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1. Introduction

In this work we prove a global bifurcation result for periodic solutions of
a general class of delay differential equations (allowing for state dependent de-
lays). More precisely, assume that M > 0 is any real number and we are given
a continuous function f : C([−M, 0]; R) → R. Consider the singularly perturbed
equation

ε · x′(t) = f(xt), t > 0,

or equivalently (with λ = 1/ε)

(Eλ) x′(t) = λ · f(xt), t > 0,

where λ > 0 is a parameter. We will be interested in large values of this param-
eter. Note that, for every function y : R → R the “translates” yt : [−M, 0] → R
are defined by yt(θ)

.= y(t + θ), where −M ≤ θ ≤ 0. Equation (Eλ) includes
equations with constant delays (e.g. f(φ) = g(φ(−M)), φ ∈ C([−M, 0]; R), for
some g : R → R) or state dependent delays (e.g. f(φ) = g(φ(−r(φ(0)))), for
some r : R → [0,∞)).
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Oscillatory periodic solutions of (Eλ) are very important in the study of
the long term dynamics of this equation. For example, such solutions provide
a lower bound on the complexity (or “fractal dimension”) of the attractor of (Eλ)
(for details see Mallet–Paret [5]). Here we prove that, under “natural” assump-
tions on f (negative feedback, instability of the steady-state solution), equation
(Eλ) admits a continuum of periodic solutions that oscillate “slowly” round the
steady-state solution. Such solutions are called slowly oscillating periodic so-
lutions (S.O.Ps for short). For the proof of this result we follow the standard
approach: we define a (global) Poincaré map Π(λ, · ) : K → K (some set K),
so that fixed points of Π(λ, · ) correspond to S.O.P. solutions of (Eλ). Then one
wants to prove a continuation result for fixed points of Π(λ, · ) (in the sense
of the global bifurcation result of Rabinowitz [14]). A major problem though
arises if we allow for state-dependent delays in (Eλ): the function Π(λ, · ) is dis-
continuous on K. Obviously, discontinuity does not mesh well with bifurcation
considerations.

It is the purpose of this work to show that by exploiting the properties of the
Poincaré map Π(λ, · ) (specifically the structure of its set of discontinuity), one
can prove a continuation result for its fixed points. The set-up for our bifurcation
theorem (Section 2) is such that our main hypotheses can be readily checked for
a large class of delay equations. We also give an example of how the existing
literature on the subject can be used to facilitate this checking (Section 3).

We need to mention that the approach of ours, described above, is pertaining
to the seminal work of Rabinowitz [14] and subsequent modifications, applicable
in the study of Functional Differential Equations (see Nussbaum [10]–[12]).

We now give some notation which will be used throughout this work.

Notation 1.1. Let (X, dX) be a metric space. The (usual) distance between
two nonempty subsets A, B of X is denoted by δX(A,B), i.e.

(1.1) δX(A,B) .= inf{dX(x, y) : x ∈ A, y ∈ B}.

Further, if A is any nonempty subset of X and J is any subinterval of [0,∞) we
put

(1.2) AJ
.= {x ∈ X : δX(x,A) ∈ J}.

Notation 1.2. Let (X1, d1), (X2, d2) be any two metric spaces. The product
space X .= X1 ×X2 is topologized by the corresponding product metric

(1.3) dX((x1, x2), (y1, y2))
.= d1(x1, y1)+d2(x2, y2), x1, y1 ∈ X1, x2, y2 ∈ X2.

If S is any nonempty subset of X1 ×X2 we put

(1.4) S〈x1〉
.= {x2 ∈ X2 : (x1, x2) ∈ S}.
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Notation 1.3. If (X1, d1), (X2, d2) are any two metric spaces and f : X1 →
X2 is any function we put

(1.5) lip(f) .= sup{d2(f(x), f(y))/d1(x, y) : x, y ∈ X1, x 6= y}.

Assume now that X1 and X2 are Banach spaces and n is any positive integer.
Denote by Cn(X1;X2) the space of functions f : X1 → X2 which have continuous
mth order Fréchet derivatives Dmf , 1 ≤ m ≤ n, i.e.

Dmf : X1 → Lm(X1;X2),

and Lm(X1;X2) is the space of m-linear operators from X1 to X2. Then we
define the space Cn,1(X1;X2) as follows:

(1.6) Cn,1(X1;X2)
.= {f ∈ Cn(X1;X2) with lip(Dnf) <∞}.

The latter is a Banach space with respect to the norm

(1.7) ‖f‖n,1
.=

n∑
k=1

‖Dkf‖Lk + lip(Dnf).

2. A global bifurcation result

In this section we give a list of our hypotheses and prove the related bifurca-
tion result. We start with a brief discussion on the underlying ideas from point
set topology. The following lemma is essentially due to Kuratowski (see e.g. [4];
the version for metric spaces is attributed to Whyburn [15]). For a proof see also
Deimling [2].

Lemma 2.1. Let (M,dM ) be a compact metric space, A ⊂M be a component
and B ⊂M be a closed set such that A∩B = ∅. Then there exist disjoint compact
sets MA, MB so that M = MA ∪MB and A ⊂MA, B ⊂MB.

The following application of Lemma 2.1 provides a separation which is useful
for the bifurcation problem in mind.

Lemma 2.2. Let (X, dX) be a locally compact metric space and A be a com-
pact component of X. Then there exists a number ε0 > 0 such that, for every
ε ∈ (0, ε0], we can find closed, disjoint subsets Cε

1 , C
ε
2 of X such that X = Cε

1∪Cε
2

and A ⊂ Cε
1 ⊂ A[0,ε].

Proof. Since A is compact and X is locally compact, there exists a number
ε0 > 0 such that the set A[0,ε0] is compact. If ε ∈ (0, ε0] is any number, we put
B

.= A{ε} and apply Lemma 2.1 with M
.= A[0,ε]. If MA, MB are as in that

lemma we define Cε
1
.= MA and Cε

2
.= MB ∪ A[ε,∞). It is easily proved that the

sets Cε
1 , C

ε
2 have the required properties. �



140 P. Paraskevopoulos

It is well known that degree theory is useful in bifurcation problems as a way
of checking whether bifurcation actually occurs. It is the so-called fixed-point
index which best fits the space settings met in bifurcation problems that arise
from the study of functional differential equations. More precisely, assume that
Y is a compact, absolute neighbourhood retract (e.g. a compact, convex subset
of a Banach space), and f : Y → Y is a map. If U is any open subset of Y
such that f is continuous in U and has no fixed points in ∂U , then, an integer
denoted by iY (f ;U) can be defined. This integer is called the fixed-point index
of f in U , and can be thought of as an algebraic count of the fixed points of f
in U . For a list of the properties of the fixed-point index which axiomatically
define it, one may consult Brown [1] and Nussbaum [8], [11], [12]. In applications
one wants to actually compute the number iY (f ;U) for specific f and U . This
is not allways easy but in certain cases is possible; such a situation arises when
the fixed points of f enjoy the so-called attractivity/ejectivity property (see e.g.
Nussbaum [9], [12]).

Notation 2.3. For the rest of this section we assume that (Y, dY ) is a given
metric space. We also put X .= R+ × Y , where R+ ≡ (0,∞), and assume that
X is topologized with the corresponding product metric dX (see (1.3)). Further,
assume that F : X → Y is a given function.

We are interested in elements x = (λ, y) ∈ X for which F (λ, y) = y. It turns
out that we can give a somewhat detailed description of such elements, provided
the following is satisfied.

Standing Hypothesis 2.4.

(H1) There exists a closed set E ⊂ Y and an element y0 of Y such that
the following are true:
(a) y0 ∈ E,
(b) F (R+ × E) = {y0},
(c) F is continuous on R+ × (Y \ E).

(H2) There exists an increasing family {Kλ}λ≥0 of compact absolute neigh-
bourhood retracts, withK0 ≡ {y0}, such that, for all µ ≥ 0 the following
are true:
(a) Kµ ⊂ Y ,
(b) F ((0, µ]×Kµ) ⊂ Kµ,
(c) If (λ, y) ∈ (0, µ]× Y and F (λ, y) = y then y ∈ Kµ.

(H3) There exists a number λ0 such that if the sequence {(λm, ym)}m≥1 ⊂ X

satisfies:
(a) limm→∞ dX((λm, ym), (λ∞, y∞)) = 0, for some (λ∞, y∞) ∈ X,
(b) F (λm, ym) = ym 6= y0, for all m ≥ 1,
(c) limm→∞ δY (ym, E) = 0,
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then (λ∞, y∞) = (λ0, y0).
(H4) If the function ρ(λ), λ > 0 is given by

ρ(λ) .= inf{dY (y1, y2) : y1 ∈ E, F (λ, y2) = y2 6= y0}

(we agree that inf ∅ = 1), then for all numbers λ, Λ, r with Λ > λ0,
0 < λ ≤ Λ, λ 6= λ0, 0 < r < ρ(λ) we have

iKΛ(F (λ, · );KΛ ∩ E(r,∞)) =

{
0 if 0 < λ < λ0,

1 if λ > λ0.

A brief discussion on the list of Standing Hypotheses is necessary.

2.5 Remark on the Standing Hypothesis. (H1) It is an obvious conse-
quence that the set R+ × {y0} is the trivial solution to equation F (λ, y) = y.
Note also that we do not require that F be continuous on its domain of def-
inition. We thus allow for discontinuities; E contains all discontinuities of F .
Indeed, state dependent delay equations give rise to Poincaré maps which are,
in general, discontinuous.

(H2) Note that the set Y may not itself be an absolute neighbourhood re-
tract. Therefore we cannot in general define the fixed point index for the pair
(F, Y ). Although more general index theories can accommodate (F,Z), with
Z

.=
⋃

λ≥0Kλ, (see for instance Nussbaum [8]), we choose not to bother the
reader with technical details related to such index generalizations. Instead,
we require that properties (a) and (b) be satisfied; for the restricted pairs
(F (λ, · ),Kµ), with 0 < λ < µ, the fixed point indices are well defined. Note
also that in order that index generalizations accommodate (F,Z), analogs of
properties (a) through (c) will have to hold true.

(H3) Here we put some structure on the set of nontrivial solutions of F (λ, y) =
y, i.e. on the set

(2.1) σ
.= {(λ, y) ∈ X : F (λ, y) = y 6= y0}

by requiring that σ can approach the set of discontinuity R+ × E only at the
point (λ0, y0). A fortiori (H3) requires that the set σ can approach the trivial
solution R+ × {y0} only at the point (λ0, y0). In the terminology of bifurcation
theory we say that (λ0, y0) proports to be a bifurcation point.

(H4) Here we essentially require that (λ0, y0) is indeed a bifurcation point.
Although the assumption on the values of the fixed point index seems overly
restrictive, it covers all the family of delay equations under consideration. The
case is, this family is homotopic to a simple delay equation for which the ac-
tual calculations have been carried out and resulted to (H4) (see Mallet–Paret
and Nussbaum [6], Mallet–Paret and Nussbaum and Paraskevopoulos [7]). We
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choose therefore to forgo listing the properties that F has to satisfy so that in-
dex calculations can be carried out. The interested reader should look up the
notions of attractivity and ejectivity in, say, Nussbaum [9], [11] and the refer-
ences cited therein. The fact that ρ(λ) > 0 for all λ 6= λ0 follows from (H2) and
(H3); this is proved in Lemma 2.6. Further, to see that the fixed point index
iKΛ(F (λ, · ); KΛ ∩ E (r,∞)) is well defined for λ 6= λ0 it is enough to note that

F (λ, · ) : KΛ → KΛ, λ ≤ Λ

as (H2) gives and that, for all r with 0 < r < ρ(λ), the boundary of the open set
KΛ ∩E (r,∞) contains neither fixed points nor points of discontinuity of F (λ, · ).
Finally, using definitions (1.4) and (2.1) we can rewrite the function ρ in a more
instructive manner, namely as ρ(λ) = δY (σ〈λ〉, E).

Lemma 2.6. Assume that the Hypotheses (H1)–(H3) hold true. Then the
function ρ defined in (H4) satisfies ρ(λ) > 0, for all λ 6= λ0.

Proof. Fix λ > 0, λ 6= λ0. If the set σ〈λ〉 is empty then ρ(λ) = inf ∅ = 1
and we are done. So, assume that there exists at least one y ∈ σ〈λ〉. Also
recall that ρ(λ) = δY (σ〈λ〉, E). By way of contradiction assume that ρ(λ) = 0.
Then we can find a sequence {yn}n≥1 ⊂ Y so that (λ, yn) ∈ σ, for all n ≥ 1
and limn→∞ δY (yn, E) = 0. Further, note that part (c) of (H2) implies that
{y ∈ Y : (λ, y) ∈ σ} ⊂ Kλ. Since Kλ is compact there exists an element y∞ of
Kλ so that, passing to a subsequence if necessary, limn→∞((λ, yn), (λ, y∞)) = 0.
Now (H3) implies that λ = λ0 which is the sought-for contradiction. �

The following lemma provides additional information about the set of non-
trivial solutions of F (λ, y) = y.

Lemma 2.7. Assume that the Standing Hypothesis holds and define a set
Σ ⊂ X as follows

(2.2) Σ .= {(λ, y) ∈ X : F (λ, y) = y 6= y0} ∪ {(λ0, y0)} = σ ∪ {(λ0, y0)}.

Then the set Σ is closed in X and the metric space (Σ, dX) is locally compact.

Proof. Using the definition of the set Σ and parts (a) and (b) of Hypothesis
(H1) one can easily see that, for every (λ, y) ∈ Σ the following implications are
true:

y /∈ E ⇒ F (λ, y) = y 6= y0,(2.3a)

y ∈ E ⇒ (λ, y) = (λ0, y0).(2.3b)

We now prove that Σ is closed in X. To this end assume that the sequence
{(λm, ym)}m≥1 ⊂ Σ is such that limm→∞ dX((λm, ym), (λ∞, y∞)) = 0, for some
(λ∞, y∞) ∈ X. Obviously, it is enough to prove that (λ∞, y∞) ∈ Σ. Next we put
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bm
.= δY (ym, E), m ≥ 1 and note that limm→∞ bm = δY (y∞, E). The following

three cases are possible:
(a) There exists an integer m1 ≥ 1 such that bm = 0, for all m ≥ m1. Then

(2.3b) gives that, for all m ≥ m1, we have (λm, ym) = (λ0, y0) and the claim
follows.

(b) δY (y∞, E) = 0, but we can assume, passing to a subsequence if necessary,
that bm > 0, for all m ≥ 1. Then (2.3a) implies that, for all m ≥ 1, F (λm, ym) =
ym 6= y0 and Hypothesis (H3) gives that (λ∞, y∞) = (λ0, y0) ∈ Σ. The claim
follows.

(c) δY (y∞, E) > 0. Then, for some m1 ≥ 1 we have bm > 0, for all m ≥ m1

and from (2.3a) we find that

F (λm, ym) = ym 6= y0 ∀m ≥ m1.

Since F is continuous on the set R+×(Y \E) we find passing to the limit m→∞
that F (λ∞, y∞) = y∞ 6= y0 and the claim follows. Therefore Σ is closed.

We next prove that the space (Σ, dX) is locally compact. To this end let
(λ, y) ∈ Σ. If 0 < ε < λ then the set ([λ−ε, λ+ε]×{y1 ∈ Y : dY (y, y1) ≤ ε})∩Σ
is a compact neighbourhood of (λ, y) in Σ. Indeed, it is enough to note that part
(c) of Hypothesis (H2) gives that

([λ− ε, λ+ ε]× {y1 ∈ Y : dY (y, y1) ≤ ε}) ∩ Σ ⊂ ([λ− ε, λ+ ε]×Kλ+ε)

The proof is complete. �

Remark 2.8. It is an obvious consequence of the definition of Σ and Hy-
pothesis (H1) that Σ ∩ (R+ × E) = {(λ0, y0)}. We are now in position to state
our main result; namely that the branch of non-trivial solutions of F (λ, y) = y

that bifurcates from (λ0, y0) (as Hypothesis (H4) guarantees) extends globally.

Theorem 2.9. Assume that the Standing Hypothesis holds and let Σ0 be the
component of Σ which contains the point {(λ0, y0)}. Then Σ0 is not compact
in X.

Proof. By way of contradiction assume that Σ0 is compact in X. Then
there exist numbers λL, λR with 0 < λL ≤ λ0 ≤ λR <∞ satisfying

[λL, λR] = {λ ∈ R+ : Σ0〈λ〉 6= ∅}.

Since (Σ, dX) is locally compact (Lemma 2.7), we can apply Lemma 2.2 with
A = Σ0 and 0 < ε < min{ε0, λL}. Let Σε

1, Σε
2 be as in the conclusion of that

lemma; i.e. Σε
1 ∩ Σε

2 = ∅, Σε
1 ∪ Σε

2 = Σ and Σ0 ⊂ Σε
1. Since Σ is closed in

X (see Lemma 2.7) it follows that Σε
1 and Σε

2 are also closed in X. Now put
Σ̂ε

1
.= Σε

1 ∪ (R+ × E) and note that Σ̂ε
1 is closed in X. Further, use Remark 2.8
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to verify that Σ̂ε
1 ∩ Σε

2 = ∅. Next define a continuous function ρε : X → [0,∞)
and an open subset Ωε of X as follows

ρε(x)
.=

{
ε if Σε

2 = ∅,
δX(x,Σε

2) if Σε
2 6= ∅,

Ωε
.= {x ∈ X : δX(x, Σ̂ε

1) > ρε(x)}.

Then it is easily seen that Σε
2 ⊂ Ωε. In view of the above definitions, it is an

elementary exercise in point-set topology to verify that the following are true:

(2.4a) ∂Ωε ∩ Σ = Ωε ∩ (R+ × E) = ∅,

(2.4b) Σ〈λ〉 ⊂ Ωε〈λ〉, whenever 0 < λ < λL − ε or λ > λR + ε.

Now fix numbers ΛL and ΛR with 0 < ΛL < λL − ε and ΛR > λR + ε. For
notational convenience we put K .= KΛR

. In view of (2.4a) the set ∂Ωε contains
neither fixed points nor points of discontinuity of F (λ, · ) and the fixed point
index

iK(F (λ, · );K ∩ Ωε〈λ〉)

is well defined for all λ ∈ [ΛL,ΛR]. Further, the homotopy property gives (use
(2.4a), (2.4b))

(2.5) iK(F (λ, · );K ∩ Ωε〈λ〉) = n0, ∀λ ∈ [ΛL,ΛR]

for some integer n0. Next, inclusion (2.4b) and the additivity property of the
fixed point index give

iK(F (ΛL, · );K ∩ Ωε〈ΛL〉) = iK(F (ΛL, · );K ∩ E(r,∞)), 0 < r < ρ(ΛL),

iK(F (ΛR, · );K ∩ Ωε〈ΛR〉) = iK(F (ΛR, · );K ∩ E(r,∞)), 0 < r < ρ(ΛR).

Using Hypothesis (H4) this gives

(2.6) iK(F (λ, · );K ∩ Ωε〈λ〉) =

{
0 if λ = ΛL,

1 if λ = ΛR.

Equations (2.5) and (2.6) provide the required contradiction. Thus Σ0 is not
compact. �

For certain applications, more information about the structure of Σ is known;
in turn further information about Σ0 can be obtained, as the following corollary
indicates.
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Corollary 2.10. Assume that the Standing Hypothesis holds and in addi-
tion Σ ⊂ [λ∗,∞) × Y for some λ∗ > 0. Then the set Σ0 is unbounded.

Proof. We claim that if the inclusion Σ ⊂ [λ∗,∞) × Y holds then the
following implication is true

(2.7) Σ0 is bounded ⇒ Σ0 is compact.

Indeed, part (a) of Hypothesis (H3) gives that Σ0 ∩ [(0, λ] × Y ] ⊂ (0, λ] × Kλ.
Therefore Σ0∩[(0, λ]×Y ] ⊂ [λ∗, λ]×Kλ; since [λ∗, λ]×Kλ is compact, (2.7) holds.
In view of (2.7) the assertion is an immediate consequence of Theorem 2.9. �

Remark 2.11. It is an obvious consequence of Hypothesis (H2) and Corol-
lary 2.10 that the continuum Σ0 of nontrivial solutions of F (λ, y) = y persists
for all λ > λ0. This observation justifies our claim that the branch of bifurcating
solutions can be continued globally.

3. Applications to functional differential equations

Here we show how the bifurcation result we established in the previous sec-
tion can be applied to give global continua of periodic solutions of differential
equations of the form (Eλ). We first formulate the initial value problem for
equation (Eλ).

Definition 3.1. Assume that we are given real numbers λ > 0, M > 0 and
continuous functions f : C([−M, 0]; R) → R and φ : [−M, 0] → R. We say that
the function x ∈ C([−M,∞); R)∩C1((0,∞); R) solves the initial value problem
P(λ, φ) if and only if it satisfies:

P(λ;φ)

{
x′(t) = λ · f(xt), t > 0,

x0 = φ.

In the sequel the solution to the i.v.p. P(λ, φ) will be denoted by x( · ;λ;φ)

We now list a few regularity properties which the nonlinearity f will be
required to satisfy.

Definition 3.2. For notational convenience put

LR
.= {φ ∈ C0,1([−M, 0]; R) with lip(φ) < R}

(for the notation see (1.5) in the Introduction). We say that the function
f : C([−M, 0]; R) → R is σ-Lipschitzian if and only if its restriction on each
of the sets LR is Lipschitz continuous with respect to the supremum norm of
C([−M, 0]; R), i.e. if and only if

sup{|f(φ)− f(ψ)|/‖φ− ψ‖ : φ, ψ ∈ LR, φ 6= ψ} <∞

where, of course, ‖φ‖ = sup{|φ(t)| : t ∈ [−M, 0]}.
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Remark 3.3. The notion of a σ-Lipschitzian map is essentially a weakening
of that of a Lipschitz continuous map. This weakening is necessary if the family
(Eλ) is to include equations with state-dependent delays. As an example the
reader may easily verify that the nonlinearity f(φ) .= −φ(0) + g(φ(−r(φ(0)))),
with smooth functions g : R → R, r : R → [0,∞), gives rise to a state-
dependent delay equation. Furthermore, f fails to be locally Lipschitzian but it
is σ-Lipschitzian.

The notion of σ Lipschitzian functions is equivalent to that of almost Lipschitz
continuous functions defined in Mallet–Paret, Nussbaum and Paraskevopou-
los [7]. The interested reader may consult Definition 1.1 in that paper.

From the same paper we also reproduce the following definitions:

Definition 3.4. A function f : C([−M, 0]; R) → R satisfies a negative feed-
back condition if and only if the following are true:

(a) For every function φ ∈ C([−M, 0]; R) with φ(t) ≥ 0 (respectively, φ(t) >
0, φ(t) ≤ 0, φ(t) < 0), for all t ∈ [−M, 0], we have f(φ) ≤ 0 (respectively,
f(φ) < 0, f(φ) ≥ 0, f(φ) > 0).

(b) There exists a locally Lipschitz function g : R → R, with x · g(x) < 0
when x 6= 0, and a number τ0 ∈ (0,M ] such that f(φ) = g

(
φ(−τ0)

)
for

all φ ∈ C
(
[−M, 0]; R

)
with φ(0) = 0.

Definition 3.5. A function f : C([−M, 0]; R) → R is σ-Fréchet differen-
tiable at 0 if and only if the restriction of f on the space C0,1([−M, 0]; R) is
Fréchet differentiable at 0, i.e. if and only if the linear functional Df(0) ∈
(C0,1([−M, 0]; R))′ satisfies f(φ) = f(0) + [Df(0)](φ) + o(‖φ‖0,1), for all φ ∈
C0,1([−M, 0]; R).

In the sequel we will study equations (Eλ) which admit global solutions that
take values in bounded intervals. For such equations we have

Definition 3.6. Let I be any compact interval of reals. The nonlinearity
f : C([−M, 0]; R) → R will be called I-proper if and only if:

(a) sup{|f(φ)| : φ ∈ C([−M, 0]; J)} <∞, for all compact intervals J ⊂ R.
(b) For every φ ∈ C([−M, 0]; I) with φ(0) = max I (respectively, φ(0) =

min I) we have f(φ) ≤ 0 (respectively, f(φ) ≥ 0).

Remark 3.7. There is a fairly general class of nonlinearities which are I-
proper for some interval I. An extensive list may be found in [7]. If f is I-proper
and satisfies a negative feedback condition then the obvious observation f(0) = 0
implies that min I < 0 < max I.

We now list the Standing Hypotheses for this section.



Global Bifurcation 147

Standing Hypothesis. Let f : C([−M, 0]; R) → R be a given function.

(F1) f is continuous, σ-Lipschitzian and I-proper for some interval I.
(F2) f satisfies a negative feedback condition.
(F3) f is σ-Fréchet differentiable at 0 with Fréchet derivative [Df(0)](φ) =

−αφ(0)− βφ(−τ0), for all φ ∈ C0,1([−M, 0]; R), where β > α > 0.

The following results are standard. For a proof the reader is referred to [7].

Proposition 3.8. Assume that f : C([−M, 0]; R) → R satisfies Hypothesis
(F1) and let λ > 0 be a given number and φ ∈ C0,1([−M, 0]; I) be a given
function. Then the initial value problem P(λ;φ) admits exactly one solution
x( · ;λ;φ) : [−M,∞) → I. Further, this solution depends continuously on λ

and φ, i.e. if the numbers λn > 0 satisfy limn→∞ λn = λ and the functions
φn ∈ C0,1([−M, 0]; R) satisfy limn→∞ ‖φn−φ‖ = 0, then limn→∞ x( · ;λn;φn) =
x( · ;λ;φ) uniformly on compact subsets of [−M,∞).

The next result illustrates how the negative feedback condition forces so-
lutions of (Eλ) to oscillate around the trivial (zero) solution; it also provides
a means of locating zeros of nontrivial solutions.

Proposition 3.9. Assume that f : C([−M, 0]; R) → R satisfies Hypotheses
(F1) and (F2) and define convex sets

Y
.= {φ ∈ C0,1([−M, 0]; I) : φ(0) = 0, φ([−τ0, 0]) ⊂ [0,∞)},(3.1)

E
.= {φ ∈ Y : φ(t) = 0 for all t ∈ [−τ0, 0]}.(3.2)

Let λ > 0, φ ∈ Y and x( · ;λ;φ) be the solution of the corresponding initial
value problem P(λ;φ). Then there exists a nondecreasing sequence of numbers
{qn(λ;φ)}n≥0 ⊂ [0,∞] with the following properties:

(a) x(t;λ;φ) = 0, for all t ∈ [0, q0]
(b) if qN (λ;φ) <∞ for some integer N ≥ 1 then

qn(λ;φ)− qn−1(λ;φ) > τ0, n = 1, . . . , N,(3.3)

(−1)n · x(t;λ;φ) > 0, t ∈ (qn−1, qn), n = 1, . . . , N.(3.4)

Therefore the sequence {qn(λ;φ)}n≥0 contains all the zeros of x( · ;λ;φ) in the
interval [0,∞]. Furthermore, if φ ∈ E then q0(λ;φ) = ∞ for all λ > 0.

Any solution for which (3.3) and (3.4) are satisfied will be called slowly
oscillating. A very interesting class of solutions of (Eλ) are those who are slowly
oscillating, periodic and satisfy x(t + q2;λ;φ) = x(t;λ;φ), for all t ∈ R, with
q2(λ;φ) <∞. These are called slowly oscillating periodic solutions, or S.O.P.(2)
solutions for short. The following theorem provides an indispensable device for
the search for S.O.P.(2) solutions of functional differential equations.
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Theorem 3.10. Assume that f : C([−M, 0]; R) → R satisfies Hypotheses
(F1) and (F2) and define a function Π : R+ × Y → Y as follows:

(3.5) Π(λ;φ) .=

{
xq2 if q2 = q2(λ;φ) <∞,

0 otherwise.

Then Π is continuous on R+ × [Y \E] (Y is equipped with the supremum norm
‖ · ‖). Further, if Π(λ;φ) = φ 6= 0, for some φ ∈ Y , then the solution x( · ;λ;φ)
is a S.O.P.(2) solution of P(λ;φ).

Remark 3.11. The use of a Poincaré map (such as Π(λ;φ)) as a tool for
searching for periodic solutions is commonplace in the study of differential equa-
tions. The reader should nevertheless note that, in our case, the map Π(λ;φ)
is not continuous. In fact this map is, in general, discontinuous on the set E
(see (3.2)) even in the case of a single, state-dependent delay (see e.g. the non-
linearity used in Remark 3.3). It is our bifurcation result of the previous section
that allows us to carry out the program of proving the existence of global continua
of S.O.P.(2) solutions of (Eλ). The following lemma provides a necessary link
between this work and the standard literature on equations with state-dependent
delays.

Lemma 3.12. Assume that the sets Y and E are defined as in equations
(3.1) and (3.2), respectively,. For every φ ∈ Y we have δY (φ,E) = max{φ(t) :
−τ0 ≤ t ≤ 0}.

Proof. We first note that for every φ ∈ Y we have that

δY (φ,E) ≥ max{φ(t) : −τ0 ≤ t ≤ 0}.

Next we fix an arbitrary φ ∈ Y and define the functions

φ∗(t)
.= −lip(φ) ·min{0, t+ τ0}, −M ≤ t ≤ 0,

φ̂(t) .= min{φ(t), φ∗(t)}, −M ≤ t ≤ 0.

Then we have that lip(φ∗) = lip(φ) ≥ lip(φ̂) and therefore φ̂ ∈ E. Furthermore,

(3.6) φ(t)− φ̂(t) = max{0, φ(t)− φ∗(t)}, t ∈ [−M, 0].

The Lipschitz continuity of φ gives that |φ(t)−φ(−τ0)| ≤ −lip(φ) · (t+τ0) for all
t ∈ [−M,−τ0], which can be rewritten as

(3.7) φ(−τ0)− 2φ∗(t) ≤ φ(t)− φ∗(t) ≤ φ(−τ0), t ∈ [−M,−τ0].

Using (3.6) and (3.7) we find that

max{|φ(t)− φ̂(t)| : −M ≤ t ≤ 0} = max{φ(t) : −τ0 ≤ t ≤ 0}.

Since φ̂ ∈ E this implies that δY (φ,E) ≤ max{φ(t) : −τ0 ≤ t ≤ 0} and the
lemma follows. �
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Next we state and prove the main result of this section.

Theorem 3.13. Assume that the function f : C([−M, 0]; R) → R satis-
fies Hypotheses (F1)–(F3). Then there exists a global continuum of S.O.P.(2)
solutions of equation (Eλ) which bifurcates from the trivial (zero) solution at
the point λ0 = ν0/

√
β2 − α2. Here ν0 is the unique solution of the equation

α+ β · cos(ν · τ0) = 0 in the open interval (π/2τ0, π/τ0).

Proof. We are going to apply Theorem 2.9, with Π in place of F . To
this end we only need to check that the Standing Hypothesis in Section 1 is
satisfied. Assume that the sets Y and E defined in (3.1) and (3.2), respectively,
are equipped with the supremum norm ‖ · ‖ and let y0 ≡ 0. With this set-up it
is immediate that Hypothesis (H1) holds. Next we put:

κ
.= sup{|f(φ)| : φ ∈ C([−M, 0]; I)},

and define a family Kλ, λ ≥ 0 of compact, convex subsets of Y as

Kλ
.= {φ ∈ Y : lip(φ) ≤ λ · κ}.

The fact that K0 = {0} is obvious (recall that φ(0) = 0 for all φ ∈ Y ). Also note
that

lip(Π(λ;φ)) ≤lip(x( · ;λ;φ)) = max{lip(φ), sup
t≥0

|x′(t;λ;φ)|}(3.8)

≤max{lip(φ), λ · κ}.

Therefore
lip(Π(λ;φ)) ≤ µ · κ, for all 0 ≤ λ ≤ µ, φ ∈ Kµ.

Further, if q2(λ;φ) < ∞ then q2(λ;φ) − q1(λ;φ) > τ0 and thus Π(λ;φ)(t) =
xq2(t) = x(t + q2;λ;φ) ≥ 0 for all t ∈ [−τ0, 0]. Therefore Π((0, µ] ×Kµ) ⊂ Kµ

and part (b) of (H2) holds. Finally, if Π(λ;φ) = φ for some λ ∈ (0, µ] then part
(c) of (H2) holds when φ = 0. If φ 6= 0 let n0 ∈ N be such that n0 · τ0 > M .
Then q2n0(λ;φ) + t ≥ 0 for all t ∈ [−M, 0] and, iterating Π(λ; · ) we find that
φ = Πn(λ;φ) = xq2n0

(·;λ;φ), which gives that lip(φ) ≤ supt≥0 |x′(t;λ;φ)| ≤
λ · κ. Thus φ ∈ Kµ and Hypothesis (H2) is satisfied. The fact that Hypotheses
(H3) and (H4) hold true is proved (among other things) in Theorem (3.1) of [7].
The interested reader should consult the proof of that Theorem; the use of
Lemma 3.12 is crucial for the verification of (H3). We have therefore shown that
Hypotheses (H1) through (H4) hold; the proof is now complete. �

We next prove that if the Standing Hypothesis holds then the following in-
clusion is satisfied:

(3.9) {(λ, φ) ∈ R+ × Y : Π(λ;φ) = φ 6= 0} ⊂ [λ∗,∞)× Y
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for some λ∗ > 0. We start with a preliminary Lemma; the obvious proof is left
to the reader.

Lemma 3.14. Assume that f satisfies the Standing Hypothesis and, for every
real number x define the (constant) function T [x] ∈ C0,1([−M, 0]; R) by T [x](θ) .=
x, for all θ ∈ [−M, 0]. Further, for every φ ∈ C0,1([−M, 0]; R), every ξ ∈ R and
every r ∈ R+ put

F (ξ, φ) .=

{
f(ξφ)/ξ if ξ 6= 0,

−αφ(0)− βφ(−τ0) if ξ = 0,

Br(J) .= sup{|F (ξ, φ)| : |ξ| ≤ max
η∈I

|η|, φ ∈ Lr, φ([−M, 0]) ⊂ J}.

Then the restriction of F on each of the sets R×Lr, r ≥ 0 is continuous (Lr is
equipped with the sup-norm) and Br(J) <∞. If we put

G(ξ, ζ) .= F (ξ, T [ζ])

then G is continuous and ζ ·G(ξ, ζ) < 0 for all ζ 6= 0.

Theorem 3.15. Assume that the Standing Hypothesis holds true. Then (3.9)
also holds.

Proof. We argue by way of contradiction and assume that there exist se-
quences {φn}n≥1 ⊂ Y , {λn}n≥1 ⊂ R+, such that Π(λn, φn) = φn 6= 0 for
every n ≥ 1 and limn→∞ λn = 0. Put, for convenience, xn .= x( · ;λn;φn),
n ≥ 1. Then, for every n ≥ 1, xn is a periodic solution of (Eλ) and we can
assume, without loss of generality, that ‖xn‖ = supt∈R |xn(t)| = |xn(0)|. Now
put yn(t) .= xn(t/λ)/‖xn‖ and note that

(3.10) ‖yn‖ = |yn(0)| = 1, for all n ≥ 1.

It is immediate that, for each n ≥ 1 the function yn is a (global) solution of the
following equation

(3.11)
dyn(t)
dt

= F (‖xn‖, yn(t+ λn · )), t ∈ R, n ≥ 1,

where F is defined in Lemma 3.14 and the function yn(t+λn · ) ∈ C0,1([−M, 0]; R)
is given by

yn(t+ λn · )(θ)
.= yn(t+ λnθ), θ ∈ [−M, 0], n ≥ 1.

Since ‖yn(t + λn · )‖ ≤ 1 and ‖xn‖ ≤ maxη∈I |η| for all n ≥ 1, equation (3.11)
gives

(3.12) sup
t∈R

∣∣∣∣dyn(t)
dt

∣∣∣∣ ≤ Br([−1, 1]), n ≥ 1.
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In view of the estimates (3.10) and (3.12), the Ascoli–Arzéla theorem implies that
the set {yn}n≥1 is a compact subset of C(R; R) with respect to the topology of
uniform convergence on compact subsets of R. Thus there exist a number ξ0
with 0 ≤ ξ0 ≤ maxη∈I |η| and a function y∞ ∈ C(R; R) such that, passing to
a subsequence, limn→∞ ‖xn‖ = ξ0 and limn→∞ yn = y∞, uniformly on compacta.
Elementary arguments using (3.11) imply that y∞ is also a global solution of the
scalar, autonomous O.D.E.

(3.13)
dw(t)
dt

= G(ξ0, w(t)), t ∈ R.

In view of (3.10), y∞ also satisfies

(3.14) ‖y∞‖ = |y∞(0)| = 1.

Since ζ ·G(ξ0, ζ) < 0 for all ζ 6= 0 (see Lemma 3.14), we see that equation (3.13)
does not admit global solutions which satisfy (3.14). This provides the required
contradiction. The proof is now complete. �

Corollary 3.16. Assume that the Standing Hypothesis holds. Then the
global continuum of S.O.P.(2) solutions of (Eλ) which bifurcates from the point
(λ0, 0) persists for all λ > λ∗.

Proof. Immediate consequence of Theorem 3.15 and Corollary 2.10. �

Remark 3.17. The framework described above includes a variety of state
dependent delay equations; a number of examples is presented in Chapter 4
of [7]. We should mention that the author has studied (see Paraskevopoulos [13])
equations of the form

(3.15) ẋ(t) = −λ·x(t)+λ·F (x(t−r1), . . . , x(t−rN )), ri = ri(x(t)), 1 ≤ i ≤ N,

where F : RN → R and ri : R → R+, 1 ≤ i ≤ N are given functions. In
that work a slightly different approach was followed, leading to the definition of
a continuous Poincaré map Π. Under additional assumptions (similar in nature
to (F1)–(F3) given above) on the functions F and ri, i = 1, . . . , N , it is proved
there that Π undergoes a bifurcation which gives rise to unbounded continua
of S.O.P.(2) solutions of (3.15).
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Supérieures, Les Presses de l’Université de Montréal, 1985.
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