definition.

Proposition 2.6 (Additivity). If U =
∐

i Ui is the disjoint union of some
open subsets Ui ⊂ X, and f : U → X, then R(f) ∼= ∐R(f |Ui).

Proposition 2.7 (Multiplicativity). Let f : U ⊂ X → X and f ′ : U ′ ⊂
X ′ → X ′ be given maps, and f × f ′ : U × U ′ → X ×X ′ the Cartesian product.
Then the equality R(f × f ′) ∼= R(f) ×R(f ′) holds.

3. The index I(f)

Let X be an ENR, U ⊂ X an open subset of X and f : U → X a compactly
fixed map, i.e. a map such that Fix(f) is compact. We define an index of f as
an element of a suitable commutative ring R with unity.

3.1. The ring R. Let R+ be the set of all functions defined from finite sets
to Z∗ = Z − {0}, i.e. functions with finite domain and non-zero integer values,
with the following equivalence: when there is a bijection b between the domains
of two such functions φ and φ′ such that φb = φ′, then φ ∼= φ′.

We use the symbol zj to denote the function zj : {∗} → j ∈ Z
∗ for all j ∈ Z

∗,
and the symbol 0 to denote the function with empty domain.

We can define a (commutative and associative) sum and a (commutative
and associative) product on the set R+: given two functions φ1 : S1 → Z∗

and φ2 : S2 → Z
∗, which determine equivalence classes φ1 and φ2 in R+, let

φ1 + φ2 be the equivalence class of the function φ1

∐
φ2 : S1

∐
S2 → Z∗ defined

on the disjoint union of S1 and S2, and let φ1 · φ2 be the class of the function
φ1 × φ2 : S1 × S2 → Z∗ defined by φ1 × φ2(s1, s2) := φ1(s1)φ2(s2) for all pairs
(s1, s2) ∈ S1 × S2.
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Thus R+ has a structure of (commutative) monoid with respect to both
these operations, and the distributive law holds. The element 0 defined above
is the (additive) zero and 1 := z1 is the (multiplicative) unity. Let us note that
zi · zj = zij .

Every element of R+ can be written as a sum
∑

j∈Z∗ kjzj where kj are
positive integers, non-zero for a finite set of j’s.

Let R be the Grothendieck ring with respect to the sum of R+, i.e. the set
of all the formal sums

∑
j∈Z∗ kjzj where kj are integers, non-zero for a finite set

of j. With the sum and the product induced by R+ it is a commutative ring
with unity 1 = z1.

It is worthwhile to note that Z∗ is a multiplicative monoid, and thus the
monoid-ring Z[Z∗] is well-defined, and it isomorphic to R in an obvious way.

Using prime factorization, we can see that R is generated by the elements
{zp} with p prime ≥ 2 and p = ±1.

Later we will see the topological meaning of such a representation of R:
a map with 2 fixed point classes of fixed point index −12 and 7 fixed point
classes with fixed point index 13 will give rise to an element of R written as
2z−12 + 7z13 = 2z−1z

2
2z3 + 7z13.

There are two homomorphisms t,N : R → Z, the trivialization homomor-
phism t defined by t(φ) =

∑
z φ(z) where z ranges on the domain of φ, and the

norm homomorphism N defined by N(φ) = #supp(φ), i.e. it is the cardinality
of the support of φ. The first preserves the additive structure of R, the sec-
ond preserves also the multiplicative structure. In Z[Z∗] they correspond to the
homomorphisms given by t : zj → j ∈ Z and N : zj → 1 ∈ Z.

Sometimes we will deal with functions with finite support, but with a larger
domain. In this case, we just take the restriction of the function to its support,
and associate to it an element in R.

3.2. The definition of I(f). Let f : U → X be as above. There exists a
coordinate function cd : Fixf → R(f) defined as follows. For each x ∈ Fix(f),
let cx denote the constant path in x. It gives rise to a map c : Fix(f) → E(f). If
q denotes the projection q : E(f) → R(f), then cd := qc. As ξ ranges in R(f),
the counter-images cd−1ξ are compact subsets of Fix(f), both closed and open
in Fix(f). Hence they are a finite number. They are the (Nielsen) fixed point
classes of f in U . Any class cd−1ξ is compactly contained in a neighbourhood
W such that Fix(f) ∩W = cd−1ξ. Therefore the index I(f |W ) of f in W is
defined (see e.g. [6], [5]). Because it does not depend on the choice of W , but
only on ξ, we write I(ξ). The fixed point classes with non-zero index are called
essential, the others inessential. The number of essential fixed point classes is
the (local) Nielsen number of f . It is worthwhile to note that two fixed points
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x and y belong to the same fixed point classes if and only if there is a path
c : (I, 0, 1) → (U, x, y) which is homotopic to fc rel. endpoints.

We now define the generalized index of f as the index in R given by the
function

I(f) : R(f) → Z, ξ �→ I(ξ)

restricted to its support. The support is finite because Fix(f) is compact, and
so it gives rise to an element of R. The trivialization t(I(f)) is the classical Hopf
index I(f), while the norm N(I(f)) is the local Nielsen number.

It is easy to see that I(f) is a kind of symmetrization of the local generalized
Lefschetz number (also known as Reidemeister trace) L(f) :=

∑
ξ∈R(f) I(ξ) · ξ ∈

ZR(f), where ZR(f) denotes the free Abelian group generated by the elements
of R(f), which is isomorphic to the group of all functions φ : R(f) → Z with
finite support. In fact, let s : ZR(f) → R be the unique map which sends
the function φ : R(f) → Z to its equivalence class in R. Then by definition
s(L(f)) = I(f). For details on the generalized Lefschetz number, and its local
version, the standard references are [13] and [11].

Remark 3.1. As suggested by the name itself, the generalized Lefschetz
number (Reidemeister trace) is first defined as a trace-like quantity, also for local
maps (see [11]). In our setting, for the sake of simplicity we don’t use algebraic
traces; the approach tries to be closer to the classical local fixed point indices
of [5]. Of course in computations very often the traces are the only possible way
to get actual computations.

3.3. Properties of I(f). The index I has some properties, which are anal-
ogous to the properties of the fixed point index I of [5]. Let f : U ⊂ X → X be
a compactly fixed map, U open in X and ENR (this is of course true if X is an
ENR).

Let φ ∈ R be an index defined on a finite set S. If S′ is a set and ρ : S → S′ is
a map, then it is possible to define an index ρφ as follows: let φ′ : S′ → Z be the
function φ′(s′) :=

∑
s:ρ(s)=s′ φ(s); it has a finite support, hence the restriction

of φ′ to the support is a unique element of R.

Definition 3.2. A graph Γ̃′
U in U such that every connected component of

Fix(f) has a vertex of Γ̃′
U , and every two connected components of Fix(f) which

are in the same Nielsen class are connected by an edge of Γ̃′
U is called the U -

Nielsen abstract graph for f (or, in short, Nielsen abstract graph). Each vertex
of Γ̃′

U has an index, namely the fixed point index of the corresponding connected
component of Fix(f). A connected component of Γ̃′

U is essential or inessential
according to whether the sum of the indexes of its vertices is non-zero or zero,
respectively. The essential U -Nielsen abstract graph Γ̃U for f is the union of the
essential connected components of the U -Nielsen abstract graph Γ̃′

U .
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A map Λ : Γ̃U → X which sends edges of Γ̃U to Nielsen paths in X (i.e.
paths which are homotopic to their images under f) and vertices to fixed points
(that belong to the corresponding Nielsen class) is called a Nielsen graph ΓU .
(It is an abuse of notation, because actually it is not a graph.)

Let us note that there exists always at least one essential U -Nielsen graph,
for any map f : U ⊂ X → X .

Proposition 3.3 (Localization). If W is an open set such that Fix(f) ⊂
W ⊂ U then

I(f) = ρW I(f |W )

where ρW : R(f |W ) → R(f) is the localization function of Proposition 2.4.
Moreover,

I(f) = I(f |W )

if and only if W contains an essential U -Nielsen graph ΓU .

Proof. If cdW : Fix(f) → R(f |W ) and cd : Fix(f) → R(f) are the co-
ordinate functions, then ρW cdW = cd; hence for all ξ ∈ R(f) we have that
cd−1ξ = cd−1ρ−1ξ, and because the index I is additive,

I(cd−1ξ) =
∑

ξ′∈ρ−1ξ

I(cd−1ξ′),

hence I(f) = ρWI(f|W ).
If W contains an essential U -Nielsen graph ΓU , then it is easy to see that

ρW induces a bijection between the supports of I(f) and I(f |W ). On the other
hand, let us consider an essential W -Nielsen graph ΓW of f |W in W . Then
because I(f) = I(f |W ), ΓW is also an U -Nielsen graph. �

Corollary 3.4. If W is an open set such that Fix(f) ⊂ W ⊂ U , and
I(f) = I(f |W ), then for each open set V such that W ⊂ V ⊂ U , the equality
I(f) = I(f |V ) holds.

Proof. By the previous proposition, there exists an essential U -Nielsen
graph in W . Hence the same holds for each V ⊃W in U . �

Proposition 3.5 (Unity). If f is constant, then I(f) = 0 if fU �∈ U and
I(f) = 1 if fU ∈ U .

Proof. When f is constant, there exists at most one essential fixed point
class, and its index I(f) is 0 or 1 according to whether fU �∈ U or fU ∈ U . �

Proposition 3.6 (Additivity). If U =
∐

i Ui is the disjoint union of some
open subsets Ui ⊂ X, then I(f) =

∑
i I(f |Ui).

Proof. This follows from Proposition 2.6 and the same property for the
index I. Here the sum is the (disjoint) sum in R. �
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Proposition 3.7 (Multiplicativity). Let f : U ⊂ X → X and f ′ : U ′ ⊂
X ′ → X ′ be given compactly fixed maps, and f × f ′ : U × U ′ → X × X ′ their
Cartesian product. Then the equality I(f × f ′) = I(f) × I(f ′) holds.

Proof. Again, in view of Proposition 2.7 and the same property for the
index I, we get the result. Notice that the product on the right hand side is
in R. �

Proposition 3.8 (Homotopy Invariance). If ft : U ⊂ X → X is a compactly
fixed deformation, with t ∈ I, then I(f0) = I(f1).

Proof. Let F : U × I → X × I be the fat homotopy, defined by F (x, t) =
(ft(x), t) for all (x, t) ∈ U × I. Then for each t ∈ I the inclusion it : X → X × I,
which sends x to (x, t), induces a bijection it∗ : R(ft) → R(F ), because of
Proposition 2.5. Hence the fixed point classes of ft are exactly the intersections
of the fixed point classes of F with the slice X × {t}. But by the Homotopy
Invariance of I, the index of the t-fixed point class does not depend upon t,
hence the thesis. �

The following is an easy consequence of Propositions 3.8 and 3.3.

Corollary 3.9 (Lefschetz Property). If ft : U ⊂ X → X, t ∈ I, is a com-
pactly fixed deformation, such that Fix(f1) = ∅, then I(f0) = 0.

Proposition 3.10 (Commutativity). Let U1 ⊂ X1 and U2 ⊂ X2 be open
subsets, and k1 : U1 → X2, k2 : U2 → X1 be maps. Then k2k1 : k−1

1 U2 → X1

and k1k2 : k−1
2 U1 → X2 are defined. If R(k1k2|k−1

2 k−1
1 U2) = R(k1k2) and

R(k2k1|k−1
1 k−1

2 U1) = R(k2k1) then

I(k2k1) = I(k1k2).

Proof. Let us consider the following diagram,

R(k2k1|k−1
1 k−1

2 U1)
k1∗ ��

ρ1

��

R(k1k2)

R(k2k1) R(k1k2|k−1
2 k−1

1 U2)k2∗
��

ρ2

��

where ρ1 and ρ2 are the localization functions, and k1∗, k2∗ are the functions
induced by k1 and k2. Because we have assumed that

R(k2k1|k−1
1 k−1

2 U1) = R(k2k1)

the function ρ1 is a bijection between the supports of I(k2k1|k−1
1 k−1

2 U1) and
I(k2k1). The same holds for ρ2 and I(k1k2). Therefore the functions k1∗ρ−1

1

and k2∗ρ−1
2 are well-defined. The composition k2∗ρ−1

2 k1∗ρ−1
1 sends an element

[w] of R(k2k1) to [k2k1(w)] in R(k2k1). But it is easy to see that [k2k1(w)] = [w]
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for all w in E(k2k1), hence the composition is the identity map. In the same
way k1∗ρ−1

1 k2∗ρ−1
2 is the identity on R(k1k2), and hence also k1∗ and k2∗ are

bijections. Now, because of commutativity property for the index I, k1∗ is index-
preserving, i.e. for all ξ ∈ R(k2k1|k−1

1 k−1
2 U1) the equality I(ξ) = I(k1∗ξ); and

the same holds for k2∗. Therefore the equalities

I(k1k2) = I(k2k1|k−1
1 k−1

2 U1) = I(k2k1) = I(k1k2|k−1
2 k−1

1 U2)

hold, i.e. the thesis. �

Unlike the index I, the commutativity property does not hold in general, for
the index I, without the hypotheses of the previous Proposition, as shown in
the following example.

Example 3.11. Let X1 = X2 = X be the complex plane C and U1 = U2 =
U the square {Re(z) ∈ [−2, 2], Im(z) ∈ [−2, 2]} ⊂ X . Let k1 : U → C be any
map such that

(1) k1(−1 − i) = −1 + i,
(2) k1(1 − i) = 1 + i,
(3) k−1

1 U is the union of two disjoint neighbourhoods of −1 − i and 1 − i,
(4) The map k1 is constant in some neighbourhoods of −1 − i and 1 − i.

It is easy to see that such a map exists. Let k2 be the conjugation map, i.e.
k2(z) = z. Without loss of generality we can also assume that Fix(k2k1) = {−1−
i, 1 − i}, and by assumption the indexes are 1. But now, k−1

1 U2 is the disjoint
union of two neighbourhoods, hence I(k2k1) = 2 (as an element of R). On the
other hand, k−1

2 U1 = U and hence I(k1k2) = z2, therefore I(k2k1) �= I(k1k2).

Proposition 3.12 (Retraction). Let f : U ⊂ X → X be a compactly fixed
map, X ⊂ Y and r : Y → X a retraction. Then

I(f) = I(f ′|r−1U)

where f ′ is the composition f ′ = ifr : r−1U → Y .

Proof. Because Fix(f) = Fix(f ′), f ′ is compactly fixed. Let us consider
the functions i∗ : R(f) → R(f ′) and r∗ : R(f ′) → R(f) induced by the inclusion
i : X → Y and the retraction r : Y → X . The composition r∗i∗ : R(f) → R(f)
is the identity, as it is readily seen, hence i∗ is injective. On the other hand
if [w] is in R(f ′), then [w] = [ifr(w)] ∈ R(f ′), which is in the image i∗R(f);
this implies that i∗ is surjective. Therefore i∗ : R(f) → R(f ′) is a bijection.
Because of the retract property for the index I, i∗ is also index-preserving, i.e.
I(ξ) = I(i∗ξ) for all ξ ∈ R(f), and hence I(f) = I(f ′). �

Let us consider R(f), where f : U ⊂ X → X . It is a set, hence it makes
sense to define the Abelian group ZR(f) of all the finite-support functions φ :
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R(f) → Z, with the sum + given by (φ + φ′)(ξ) := φ(ξ) + φ′(ξ) ∈ Z for all
ξ ∈ R(f). The generalized (local) Lefschetz number L(f) is defined as the
function L(f) : ξ → I(ξ).

Proposition 3.13 (Union). Let f : U ⊂ X → X be a compactly fixed map,
and let U1 and U2 be open subsets such that U = U1 ∪ U2. Assume that the
restrictions f |U1, f |U2 and f |U1 ∩ U2 are compactly fixed. Let ρ1 : R(f |U1) →
R(f), ρ2 : R(f |U2) → R(f) and ρ : R(f |U1∩U2) → R(f) denote the localization
functions. Then

L(f) = ρ1L(f |U1) + ρ2L(f |U2) − ρL(f |U1 ∩ U2).

Proof. Let ξ ∈ R(f) be given. Then its value (ρ1L(f |U1) + ρ2L(f |U2) −
ρL(f |U1∩U2))(ξ) is by definition ρ1L(f |U1)(ξ)+ρ2L(f |U2)(ξ)−ρL(f |U1∩U2)(ξ),
where the sum is in Z. Moreover, the equalities

ρ1L(f |U1)(ξ) =
∑

σ1:ρ1(σ1)=ξ

L(f |U1)(σ1),

ρ2L(f |U2)(ξ) =
∑

σ2:ρ2(σ2)=ξ

L(f |U2)(σ2),

and

ρL(f |U1 ∩ U2)(ξ) =
∑

σ:ρ(σ)=ξ

L(f |U1 ∩ U2)(σ)

follow by the definition of the localization functions.
Let us consider in U a neighbourhood W of the fixed point class cd−1ξ in

Fix(f |U) corresponding to ξ, such that W ∩ Fix(f) = cd−1ξ. By definition, we
have that I(f |W ) = L(f |U)(ξ). Also, I(f |W ) = I(f |W ∩ U1) + I(f |W ∩ U2) −
I(f |W ∩ U1 ∩ U2) by additivity of I. Therefore the conclusion follows from the
following identities,

∑
σ1:ρ1(σ1)=ξ

L(f |U1)(σ1) = I(f |W ∩ U1),

∑
σ2:ρ2(σ2)=ξ

L(f |U2)(σ2) = I(f |W ∩ U2),

and

∑
σ:ρ(σ)=ξ

L(f |U1 ∩ U2)(σ) = I(f |W ∩ U1 ∩ U2),

because if x ∈ Fix(f |U1) has the coordinate such that ρ1cd(x) = ξ, then x ∈W ,
and the same for f |U2 and f |U1 ∩ U2. �
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Remark 3.14. As noted above, with Proposition 3.13 it is easy to prove
a push-out formula for the generalized Lefschetz number (see [8]).

4. The index IG(f) of a G-map

Now we carry on the definition of I(f) to the case of equivariant maps. Let
G be a compact Lie group and X a G-ENR. Let U ⊂ X be an open G-subset
of X , and let f : U → X be a compactly fixed G-map. In order to define the
equivariant index IG(f) of f , it is necessary to introduce the definition of taut
maps and weakly taut maps.

4.1. Taut maps and taut approximations. Let G be a compact Lie
group. Let Y be a topological G-space, and A ⊂ Y a G-subspace. Let V be
a neighbourhood of A in Y , and φ : V → Y a map.

Definition 4.1. We say that a G-map φ is taut over A if there exists a G-
retraction r : V → A such that φ = φr. If φ is defined on a G-set W ⊃ V , we
say that it is taut over A in U when its restriction to U is taut over A.

The definition makes sense only when A is a G-neighbourhood retract in Y .
We now see that if Y is a compact G-ENR, and A ⊂ Y is a neighbourhood
retract, then any self-map can be approximated by maps which are taut over A
in a neighbourhood of A in Y . Let d denote an invariant metric on Y . A homo-
topy F : Y × I → Y is called an ε-homotopy (or ε-deformation) provided that
d(F (x, t), F (x, t′)) < ε for all x ∈ Y and t, t′ ∈ I.

Proposition 4.2. Let Y be a compact G-ENR, and A ⊂ X a neighbourhood
retract. Then for each ε > 0 there exists a G-neighbourhood V of A in X and
an equivariant ε-homotopy rel. A from the identity 1Y to a map which is taut
over A in V .

Proof. It follows easily from Proposition 2.5 of [25], for example. �

Let X be a G-ENR, U ⊂ X a subset of X and f : U → X a map. Let
us recall that if Y is a G-space, then for each subgroup H of G, the fixed
subspace of H is Y H = {y ∈ Y : Hy = y} and the singular locus Y H

s is
Y H

s = {y ∈ Y : Gy ⊃ H,Gy �= H}, where Gy denotes the isotropy group of y,
i.e. the subgroup of all {g ∈ G : gy = y}. The space YH is given by the points
which have isotropy exactly H , i.e. YH = {y ∈ Y : Gy = H}, and the equality
Y H \ YH = Y H

s holds. Let WH denote the Weyl group of H , i.e. the quotient
NG(H)/H , where NG(H) is the normalizer of H in G.

Definition 4.3. We say that an equivariant map f : U ⊂ X → X is taut, if
for all H ⊂ G the restriction fH : UH → XH is taut over UH

s in a neighbourhood
of UH

s in UH . For each ε > 0, we say that a G-map f ′ is a taut ε-approximation
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of f if there exists an equivariant ε-deformation ft, t ∈ I, such that f0 = f , and
f1 = f ′ is taut.

Proposition 4.4. If C is a compact G-ENR, and f : C → X is a G-map,
then for any ε > 0 there exists a taut ε-approximation of f .

Proof. Because f is defined on the compact set C, it suffices to prove the
proposition for the identity 1C : C → C. Let τ0 = 1C . We want to define an
ε-approximation of 1C , i.e. to extend τ0 to C × I such that τH

1 is taut over CH
s .

We use induction over orbit types. For details about this procedure, see e.g. [25],
[21], [10]. Assume that τt is defined on CH×{0}∪CH

s ×I. Then we can extend to
a WH-equivariant ε-homotopy τ ′t on the whole CH (see e.g. Proposition of [25]).
Moreover, for any ε′ > 0, because CH

s is a WH-neighbourhood retract in CH ,
by applying Proposition 4.2, we can find a WH-equivariant ε′-deformation φt

of 1CH , rel. CH
s , which is taut over CH

s . The composition τ ′tφt is then a 2ε-
homotopy, for a suitable choice of ε′, extending τt|CH × {0} ∪CH

s × I and τ ′1φ1

is taut over CH
s . Because C has only a finite number of orbit types, say k, this

procedure yields an ε-approximation of 1C , if we start the induction with an
ε/k-approximation, and hence the thesis. �

Proposition 4.5. Let C be a compact G-ENR. For each ε > 0 there exists
an ε-deformation τt of the identity 1C×I = τ0 of C×I such that for each subgroup
H ⊂ G the restriction τH

1 is taut over CH × ∂I ∪ CH
s × I and τt is the identity

whenever restricted to C × {0} and C × {1}.

Proof. We can use again induction over orbit types, and the same argument
of the proof of Proposition 4.4, by virtue of the fact that CH × ∂I ∪ CH

s × I

is a WH-neighbourhood retract in CH for all H (it is the product property of
WH-cofibrations, because in a G-ENR the inclusion of a neighbourhood retract
is always a G-cofibration — see e.g. [6, Exercise 3, p. 84], or Theorem 1.9 of [23,
p. 27], or [22]). Moreover, by construction τH

t is an homotopy rel. CH × ∂I ∪
CH

s × I, and hence τt is the identity when restricted to C × {0} and C × {1}.�

4.2. Weakly taut G-maps and the definition of IG(f). Let G be a com-
pact Lie group, X a G-ENR, U ⊂ X an open subset, and f : U → X a compactly
fixed G-map (i.e. Fix(f) is compact). As shown e.g. in [26], it could be possible
to define an equivariant index of such an f , just by taking the sum (in R) of all
the indexes I(f |UH), but the resulting element of R should not be a compactly
fixed G-homotopical invariant of f (there are simple examples of compactly fixed
G-deformations of a map which do not preserve such an index), but only a G-
compactly fixed invariant. Nevertheless, there is a class of maps which behaves
well with respect to compactly fixed G-deformations.
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Definition 4.6. We say that a map ϕ : U → X is weakly taut if it is
compactly fixed in U and for each isotropy group H ⊂ G there is an open
neighbourhood WH of UH

s in UH such that ϕ(WH) ⊂ UH
s . We say that ϕ : U →

X is weakly taut around Fix(f) if there exists a G-neighbourhood V of Fix(f)
in U such that the restriction ϕ|V is weakly taut.

It is easy to see that a compactly fixed taut G-map is weakly taut, while the
converse need not be true. Now we start defining the index for maps which are
weakly taut around the fixed point set, and later we will show how to extend
the definition to all the compactly fixed G-maps.

We say that an isotropy group H ⊂ G is w-finite when its Weyl group WH

is finite. Let us consider the set of conjugacy classes of w-finite isotropy groups
in G for U ⊂ X , Isow(G,U), and let we choose a given isotropy group H in each
conjugacy class (H) ∈ Isow(G,U).

Definition 4.7. Let U ⊂ X be a G-ENR, subspace of the G-space X , and
let f : U → X be a compactly fixed G-map, weakly taut around Fix(f). Then
we define its equivariant index

IG(f) =
∑

(H)∈Isow(G,C)

I(fH |UH) ∈ R,

where fH |UH : UH → XH is the restriction of fH : UH → XH to UH .

The definition makes sense, because there are only a finite number of elements
in Isow(G,C), the index I(fH |UH) does not depend upon the choice of H in the
conjugacy class (H), and UH is an open subset of XH ; moreover, because fH is
assumed to be weakly taut around Fix(f), the restriction fH |UH is compactly
fixed for each H ⊂ G.

In order to extend the definition to a general compactly fixed G-map, we
need the following Lemma, the homotopy property for weakly taut maps.

Lemma 4.8. Let U be a G-ENR in X, and ft : U → X a G-deformation,
compactly fixed in U , such that f0 and f1 are weakly taut around their fixed point
sets Fix(f0) and Fix(f1). Then

IG(f0) = IG(f1).

Proof. Let O be a neighbourhood which retracts on U in a G-Euclidean
space Rn and G-retraction r : O → U ; let i : U → O denote the inclusion, and
let us assume U to be closed in O. Because ft is compactly fixed, there exists
a compact G-set K1 in O such that Fix(ft) ⊂ K1 for all t ∈ I. Because O is
open in Rn, there exist G-neighbourhoods of K1, say C and K, in O, such that
K1 ⊂ C ⊂ intK, C is a compact G-ENR, and d(ftr(x), x) > ε0 > 0 for a given
ε0 and for all x ∈ K \ C. It turns out that C ∩ U and K ∩ U are compact
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G-neighbourhoods of K1. Now we can apply Proposition 4.5 to C in order to
have a map τ1 : C × I → C × I, ε-homotopic to 1C×I for any ε > 0 and such
that for each subgroup H ⊂ G the restriction τH

1 is taut over CH × ∂I ∪CH
s × I

and τt is the identity whenever restricted to C × {0} and C × {1}.
This map extends trivially to a map τ ′1 : C × I ∪ O × ∂I → C × I ∪O × ∂I

by defining it to be the identity on O × ∂I.
If ε is small enough, this map extends to a map Ξ : O × I → O × I which is

the identity outside K × I and which adds no new fixed points (we only have to
check in K×I \C×I), by the Tietze–Gleason Theorem (for details see e.g. [25]).

Now let us consider the composition

U × I
i×1I �� O × I

Ξ �� O × I
r×1I �� U × I

ft �� X

which we denote with Ft : U × I → X . By definition, Ft is exactly f0 and f1

when t = 0, 1.
We need to show that the restriction FH

t to UH is always a compactly fixed
deformation in UH . We start by remarking that, because Ft coincides with ft

outside the compact set K ∩U , Ft is still a compactly fixed deformation. Hence
the restriction FH

t is a compactly fixed deformation in UH for all H .
Because f0 and f1 are weakly taut around Fix(f0) and Fix(f1), there are open

neighbourhoods V0 and V1 of Fix(fH
0 ) and Fix(fH

1 ) in UH such that fH
0 (V0) ⊂

XH
s and fH

1 (V1) ⊂ XH
s . Now, because C \V0 and C \C1 are compact, there exist

positive real numbers ε1 and ρ1 and a neighbourhood W of UH
s ∩ C in C ∩ U

such that for all x ∈W , the implications

d(f0(x), x) ≤ ε1 ⇒ Bρ1(x) ⊂ V0,

d(f1(x), x) ≤ ε1 ⇒ Bρ1(x) ⊂ V1,

hold true, where Bρ1(x) denotes the ball of radius ρ1 and center x.
Now, we know that UH

s × I ∪ UH × ∂I is a neighbourhood retract in UH ×
I. Therefore there exists a neighbourhood W1 of UH

s in UH and a retraction
k : W1 × I → UH

s × I ∪ UH × ∂I. Let V ⊂ W1 × I be the counter-image
V := k−1(W × I). It is a neighbourhood of UH

s × I, and hence there exists a
neighbourhood W2 of UH

s ∩ C in C ∩ U such that W2 × I ⊂ V . But now it is
easy to see that for given ε1 and ρ1, there exists an ε small enough such that for
each x ∈ W2 either the image (rH × 1I) ◦ Ξ(x, t)H is in UH

s × I or it is of the
form (rH × 1I) ◦ Ξ(x, t)H = (x′, i) with i ∈ {0, 1} and d(x, x′) is small. But by
assumption, either d(fi(x′), x′) > εi or Bρ1(x′) is contained in Vi, with i = 0, 1.
In both the latter cases, this property implies that Fix(FH

t )∩UH ⊂ C ∩U \W2

for all t. Because C ∩ U \W2 is a compact set, it is equivalent to say that FH
t

is a compactly fixed homotopy in UH .
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So, for each H there is a compactly fixed homotopy from fH
0 |UH to fH

1 |UH ,
and by the Homotopy Property the equality I(fH

0 |UH) = I(fH
1 |UH) holds, and

hence also the wanted equality IG(f0) = IG(f1) holds true. �

Remark 4.9. Lemma 4.8 was first proved for compactly fixed G-maps on
compact G-ENR’s by D. Wilczyński in 1984 [25], and independently by K. Ko-
miya in 1987 [17], [18] in a different form (on smooth G-manifolds). Here we
give a modified proof, closer to our needs and notation, which gives the same
result on an arbitrary G-ENR. The concept itself of weakly taut maps is implicit
in the papers [25], [17], [18].

A similar result (using transverse foliations on manifolds) has been presented
also by Balanov–Kushkuley in [1].

With the following proposition we show that every G-map can be approxi-
mated by weakly taut maps; this will be the key step in order to define the index
IG of an arbitrary map.

Proposition 4.10. Let f : U → X be a compactly fixed G-map. Then for
all ε > 0 there exists a compactly fixed ε-approximation f ′ of f which is weakly
taut around Fix(f ′).

Proof. As before, let r : O → U be a G-retraction, where O is an open
set of an Euclidean G-space. We can take compact neighbourhoods C and K

of Fix(f) in O such that C is a G-ENR contained in the interior int(K). By
applying Proposition 4.4 to the composition

C
r �� U

f
�� X

and extending the resulting ε-deformation of rf to O relatively to O \K, with
ε small enough, we find a map h : O → X . It is easy to see that the map
f ′ := hi : U → X now is weakly taut around Fix(f ′). �

Finally, now we can define the index IG of an arbitrary compactly fixed
G-map f : U → X .

Definition 4.11. Let X be a G-space, U ⊂ X a G-ENR, open subset of X ,
and f : U → X a compactly fixed G-map. Let f ′ any compactly fixed G-
deformation of f which is weakly taut around its fixed point set Fix(f ′). Then
we define

IG(f) := IG(f ′).

The definition makes sense, because any compactly fixed map f has at least
one weakly taut approximation, via a compactly fixed G-deformation (by Propo-
sition 4.10), and any two such deformations, say f ′ and f ′′, have the same index
IG(f ′) = IG(f ′′) because of Lemma 4.8.
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4.3. Properties of IG(f). The properties of the equivariant index IG are
similar to the properties of the non-equivariant index I. We begin with the
following two propositions, which are the most important, and also the easiest
to prove (it suffices to apply definitions).

Proposition 4.12 (Homotopy Invariance). Let U ⊂ X be as above, and let
ft : U → X be a G-deformation. Then

IG(f0) = IG(f1).

Corollary 4.13 (Lefschetz Property). If ft : U ⊂ X → X, t ∈ I, is a
compactly fixed G-deformation, such that Fix(f1) = ∅, then I(f0) = 0.

If W ⊂ U is an open G-subset of U , and f : U → X a G-map, then
for each H ∈ Isow(U,G) there is a localization function ρW H : R(fH |WH) →
R(fH) as defined in Proposition 2.4. Therefore it makes sense to state the
following proposition (where the localization function ρW is defined as ρW H on
the component R(fH |WH) of the disjoint union of all the R(fH |WH)’s, with H
ranging in Isow(U,G)).

Proposition 4.14 (Localization). If W is an open set such that Fix(f) ⊂
W ⊂ U then

IG(f) = ρWIG(f |W ).

Proof. If f is weakly taut around its fixed point set, then the proposition is
trivial. Otherwise, it is enough to see that any weakly taut approximation f ′ of
f is also weakly taut when restricted to W , and that by homotopy property of R
(Proposition 2.5), for eachH the equalities R(f ′H) ∼= R(fH) and R(f ′H |WH) ∼=
R(fH |WH) hold true. �

Proposition 4.15 (Unity). If f is constant, then IG(f) = 0 if fU �∈ U and
IG(f) = 1 if fU ∈ U .

Proof. The proof is immediate, because f is already weakly taut around
its fixed point set. �

Proposition 4.16 (Additivity). If U =
∐

i Ui is the disjoint union of some
open subsets Ui ⊂ X, then IG(f) =

∑
i IG(f |Ui).

Proof. If f is weakly taut around Fix(f), then the conclusion follows from
Proposition 3.6. Otherwise, a weakly taut approximation of f in U induces
weakly taut approximations of the restrictions f |Ui, and hence the thesis. �

Proposition 4.17 (Multiplicativity). Let f : U ⊂ X → X and f ′ : U ′ ⊂
X ′ → X ′ be given compactly fixed G-maps, and f × f ′ : U × U ′ → X ×X ′ their
Cartesian product. Then the equality IG(f × f ′) = IG(f) × IG(f ′) holds.

Proof. The proof follows directly from Proposition 3.7. �
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Proposition 4.18 (Retraction). Let f : U ⊂ X → X be a compactly fixed
G-map, X ⊂ Y and r : Y → X a G-retraction. Then

IG(f) = IG(ifr|r−1U).

Proof. For each H ∈ Isow(U,G), we have the restricted map fH |UH :
UH → XH , and the corresponding retraction rH : XH → Y H . Without loss
of generality we may assume that f is weakly taut around Fix(f) (otherwise
we see that any weakly taut approximation of f gives rise to a weakly taut
approximation of ifr). It may happen that (r−1U)H is not equal to r−1(UH),
but using Proposition 3.3 it is possible to see that

I((ifr)H |(r−1U)H) = I((ifr)H |r−1(UH)),

because each Nielsen graph can be contained in UH . Therefore, because of
Proposition 3.12, the equality I(fH |UH) = I((iHfHrH |r−1(UH)) is true, and so
for each H we have that I(fH |UH) = I((ifr)H |(r−1U)H) which is the thesis.�

The union property (Proposition 3.13) and the commutativity property (Pro-
position 3.10) can also be easily extended to this equivariant settings. Obvi-
ously, the assumptions have to be checked for each restriction fH |UH , with
H ∈ Isow(U,G).

4.4. The converse of the Lefschetz property. It is natural to ask when
the converse of the Lefschetz property 4.13 holds. More precisely, let G be a
compact Lie group acting on a G-ENR X , and let U ⊂ X be an open equivariant
subspace. Given a compactly fixed G-map f : U → X such that IG(f) = 0 when
does there exist a fixed point free G-map f ′, compactly fixed G-homotopic to f?
As far as I know, it is necessary to use the equivariant Hopf construction and
an equivariant version of the Wecken–Jiang Theorem, as done in [26], [27]. Both
these techniques need a G-simplicial structure on U , in the sense of Illman [14].

Definition 4.19. A locally finite simplicial complex K is a W-complex if
either

(a) it has no local cut points and each connected component is not a surface
or

(b) it is a 1-manifold.

If G is a compact Lie group and K a G-complex, then K is a W-G-complex if
for all subgroups H ⊂ G the subspace KH is a W-complex.

Proposition 4.20. Let X be a locally finite G-complex and U ⊂ X an open
G-subspace which is a W-G-complex. Let f : U → X be a compactly fixed G-
map with index IG(f) = 0. Then there is a fixed point free G-map f ′ which is
compactly fixed G-homotopic to f .
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Proof. Let h be a weakly taut approximation of f . Then h is G-compactly
fixed in the sense of [26], and it is easy to see that, because IG(h) = 0, the
equivariant Nielsen number N c

G(h) = 0, as defined in [26]. Now it is easy to
modify the proof of Theorem A of [25], using Theorem 4.3 and Corollary 5.7 of
[26], in order to get the result. We omit the details. �

Remark 4.21. There is a point, that in [26] the assumption is that U is a
G-complex of type S, instead of a W-G-complex as we have done. But it can be
seen from the paper [15] that it suffices to assume U to be a W-G-complex to
get the result. Furthermore, the modification of the proof of Theorem A of [25]
to this Nielsen environment is not completely straightforward, but essentially it
involves well-known techniques in Nielsen fixed point theory; this is the reason
for which we have omitted the details.

Remark 4.22. Another point is that the equivariant Nielsen number N c
G(f)

of Wong, whenever f is weakly taut around its fixed point set, (and therefore a
G-compactly fixed map), is zero if and only if the index IG(f) is zero; one might
suspect that they are equivalent. This is not the case. The main difference is
that IG(f) is defined for all compactly fixed G-maps, and it is a G-homotopy
invariant, while the latter is defined only on G-compactly fixed maps, and the
deformations must be assumed to be G-compactly fixed too, as pointed out e.g.
in Remark 2.7 of [26]. Moreover, in [26], Example 8 exhibits a G-compactly
fixed map with non-vanishing N c

G(f) but with IG(f) = 0 (of course f is not
weakly taut around its fixed point set, otherwise both indices would be zero).
On the other hand, it is not difficult to define also a map f with N c

G(f) = 0
and IG(f) �= 0. On the bouquet of three circles X = S1 ∨ S1 ∨ S1 = a ∨ b ∨ c,
with the action of G := Z2 = 〈r〉 (group of order 2) given by r(b) = c: just take
a deformation of the identity with one single fixed point (the base point of the
bouquet) and equivariant with respect to the G-action. Then f is G-compactly
fixed, and N c

G(f) = 0, but IG(f) �= 0.

Corollary 4.23. Let G be a compact Lie group, X a smooth G-manifold,
U ⊂ X an open G-subset and f : U → X a compactly fixed G-map. Then if for
each H ⊂ G the dimension of any component of UH is different from 2, f can
be compactly fixed G-deformed to be fixed point free if and only if IG(f) = 0.

Proof. Every such a G-manifold can be triangulated, by [14], hence we can
apply Proposition 4.20. �

5. Some examples

In this section we show how it may happen that IG(f) �= 0 for a self-map
f : X → X defined on a smooth G-manifold, even if the G-Nielsen invariant
of f on M is zero, i.e. even if for each isotropy group H the Nielsen number
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N(fH) = 0, where G is a finite group (see [26], [27] for details on the G-Nielsen
invariant).

The first example of this kind was given by A. Vidal, in the Workshop
“Dynamical Zeta functions, Nielsen theory and Reidemeister torsion (Warsaw,
1996)” [24]. Here we show that the same phenomenon can happen also for
(closed) manifolds.

In the following example we show that it may happen that IG(f) �= 0 and
for all subgroups H of G the index I(fH) is zero, even if the map f : X → X is
the identity, X is a compact smooth closed connected G-manifold and G is the
non-Abelian group of order 6.

Example 5.1. Let T be the 2-dimensional torus, and C a closed simple
curve bounding a disc B in T . Let V be the plane, and

G = 〈r1, r2|r21 = r22 = (r1r2)3 = 1〉

be as above the dihedral group D3, acting on V as reflections r1 and r2 along two
lines meeting at an angle of π/3. Let us consider the G-space W given by the
representation V plus three times the trivial (real) representation, i.e. W is the
direct sum of V and a 3-space on which G acts trivially. The isotropy groups of
this G-action are 1, H1 and G up to conjugacy, where H1 = 〈r1〉 is the subgroup
generated by r1 in G. Then we may embed T in WH1 ∼= R4 and we may assume
that C = T ∩ WG, because WG is a 3-dimensional linear subspace of WH1 .
Also, WG cuts WH1 into two components WH1

+ and WH1− and r1W
H1
+ = WH1− .

Without loss of generality we may assume that T ∩WH1− is the complement of
B and T ∩WH1

+ is the interior of B.
Now if we have a G-regular neighbourhood X of the G-space given by GT

in W we obtain a G-space G-deformable to GT . Moreover, X can be chosen to
be a compact smooth G-manifold with boundary, and obviously is of dimension
5 = dimW . Finally, let Y = 2X be the G-space obtained by joining two copies
of X along the boundary ∂X , with the identity identification map on ∂X . It is
a compact smooth G-manifold of dimension 5 without boundary.

Let us compute Euler characteristic χ(Y H) for any isotropy group H . Using
the addition formula for χ, we know that χ(Y ) = 2χ(X)−χ(∂X); ∂X is a closed
manifold of dimension 4 and has χ(∂X) = 0 by Lefschetz duality, if χ(X) = 0;
but χ(X) = χ(GT ) = 0, hence χ(Y ) = 0. The subspace Y H1 fixed by H1

is the sum of two copies of XH1 joined along their boundary, and XH1 is a
regular neighbourhood of T in WH1 ∼= R4, hence XH1 = T × B2 where B2

denotes a closed 2-disc, and Y H1 = T ×S2, where S2 is the 2-sphere. Moreover,
XG = C × B2 and Y G = C × S2 ⊂ T × S2 = Y H1 for the same reason. Hence
χ(Y H1) = χ(Y G) = 0 because χ(T ) = χ(C) = 0.
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Figure 1. The torus T included in the space W H1 and the plane W G

Now we claim that IG(1Y ) �= 0. This happens if and only if for some H the
index I(f |YH) �= 0 for a taut approximation f of 1Y . Now consider I(f |YH1 ).
The space YH1 is exactly Y H1 \ Y G, hence it splits in the two connected compo-
nents Y ∩WH1− and Y ∩WH1

+ , which by assumption are (T \B)×S2 and intB×S2.
It is now easy to see that I(f |intB × S2) = z2 and I(f |(T \ B) × S2) = z−2 by
multiplicativity of the index. Hence IG(1Y ) �= 0.

By taking the product with S2n (trivial action ofG on S2n) we can see that all
the manifolds Y × S2n have again nonzero index IG(1Y ) �= 0 but χ(Y H) = 0 for
all isotropy groups H . Hence there exist such closed smooth compact connected
G-manifolds for all odd dimensions ≥ 5.

In the previous example the property is essentially a group property of the
group G (the so-called gap condition in the dimension function of the represen-
tation ring is not fulfilled for the 3-dihedral group). Equivalently, what really
happens geometrically is that YH1 is not connected, because the codimension of
Y G in Y H1 is 1, and at the same time WH1 = H1, so that the equivariant map
must not be symmetric around Y G.
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In the following example we show what might happen even to the group
Z2 = Z/2Z of order 2.

Example 5.2. Let X0 be the wedge of three circles a, b, c on a common
point x0 and G the group Z/2Z of order 2. The group G acts by swapping a
and b, i.e. if h : (a, x0) → (b, x0) is a point-based homeomorphism between a

and b then g �= 1 in G is defined by gx := h(x) if x ∈ a, gx = h−1(x) if x ∈ b

and gx := x if x ∈ c. We may as well embed X0 in the Euclidean 3-space
R3 = {(x1, x2, x3) : xi ∈ R} so that G is the group generated by the reflection
x3 → −x3 and c is contained in the plane {x3 = 0} (see Figure 2).

Figure 2. The bouquet of three circles

Let f0 : (a, x0) → (X0, x0) be the map defined by f0(a) := a−1b−1ab where
with an abuse of notation we identify a with the path a : (I, ∂I) → (a, x0) and the
equality is intended as an equality of homotopy classes rel. endpoints of paths.
Moreover, let f0 be the identity on c; there exists a unique G-map extending this
map to the whole X0 and it is still denoted by f0. We may assume f0 to be taut
over {x0} in a small neighbourhood of x0 and linear. It is easy to see that we
can ε-deform f0 in an equivariant way so that it has 4 fixed points x1, x2 in a
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and y1, y2 ∈ b of index respectively +1,−1,+1,−1 and y1 = gx1, y2 = gx2 (and
with an abuse of notation we still call f0 the deformed map).

Now by taking a small G-neighbourhood of X0 in R3 we can find a compact
smooth 3-manifold M (with boundary) which retracts on X0, as in Figure 3.

Figure 3. The thickened bouquet of circles

It is also easy to see that X0 can be moved to the boundary of M equiv-
ariantly, and we define X to be the boundary of M . Let r : X → X0 be the
G-retraction and i : X0 → X the inclusion. The G-surface X is closed compact
and G-smooth. Let f := if0r be the composition of f0 with i and r.

We want to show now that the Nielsen numbers N(f) = N(fG) = 0 (and
hence I(f) = I(fG) = 0) but IG(f) �= 0.

First notice that XG = c ∪ S1 and that there are no fixed points in XG (by
definition of f0). Hence N(fG) = 0.

Let us now look at the fixed point classes of f0 in X0. There are at most
two classes, {x1, y2} and {x2, y1}, because there is a simple path λ from x1 to
y2 such that λ ∼ f(λ). But x1 and y2 have index +1 and −1 respectively, hence
N(f0) = 0. By commutativity, it follows that N(f) = 0.
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We now have to compute I(f |D) for any connected component of X(1) = X \
Xs. Let D and D′ be the connected components of X(1). Then by equivariance
I(f |D) = I(f |D′) where g∗ : R(f ;D) ∼= R(f ;D′). Let D be the connected
component where a lies. We can take a small closed G-neighbourhood Y of X0

in X and define a deformation G-retraction R : X → Y . It can be shown that
without loss of generality R can be chosen such that D = R−1(E) where E is the
connected component of Y \ Y2 containing a. Therefore because of the retract
property of I, I(f |D) = I(f ′|E) where f ′ : Y → Y is the G-map defined by
f ′(x) = f0(r(x)) for all x ∈ Y ⊂ X .

So let us compute I(f ′|E). Let x1 be the base-point of E and Y . If w is
a simple path in X0 joining w and x0 which does not meet x2, then π1(Y, x1)
is the free group generated by α := waw−1, β := wbw−1 and γ := wcw−1

and π1(D,X1) is the free group on generators α′ and γ′ where jπ(α′) = α and
jπ(γ′) = γ if j : E → Y is the inclusion. The Reidemeister set R(f ′, E) is the set
of orbits in π1(Y, x1) under the action of π1(E, x1) given by ξ · t := jπ(ξ)tf ′

π(ξ−1)
for all ξ ∈ π1(E, x1) and t ∈ π1(Y, x1).

By definition, the support of I(f ′|E) is given by cd(x1) ∪ cd(x2) where cd :
Fix(f ′)∩E → R(f ′;E). More closely, cd(x1) = [1] and cd(x2) = [β−1]. The first
equality is trivial. The second comes from the choice of the path λ : (I, 0, 1) →
(E, x1, x2) given by λ = the simple path in X0 which does not meet x0 from
x1 to x2. We want to show that they belong to different Reidemeister orbits in
R(f ′, E). As long as f ′

π(α) = αβα−1β−1 and f ′
π(γ) = αβγβ−1α−1, the length

of the word ξf ′
π(ξ−1) can be ≤ 1 if and only if ξ = 1, hence b−1 �= ξf ′

π(ξ−1) for
all ξ ∈ π1(E, x1) and the conclusion follows.

Therefore there are 2 distinct essential classes in E, and 2 in gE. By com-
mutativity, the same assertion holds when x1 and x2 are thought as fixed point
classes in D of f , and hence I(f |X \Xs) = 2z1+2z−1 �= 0. Therefore IG(f) �= 0.

Example 5.3. Let us consider again the dihedral group G = D3 of Exam-
ple 5.1 acting on the plane V , with reflections r1 and r2 along two lines meeting
at an angle of π/3. Let us consider the G-space W given by the representation
V plus k ≥ 1 times the trivial (real) representation, i.e. W is the direct sum of
V and a k-space on which G acts trivially. The isotropy groups of this G-action
are again 1, H1 and G up to conjugacy, where H1 is as above. The action is
orthogonal, hence it induces an action on the unit sphere

X = Sk+1 = {x ∈ W : |x|2 = 1} ⊂W.

It is also easy to see that XG = Sk−1, XH1 = Sk, and XG is an equator of XH1

which is an equator of X (see Figure 4).
Let us start now with the antipodal map ak−1 : XG → XG, and its cone

Cak−1 : CXG → CXG. Because XG cuts XH1 into two open k-balls Dk
+ and
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Figure 4. The sphere X and the three planes for (k = 1)

Dk
−, we may identify CXG with the closure of Dk

+, and extend the map ak−1 to
XG ∪Dk

+ as the cone map Cak−1. Now, because the inclusion of the closed ball

D
k

+ in XH1 is a cofibration, there is an extension of the map Cak−1 : D
k

+ → D
k

+

to the whole XH1 , say h : XH1 → XH1 which is homotopic to the antipodal
map ak : Sk = XH1 → XH1 . Also, without loss of generality, we can assume
that h has two fixed points x+ in Dk

+ and x− in Dk
− of index respectively +1

and −1, and that is taut over XG. We can now extend, in a unique way, h to an
equivariant map Gh : GXH1 = X1

s → X1
s defined on the singular set of X . The

free locus of the action, X(1) = X \X1
s ⊂ X , is the union of six open k+ 1-balls

which have the boundary in X1
s . Let us pick up one of them, and call it Dk+1.

We can extend Gh to Dk+1 in a way such that its image is contained in X \Dk+1

and it is taut on ∂Dk+1. Then there is a unique equivariant map on X which
has these values on Dk+1 and let us call it f : X → X .

Let us compute IG(f) = I(fG|XG) + I(fH1 |XH1) + I(f |X(1)). Because by
definition fG = ak−1, its fixed point index I(fG|XG) = 0 is zero; on the other
hand the fixed point index I(fH1 |XH1) = I(h|Dk

+) + I(h|Dk
−) = 1 + z−1, and
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because there are no fixed point in Dk+1, the last fixed point index I(f |X(1)) = 0
is zero. Therefore IG(f) = 1 + z−1 which is non-zero.

If we look at the restrictions f , fH1 and fG, we see that they are homotopic to
the antipodal maps ak−1, ak and ak+1, and hence N(f) = N(fH1) = N(fG) = 0.
Moreover, looking at the degrees, the maps ak+1 and f have the same set of
degrees deg(aH

k+1) = deg(fH) for every isotropy group H ⊂ G, while they are
not G-homotopic. This is a well-known fact in equivariant homotopy of spheres;
however, we included the example to show how the equivariant fixed point index
might help in computations.

Remark 5.4. Looking at the examples above and at the definition of IG(f)
in Section 4, it is easy to see how to extend it to more general settings, like
self-maps of stratified spaces, orbifolds or collared pairs. All the properties are
carried out in the same way.
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Università di Milano-Bicocca
Via Bicocca degli Arcimboldi 8
20100 Milano, ITALY

E-mail address: ferrario@matapp.unimib.it

TMNA : Volume 13 – 1999 – N
o
2


