
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 12, 1998, 323–366

MORSE COMPLEX, EVEN FUNCTIONALS AND
ASYMPTOTICALLY LINEAR DIFFERENTIAL

EQUATIONS WITH RESONANCE AT INFINITY

Zalman Balanov — Efim Schwartzman

Introduction

I. Motivation. Let H be a Hilbert space and f : H → R a C1-functional.
To study critical points of f in the framework of the classical approaches (Morse
Theory [39], Ljusternik–Schnirelman theory [40], etc.) one needs to assume, in
particular, that f satisfies the Palais–Smale condition (in short, PS-condition):
any sequence {xn} ⊂ H with {f(xn)} bounded and ∇f(xn) → 0 contains a
convergent subsequence. In turn, the PS-condition is closely related to deforma-
tion properties of the flows associated with gradient vector fields. At the same
time, as is well-known, there are many important variational problems, where the
corresponding functionals fail to satisfy the PS-condition in any suitable sense.
In addition, these functionals may not satisfy certain other conditions that are
necessary for application of the classical methods.

The problem of weakening the PS-condition has attracted a considerable
attention for a long time (see, for instance, [16], [20], [21], [49] and references
therein). An essential step in this direction was done by C. Conley [21] who
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observed that important invariants of a functional can be obtained by taking
into account the behavior of the functional in a neighbourhood of a compact
isolated invariant set only. In the presence of group symmetries this approach was
developed in details by T. Bartsch [12]. Developing Conley’s approach A. Floer
[23]–[26] constructed the Morse complex for important classes of functionals with
ill-defined gradient fields. Note that in [23] Floer used a combination of the
technique based on the Morse complex with Ljusternik–Schnirelman theory to
study multiple periodic solutions of Hamiltonian systems on a compact simplectic
manifold.

In this paper we suggest a Morse complex based method for studying varia-
tional problems that are degenerate in a certain sense and have group symme-
tries. We mean, in particular, the following degeneracies, which are often related
to each other and appear simultaneously:

1. Lack of the PS-condition: (a) resonance at infinity [20]; (b) critical Sobolev
exponents [16], [49]; (c) elliptic equations and Hamiltonian systems with singu-
larities [2]; (d) unboundedness of the domain in elliptic equations [2], [42], etc.

2. Absence of (regular) flows: (a) functionals with ill-defined gradient fields
[23]–[26]; (b) lack of smoothness [17], [22] (quasilinear elliptic equations); see
also [20], [49] and references therein.

In other words, we are interested in situations for which the application of
the classical methods is impossible or meets serious difficulties.

In the present paper the Morse complex technique is applied to study odd
variational problems exhibiting resonance behavior at infinity. However, the au-
thors believe that this technique extends to certain other degeneracies mentioned
above as well as to group symmetries more complicated than the involution.

The basic ideas behind the approach presented in this paper can be traced
back to [45], where the Morse complex based method was used to obtain a mul-
tiplicity result for finite-dimensional even functionals (cf. Theorem 2.1). Then,
it was shown in [8] (see also [6] and [7]) that this approach is also effective for a
wide class of infinite dimensional functionals and, moreover, provides a way to
weaken the PS-condition as well as to involve approximation techniques in study-
ing multiple critical points. The present paper contains some improvements and
essentially new applications of our technique.

This paper is a revised version of [9]. Some of its results were announced
in [10].

II. Approach. To be more specific, we will describe the main abstract result
of the paper.

A finite-dimensional C2-functional f : Rn → R is called quadratic-like if
∇f(x) = Ax + o(‖x‖) as x goes to infinity, where A is a non-degenerate self-
adjoint linear operator. Let ind (∞, f) (respectively, ind (x, f)) denote the Morse
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index of A (respectively, the Morse index of f at a non-degenerate critical
point x). If zero is a non-degenerate critical point of f , we set

indr(∞, f) = ind (0, f)− ind (∞, f), indr(x, f) = ind (0, f)− ind (x, f).

Let, further, H be a separable Hilbert space, E1 ⊂ E2 ⊂ . . . ⊂ En ⊂ . . .

finite-dimensional subspaces of H such that
⋃

nEn is dense in H, and {fn :
En → R} a sequence of C2-functionals such that each fn has non-degenerate
critical points only. Let Kn be the set of all critical points of fn, and Kp

n the set
of critical points x of fn with 0 < indr(x, fn) ≤ p. Set

K∞ =
∞⋂

j=1

(
cl

( ∞⋃
n=j

Kn

))
, Kp

∞ =
∞⋂

j=1

(
cl

( ∞⋃
n=j

Kp
n

))
.

Assume that the sequence {fn} satisfies the following conditions.

(f1) There exists n0 such that for every n ≥ n0 the functionals fn are even
(in particular, 0 is a critical point of fn), quadratic-like, have only non-
degenerate critical points, and indr(∞, fn) ≥ p > 0, where p is indepen-
dent of n.

(f2) The set
⋃

nK
p
n is bounded in H (in other words, ∞ 6∈ Kp

∞) and 0 6∈ Kp
∞.

(f3) There exists lim fnk
(xk), for any sequence {xk, xk ∈ Knk

} convergent
in H.

(f4) Any bounded sequence {xk} with xk ∈ Enk
and ∇fnk

(xk) → 0 contains
a convergent subsequence, and, moreover, if {xk} is convergent then its
limit point belongs to K∞.

Theorem 0. Assume that conditions (f1)–(f4) hold. Then K∞ contains at
least p nontrivial distinct pairs of symmetric points.

Moreover, if K∞ consists of isolated points only, then, in addition to the
above statement, some homological (stability) information for p distinguished
distinct pairs from Kp

∞ can be obtained (see Theorem 2.4 for the precise formu-
lation).

Conditions (f1)–(f4) define a Galerkin-type approximation of a “limit” func-
tional f∗, which has not been mentioned explicitly. From this point of view
elements of K∞ should be thought of as critical points of f∗. It is important
to understand that nothing in conditions (f1)–(f4) prevents the limit functional
from behaving very irregularly. In particular, f∗ may not be well-defined or have
not well-defined gradient field; or, in the case when the gradient is well-defined,
the PS-condition may fail, etc. The conditions also allow critical points to travel
both to infinity and to zero. All this makes us believe that Theorem 0 is qualita-
tively distinct from what can be obtained by methods of Ljusternik–Schnirelman
Theory (cf. [11], [20], [40], [49]).
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The core of the proof of Theorem 0 (Sections 4–7) is the Normal Form Graph
Lemma (in short, NFG Lemma), which is a sort of classification result on a set of
graded graphs closely related to Morse complexes (see Sections 4 and 7). Observe
that the combinatorial arguments involved into the proof of the NFG Lemma
go beyond the scope of (co)homological methods (cf. [11], [20]) and may be
interesting independently. It is worth noting that we get multiplicity results by
means of Morse complex arguments only (with Ljusternik–Schnirelman theory
not being addressed whatsoever).

III. Variational problems with resonance at infinity. The technique
developed in the present paper is illustrated by two asymptotically linear prob-
lems having resonance at infinity. It should be pointed out that in both cases
the associated functionals do not satisfy the Palais–Smale condition in any ap-
propriate sense (in particular, the set of critical points belonging to the same
level surface may be unbounded). From this point of view the settings of the
both examples are beyond the scope of (the standard) Ljusternik–Schnirelman
theory.

In the first example we are dealing with periodic solutions of nonautonomous
odd Hamiltonian systems with resonance at infinity. Note that asymptotically
linear Hamiltonian systems (with/without resonance at infinity) were studied
by many authors (see, for instance, [4], [5], [20], [31], [34], [36], [40], [49] and
references therein).

Under our assumptions the system has an a priori unbounded (in the L2-me-
tric) set of solutions. We are interested in limit solutions of this system, that is
to say, in the solutions that come from the non-resonant systems approximating
the initial system in an appropriate sense. Under the additional assumption that
each limit solution is isolated, we obtain a multiplicity result for limit solutions
and the corresponding homological information (see Theorem 3.3).

In the second example we are dealing with elliptic semilinear boundary value
problems (BVP) having an odd nonlinearity and resonance at infinity. This
problem was studied intensively in many papers (see, for instance, [1], [3], [11],
[13], [16], [20], [33], [35], [38], [41], [48], [50], and references therein). Using
our technique we obtain a multiplicity result (Theorem 3.6). This result can be
applied, for instance, to the following BVP:

(∗)

{
−∆u− λu = ψ(x, u), x ∈ Ω,

u|∂Ω = 0,

where Ω is a bounded domain in Rn with C2-smooth boundary and λ is resonant;
the nonlinearity ψ is odd and of class C1 in u with ψ′u(x, u) → 0 as u → ∞
uniformly in x and ψ′u(x, 0) = ν > 0. These conditions include, in particular, a
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class of nonlinearities in (∗) that, apparently, cannot be treated by the known
methods (cf. [11], [20], [41], [50]).

IV. Overview. The paper is organized as follows. In Section 1 we fix the
terminology (regular pairs, MS-type, Morse complex, etc.), and recall certain
auxiliary results. In Section 2 we present formulations of the main abstract
result (see Theorem 2.4) and its consequence dealing with asymptotically linear
odd equations with resonance at infinity (see Theorem 2.7).

In the third section we present applications to asymptotically linear resonant
Hamiltonian systems (see Theorem 3.3), and to asymptotically linear resonant
elliptic BVP (see Theorem 3.6).

In Section 4 we introduce a combinatorial operation defined over the set of
all (Morse) complexes (see Definitions 4.1, cf. [37], [15]). Furthermore, with any
regular pair (Φ, L) (see Definition 1.2) having Φ of the MS-type we associate a
graded graph of a special form (see Definition 4.4), which inherits all properties
of the corresponding Morse complex (over Z2).

Sections 5–7 are devoted to the proof of Theorem 2.4. In Section 5 we reduce
the proof of Theorem 2.4 to the proof of the so-called Combinatorial Lemma
(see Lemma 5.8) dealing with the above mentioned graphs. In Section 6 we
reduce the Combinatorial Lemma to the above mentioned NFG Lemma. The
NFG Lemma is proved in Section 7.

In Sections 8 and 9 we deduce Theorem 2.7 from Theorem 2.4. Finally,
Sections 10 and 11 contain the proofs of Theorems 3.3 and 3.6, respectively.

V. Acknowledgments. We would like to thank to T. Bartsch, J. Denzler,
A. Dold, A. D. Ioffe, S. Kamin, and P. Zabrĕıko for fruitful discussions. The
authors are grateful to A. Dold for the invitation to visit the University of Hei-
delberg as well as to the other members of the Mathematics Institute for their
hospitality. The first author is also grateful to H. Steinlein for the invitation to
visit the University of Munich as well as to the other members of the Mathemat-
ics Institute for their hospitality.

1. Preliminaries

1.1. Regular pairs. Let U be an open domain in Rn, L : U → R a C2-
smooth functional and K the set of critical points of L.

Definition 1.1. A C1-vector field Φ on U is said to be a pseudo-gradient
field (pg-vector field) for L (respectively, (Φ, L) is said to be a pair) if the following
conditions are fulfilled:

(i) ‖Φ(x)‖ ≤ ‖∇L(x)‖, x ∈ U ,
(ii) (∇L(x),Φ(x)) > ‖∇L(x)‖2/2 for any x ∈ U \K.

To introduce the Morse complex we need the following
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Definition 1.2. A pg-vector field Φ for L (respectively, a pair (Φ, L)) is
called regular on U if there exist open bounded sets Q0, Q1 such that

(a) K ⊂ Q0 ⊂ Q1 ⊂ U and
(b) if the endpoints of an integral curve µ of Φ belong to Q0 then µ ⊂ Q1.

Definition 1.3. A homotopy of pairs (Φλ, Lλ), λ ∈ [0, 1], is said to be
regular on U if every pair (Φλ, Lλ) is regular on U and, moreover, the relevant
sets Q0 and Q1 can be chosen to be independent of λ.

Observe that the regularity condition is a sort of “compactness conditions”
allowing to some extent to deal with (regular) functionals as defined on a compact
manifold.

Recall that the Morse index of a non-degenerate singular point x of a regular
field Φ coincides with the dimension of the stable invariant manifold W s

x .

Definition 1.4. Let Φ be a pg-vector field (for C2-functional L) defined
and regular on U . The field Φ is said to be of the Morse–Smale type (in short,
of the MS-type) if:

(i) all the critical points of Φ are non-degenerate,
(ii) for any pair of critical points x, y with ind y ≤ indx + 1, the unstable

manifold Wu
x meets transversally the stable manifold W s

y .

Standard dimensional and compactness arguments yield (cf. [37], [24], [15]):

Proposition 1.5. If Φ is of the MS-type then:

(i) Φ has finitely many (non-degenerate) critical points,
(ii) no connecting trajectory joins critical points of the same index,
(iii) there are only finitely many connecting trajectories joining the critical

points of the neighbouring indices k and k − 1 for any integer k ≥ 1,
and their number does not depend on sufficiently C1-small perturbations
of Φ.

Theorem 1.6. Let (Φ, L) be an arbitrary pair defined and regular on U .
There exists a homotopy of pairs (Φt, Lt), t ∈ [0, 1], regular on U such that:

(i) Φ0 = Φ, L0 = L,
(ii) Φ1 is of the MS-type.

Theorem 1.6 as well as Proposition 1.5 are a sort of “general position results”,
and in this sense are similar to the corresponding statements from [15], [24], [37],
[43], [44], [47].

The sketch of proof of Theorem 1.6 for a class of functionals defined on an
open domain of a Hilbert space was presented in [6]. We refer to [8] for the
complete proof of this result.
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1.2. Homology groups of regular pairs. Recall the construction of the
Morse complex (see, for instance, [6], [8], [24], [43], [44]). Let Φ be a pg-vector
field of the MS-type, xk

1 , . . . , x
k
pk

be the set of all critical points of the Morse
index k and σ̃k

ij the number of trajectories connecting xk
j to xk−1

i . The Morse
complex C∗ = C∗(Φ) (over Z2) is the finite complex

0 −−−→ Cn
∂n−−−→ Cn−1

∂n−1−−−→ · · · ∂2−−−→ C1
∂1−−−→ C0 −−−→ 0,

where the critical points of index k form the distinguished basis of Ck = Zpk

2 and
∂k is generated in the bases by the matrix {σ̃k

ij (modulo 2)} = {σk
ij}. By the

standard argument, under the above conditions {(Cn, ∂n)} is a chain complex.
Denote by H∗(Φ) = H∗(L) = H∗(Φ, L) homology groups of this complex.

The following invariance result on homology groups is essential for our tech-
nique.

Theorem 1.7. Let (Φλ, Lλ) be a regular homotopy of pairs defined on U ,
λ ∈ [0, 1]. Suppose the fields Φ0 and Φ1 are of the MS-type. Then the homology
groups H∗(Φ0) and H∗(Φ1) coincide.

This statement is a direct consequence of the main result of [21] on the invari-
ance of the Conley index and Theorem 1 from [24] on the connection between
the Conley index and homology groups of the Morse complex. The union of
all critical points and connecting trajectories is considered here as the isolated
invariant set involved in the corresponding Conley index (cf. [24]).

Remarks 1.8. (i) Although, to the best of our knowledge, Theorem 1.7 as
stated, has not appeared in the literature, it is a part of mathematical folklore
that can be traced to [37].

(ii) The method used in [15] can be easily adjusted to prove Theorem 1.7 as
the regularity condition means that the behavior of a functional regular in the
above sense is quite similar to the behavior of a smooth function defined on a
compact manifold.

(iii) A generalization of Theorem 1.7 for a class of infinite-dimensional func-
tionals is proved in [8] (see also [6], [7]).

(iv) Note also that the homotopy invariance of Morse complex homology
groups was proved by A. Floer for certain important classes of infinite dimen-
sional functionals in his famous papers [25], [26] (see also [43]). A complete
presentation of the Floer approach in finite-dimensional case can be also found
in [44].

Let (Φ0, L0) and (Φ1, L1) be two pairs defined and regular on U . We say
that these pairs are equivalent if there exists a homotopy defined and regular on
U joining (Φ0, L0) to (Φ1, L1). It is easy to see that this relation determines the
equivalence.
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Let (Φ0, L0) be a pair defined and regular on U. Denote by E the equivalence
class of all pairs {(Φ, L)} for which there exists a regular homotopy joining
(Φ, L) to (Φ0, L0). By Theorem 1.6, the class E contains pairs with the fields
of the Morse-Smale type. By Theorem 1.7, the homology groups of the Morse
complexes associated with these fields coincide. Thus one can associate with
(Φ0, L0) the homology groups of the Morse complexes of any suitable pair from E.

Let x0 be an isolated critical point of L (possibly degenerate). Denote by U0

an isolating neighbourhood of x0 (containing no other critical point).

Proposition 1.9. The pair (∇L,L) is regular on U0.

Proof. It is enough to set Q1 = U0 and to put Q0 to be a sufficiently small
neighbourhood of x0. �

The homology groups associated with the pair (∇L,L) restricted to a neigh-
bourhood U0 isolating a critical point x0 are said to be homology groups of x0.
It should be noted also that one can define the (co)homology groups of an iso-
lated degenerate critical point via the Gromoll–Meyer pair ([19], [20], [28]) or by
means of the Conley index (see [12], [21], [43]).

We complete this section with a corollary of Theorem 1.7 which will be
essentially used in what follows.

Let us consider a functional

f(x) =
1
2
(Ax, x) + ψ(x),

where A : Rn → Rn is a linear non-degenerate self-adjoint operator and ψ :
Rn → R is a C2-functional such that ||∇ψ(x)|| < q||Ax|| for large x with q < 1.

Corollary 1.10. Let k be the dimension of the negative eigenspace (the
Morse index) of the operator A. Then

(1.1) dimHi(f) =

{
0 if i 6= k,

1 if i = k.

Proof. Set ft(x) = (1−t)·f(x)+t·(Ax, x)/2. It is easy to see that (∇ft, ft)
is a regular homotopy on Rn connecting (∇f, f) to (Ax, (Ax, x)/2). Then the
application of Theorem 1.7 reduces the study of the functional f in question to
the study of the non-degenerate quadratic form (Ax, x)/2, which is trivial. �

2. Statement of results: abstract framework

2.1. Sequences of regular even functionals. In this subsection we use
notions and notations defined in Subsection II of the Introduction.

Before giving a formulation of the main result let us consider a particular
case, which is well-known in Ljusternik–Schnirelman theory (see, for instance,
[19], [20], [40]).
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Theorem 2.1. Let f : Rn → R be an even quadratic-like functional, zero
a non-degenerate critical point and indr(∞, f) = p > 0. If f has finitely many
critical points then there exist among them p pairs, say, ±x1, . . . ,±xp, such that
each homology group Hν−i(xi), i = 1, . . . , p, is nontrivial; here ν is the Morse
index of zero (ν = ind (0, f)).

Because of the technical reasons, which will be clarified later, introduce the
following notation.

Definition 2.2. Let f : Rn → R be a functional such that zero is a non-
degenerate critical point of index ν. If x is an isolated critical point of f then
we define the shifted homology groups by setting Hs

k(x) = Hν−k(x). Similarly,
if U ⊂ Rn is an open subset and a pair (Φ, f)|U is regular, then Hs

k(f |U) =
Hν−k(f |U).

Remark 2.3. Note that under the above notation Theorem 2.1 states the
non-triviality of the shifted groups Hs

i (xi), i = 1, . . . , p.

With these preliminaries in hand Theorem 0 stated in the Introduction can
be specified as follows. Assuming that we are in the setting of Subsection II from
the Introduction, suppose that K∞ is equipped with the induced metric.

Theorem 2.4. Assume that conditions (f1)–(f4) from the Introduction hold.
Then K∞ contains at least p nontrivial distinct symmetric pairs. Moreover, if
every point of Kp

∞ is isolated as a point of K∞ then there exist p distinct pairs
±x1, . . . ,±xp ∈ Kp

∞ satisfying the following condition: if Wi is a neighbourhood
of xi such that Wi ∩K∞ = {xi} then for any n0 there exists n > n0 such that
the functional fn|(Wi ∩ En) together with its gradient field form a regular pair
for which the shifted homology group Hs

i (fn|(Wi ∩ En)) is non-trivial.

Remarks 2.5. (i) As was mentioned in the Introduction, Theorem 2.4 allows
to study ill-defined functionals. This possibility is essentially exploited in what
follows.

(ii) Note that the approximating functionals from Theorem 2.4 should not
be finite-dimensional, in general. The key condition is that they admit the
construction of the Morse complexes. From this point of view the class of infinite
dimensional functionals studied in [6]–[8] can be useful.

2.2. Abstract asymptotically linear equations with resonance. In
this section we present a corollary of Theorem 2.4 which deals with abstract
asymptotically linear equations with resonance at infinity. We need some addi-
tional notation.

Let H be a separable Hilbert space and let V be a vector field on H. Take
x ∈ H. Recall the definition of local Lipschitz constant L(x) = L(x, V ) ∈ [0,∞]
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at x. Take a ball B(x, r) of radius r centered at x, and denote by L(x, V, r) the
minimal Lipshitz constant for V on B(x, r). Then L(x, V ) is a limit of L(x, V, r)
as r → 0. If E is a linear subspace of H the number LE(x, V ) = L(x, V |{x+E})
is said to be a local Lipschitz constant of V at x along E.

Observe that if V is differentiable then L(x, V ) = ‖V ′(x)‖.
Let F : domF ⊂ H → H be a linear self-adjoint operator densely defined

on H and having a discrete spectrum only. Denote by N(F ) the dimension
of the negative space in the spectral decomposition for F , and set N(F ) =
N(F ) + dim kerF .

Consider an asymptotically quadratic functional

h(x) =
1
2
(Ax, x) + φ(x)

(in general, ill-defined on H). Here A : domA ⊂ H → H is assumed to be a
linear, self-adjoint (in general, unbounded) operator densely defined on H with
dim kerA <∞ and φ ∈ C1(H,R).

To study h in a neighbourhood of zero we will use another representation of
h in the form

h(x) =
1
2
(Bx, x) + φ0(x),

where B : domB ⊂ H → H is a linear self-adjoint operator densely defined on H
with dim kerB <∞, domB = domA and φ0 ∈ C1(H,R). In this representation
the first term is assumed to be the principal part of h around zero.

Let E1 ⊂ E2 ⊂ . . . ⊂ En ⊂ . . . be a sequence of finite-dimensional A-inva-
riant subspaces of H such that cl(

⋃
En) = H.

We will assume the following conditions to be fulfilled.

(h1) The operator A has a discrete spectrum only, and any its eigenvalue is
of finite multiplicity. Moreover, we suppose that A is closed, B − A is
bounded and every En is also B-invariant.

(h2) The functional φ is even. The operator ∇φ is bounded on any ball,
satisfies the Lipschitz condition with the Lipschitz constant L outside a
ball and ∇φ(x)/‖x‖ → 0 as ‖x‖ → ∞.
Moreover, for any finite-dimensional subspace E ⊂ H and any se-
quence {xn} with ‖xn‖ → ∞ and ρ(xn, kerA)/‖xn‖ → 0, one has
LE(xn,∇φ) → 0 (here ρ stands for the metric induced by the norm
in H).

(h3) The operator ∇φ0 satisfies the Lipschitz condition in a neighbourhood
of zero and ∇φ0(x)/‖x‖ → 0 as ‖x‖ → 0. Moreover, for any finite-
dimensional subspace E ⊂ H and any sequence {xn} with ‖xn‖ → 0
and ρ(xn, kerB)/‖xn‖ → 0, one has LE(xn,∇φ0) → 0.
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Set An = A|En, Bn = B|En. It is easy to show that under condition (h1)
the limit

(2.1) r = lim
n

[N(Bn)−N(An)]

is well-defined. Under the assumptions (h1)–(h3) we are interested in solutions
of the equation

(2.2) Ax+∇φ(x) = 0.

Observe that if H is infinite dimensional, then the operator A is unbounded
(cf. condition (h1)). Hence in this case one cannot speak about critical points
of h in the classical sense. In what follows by critical points of h we mean, by
definition, solutions of (2.2).

Definition 2.6. Let x be an isolated critical point of h and let W be an
isolating neighbourhood of x (that is to say, x is the only critical point belonging
to W ). We say that h has well-defined shifted homology groups at x (associated
to a sequence of subspaces {En}) if for every n large enough the functional
h|(W ∩En) together with its gradient field form a regular pair and the sequence
of shifted homology groups Hs

i (h|(W ∩ En)) stabilizes for n large enough. We
set Hs

i (x, h) = Hs
i (h|(W ∩ En)), where n is supposed to be large enough.

Theorem 2.7. Assume that the above assumptions (h1)–(h3) hold and p =
r − 1 > 0 (cf. (2.1)). Then the functional h has at least p distinct pairs
of nontrivial critical points. Moreover, if every critical point of h is isolated,
then there exist p distinct pairs of nontrivial critical points ±x1, . . . ,±xp such
that the functional h has well-defined shifted homology groups at each xi with
dimHs

i (xi, h) 6= 0, i = 1, . . . , p (cf. Definition 2.6).

Corollary 2.8. Assume that conditions (h1)–(h3) above hold. Assume also
that N(A) <∞. Then the conclusion of Theorem 2.7 is valid with p = N(B)−
N(A)− 1 provided that p > 0.

Proof. It suffices to observe that for the operator sequences {An}, {Bn}
defined above one has

lim
n

[N(Bn)−N(An)] = p+ 1. �

Remark 2.9. Suppose that under the assumptions of Theorem 2.7 h satisfies
the PS-condition in the energy space associated to A at any level c < h(0).
Then, under this additional assumption, it can be proved in the framework of
Ljusternik–Schnirelman theory that h has r = p + 1 distinct nontrivial pairs
of critical points (cf. [50]). Observe that the same multiplicity result can be
obtained by means of Theorem 2.4 (even under the assumption that h satisfies
the PS-condition just with respect to the norm of H). Thus, in comparison with
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this result, the number of pairs of critical points provided by Theorem 2.7 (in
the general setting) is lower by one. However, the authors have no examples
when this “lost” pair of critical points really disappears.

Remark 2.10. The B-invariance of every En (see (h1)) is assumed for the
sake of simplicity and can be removed.

3. Statement of results: applications

3.1. Asymptotically linear Hamiltonian systems with resonance. As
an application of Theorem 2.4 we obtain a multiplicity result for Hamiltonian
systems with resonance at infinity (see Theorem 3.3).

The starting point of our discussion is the well-known paper by V. Benci [14].
Let H ∈ C1(R2n × R,R) and consider the Hamiltonian system of ordinary dif-
ferential equations

(3.1) ż = JHz(z, t).

Let A,B : R2n → R2n be symmetric linear operators. We will suppose that H
satisfies the following conditions.

(H1) H(z, t) is τ -periodic in t.
(H2) H(z, t) = (Az, z)/2 + h(z, t), where A is non-degenerate and h(z, t) has

a “compact support” in the sense that there exists a ball BM ⊂ R2n

such that h(z, t) = 0 for all z ∈ R2n \BM and t ∈ R.
(H3) Hz(z, t) = Bz + o(||z||) as z → 0, where B is non-degenerate and,

moreover, the linear system ż = JBz has no τ -periodic solutions.
(H4) H(−z, t) = H(z, t).

Consider the spectrum of the operator (τ/2π)JA. As it is well-known (see,
for instance, [14]), if τ is resonant then

(3.2) σ

(
τ

2π
JA

) ⋂
iZ 6= ∅.

In the setting defined by (H1)–(H4) we are interested in the following two prob-
lems:

(1) the behavior of solutions of system (3.1) for τ close to the resonant
period,

(2) multiplicity results and stability (homological) information on solutions
of the resonant system (3.1) that come from the non-resonant systems
by passing to a limit.

To formulate our results, let us recall the definition of the integer-valued
function θ (see [14]).
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Consider the complexification of A,B denoted by the same symbols. We set

N(A) = {number of negative eigenvalues of A},
N(A) = {number of non-positive eigenvalues of A},

θj(B,A) = N

(
ijJ +

τ

2π
B

)
−N

(
ijJ +

τ

2π
A

)
,

θ(B,A) =
∞∑

j=−∞
θj(B,A).

(The symbol “i” here stands for the imaginary unit).
Consider also a family of systems

(3.3) ż = λ · JHz(z, t).

For λ = 1 we obtain (3.1). It is easy to see that the resonance condition (see (3.2))
for (3.3) depends on both λ and τ . Set

(3.4) f(z(·)) =
∫ τ

0

(1/2(Jż(t), z(t)) +H(z(t), t)) dt.

As it is well-known, τ -periodic solutions of (3.1) are critical points of f consid-
ered, for instance, on W 1,2[0, τ ], and vice versa.

In contrast to the classical approach, which deals with the energy space H1/2

(cf. [14], [20], [40]), we study systems (3.1) and (3.3) as operator equations in
the space L2[0, τ ].

Bearing in mind Definition 2.6, let us introduce the following sequence of
subspaces of L2:

(3.5) Em = span{u cos νkt, v sin νkt; u, v ∈ R2n, ν = 2π/τ, k = 0, . . . ,m}.

Lemma 3.1. Assume that H satisfies conditions (H1)–(H4), and consider
non-resonant pairs (λ, τ) with fixed τ and λ ∈ [1/2, 3/2]. Then there exists a
constant r = r(M,A) > 0 independent of the above non-resonant pairs (τ, λ)
such that all τ -periodic solutions of system (3.3) belong to the ball Br = {z ∈
R2n | ‖z‖ < r} in the phase space.

Consider now system (3.1) assuming τ to be a resonant period. Involve (3.1)
into a parametric family (3.3) assuming λ to be close to 1. Take a monotone
sequence λk → 1 (λk ∈ [1/2, 3/2]) such that (λk, τ) is a non-resonant pair for
each k = 1, 2, . . . . From Lemma 3.1 it follows that for all λ = λk the solutions
of (3.3) belong to a fixed ball (independent of k) of the phase space. Then a
simple analysis of system (3.3) easily yields that the union of the solutions is
C-precompact.
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Definition 3.2. Let λk → 1 be a monotone sequence such that every (λk, τ)
is non-resonant and let {zk(t)} be a C-convergent sequence of functions such that
every zk(t) is a solution of (3.3) with a certain λ = λk. Then the limit function
z(t) = lim zk(t) (which is obviously a τ -periodic solution of (3.1)) is said to be a
limit solution of (3.1).

It is easy to see that in the resonance case for λ close enough to 1 the numbers
θ(λB, λA) are different for λ < 1 and λ > 1. At the same time, the numbers

θ+B,A = lim
λ→1+

θ(λB, λA) and θ−B,A = lim
λ→1−

θ(λB, λA)

are well-defined.

Theorem 3.3. Assume that H satisfies conditions (H1)–(H4). Let τ be a
resonant period for (3.1) and let λk → 1 be a decreasing (respectively, increasing)
monotone sequence such that every (λk, τ) is non-resonant. Suppose, further-
more, that every limit τ -periodic solution is an isolated solution of (3.1). Then
there exist p = p+ = θ+B,A (respectively, p = p− = θ−B,A) distinct nontrivial
pairs of limit solutions, say, ±z1(t), . . . ,±zp(t) such that the functional f de-
fined by (3.4) has well-defined shifted homology groups at each zi (associated to
the sequence of subspaces defined by (3.5)) with dimHs

i (zi, f) 6= 0, i = 1, . . . , p
(cf. Definition 2.6).

Remarks 3.4. (i) It follows immediately from the assumptions of Theo-
rem 3.3 (cf. (H2)) that each τ -periodic solution of the linear system ż = JAz

with sufficiently large L2-norm is also the τ -periodic solution of (3.1) and, more-
over, belongs to the zero level of f defined by (3.4). It means, in particular, that
the PS-condition is not fulfilled at the zero level. Therefore, there is the obstacle,
in general, to application of the classical methods. At the same time, under the
additional assumption f(0) ≤ 0 Ljusternik–Schnirelman theory does provide the
multiplicity result similar to that stated in Theorem 3.3 (cf. Remark 2.9, see also
[50], [11]).

(ii) We will deduce Theorem 3.3 directly from Theorem 2.4 (see Section 10).
Observe that Theorem 2.7 also can be applied in a setting close to the one of
Theorem 3.3. However, the result provided by Theorem 2.7 is weaker (cf. Re-
mark 2.9).

(iii) Observe that the non-resonance assumption with respect to the system
ż = JBz as well as the non-degeneracy of A and B can be removed from the
assumptions of Theorem 3.3.

(iv) For the references related to Theorem 3.3 see the Introduction.

3.2. Asymptotically linear elliptic equations with resonance. Let
Ω ⊂ Rn be a bounded open set with C2-smooth boundary, W k,2

0 = W k,2
0 (Ω)
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the corresponding Sobolev space of functions vanishing on the boundary and
L2 = L2(Ω).

Consider the following boundary value problem:

(3.6)

{
−∆u = p(x, u),

u|∂Ω ≡ 0.

Assume that p(x, t) ∈ C0(Ω × R,R) and set P (x, t) =
∫ t

0
p(x, s) ds. As it is

well-known (see, for instance, [40], [19]), if p is of subcritical growth in t, then
the functional

(3.7) f(u) =
∫

Ω

(
1
2
|∇u(x)|2 − P (x, u(x))

)
dx

belongs to C1(W 1,2
0 (Ω),R) and its critical points are weak solutions of (3.6).

Assume, furthermore, that

p(x, t) = λ̂t+ ψ(x, t),

where ψ(x, t) = o(|t|) as |t| → ∞ uniformly in x ∈ Ω. Set

Ψ(x, t) =
∫ t

0

ψ(x, s) ds.

Let
λ1 < λ2 < . . . < λk < . . .

be eigenvalues of the operator −∆ : W 2,2
0 ⊂ L2 → L2. We are interested in the

resonant situation in (3.6), that is to say, λ̂ = λk for some k. Then functional
(3.7) takes the form

(3.8) f(u) =
∫

Ω

(
1
2
(|∇u(x)|2 − λku

2(x))−Ψ(x, u(x)
)
dx.

As it is well-known (see, for instance, [11], [19]), functional (3.8) (as defined on
W 1,2

0 ) does not satisfy the PS-condition in general, therefore, the application of
classical methods to study functional (3.8) meets serious difficulties.

We will investigate (3.8) by means of Corollary 2.8 in the space L2 , on which
(3.8) is, evidently, ill-defined.

With these preliminaries in hand we rewrite (3.6) in the form

(3.9)

{
−∆u− λku = ψ(x, u),

u|∂Ω ≡ 0,

and assume that the nonlinearity ψ satisfies the following conditions.

(ψ1) The function ψ(x, t) satisfies the Lipschitz condition in both arguments
with constant l.

(ψ2) ψ has the zero derivative over t at infinity in the sense that the local
Lipschitz constants in t go to zero as |t| → ∞, uniformly in x.
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(ψ3) ψ(x, t) = νt+ ψ0(x, t), where ν > 0 and the local Lipshitz constants of
ψ0(x, t) in t go to zero as |t| → 0, uniformly in x.

(ψ4) ψ(x,−t) = −ψ(x, t).

Remark 3.5. Assume that ψ ∈ C1(Ω× R,R). Then

(a) condition (ψ2) means that ψ′t(x, t) → 0 as t→∞ uniformly in x,
(b) condition (ψ3) means that ψ′t(x, 0) = ν.

Denote by En the subspace of L2 spanned by all eigenfunctions of −∆ cor-
responding to eigenvalues λ with λ < n.

Let r be the number of the eigenvalues of −∆ in the interval (λk, λk + ν)
(taking into account their multiplicities). Using Corollary 2.8 we obtain the
following

Theorem 3.6. Under the assumptions (ψ1)–(ψ4) assume that p = r−1 > 0.
Then problem (3.9) has at least p nontrivial distinct pairs of classical solutions
of class C2,α with any α < 1. Moreover, if (3.9) has a descrete (in the L2-
metric) set of solutions then there exist among them p distinct pairs of symmetric
solutions, say, ±u1, . . . ,±up such that the functional f defined by (3.8) has
well-defined shifted homology groups at each ui (associated to the sequence {En}
introduced above) with dimHs

i (ui, f) 6= 0, i = 1, . . . , p (cf. Definition 2.6 and
Theorem 2.7).

Remarks 3.7. (i) Observe that the nontriviality of homology groups, which
is stated in Theorems 3.3 and 3.6 means, in particular, the stability of the corre-
sponding solutions with respect to perturbations (of the relevant data) that lead
to sufficiently C1-small perturbations of the functional.

(ii) Under the assumptions of Theorem 2.7 (see condition h2)) the operator
∇φ is required to satisfy the Lipschitz condition outside a certain ball and in a
neighbourhood of zero only. This gives rise to the following question: whether
the smoothness assumptions on ψ in t in Theorem 3.6 can be weakened? The
authors do not know the answer to this question in the case of the Dirichlet
problem (3.9). However, for the problem on periodic solutions of Hamiltonian
systems as well as for the Neumann problem of the type −∆u = ψ(x, u) with
the zero boundary conditions and sublinear ψ, the answer is positive. Observe
that Theorem 3.3 (where the Hamiltonian is supposed to be of class C1) is, in
fact, a result of this sort. Moreover, the study of periodic solutions to problem
(3.1) in the spirit of Theorem 2.7 can provide the following result.

Suppose that H from (3.1) satisfies conditions (H1), (H3), (H4), and the
following one: H(z, t) = (Az, z)/2 + h(z, t), where A is non-degenerate, and
there exists r > 0 such that hz(z, t) satisfies the Lipschitz condition in z for
|z| > r. Moreover, the local Lipschitz constants of hz in z go to zero as |z| → ∞
uniformly in t.
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Then (3.1) has at least p = θ(B,A)−1 pairs of distinct limit τ -periodic solu-
tions. Moreover, in the case of isolated limit solutions the relevant homological
assertion is valid (cf. Theorem 3.6).

It is worth noting that the described problem is considered in the L2-space
because the study in the (energy) H1/2-space meets serious difficulties.

Concluding this section let us consider some of known results related to
Theorem 3.6. Observe, first, that all these results were obtained with making
appeals to Ljusternik–Schnirelman (minimax) theory.

A satisfactory study of problem (3.6) in the non-resonant case has been
carried out by various authors (see, for instance, [4], [11], [18], [19], [20], [31],
[40], [49] and references therein).

Landesman and Lazer [33] were the first to consider resonant problems. They
studied the existence of solutions of problem (3.9) in the non-symmetric case
under the assumption that functional (3.8) is coercive on the kernel. Their
result has been extended by a number of authors (see [1], [3], [20], [41], and
references therein). In particular, P. Rabinowitz (see [41]) studied the problem
under the Landesman–Lazer condition in the presence of (ψ4).

The further development of the theory was mostly due to Chang–Liu [20],
Bartsch–Liu [13], Mawhin [35], Solimini [48], Mizogushi [38] (non-symmetric
case) and Bartolo–Benci–Fortunato [11], Thews [50] (symmetric case). In [11]
and [50] it is assumed that ψ is independent of x and the real function

∫ t

−∞ψ(s) ds
is well defined. Also certain specific “integral” conditions with respect to ψ are
required in [20], [35], [48]. The conditions of another nature can be found in [13]
and [38]).

4. Additions over complexes and graphs

This section contains some preliminaries for the proof of Theorem 2.4.

4.1. Additions. We start with the definition of additions over complexes.
Let (C, ∂) be a complex over Z2, where ∂i is generated in the distinguished bases
by the matrices {σk

ij} (see Section 1). Fix a vector space Ck and choose two
elements xp and xq from the distinguished basis in Ck.

Definition 4.1. By an addition associated to the ordered pair (xp, xq) we
mean the change of the coefficients σk

ip, σ
k+1
qj according to the following rules:

σk
ip = σk

ip + σk
iq (mod 2),

σk+1
qj = σk+1

pj + σk+1
qj (mod 2),

while all the other coefficients remain unchanged (here the symbol “σ” stands
for the transformed coefficients).
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Remark 4.2. Clearly, an addition corresponds to the change of the basis in
the vector space Ck generated by the substitution xp → (xp + xq). Observe also
that in the case of Morse complexes defined over Z the above formulae take the
following form: σk

ip = σk
ip ± σk

iq and σk+1
qj = σk+1

pj ∓ σk+1
qj .

The following fact is trivial from the viewpoint of Remark 4.2.

Lemma 4.3. Any addition preserves the chain property of a complex and
leaves its homology groups unchanged.

4.2. Graphs. We are now in a position to introduce a graph associated to
a regular pair (see Definitions 1.1 and 1.2). This construction will be essentially
used in the proof of Theorem 2.4.

Definition 4.4. Let (Φ, L) be a regular pair with Φ of the MS-type (see
Definition 1.4). Symbols γ(Φ, L) = γ(Φ) = γ(L) = γ stand for a graded graph
defined by the following rules:

(a) The vertices of the graph γ(Φ) are in one-to-one correspondence with
the critical points of L. Moreover, we keep the same symbol xk (where
k denotes the index of the vertex) for the vertex corresponding to a
critical point xk.

(b) Two vertices xk and ym of the graph γ(Φ) with m ≤ k are connected
by a (single) edge if and only if
(i) m = k − 1,
(ii) σ̃(xk, ym) = 1 (mod 2), that is to say, there is an odd number

of connected trajectories of Φ joining xk to ym.

We refer the reader to Figure 1 below for an example of such graph.

Definition 4.5. Let γ(Φ) be as in Definition 4.4. We denote by σγ(xk, ym)
the number of edges connecting the vertex xk to the vertex ym; in other words,
σγ(xk, ym) = 1 if xk and ym are connected by an edge, and σγ(x, y) = 0,
otherwise. We will drop the index γ in this notation if it does not lead to
confusion.

Straightforward calculations using the chain property of the Morse complex
yield the following useful

Proposition 4.6 (chain relation). Let γ(Φ) be as in Definition 4.4, and let
un, vn−2 be a pair of vertices of γ(Φ). Let y1, . . . , ym be all the vertices of γ(Φ)
of index n− 1. Then

m∑
i=1

σγ(u, yi)σγ(yi, v) ≡ 0 (mod 2).
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Remarks 4.7. (i) Observe that passing from the Morse complex (over Z2)
to the corresponding graph is nothing else but another (and more convenient)
way to keep the information about the complex (over Z2). On the other hand,
given a graph one can completely reproduce the corresponding Morse complex
(over Z2). Because of this we will speak frequently about the chain property,
homology groups and additions over graphs.

(ii) We will often abuse precise terminology in the following two cases:

• instead of “addition associated to an ordered pair of vertices xk
p, x

k
q” we

will use “addition xk
p to xk

q”,
• when the index k of the vertex xk is understood from the context or is

not important we will drop the index and write x.

(iii) Additions are “antisymmetric” in the following sense: an addition xk

to yk transforms edges connecting x to vertices of index (k − 1); at the same
time it does not change the edges connecting x to the vertices of index (k + 1).
On the contrary, this addition transforms the edges connecting yk to vertices of
index (k+1) while it does not change the edges connecting y to vertices of index
(k − 1).

Definition 4.8. A vertex x of a graph is called isolated if no edge is incident
with x.

A pair of vertices xk and yk+1 of a graph is called complementary if there is
an edge connecting x to y and this edge is the only one incident with x and the
only one incident with y.

4.3. Graphs associated to even functionals. Consider graphs associated
to a regular pair (Φ, L), where L is even and Φ is odd and of the MS-type. Since
L is even, zero is a critical point. Denote by θ the vertex of γ(L) corresponding
to zero and call this vertex central.

Observe, if x is a non-zero critical point of L then so is −x. Since Φ is odd,
connecting trajectories are also symmetric with respect to zero. This induces
the natural involution on γ(L). If x is a non-central vertex of γ(L) denote by
−x its symmetric counterpart.

Let xk
p, xk

q be a pair of vertices of γ(L). Keeping in mind the above involution
on γ(L) we will speak about the pairs of (symmetric) additions meaning by that
the additions of xk

p to xk
q and −xk

p to −xk
q .

Finally, according to Definition 2.2, one can speak about the shifted homology
groups of γ(L).

4.4. Projective graphs. Let γ be a graded graph with the involution intro-
duced in the preceding subsection. Then the general “projectivization funktor”
applied to γ gives rise to the following
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Definition 4.9. By the projective graph γpr we mean the graph obtained
from γ by the subsequent application of the following two operations:

(1) the identification of symmetric vertices and symmetric edges;
(2) reducing the number of edges connecting a pair of vertices in the result-

ing graph modulo 2.

Observe that the first operation transforms γ into the graph with vertices
which can be connected by either no edge or one edge or two edges only. Observe
also that due to the second operation the vertex of the projective graph that
comes from the central one is always isolated (cf. Definition 4.8).

Furthermore, it is easy to see that every pair of symmetric additions on γ

induces the (unique) addition on γpr and vice versa.
It follows immediately from Definition 4.9 and the chain relation (Proposi-

tion 4.6).

Proposition 4.10. Suppose γ is a chain graph. Then so is γpr.

Definition 4.11 (cf. Definition 4.8).

(i) A vertex x of the graph γ is called p-isolated (projectively isolated) if
its projective image xpr is isolated in γpr.

(ii) A pair of vertices x, y are called p-complementary if σ(x, y) = 1 and
their projective images xpr, ypr form the complementary pair in γpr.

Observe that x is p-isolated if and only if so is −x. Similarly, a pair x, y is
p-complementary if and only if so is the pair −x, −y.

Definitions 4.9 and 4.11 readily imply the following

Proposition 4.12.

(i) A vertex x of the graph γ is p-isolated if and only if for any y 6= ±x
one has σ(x, y) = σ(x,−y).

(ii) A pair of vertices x, y of γ is p-complementary if and only if σ(x, y) = 1,
σ(x,−y) = 0 and for any z 6= ±x,±y one has σ(x, z) = σ(x,−z) and
σ(y, z) = σ(y,−z).

5. Proof of Theorem 2.4: reduction to the Combinatorial Lemma

The proof of Theorem 2.4 consists of two parts: analytical and combina-
torial. This section is devoted to the analytical part. The core of the section
is Lemma 5.1, where we deal with connecting trajectories of pg-fields for fn.
Lemma 5.1 allows us to reduce the proof of the theorem to the study of special
partitions on the set of vertices of graphs associated to a quadratic-like func-
tional.
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5.1. Connecting trajectories. Without loss of generality we will assume
that every point of Kp

∞ is isolated in K∞ (cf. the Introduction) and fn(0) = 0
for any n.

According to (f3) the limit functional f∞ is well-defined onK∞ by f∞(limuk)
= lim fnk

(uk), uk ∈ Knk
. In particular, f∞(0) = 0. Denote the elements of Kp

∞
by x1, . . . , x2m so that xi = −xm+i and f∞(x1) ≥ . . . ≥ f∞(xm). In what
follows we will prove, in particular, that m ≥ p.

Lemma 5.1. Under the assumptions of Theorem 2.4 there exist a natural
number N large enough and a disjoint system of neighbourhoods U1, . . . , U2m of
the points x1, . . . , x2m respectively, such that Um+i = −Ui, i = 1, . . . ,m, and
for any n > N and any pg-field Φn for fn the following conditions are fulfilled.

(i) Suppose that for some different xi, xj ∈ Kp
∞ we have f∞(xi) ≥ f∞(xj).

Let z ∈ Ui and y ∈ Uj be critical points of fn such that fn(z) ≤ fn(y).
Then σ̃(z, y) = 0, that is to say, no Φn-trajectory connects z to y (cf.
Section 1).

(ii) Let z be a critical point of fn outside
⋃
Ui. Let fn(z) ≤ f∞(xj) (re-

spectively, fn(z) ≥ f∞(xj)) for a certain j = 1, . . . , 2m. Suppose that
y ∈ Uj is a critical point of fn such that fn(z) ≥ fn(y) (respectively,
fn(z) ≤ fn(y)). Then σ̃(z, y) = 0.

(iii) If x and y are critical points of fn belonging to the same Ui, then any
Φn-trajectory connecting x to y is contained in Ui.

Proof. Using conditions (f2) and (f4) choose a system of neighbourhoods
U1

i ⊂ U0
i of xi, i = 1, . . . , 2m, with U j

m+i = −U j
i , i = 1, . . . ,m, j = 0, 1, such

that:

(a) {U0
i } is a disjoint system,

(b) there exists δ > 0 such that for any x ∈
⋃2m

i=1(U
0
i \ U1

i ) and n large
enough, we have:

(5.1) ||∇fn(x)|| ≥ δ.

To prove statement (i) we argue indirectly and assume that there exists a
sequence of trajectories Tk of Φnk

, nk → ∞, joining critical points of fnk
, say,

zk to yk with zk → xi and yk → xj . Then by (f3),

(5.2) lim fnk
(zk) = f∞(xi) ≥ f∞(xj) = lim fnk

(yk).

From yk 6∈ U0
i it follows that Tk ∩ (H \ U0

i ) 6= ∅ and Tk ∩ U1
i 6= ∅, therefore, the

lengths of curves Tk ∩ (U0
i \ U1

i ) are bounded away from zero. Now, taking into
account Definition 1.1 and (5.2) we obtain a contradiction with (5.1). Setting
Ui = U0

i we get the first statement.
To show (ii) and (iii) one can use the similar argument. Lemma 5.1 is proved.
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Remark 5.2. Observe that, in fact, statement (iii) means that for any i =
1, . . . , 2m and any n large enough the pair (Φn, fn)|U0

i is regular. In this sense
statement (iii) is similar to Proposition 1.9.

5.2. Admissible partitions. Let (Φ, L) be a regular pair with even L and
odd Φ of the MS-type. Consider the graph γ associated to this pair (see Defi-
nition 4.4). The following notion plays a substantial role in the proof of Theo-
rem 2.4.

Let T be a set. Recall that a covering {Qi} of T is called a partition of T if
this collection of subsets is disjoint. As a matter of convenience, we admit that
some of Qi may be empty.

Definition 5.3. A partition of the vertices of γ into sets Q0, . . . , Q2s is said
to be admissible if:

(a) Q0 = {θ} and the partition is symmetric meaning that ±Qs+i = ∓Qi,
i = 1, . . . , s,

(b) the partition {Q0, . . . , Q2s} is (partially) ordered in such a way that
the following conditions are fulfilled:
(i) if vertices xk ∈ Qi and yk−1 ∈ Qj are connected in γ by an edge

then either i = j or Qi > Qj ,
(ii) the order is symmetric in the following sense: if Qi > Qj then

−Qi > −Qj and vice versa,
(iii) the partition is “projectively linear” in the following sense: if Qj

6= ±Qi, where i > 0, then either Qi > Qj or Qj > Qi.

Observe that due to Definition 5.3(a), we may write {Q0, Q1, . . . , Q2s} =
{Q0, . . . ,±Qs}. Let us state some immediate consequences of Definition 5.3.

Proposition 5.4. If {Q0,±Q1, . . . ,±Qs} is an admissible partition then

(i) The projective image of the (admissible) partition (cf. Definition 4.9) is
a partition on the set of vertices of the projective graph.

(ii) The given (partial) order induces the well-defined linear order on the
elements of the “projective partition” provided by (i).

(iii) Any two symmetric vertices belong to different (symmetric) elements of
the partition.

(iv) If Qi > Qj then no edge connects a vertex um ∈ Qi with a vertex
vm+1 ∈ Qj.

(v) The relations of type “Qi > −Qi” as well as “−Qi > Qi” are prohibited.

Proof. (i) follows from Definition 5.3(a). (ii) follows from point (iii) of
Definition 5.3(b). (iii) follows from Definition 5.3(a). (iv) follows from point (i)
of Definition 5.3(b). (v) follows from point (ii) of Definition 5.3(b). �
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Consider an admissible partition {Q0, · · · , Q2s} of γ and fix a partial order
provided by Definition 5.3(b). For any Qi denote by γi the natural restriction of
γ to the vertices of Qi.

Proposition 5.5. γi is a chain graph.

Proof. Let Ak and Bk−2 be two vertices of γi. Note that if for some point
xk−1 of γ, σγ(A, x) = σγ(x,B) = 1, then x ∈ Qi (see Definition 5.3(b)). To
complete the proof it suffices to use the fact that γ is a chain graph and to apply
the chain relation (Proposition 4.6). �

In the sequel we also need the following simple

Proposition 5.6. Let xk ∈ Qi, yk−1 ∈ Qj be a pair of vertices of γ for
which

(5.3) σγ(±x, y) = 1.

Then ±Qi > Qj (in particular, x and y belong to different elements of the
partition).

Proof. If x and y do not belong to the same element of the partition then
Definition 5.3 and (5.3) yield ±Qi > Qj . Thus, it suffices to show that x and y

do not belong to the same element.
Suppose that x and y do belong to the same element Qi. Then, by Defini-

tion 5.3(b) and (5.3), we have: −x,−y ∈ −Qi, Qi > −Qi and −Qi > Qi. The
contradiction yields the desired statement. �

5.3. Special partitions associated to (Φn, fn). Return to the assump-
tions (f1)–(f4) of Theorem 2.4 (see Introduction). Let us fix the number N
and the system of neighbourhoods U1, . . . , U2m provided by Lemma 5.1. Take
n > N . Choose for fn an odd pg-field Φn of the MS-type and consider the graph
γ associated to (Φn, fn) (by condition (f1), the pair (Φn, fn) is regular). Below
we describe a partition on γ, which is essentially used in what follows.

Define the special partition {Q0, . . . , Q2s} = {Q0,±Q1, . . .±Qs} of the ver-
tices of γ by the following conditions.

(i) For every i = 1, . . . ,m the set of all vertices corresponding to criti-
cal points of fn from Ui (respectively, from −Ui) constitute a separate
element Qi (respectively, −Qi = Qs+i) of the partition.

(ii) Each vertex x of γ (including the central vertex θ) that corresponds to
a critical point outside

⋃
Ui constitutes itself a separate element {x}

of the partition; in the case x 6= θ we suppose that {x} = Qj and
{−x} = Qs+j or, conversely (j = m+ 1, . . . , s).

Thus, we obtain the partition {Q0,±Q1, . . . ,±Qs} with Q0 = {θ} and s ≥
m. To introduce the corresponding partial order on this partition we need an
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auxiliary function χ defined on the elements of the partition by the following rule:
for every i = 1, . . . ,m set χ(±Qi) = f∞(±xi); for every one-vertex element {x}
of the partition defined in the point (ii) above, set χ({x}) = fn(x). In particular,
χ(Q0) = 0.

Now we define the order on the partition as follows:

(iii) For i, j = 0, . . . ,m we set ±Qi > ±Qj , if and only if either χ(Qi) >
χ(Qj) or χ(Qi) = χ(Qj) and i < j.

It follows immediately from Lemma 5.1

Proposition 5.7. The special partition introduced above is admissible pro-
vided that n is large enough.

5.4. Reduction to the Combinatorial Lemma. The following statement
is an important ingredient of the proof of Theorem 2.4.

Lemma 5.8 (Combinatorial Lemma). Let f be a quadratic-like functional de-
fined on Rν and Φ be an odd pg-field of the MS-type for f . Suppose indr(∞, f) =
r. Let Y = {Q0,±Q1, . . . ,±Qs} be an admissible partition (equipped with an
order satisfying Definition 5.3(b)) of the vertices of the graph γ associated to
(Φ, f). Then there exist (non-empty) elements ±Ql1 , . . . ,±Qlr in Y such that

(i) Q0 > Ql1 > . . . > Qlr ,
(ii) if γi is a subgraph associated with {Qli}, then the shifted homology group

Hs
i (γi) is non-trivial for every i = 1, . . . , r (cf. Proposition 5.5).

The proof of the Combinatorial Lemma will be given in Sections 6 and 7.
Here we deduce Theorem 2.4 from Lemma 5.8.

Proof. Lemma 5.8 ⇒ Theorem 2.4. Suppose we are in the setting of Sub-
section 5.3. Assume that throughout the proof n is large enough. Consider the
special partition associated to (Φn, fn). By Proposition 5.7, this partition is
admissible.

By (f1), we have indr(fn,∞) ≥ p. Observe that by the Combinatorial Lem-
ma 5.8(ii) the homology group Hs

i (γi) is nontrivial for every i = 1, . . . , p.
Therefore, for each i = 1, . . . , p there exists at least one critical point x of fn

corresponding to a vertex from Qli such that indr(x, fn) = i. Furthermore, by
conditions (f2) and (f4) and by construction, such a point x lies in a prescribed
small neighbourhood of Kp

∞. Hence we may suppose that x ∈ Umi
for some mi.

Then, by construction (cf. the preceding subsection), Qli coincides with the set of
vertices corresponding to the critical points of fn from Umi . Now the application
of Lemma 5.8(i) provides the multiplicity result required while the application
of Lemma 5.8(ii) gives us the corresponding homological information. Finally,
since Kp

∞ is finite, by the above argument one can choose p pairs ±x1, . . . ,±xp

from Kp
∞ as is required by the theorem. �
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6. Proof of the Combinatorial Lemma: reduction
to the Normal Form Graph Lemma (NFG Lemma)

6.1. Admissible additions and NFG Lemma. Throughout this subsec-
tion we denote by γ the graph associated to a regular pair (Φ, L) with even
quadratic-like functional L and odd Φ of the MS-type. We also assume that γ is
equipped with an admissible partition. Observe that the order on the partition
induces the order on the set of vertices of γ. Namely, if x ∈ Qi, y ∈ Qj and
Qi > Qj , then we set x > y. In turn, the partition on the set of the vertices of
γ induces the order on the set of vertices of the projective graph γpr.

Definition 6.1. Let xk, yk 6= θ be vertices of γ such that x 6= ±y. A pair of
symmetric additions of x to y and, respectively, −x to −y is said to be admissible
if either x and y belong to the same element of the partition or x > y.

The projective image of a pair of admissible additions is also called an ad-
missible addition (over the projective graph γpr).

Proposition 5.4(ii) (see also the beginning of the section) readily implies the
following

Proposition 6.2. Let x and y be vertices of the projective graph γpr of the
same index. Then the addition of x to y is admissible if and only if x 6< y.
Moreover, any admissible addition over the projective graph is the image of the
only pair of symmetric admissible additions over the initial graph.

Note that any addition transforms edges and does not change vertices. Com-
bining this observation with Definitions 6.1 and 5.3 yields the following

Proposition 6.3. Let γ1 be a graph equipped with an admissible partition of
its vertices. Let γ2 be a graph obtained from γ1 by means of a pair of symmetric
admissible additions. Then the initial partition considered with respect to γ2 is
still admissible.

The following lemma is crucial for the proof of the Combinatorial Lemma
(and, respectively, Theorem 2.4).

Lemma 6.4 (Normal Form Graph Lemma). Under the assumptions of the
Combinatorial Lemma (Lemma 5.8) suppose that ind θ = n = k + r. Then there
exists a finite sequence of pairs of symmetric admissible additions transforming
the graph γ into a graph γ′ that satisfies the following conditions:

(i) any vertex of γ′ is either p-isolated or belongs to a p-complementary
pair (see Definition 4.11),

(ii) γ′ restricted to the set of all p-isolated vertices coincides with the graph
pictured in Figure 1; in particular, for each i = k, . . . , k+r−1 this graph
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contains the only pair of vertices ±ui of index i, and σγ′(ui,±ui+1) = 1,
i = k, . . . , k + r − 2.

�
· · ·

uk uk+1 uk+2

−uk −uk+1 −uk+2

uk+r−1uk+r−2uk+r−3

−uk+r−1−uk+r−2−uk+r−3

θ

Figure 1

6.2. Reduction to the NFG Lemma. The proof of the NFG Lemma will
be given in the next section. In this subsection we will deduce the Combinatorial
Lemma from the NFG Lemma.

Proof. NFG Lemma ⇒ Combinatorial Lemma. Let us apply the NFG
Lemma to the graph γ from the Combinatorial Lemma. Then the collection of
admissible additions provided by the NFG Lemma makes the resulting graph γ′

satisfy conditions (i) and (ii) from the NFG Lemma.
Observe first of all that by Proposition 5.6, for each j = k, k+1, . . . , k+r−2,

p-isolated vertices uj and uj+1 belong to different elements of the partition (cf.
Figure 1 and Lemma 6.4(ii)). Denote by Qlk+r−j

the element of the partition
containing uj . Then, by Definition 5.3,

Q0 > Ql1 > . . . > Qlr .

Furthermore, by Proposition 4.12,

σγ′(uj , z) = σγ′(uj ,−z)

for each p-isolated vertex uj and any z 6= ±uj . Therefore, the application
of Proposition 5.6 provides that σγ′(uj , z) = 0 for every z ∈ Qlk+r−j

. This
fact implies that for the subgraph γ′k+r−j , which denotes the restriction γ′ to
the set of the vertices from Qlk+r−j

, the vertex uj gives rise to a dimension in
Hs

k+r−j(γ
′
k+r−j). Hence dimHs

i (γ′i) 6= 0 for every i = 1, . . . , r.
Since additions preserve homology groups, one has dimHs

i (γi) 6= 0, i =
1, . . . , r, for the corresponding subgraph of the initial graph γ. �

7. Proof of the NFG Lemma

The proof of the NFG Lemma is going in two steps. In the first step (Lem-
ma 7.1) we construct a sequence of admissible additions transforming the given
graph into a graph that contains p-isolated vertices and vertices belonging to p-
complementary pairs only (see Definition 4.11). At the second step (Lemma 7.2)
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we show that the graph containing only the above mentioned vertices satisfies
the conclusion of the NGF Lemma.

Lemma 7.1. Let γ satisfy the assumptions of the NFG Lemma. Then there
exists a sequence of pairs of admissible additions transforming γ into a graph
that contains p-isolated vertices and vertices belonging to p-complementary pairs
only.

Proof. We will construct a sequence of admissible additions transforming
the corresponding projective graph γpr into a (projective) graph that is a dis-
joint sum of isolated vertices and (isolated) complementary pairs. Then, by
Proposition 6.2, the corresponding “lifting” sequence provides the transforma-
tion required.

Denote by Q the set of vertices of the graph γpr that neither are isolated nor
belong to (isolated) complementary pairs. Suppose m is the minimal index of
vertices from Q. Let xm

0 be a maximal vertex in the set of all vertices of index
m from Q. Let Yx0 be the set of all vertices connected to x0 by an edge (by
construction, all of them are of index m + 1), and let y0 be a minimal vertex
on Yx0 . For every y ∈ Yx0 \ {y0} we kill the edge connecting y to x0 by means of
the addition of y to y0. Since y0 is minimal, this addition is admissible. Similarly,
by means of additions of x0 to the vertices of index m that are connected to y0
by an edge, we kill all the edges connecting y0 to the vertices xm 6= x0. Since
x0 is maximal, all these additions are admissible. Now, by the chain relation
(Proposition 4.6), the pair (x0, y0) is a new isolated complementary pair. The
induction completes the proof. �

Lemma 7.2. Let γ be a graph satisfying the conditions of the NFG Lemma
and such that each its vertex either is p-isolated or belongs to a p-complementary
pair. Then the restriction of γ to all the p-isolated vertices is the subgraph
(denoted by γ∗) coinciding with the graph pictured in Figure 1.

In turn, the proof of the preceding lemma is based on the following

Lemma 7.3. Let γ satisfy all the assumptions of Lemma 7.2. Then the
subgraph γ∗ is a chain graph with the same homology groups as γ.

Proof. We use Proposition 4.12 and a construction similar to that from
the proof of Lemma 7.1. Namely, we construct a sequence of pairs of addi-
tions (not necessarily admissible) transforming γ into a graph that is a disjoint
sum of γ∗ and a number of (isolated) complementary pairs. Since an addition
does not change homology groups, the conclusion of the lemma follows. Con-
sider a couple of symmetric non-isolated p-complementary pairs (xm, ym+1) and
(−xm,−ym+1). Observe that by the lemma assumptions and Proposition 4.12,
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for u, v different from ±x,±y we have

(7.1) σ(v, x) = σ(v,−x), σ(u, y) = σ(u,−y).

By means of pairs of additions of vertices vm+1 6= ±y such that σ(v,±x) = 1 (see
(7.1)) to y and to −y, we kill all edges connecting ±x to vertices vm+1 6= ±y.
Consider now a couple of vertices um and vm+1 such that u 6= ±x and v 6= ±y.
According to the second relation from (7.1), the pairs of additions described
above do not change σ(u, v).

Similarly, we kill the edges connecting ±y to vertices um 6= ±x keeping all
the other edges unchanged. Thus, taking into account the chain relation, we get
two more isolated complementary pairs while the resulting graph still satisfies
the assumptions of the lemma, and the subgraph γ∗ remains the same. The
induction completes the proof. �

Proof of Lemma 7.2. By Lemma 7.3, we can assume that the graph γ

contains p-isolated vertices only (in other words, γ = γ∗).
Suppose that every symmetric pair is ordered: {±x} = (x1, x2). Add in every

such a pair the first vertex to the second one. (Observe that this transformation
breaks the symmetry.) Denote the resulting graph by γ. For every (symmetric)
pair (xm

1 , x
m
2 ) and for any ym−1 we have (cf. Remark 4.7(iii))

(7.2) σγ(x1, y) = 0.

To see this, we may suppose that we add vertices starting from the maximal
possible index, and then continue to add following the direction of decreasing
indices of the vertices. At the same time, x2 and y can be connected by an edge.

Consider the complex corresponding to γ. By the lemma assumptions and
Corollary 1.10,

(7.3) dimHj(γ) =

{
0 if j 6= k,

1 if j = k.

It follows from (7.2) that for any symmetric pair (x1, x2) the vertex x1 belongs
to the kernel of the corresponding boundary homomorphism. Therefore, by (7.3)
γ has no pairs of symmetric vertices ±xm 6= θ with indices m ≥ n = k+r, where
n is the index of the central vertex. In particular, the central vertex θ is the only
vertex of index n.

If now n > k (the case n = k is trivial) we have dim(Ker ∂n−1) = dim(Im ∂n)
= 1. Hence it is the only symmetric pair of vertices of index n − 1. Similarly,
in the case n > k + 1 we have dim(Ker ∂n−2) = dim(Im ∂n−1) = 1 and so on.
Thus for every m with k ≤ m < n we obtain the only symmetric pair of vertices
of index m. Finally, by the symmetry argument, the initial graph γ (recall that
γ = γ∗) coincides with the graph pictured in Figure 1. �
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8. Proof of Theorem 2.7: smooth case

In this section we will deduce Theorem 2.7 from Theorem 2.4 under the
additional assumption φ ∈ C2(H,R). The crucial point of the proof is the
verification of condition (f2) (see Subsection 8(b)). To verify (f2) we estimate
indices of critical points of functionals fn that travel to infinity or zero as n tends
to infinity.

8.1. Verification of conditions (f1), (f3) and (f4). Set φn = φ|En. Define
an approximating sequence {fn} by setting

(8.1) ∀x ∈ En fn(x) =
1
2
(Anx, x) +

||x||2

(2n)
+ φn(x),

and verify that sequence (8.1) satisfies conditions (f1)–(f4).
It is easy to see that for n large enough the second term in (8.1) provides

the second derivative of fn to be non-degenerate at zero and infinity. Combining
this with Corollary 1.10 yields that fn is a quadratic-like functional for n large
enough. Another simple observation is that for n large enough formula (8.1)
together with condition (h4) yield the inequality indr(∞, fn) ≥ p+1. It remains
to note that using a sufficiently C2-small even perturbation outside a small
neighbourhood of zero one can provide fn to have non-degenerate critical points
only. This completes the verification of condition (f1).

To check conditions (f2)–(f4) we need the following standard

Lemma 8.1.

(i) Suppose that A satisfies (h1) and for a sequence {xn} ⊂ domA the
sequence {Axn} is bounded in H. Then {xn} is precompact in H.

(ii) If, in addition, {xn} has a limit x0, then x0 ∈ domA and (Ax0, x0) =
limn(Axn, xn).

Proof. Let λ1, . . . , λk, . . . be eigenvalues ofA. Denote by Ẽk the eigenspace
corresponding to λk, and let P̃k : H → Ẽk be the orthogonal projection. Recall
that by condition (h1), we have λ2

k →∞ and Ẽk is finite-dimensional.
By assumptions, a sequence

(8.2) ‖Axn‖2 =
∞∑

k=1

λ2
k||P̃kxn||2

is bounded by a constant M . Since λ2
k →∞, it follows from the boundedness of

(8.2) that the series

(8.3)
∞∑

k=1

||P̃kxn||2,
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and

(8.4)
∞∑

k=1

λk||P̃kxn||2

converge uniformly in n. In particular, the precompactness of the sequence {xn}
follows from the uniform convergence of series (8.3). Statement (i) is proved.

Statement (ii) easily follows from the uniform convergence of series (8.4). �

Recall that by critical points of h we mean solutions of the equation Ax +
∇φ(x) = 0.

Lemma 8.2. Suppose that A satisfies (h1) and the gradient field ∇φ is bound-
ed on any ball. Let {xk} ⊂ H be a bounded sequence such that xk ∈ Enk

and
∇fnk

(xk) → 0. Then:

(i) {xk} is precompact in H,
(ii) every limit point of {xk} is a critical point of h,
(iii) if {xn} is convergent, then so is fnk

(xk) and lim fnk
(xk) = h(limxk).

Proof. (i) It follows from (8.1) that for every k

(8.5) Axk + xk/nk +∇φnk
(xk) → 0.

Since {xk} is bounded, the set {∇φnk
(xk)} is bounded as well. Now, from (8.5)

it follows that the set {Axk} is bounded. Then the precompactness of {xk}
follows from Lemma 8.1(i).

(ii) Let x0 be a limit point for {xk}. For every v ∈
⋃

nEn

(8.6) (Ax0 +∇φ(x0), v) = 0.

Since cl(
⋃

nEn) = H, (8.6) implies (ii). Finally, (iii) follows from Lemma 8.1(ii)
and the continuity of φ. Lemma 8.2 is proved. �

Return to the verification of the conditions of Theorem 2.4. Since φ is con-
tinuous on H, condition (f3) follows from Lemma 8.2(iii). Condition (f4) is a
direct consequence of Lemma 8.2(i).

Thus, we proved in the smooth case that all assumptions of Theorem 2.4
hold up to verification of (f2).

8.2. Verification of condition (f2). To verify condition (f2) we have to
check that the set

⋃
nK

p
n of critical points x with 0 < indr(x, fn) ≤ p does not

contain sequences going to infinity or zero as n→∞.
We need two propositions following below.
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Proposition 8.3.

(i) Let {xk ∈ Knk
} be a sequence of critical points such that ‖xk‖ → ∞.

Then ρ(xk, kerA)/‖xk‖ → 0 and for any finite-dimensional subspace
E ⊂ H one has ‖φ′′nk

(xk)|E ∩ Enk
‖ → 0.

(ii) Let {xk ∈ Knk
} be a sequence of critical points such that ‖xk‖ → 0.

Then ρ(xk, kerB)/‖xk‖ → 0 and for any finite-dimensional subspace
E ⊂ H one has ‖φ′′0nk

(xk)|E ∩ Enk
‖ → 0.

Proof. Set xk = xk/‖xk‖. Since xk is a critical point of fnk
, we have

(8.7) Axk + xk/nk +∇φnk
(xk)/‖xk‖ = 0.

By condition (h2), ∇φnk
(xk)/‖xk‖ → 0, hence (see (8.7)) Axk → 0 as well. This

implies ρ(xk, kerA) = ρ(xk, kerA)/‖xk‖ → 0. The application of (h2) yields
‖φ′′nk

(xk)|E ∩ Enk
‖ → 0. Statement (i) is proved.

The proof of (ii) utilizes the same argument with (h3) instead of (h2). �

To formulate the next proposition we need certain preliminaries. For any sub-
set S ⊂ R denote by ẼS the sum of eigenspaces corresponding to A-eigenvalues
belonging to S. Observe that for any S ⊂ R the subspace En ∩ ẼS is A- as well
as An-invariant. Set

Xn = En ∩ Ẽ(−∞,0], Yn = En ∩ Ẽ(0,∞].

Clearly, An|Yn is strictly positive. Observe also that by definition, N(An) =
dimXn.

Proposition 8.4. Let {xk} be the same as in Proposition 8.3(i) or (ii).
Then for any k large enough and any v ∈ Ynk

one has

(f ′′nk
(xk)v, v) > 0.

Proof. Let λ̂1 be the smallest positive eigenvalue of A. Set

(8.8) M = 2L(2L+ 1)2/λ̂2
1,

where L is the Lipschitz constant from condition (h2). Then for any n and every
v ∈ Yn

(8.9) (Anv, v) = (Av, v) ≥ λ̂1 · ‖v‖2.

For the sake of definiteness assume that xk → ∞ (one can treat the case
xk → 0 using the same argument). The application of Proposition 8.3(i) with
E = Ẽ(0,M ] yields ‖φ′′nk

(xk)|Ẽ(0,M ] ∩ Enk
‖ → 0, hence, for all k large enough,

one has

(8.10) ‖φ′′nk
(xk)|Ẽ(0,M ] ∩ Enk

‖ < λ̂1/2.
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Fix k such that (8.10) is satisfied, and set

Y 1 = Ynk
∩ Ẽ(0,M ], Y 2 = Ynk

∩ Ẽ(M,∞).

Take arbitrary v ∈ Ynk
. Let v = v1 + v2 be the canonical decomposition with

v1 ∈ Y 1 and v2 ∈ Y 2. Then, in particular,

(Ank
v, v) = (Ank

v1, v1) + (Ank
v2, v2) ≥ (Ank

v2, v2).

Set,

G1 = {v ∈ Ynk
| ‖v2‖ < λ̂1‖v‖/(2L+ 1)},

G2 = {v ∈ Ynk
| ‖v2‖ > (L/M)1/2‖v‖}.

By the choice of M (see (8.8)), one has: G1 ∪G2 = Ynk
. Our goal is to show the

inequality
(Ank

v, v) > |(φ′′nk
(xk)v, v)|,

which easily implies the statement. To this end consider two cases.
Case 1. v ∈ G1. By (8.10),

(8.11) |(φ′′nk
(xk)v1, v)| < (λ̂1/2) · ‖v‖2.

By definition of G1 and condition (h2),

(8.12) |(φ′′nk
(xk)v2, v) < L · λ̂1/(2L+ 1) · ‖v‖2 < (λ̂1/2) · ‖v‖2.

Summing (8.11) and (8.12) and using (8.9) we get:

|(φ′′nk
(xk)v, v)| < λ̂1‖v‖2 ≤ (Ank

v, v),

as required.
Case 2. v ∈ G2. By condition (h2) and definition of G2, Y 2 and Ynk

,

(Ank
v, v) ≥ (Ank

v2, v2) > M‖v2‖2 > L‖v‖2 ≥ |(φ′′nk
v, v)|,

as required. �

We are now in a position to verify condition (f2). Denote by X− the negative
subspace in the spectral decomposition for f ′′nk

(xk). By Proposition 8.4, X− ∩
Ynk

= {0}. Hence ind (xk, fnk
) ≤ dimXnk

= N(Ank
). On the other hand, by

virtue of (8.1), ind (0, fnk
) ≥ N(Bnk

) provided k is large enough. Hence, for
such k,

indr(xk, fnk
) = ind (0, fnk

)− ind (xk, fnk
) ≥ N(Bnk

)−N(Ank
) = r > p.

By the same token, the set of critical points x of fnk
with indr(x, fnk

) ≤ p is
bounded, from which the first part of condition (f2) follows.

To verify that 0 6∈ Kp
∞ one should use the similar argument with Proposi-

tion 8.3(ii) instead of Proposition 8.3(i).
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8.3. Homological statement. Thus all conditions (f1)–(f4) are fulfilled
and we can apply Theorem 2.4. Since, by Lemma 8.2(ii), the set K∞ coincides
with the set of critical points of h, Theorem 2.4 provides the multiplicity result
required. Now, in order to complete the proof of the theorem, it remains to show
that the homological part of Theorem 2.4 implies the homological statement from
Theorem 2.7. To this end it is enough to show that for any isolated critical point
x of h one has Hs

∗(fk|W ) = Hs
∗(h|W ∩Ek) provided k is sufficiently large and W

is a sufficiently small neighbourhood of x. This follows from Theorem 1.7 and
the following fact, which is closely related to Proposition 1.9 and Lemma 5.1(iii).

Proposition 8.5. Suppose x0 is an isolated critical point of h and W is
an isolating neighbourhood of x0 (that is, x0 is the only critical point belonging
to W ). Then the linear homotopy connecting (∇h, h)|(W ∩ En) to (∇fn, fn)|W
is regular provided n is large enough.

Proof. Denote by fn( · , λ), λ ∈ [0, 1], the linear homotopy in question.
Choose a ball B(x0, 2r) centered at x0 such that B(x0, 2r) ⊂ W . Due to
Lemma 8.2, there exists n0 such that for any x ∈ B(x0, 2r)\B(x0, r) and n > n0

we have
‖∇fn(x, λ)‖ > δ > 0.

To complete the proof one can apply Lemma 8.2(iii) and the standard arguments
(cf. the proof of Lemma 5.1). �

Finally, the application of Theorem 1.7 once again provides the stabilization
of the homology groups.

9. Proof of Theorem 2.4: reduction to the smooth case

In this section we reduce the general case φ ∈ C1(H,R) to the one considered
in the previous section by means of a smoothing procedure. The procedure
contains two steps: (i) smoothing in a neighbourhood of zero; (ii) smoothing
outside a (smaller) neighbourhood of zero.

9.1. Preliminaries. In the non-smooth case we start as in the smooth case
defining a sequence {fn} using formula (8.1). For any n set φ0n = φ0|En. It
follows from (8.1) that

(9.1) fn(x) =
1
2
(Bnx, x) +

‖xn‖2

2n
+ φ0n(x).

Set Ên = En ∩ Ẽ(0,M ], where M is defined by (8.8) and Ẽ(0,M ] is defined before
Proposition 8.4.

Observe, first of all, that using the methods of the previous subsection one
can easily prove the following non-smooth analogue of Proposition 8.3.
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Proposition 9.1.

(i) Let {xk ∈ Knk
} be a sequence such that ‖xk‖ → ∞. Then

L
bEnk

(xk,∇φnk
) → 0.

(ii) Let {xk ∈ Knk
} be a sequence such that ‖xk‖ → 0. Then

L
bEnk

(xk,∇φ0nk
) → 0.

In the same way as in the preceding section we will use Proposition 9.1 to
estimate indices of critical points going to infinity or zero.

The goal of the smoothing procedure described below is to produce from
the sequence {fn} a new sequence, say, {f̃n : En → R} satisfying the following
conditions:

(a) for any n the functional f̃n is smooth and ∇f̃n is asymptotically linear
at infinity,

(b) critical points of {f̃n} still approximate the critical points of h,
(c) the analogue of Proposition 9.1 holds.

9.2. Smoothing around zero. Fix n large enough. By construction, zero
is an isolated critical point of fn and Kn is bounded. Observe also that in a
neighbourhood of zero

(9.2) φ0n(x) = o(‖x‖2)

and

(9.3) ∇φ0n(x) = o(‖x‖).

Let χ(t), t ∈ R, be a non-negative smooth monotone function with the
following properties: χ(t) = 0 for t < 1 and χ(t) = 1 for t > 2. Consider the
family of functionals

φ0n(x, δ) = χ(||x||/δ)φ0n(x),

where δ ∈ (0, 1]. It is easy to see that φ0n(x, δ) = φ0n(x), whenever ‖x‖ > 2δ.

Proposition 9.2. For any ε > 0 there exists δ > 0 such that for any x with
‖x‖ < 2δ one has

(9.4) ‖∇φ0n(x, δ)‖ < ε‖x‖.

Proof. We have

(9.5) ∇xφ0(x, δ) = (1/δ)χ′(||x||/δ) · φ0(x) · x/||x||+ χ(||x||/δ) · ∇φ0(x).

Observe that both terms in (9.5) vanish inside the ball ‖x‖ ≤ δ. Therefore,
the application of (9.2) and (9.3) yields the desired result. The proposition is
proved. �
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To realize the first step take ε = 1/2n, choose δ provided by Proposition 9.2
and replace φ0n(x) from (9.1) by φ0n(x, δ). Let us show that for n large enough
the functional

fn(x) =
1
2
(Bnx, x) +

‖x‖2

(2n)
+ φ0n(x, δ)

has the same collection of critical points as fn.
Observe, first, that, by construction, fn(x) = fn(x) for x with ‖x‖ > 2δ.

Hence we need to study fn inside the ball ‖x‖ ≤ 2δ only. Consider the quadratic
functional Qn(x) = (Bnx, x)/2 + ‖x‖2/(2n). It is easy to see that for n large
enough

(9.6) ‖[Q′′n(x)]−1‖ ≤ n.

Combining (9.4) with (9.6) and bearing in mind that ε = 1/2n we see that fn

has no critical points different from zero inside the ball ‖x‖ ≤ 2δ. The first step
is complete.

9.3. Smoothing outside a neighbourhood of zero. Let E be a finite-
dimensional space and let ψ1, ψ2 : E → R be continuous functions. Assume that
ψ2 has a compact support. Recall that the function

ψ1 ∗ ψ2 =
∫

E

ψ1(x− y)ψ2(y) dy

is said to be a convolution of ψ1 with ψ2. As it is well-known, the above operation
is commutative:

ψ1 ∗ ψ2 =
∫

E

ψ1(x− y)ψ2(y) dy =
∫

E

ψ1(z)ψ2(x− z) dz = ψ2 ∗ ψ1.

Let Ω(x) be a smooth non-negative cut-off function on E with the support
in the unit ball and such that ∫

E

Ω(x) dx = 1.

For any µ ∈ (0, 1] set

Ωµ(x) = µ− dim EΩ(µ−1x).

Then the support of Ωµ(x) lies in the µ-neighbourhood of zero and∫
E

Ωµ(x) dx = 1.

Consider a family of operators Cµ : C(E,R) → C(E,R), µ ∈ (0, 1], defined by

Cµψ = ψ ∗ Ωµ.

The following statements follow immediatly from the definition of convolution.
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Proposition 9.3. Let ψ ∈ C1(E,R).

(i) Cµψ ∈ C∞(E,R),
(ii) for any ε > 0 and radius R > 0 there exists µ0 > 0 such that

|ψ(x)− Cµψ(x)|+ ‖∇ψ(x)−∇Cµψ(x)‖ < ε,

whenever µ ≤ µ0 and ‖x‖ < R,
(iii) if ∇ψ satisfies the Lipschitz condition along a subspace Ê ⊂ E in a ball

B(x0, r) then ∇Cµψ satisfies the Lipschitz condition along Ê in the ball
B(x0, r − µ) with the same Lipschitz constant provided µ < r,

(iv) if ∇ψ(x) = o(‖x‖) as ‖x‖ → ∞, then ∇xCµψ(x) = o(‖x‖) uniformly in
µ ∈ (0, 1],

(v) if ψ vanishes on a ball B(0, r) then Cµψ vanishes on a ball B(0, r − µ)
provided µ < r,

(vi) if ψ(x) = (Qx, x)/2, where Q is a linear self-adjoint operator, then
(Cµψ)′′(x) = Q, whenever x ∈ E and µ ∈ (0, 1].

Take {fn} obtained at the previous step. Consider the family of functionals
{Cµfn} (µ ∈ (0, 1]), which are smooth by Proposition 9.3(i). Set

φn(x, µ) = Cµfn(x)− 1
2
(Anx, x)−

‖x‖2

(2n)
,

φ0n(x, µ) = Cµfn(x)− 1
2
(Bnx, x)−

‖x‖2

(2n)
.

Then

Cµfn(x) =
1
2
(Anx, x) +

‖x‖2

(2n)
+ φn(x, µ),

Cµfn(x) =
1
2
(Bnx, x) +

‖x‖2

(2n)
+ φ0n(x, µ).

Our goal is to choose a sequence {µn} in such a way that the critical points of
{Cµn

fn} approximate the critical points of h and the analogue of Proposition 9.1
holds for critical points of {Cµnfn} and for {φn( · , µn)} and {φ0n( · , µn)}, re-
spectively.

Fix n large enough. By construction, in a small ball B(0, r) one has fn(x) =
(Bnx, x)/2 + ‖x‖2/(2n). Using the linearity of the operator Cµ and Proposi-
tion 9.3(v), (vi) we see that Cµfn has no critical points different from zero in
B(0, r − µ) provided µ < r. Similarly, Proposition 9.3(iv), (vi) yield that crit-
ical points of Cµfn belong to a ball B(0, R) with the radius R independent of
µ ∈ (0, 1]. Now Proposition 9.3(ii) provides that for any δ > 0 there exists µ > 0
such that for all µ ≤ µ if x is a nontrivial critical point of Cµfn then there exists



Morse Complex, Even Functionals 359

a critical point y of fn, as well as of fn, with

(9.7) ‖x− y‖ < δ.

Using Proposition 9.3(iii), (vi) it is easy to see that if the above δ is small enough,
then

‖φ′′n(x, µ)|Ên‖ ≤ 2L
bEn

(y,∇φn(y))(9.8)

and

‖φ′′0n(x, µ)|Ên‖ ≤ 2L
bEn

(y,∇φ0n(y)),(9.9)

where the subspace Ên was defined at the beginning of the section. Choose µn

such that the above δ is less than 1/n and (9.8), (9.9) hold with µ = µn.
Set f̃n = Cµn

fn, φ̃n = φn(·, µn) and φ̃0n = φ0n(·, µn). Since, by construction,
the critical points of {fn} approximate the critical points of h, by (9.7) the same
is true for the sequence {f̃n}. In addition, formulae (9.7)–(9.9) provide that
Proposition 9.1 is true for the new sequences {φ̃n} and {φ̃0n}. It remains to
observe that using a C2-small even perturbation one can provide critical points
for {f̃n} to be non-degenerate.

10. Application to asymptotically linear Hamiltonian systems

In this section we prove Theorem 3.3 by means of Theorem 2.4. We study
system (3.3) as an operator equation in the space L2[0, τ ] and follow the argu-
ments from Subsection 8(a).

10.1. Preliminaries. Observe, first, that equation (3.3) can be rewritten
as Ãλz + λ∇φ(z) = 0, where

(10.1) Ãλz = Jż + λAz, ∇φ(z)(t) = ∇zh(t, z(t)),

with φ(z) =
∫ τ

0
h(t, z(t)) dt. For any λ ∈ R the operator Ãλ is considered

densely defined in L2 = L2[0, τ ] with dom Ãλ = {z ∈ W 1
2 [0, τ ], z(0) = z(τ)}. It

is essentially used in what follows that for any λ ∈ R the operator Ãλ satisfies
condition (h1) from Subsection 2.2 with the sequence of subspaces {En} defined
by (3.5). (Observe that for any λ ∈ R the subspace En is Ãλ-invariant for each
n.) In particular, Lemma 8.1 can be applied to Ãλ for any λ ∈ R.

Another essential (and simple) fact is that due to (H2) the gradient field ∇φ
is uniformly bounded:

(10.2) ‖∇φ(z)‖L2 ≤ C, z ∈ L2.
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All this makes the method developed in Subsection 8.1 applicable to the problem
in question. This is the way to verify conditions (f1), (f3) and (f4) from Theo-
rem 2.4 (cf. the Introduction) for the approximating sequence {fn} constructed
below.

Furthermore, we show that due to conditions (H2) and (H3), critical points
of fn cannot travel to infinity as well as to zero as n→∞. This will provide the
verification of condition (f2) of Theorem 2.4.

Let us start with some auxiliary results. Consider the linear system

(10.3) ż = JAz.

Let BM be the ball from condition (H2) (see Subsection 3.1). To prove
Lemma 3.1 we need

Lemma 10.1. There exists a ball B̃ ⊂ R2n, B̃ ⊃ BM , such that for any
z0 /∈ B̃ the solution z(t), z(0) = z0, of system (10.3) satisfies at least one of the
following conditions:

(i) z(−∞, 0] ∩BM = ∅,
(ii) z[0,∞) ∩BM = ∅.

Proof. The statement is trivial in the cases of purely elliptic as well as
purely hyperbolic systems. The general case can be treated by considering the
canonical decomposition into the two ones. �

Similarly, one can prove the following slight generalization of Lemma 10.1.

Lemma 10.2. For each fixed λ ∈ [1/2, 3/2] consider the linear system

(10.4) ż = λ · JAz.

There exists a ball B̃ ⊃ BM independent of λ ∈ [1/2, 3/2] and such that for any
z /∈ B̃ the solution z(t), z(0) = z, of (10.4) satisfies at least one of conditions
(i), (ii) from Lemma 10.1.

Proof of Lemma 3.1. Suppose (λ, τ) is non-resonant and λ ∈ [1/2, 3/2].
Then equation (10.4) has no τ -periodic solutions. Therefore, by Lemma 10.2
and condition (H2), all τ -periodic solutions of (3.3) belong to a ball B̃ from
Lemma 10.2, which is independent of λ ∈ [1/2, 3/2]. �

As an immidiate consequence of condition (H3) we have

Proposition 10.3. There exist an L2-neighbourhood U of zero and ε > 0
such that for any λ ∈ [1 − ε, 1 + ε] system (3.3) has no nontrivial solutions
inside U .

The following fact is standard (cf. [14]).
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Proposition 10.4. For m large enough the sequence indr(∞, f |Em) stabi-
lizes (cf. (3.4) and (3.5)), and limm→∞ indr(∞, f |Em) = θ(B,A) (cf. Subsec-
tion 3.1).

10.2. Proof of Theorem 3.3. Observe, first, that under the assumptions
of the theorem the number p from the statement is finite.

Consider the family of functionals

(10.5) f(z, λ) =
∫ τ

0

{
1
2
(Jż, z)R2n + λ · 1

2
(Az, z)R2n + λ · h(z, t)

}
dt,

corresponding to the family of systems (3.3). In particular, f( · , 1) = f( · )
(cf. (3.4)) and ∇zf(z, λ) = Ãλz + λ∇φ(z) (cf. (10.1)).

Let {λk} be the sequence from the formulation of Theorem 3.3. Fix k and
consider the sequence of finite-dimensional functionals f( · , λk)|Em. Combining
Proposition 10.4 and estimate (10.2) with the the non-degeneracy of Ãλk

, one
can show (cf. the proof of Lemma 8.2) that for any k there exists an integer mk

satisfying the following conditions:

(a) indr(∞, f( · , λk)|Emk
) ≥ p (where p is from the statement),

(b) all the critical points of f( · , λk)|Emk
belong to the open (1/k)-neigh-

bourhood (in the L2-norm) of the set of critical points of f( · , λk).

Set
fk = f( · , λk)|Emk

.

Let us show that the sequence {fk} satisfies conditions (f1)–(f4). Lemma 3.1,
Proposition 10.3 and the above condition (b) yield (f2). Furthermore, it is easy
to see that for each λ ∈ R Lemma 8.1 holds with Ãλ instead of A. Therefore,
following the scheme of the proof of Lemma 8.2, one can easily verify (f3) and (f4).

It remains to verify (f1). By construction, every functional fk is quadratic-
like and indr(∞, fk) ≥ p. Applying the technique developed in Section 9 (cf. Pro-
position 9.3) we may smooth out every fk. Further, we perturb the functionals
in order to provide all critical points to be non-degenerate. Observe (cf. Propo-
sition 9.3) that these arrangements can be carried out in such a way that the
above conditions (a) and (b) will be still satisfied. Thus (f1) is also fulfilled and
we may apply Theorem 2.4, which provides the multiplicity result required.

To show the homological part of the statement we use the same argument as
in Subsection 8.3.

11. Proof of Theorem 3.6

We prove Theorem 3.6 via Corollary 2.8. Set H = L2, Au = −∆u − λku,
Bu = −∆u−(λk+ν)u, domA = domB = W 2,2

0 (Ω) and φ(u) =
∫
Ω

Ψ(x, u(x)) dx.
For any n ≥ 0 define En as the sum of eigenspaces corresponding to A-eigenvalues
less than n. Clearly, every En is also B-invariant.
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To take advantage of Corollary 2.8 we must verify conditions (h1)–(h3) from
Theorem 2.6 and verify that N(A) <∞.

The standard Laplacian arguments (cf. Corollaries 8.2, 8.8 and 8.12 from
[27]) yield (h1) and N(A) <∞.

Below we will verify condition (h2). To verify condition (h3) one can use the
same arguments. Therefore, we omit the details of checking condition (h3).

By condition (ψ4), the functional φ is even. By (ψ1), the operator ∇φ is
bounded on any bounded subset of L2 and, moreover, satisfies the Lipschitz
condition on the whole space H. Let us show that ∇φ(u)L2/‖u‖L2 → 0 as
‖u‖L2 → ∞. Indeed, by conditions (ψ1) and (ψ2), one has |ψ(x, t)| = o(|t|) as
|t| → ∞ uniformly in x. Therefore, for any ε > 0 we have |ψ(x, t)| ≤ ε|t| + Cε

and hence

‖∇φ(u)‖2L2
=

∫
Ω

ψ2(x, u) dx

≤ 2ε2
∫

Ω

u2 dx+ 2C2
ε ·mes(Ω) = 2ε2‖u‖2L2

+ 2C2
ε ·mes(Ω).

Since ε is arbitrarily small, the result follows.
It remains to check the last (and the most important) part of condition (h2),

which says that for any finite-dimensional subspace E ⊂ L2 and any sequence
{un} ⊂ L2 with ‖un‖L2 →∞ and ρ(un, kerA)/‖un‖ → 0 (in the L2-metric) one
has LE(un,∇φ) → 0. To this end we need

Proposition 11.1. Let {un} ⊂ L2 be a sequence such that for any M > 0
one has mes{x ∈ Ω | |un(x)| < M} → 0. Then, under the assumptions of
Theorem 3.6, LE(un,∇φ) → 0 for any finite-dimensional subspace E ⊂ L2.

Proof. For any M > 0 denote by δM the supremum of the local Lipschitz
constants of ψ in t taken over t with |t| > M . By condition (ψ2), one has δM → 0
as M →∞.

We need certain auxiliary inequalities. Fix a finite-dimensional subspace
E ⊂ H. Further, take u ∈ L2 and fix M > 0, r ≥ 0. Set

X = X(u,M, r) = {x ∈ Ω | |u(x) + v(x)| ≥M ∀v ∈ E, ‖v‖ ≤ r},
Y = Y (u,M, r) = Ω \X.

Take some v1, v2 ∈ E with ‖vi‖ ≤ r (v1 6= v2) and set v0 = (v1 − v2)/‖v1 − v2‖.
From the definition of δM it follows:

(11.1)
∫

X

|ψ(x, u(x) + v1(x))− ψ(x, u(x) + v2(x))|2 dx

≤ δ2M

∫
X

|v1(x)− v2(x)|2 dx ≤ δ2M · ‖v1 − v2‖2L2
.
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By condition (ψ1),

(11.2)
∫

Y

|ψ(x, u(x) + v1(x))− ψ(x, u(x) + v2(x))|2 dx

≤ l2
∫

Y

|v1(x)− v2(x)|2 dx = l2‖v1 − v2‖L2 ·
∫

Y

|v0(x)|2 dx

= l2 · ‖v0|Y ‖2L2
· ‖v1 − v2‖2L2

,

where l is the Lipschitz constant from condition (ψ1). From (11.1) and (11.2)
one gets

(11.3) ‖∇φ(u+ v1)−∇φ(u+ v2)‖L2

= ‖ψ( · , u( · ) + v1( · ))− ψ( · , u( · ) + v2( · ))‖L2

≤ (δM + l · ‖v0|Y ‖L2) · ‖v1 − v2‖L2 .

Let us now prove Proposition 11.1. The standard continuous measure argu-
ment yields: for any n ∈ N there exists (small) rn > 0 such that

(11.4) mes{Y (un,M, rn)} ≤ 2 ·mes{Y (un, 2M, 0)}.

Fix a sequence {rn > 0} satisfying (11.4) and set Yn = Y (un,M, rn). By
assumptions of Proposition 11.1, mes{Y (un, 2M, 0)} → 0, hence (see (11.4))
mes(Yn) → 0. By construction, v0 from (11.3) runs through the unit sphere
S(E) in the finite-dimensional space E. Since S(E) is compact, ‖v0|Yn‖L2 → 0
uniformly in v0 (see, for instance, [30]). Recall also that δM → 0 as M → ∞.
Therefore, it follows from (11.3) that for any ε > 0 there exists N such that

‖∇φ(un + v1)−∇φ(un + v2)‖L2 ≤ ε‖v1 − v2‖L2

whenever n > N and ‖vi‖L2 < rn, i = 1, 2. �

To take advantage of Proposition 11.1 we need

Lemma 11.2. Let T = {u ∈ kerA | ‖u‖L2 = 1}. For any ε > 0 there exists
αε > 0 independent of u ∈ T and such that for any u ∈ T

mes{x ∈ Ω | |u(x)| ≤ αε} < ε.

Before giving the proof of Lemma 11.2 let us complete the verification of
condition (h2).

Observe, first, that the standard continuous measure argument yields the
following consequence of Lemma 11.2.
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Corollary 11.3. Under the notation of Lemma 11.2 for any ε > 0 there
exists a σ-neighbourhood Uσ of T in L2 and αε > 0 such that for any u ∈ Uσ

mes{x ∈ Ω | |u(x)| ≤ αε} < ε.

It is easy to see that Corollary 11.3 is equivalent to the following statement:
for any ε > 0 and any M > 0 there exists σ > 0 such that mes{x ∈ Ω | |u(x)| ≤
M} < ε provided ρ(u, kerA)/‖u‖ ≤ σ and ‖u‖ > 1/σ. Combining the last
observation with Proposition 11.1 yields condition (h2).

Proof of Lemma 11.2. Observe that every u ∈ kerA satisfies the equation
−∆u = λu in Ω. Hence (see [29]) every u ∈ kerA is analytic in Ω. Take ε > 0
and choose a compact P ⊂ Ω such that mes{Ω\P} ≤ ε/2. Consider the function

mP (α, u) = mes{x ∈ P | |u(x)| ≤ α},

where u ∈ T and α ∈ R. Since every u ∈ T is analytic, we can use Theorem 2
from [46] to provide the following result: mP (α, u) → 0 as α→ 0 uniformly in u.
To complete the proof of Lemma 11.2 it remains to choose α = αε for which
mP (α, u) < ε/2 for every u ∈ T . �

Thus, by Corollary 2.8, problem (3.9) has at least p distinct pairs of solutions
with the corresponding homological information in the case of a discrete set of
solutions. Now applying (ψ1) and the standard regularity technique (see, for
instance, [32]), one can easily show that each obtained solution is of class C2,α

with any α < 1.
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