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ON THE NUMBER OF INTERIOR MULTIPEAK SOLUTIONS
FOR SINGULARLY PERTURBED NEUMANN PROBLEMS

Shusen Yan

1. Introduction

In this paper, we will estimate the number of the solutions with exactly k

interior local maximum points for the following singularly perturbed problem:

(1.1)


−ε2∆u+ u = up−1 y in Ω,

u > 0 y in Ω,
∂u

∂n
= 0 y on ∂Ω,

where ε is a small positive number, Ω is a bounded domain in RN with C1-
boundary, n is the unit outward normal of ∂Ω at y, 1 < p < (N + 2)/(N − 2) if
N ≥ 3 and 1 < p <∞ if N = 2.

Much work has been done on (1.1) in the past several years. In [17], [18], Ni
and Takagi proved that the least energy solution of (1.1) has exactly one local
maximum point xε which lies in ∂Ω, and xε tends to a point x0 which attains
the maximum of the mean curvature function of ∂Ω. Since then, many authors
have constructed solutions for (1.1) with their local maximum points lying in the
boundary of Ω. See [2], [5], [8], [12], [15], [21], [22]. Recently, Wei [23], Kowal-
czyk [13], Bates and Fusco [3] considered the existence of solutions for (1.1),
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with their local maximum points tending to some designated points in the inte-
rior of Ω.

In [8], it is proved that for each integer k ≥ 1, (1.1) has at least one solution
uε such that uε has exactly k local maximum points lying on the boundary,
provided ε is small enough. The aim of this paper is to prove that (1.1) always
has a solution uε such that uε has exactly k local maximum points lying in Ω
and to estimate the number of such solutions.

In the following, we call a solution uε of (1.1) an interior k-peak solution if
uε has exactly k local maximum points lying inside Ω.

Before we introduce the main results, we give some notation. Let U(y) be
the unique positive solution (see [14]) of

−∆u+ u = up−1 y in RN ,

u ∈ H1(RN ),

u(0) = maxy∈RN u(y).

It is well known (see [11]) that U(y) is radially symmetric about the origin,
decreasing and

lim
|y|→∞

U(y)e|y||y|(N−2)/2 = c0 > 0.

Define

〈u, v〉ε =
∫

Ω

ε2Du ·Dv + uv, for all u, v ∈ H1(Ω),(1.2)

‖u‖ε = 〈u, u〉1/2
ε .(1.3)

For any z ∈ RN , ε > 0, let

Uε,z(y) =: U
(
y − z

ε

)
.

We denote Pε,Ωv the solution of the following problem{ −ε2∆u+ u = |v|p−2v y in Ω,
∂u

∂n
= 0 y on ∂Ω.

By maximum principle, we know Pε,ΩUε,z > 0. For any xi ∈ Ω, i = 1, . . . , k,
define

Eε,x,k =
{
v ∈ H1(Ω) : 〈Pε,ΩUε,xi

, v〉ε = 0,〈
∂Pε,ΩUε,xi

∂xij
, v

〉
ε

= 0, i = 1, . . . , k, j = 1, . . . , N
}
.
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Let σk denote the group of k permutations. We also let

Dk = Ω× . . .× Ω︸ ︷︷ ︸
k

\
⋃
i 6=j

{|xi − xj | < d},(1.4)

Ak = Dk/σk.(1.5)

The main results of this paper are the following

Theorem 1.1. For each fixed positive integer k ≥ 2, there exists an ε0 =
ε0(k), such that for each ε ∈ (0, ε0], (1.1) has at least CatAk

Ak solutions of the
form

uε =
k∑

i=1

αεiPε,ΩUε,xεi
+ vε

where, as ε→ 0,

αεi → 1, i = 1, . . . , k,(1.6)
|xεi − xεj |

ε
→∞, for all i 6= j,(1.7)

xεi → xi ∈ Ω,(1.8)

vε ∈ Eε,xε,k, ‖v‖2
ε = o(εN ).(1.9)

Theorem 1.2. There exists an ε0 > 0, such that for each ε ∈ (0, ε0], (1.1)
has at least CatΩΩ solutions of the form

uε = αεPε,ΩUε,xε + vε,

where as ε→ 0, αε → 1, xε → x ∈ Ω, ‖v‖2
ε = o(εN ) and vε ∈ Eε,xε,1.

Denote

Vk =
(

RN × . . .× RN︸ ︷︷ ︸
k

\
⋃
i 6=j

{|xi − xj | ≤ d}
)/

σk.

Let x0 ∈ Ω and let δ > 0 be so small that Bδ(x0) ⊂ Ω. We also let

V ′
k =

(
Bδ(x0)× . . .×Bδ(x0)︸ ︷︷ ︸

k

\
⋃
i 6=j

{|xi − xj | ≤ d}
)/

σk,

Then Vk and V ′
k are homotopically equivalent. So

CatAk
Ak ≥ CatVk

(V ′
k) = CatVk

(Vk) ≥ cuplength(Vk) + 1.

For the estimate of the cuplength of the space Vk, the readers can refer
to [6]. For the case k = 2, V2 is homotopically equivalent to the projection space
RPN−1. Thus CatAk

Ak ≥ cuplength(RPN−1) + 1 = N . So (1.1) has at least N
interior two-peak solutions for every domain.
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The technique developed in this paper can also be used to discuss the follow-
ing Neumann problem in exterior domains:

(1.10)



ε2∆u+ u = up−1 y in Ω1,

u > 0 y in Ω1,

∂u

∂n
= 0 y on ∂Ω1,

u→ 0 as |y| → ∞,

where Ω1 is an exterior domain in RN .
Let R > 0 be a large constant such that RN \ Ω1 ⊂ BR(0). We have

Theorem 1.3. There is an ε0 > 0, such that for each ε ∈ (0, ε0],

(i) (1.10) has at least CatΩ1(Ω1, BR(0)) solutions of the form

(1.11) uε = αεPε,ΩUε,xε + vε,

where vε ∈ Eε,xε
, and

(1.12) αε → 1, d(xε, ∂Ω)/ε→∞, ‖vε‖2
ε = o(εN ), as ε→ 0;

(ii) if RN \ Ω1 is convex, (1.10) does not have solution of the form (1.11).

The method in [8] is still valid for the exterior Neumann problem. So we
see that there is no difference between the interior Neumann problem and the
exterior Neumann problem if we construct solutions with all the peaks lying on
the boundary. Our results here show whether the exterior Neumann problem
has interior single peak solutions depends on the topology of the domain, while
the interior Neumann problem always has at least one interior single peak so-
lution. The results for the existence of interior single peak solutions for both
the interior and exterior Neumann problems are very similar to those for Dirich-
let problems. However, the existence results for multipeak solutions between
Dirichlet problems and Neumann problems are totally different, because for the
Dirichlet problem, the existence of multipeak solutions depends on the topology
of the domain. See [7], [9], [10] for existence results for Dirichlet problems.

This paper is arranged as follows. In Section 2, we will present some basic
estimates needed in the proof of the main results. Section 3 is devoted to the
proof of Theorems 1.1 and 1.2, and Theorem 1.3 is proved in Section 4.

2. Basic estimates

In this section, we develop a simple and direct method to get all the basic
estimates needed in the proof of the main results. So we are able to avoid using
the viscosity solution method of [19], [23] to prove these estimates which are
essential to characterize the locations of the peaks of the solutions for (1.1). It
is worth pointing out that the method used in this section works for bounded
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domain problems and exterior domain problems, while the viscosity solution
method of [19], [23] seems only applicable to bounded domain problems since it
depends heavily on the comparison theorems for the elliptic equations.

In the following, Ω is either a bounded domain or an exterior domain in RN .
From now on, we always assume that x ∈ Ω and d(x, ∂Ω)/ε ≥M for some large
constant M > 0. Let ϕε,x = Uε,x − Pε,ΩUε,x. Then ϕε,x satisfies

(2.1)

{ −ε2∆ϕε,x + ϕε,x = 0 y in Ω,
∂ϕε,x

∂n
=
∂Uε,x

∂n
y on ∂Ω.

We denote

τε,x =
∫

Ω

Up−1
ε,x ϕε,x.

Lemma 2.1. For any θ > 0, there are C2 > C1 > 0, such that

(2.2) C1ε
Ne−(2+θ)d(x,∂Ω)/ε ≤ −τε,x ≤ C2ε

Ne−(2−θ)d(x,∂Ω)/ε.

Proof. Multiplying (2.1) by Uε,x and integrating by parts, we get

(2.3) τε,x = ε2
∫

∂Ω

∂Uε,x

∂n
Uε,x − ε2

∫
∂Ω

∂Uε,x

∂n
ϕε,x.

Multiplying (2.1) by ϕε,x and integrating by parts, we obtain

(2.4) ε2
∫

∂Ω

∂Uε,x

∂n
ϕε,x = ‖ϕε,x‖2

ε > 0.

Combining (2.3) and (2.4), we have

τε,x <ε
2

∫
∂Ω

∂Uε,x

∂n
Uε,x(2.5)

≤− c′ε

∫
∂Ω∩B2εθ(q)

(
ε

|y − x|

)N−2

e−2|y−x|/ε

+O
(
εNe−(2+2θ)d(x,∂Ω)/ε

)
≤− c′ε

∫
∂Ω∩Bεθ(q)

(
ε

|y − x|

)N−2

e−2|y−x|/ε

+O
(
εNe−(2+2θ)d(x,∂Ω)/ε

)
≤− εNc0

[
ε

d(x, ∂Ω) + εθ

]N−2

e−2(d(x,∂Ω)+εθ)/ε,

where q ∈ ∂Ω satisfying |x − q| = d(x, ∂Ω). Since d(x, ∂Ω)/ε > M , we see that
(2.5) implies the left hand side of (2.2).
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Let G(y, x) be the Green’s function subject to the Neumann boundary con-
dition, that is, G(y, x) satisfies{ −ε2∆G+G = δx y in Ω,

∂G

∂n
= 0 y on ∂Ω.

Then, |G(y, x)| ≤ Ce−|y−x|/ε for y ∈ Ω \Bδ(x). We have

ϕε,x(y) =
∫

∂Ω

∂Uε,x(z)
∂n

G(z, y) dz.

Hence,

(2.6) |ϕε,x(y)| ≤ Ce−(1−θ)[d(x,∂Ω)/ε+d(y,∂Ω)/ε].

Inserting (2.6) into (2.3), we obtain

|τε,x| ≤ Ce−(2−θ)d(x,∂Ω)/ε. �

Lemma 2.2. For any 1 < l ≤ p, there is a σ > 0, such that∫
Ω

ϕl
ε,xU

p−l
ε,x = O

(
e−(2+σ)d(x,∂Ω)/ε

)
.

Proof. By (2.6), we have∫
Ω

ϕl
ε,xU

p−l
ε,x ≤Ce−l(1−θ)d(x,∂Ω)/ε

∫
Ω

e−l(1−θ)d(y,∂Ω)/εe−(p−l)|y−x|/ε(2.7)

≤Ce−l(1−θ)d(x,∂Ω)/ε

·
∫

Ω

e−[min(l,p−l)−2θ](d(y,∂Ω)/ε+|y−x|/ε)e−θ|y−x|/ε

≤Ce(−l(1−θ)−[min(l,p−l)−2θ])d(x,∂Ω)/ε

=O
(
e−(2+σ)d(x,∂Ω)/ε

)
,

since l > 1 and p > 2. �

Lemma 2.3. There is a σ > 0, such that∫
Ω

Uε,x1U
p−2
ε,x2

ϕε,x2 = O

(
εNe−(1+σ)|x1−x2|/ε +

2∑
j=1

εNe−(2+σ)d(xj ,∂Ω)/ε

)
.

Proof. Let l =: min{|x1 − x2|, 2d(xi, ∂Ω), i = 1, 2}. We have

(2.8)
∫

Ω

Uε,x1U
p−2
ε,x2

ϕε,x2 =
∫

Ω\(Bl/2(x1)∪Bl/2(x2))

Uε,x1U
p−2
ε,x2

ϕε,x2

+
∫

Bl/2(x1)

Uε,x1U
p−2
ε,x2

ϕε,x2 +
∫

Bl/2(x2)

Uε,x1U
p−2
ε,x2

ϕε,x2 .
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On the other hand, it follows from (2.6) that∫
Ω\(Bl/2(x1)∪Bl/2(x2))

Uε,x1U
p−2
ε,x2

ϕε,x2(2.9)

≤ Ce−(1−θ)l/(2ε)

∫
Ω\(Bl/2(x1)∪Bl/2(x2))

Uε,x1U
p−2
ε,x2

≤ Ce−p(1−θ)l/(2ε)

= O

(
εNe−(1+σ)|x1−x2|/ε +

2∑
j=1

εNe−(2+σ)d(xj ,∂Ω)/ε

)
.

(2.10)
∫

Bl/2(x1)

Uε,x1U
p−2
ε,x2

ϕε,x2

≤ Ce−(1−θ)(p−1)l/(2ε)

∫
Bl/2(x1)

e−(1−θ)(|y−x1|+d(y,∂Ω))/ε

≤ Ce−(1−θ)(p−1)l/(2ε)

∫
Bl/2(x1)

e−(1−θ)d(x1,∂Ω)/ε

= O

(
εNe−(1+σ)|x1−x2|/ε +

2∑
j=1

εNe−(2+σ)d(xj ,∂Ω)/ε

)
.

(2.11)
∫

Bl/2(x2)

Uε,x1U
p−2
ε,x2

ϕε,x2 ≤ Ce−(1−θ)l/(2ε)

·
( ∫

B(1−σ)l/2(x2)

Uε,x1U
p−2
ε,x2

+
∫
{(1−σ)l/2≤|y−x2|≤l/2}

Uε,x1U
p−2
ε,x2

)
≤ Ce−(1−θ)l/(2ε)

(
e−(1−θ)(1+σ)l/(2ε) + e−(1−θ)(1+(p−2)(1−σ))l/(2ε)

)
= O

(
εNe−(1+σ)|x1−x2|/ε +

2∑
j=1

εNe−(2+σ)d(xj ,∂Ω)/ε

)
.

Combining (2.8)–(2.11), we obtain the desired result. �

Lemma 2.4. Suppose that there are M > 0 and η > 0, such that |xj | ≤ M

and d(xj , ∂Ω) > δ > 0, then

(2.12)
∫

Ω

Up−1
ε,x1

ϕε,x2 = O

(
εN

2∑
j=1

e−(2+σ)d(xj ,∂Ω)/ε + εNe−(1+σ)|x1−x2|/ε

)
.

Proof. Similar to Lemma (2.1), we have

(2.13)
∫

Ω

Up−1
ε,x1

ϕε,x2 = ε2
∫

∂Ω

∂Uε,x2

∂n
Uε,x1 − ε2

∫
∂Ω

∂Uε,x1

∂n
ϕε,x2 .

From (2.13), we see that if d(x1, ∂Ω) 6= (1+o(1))d(x2, ∂Ω), or d(S1, S2) ≥ δ > 0,
where

Si = {q : q ∈ ∂Ω, |xi − q| = d(x, ∂Ω)},
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then

(2.14)
∫

Ω

Up−1
ε,x1

ϕε,x2 = O

(
εN

2∑
j=1

e−(2+σ)d(xj ,∂Ω)/ε + εNe−(1+σ)|x1−x2|/ε

)
.

But if d(x1, ∂Ω) = (1+o(1))d(x2, ∂Ω) and d(S1, S2) = o(1), then it is not difficult
to deduce that |x1 − x2| = o(1). Thus it follows from (2.13) that∫

Ω

Up−1
ε,x1

ϕε,x2 = O
(
εNe−(1−θ)d(x1,∂Ω)/εe−(1−θ)d(x2,∂Ω)/ε

)
= O

(
εNe−(1+σ)|x1−x2|/ε

)
= O

(
εN

2∑
j=1

e−(2+σ)d(xj ,∂Ω)/ε + εNe−(1+σ)|x1−x2|/ε
)
.

Thus we have completed the proof of this lemma. �

Define

τ ′ε,x = ε2
∫

∂Ω

Pε,ΩUε,x
∂2Uε,x

∂r2
,

where r = |y − x|.

Lemma 2.5. For any θ > 0, there are c1 > c0 > 0, such that

c0ε
N−1e−(2+θ)d(x,∂Ω)/ε ≤ τ ′ε,x ≤ c1ε

N−1e−(2−θ)d(x,∂Ω)/ε.

Proof. Since |ϕε,x(y) ≤ Ce(1−θ)|y−x|/ε we have

|Pε,ΩUε,x| ≤ Ce−(1−θ)|y−x|/ε, for all y ∈ ∂Ω,

and thus
τ ′ε,x ≤ c1ε

N−1e−(2−θ)d(x,∂Ω)/ε.

Next, we claim that there is a c0 > 0, such that

(2.15) Pε,ΩUε,x ≥ c0e
−(1+θ)|y−x|/ε, for all y ∈ ∂Ω ∩Bσ(q),

where q ∈ ∂Ω satisfies |q − x| = d(x, ∂Ω). Clearly, (2.15) implies

τ ′ε,x ≥ c0ε
N−1e−(2+θ)d(x,∂Ω)/ε.

Now we prove (2.15). Denote ψ = Pε,ΩUε,x − c0Uε,x. Let ψj , j = 1, 2, be the
solution of the following problems respectively{ −ε2∆ψ + ψ = (1− c0)Up−1

ε,x y in Ω,
∂ψ

∂n
= −ηc0

∂Uε,x

∂n
y on ∂Ω,{ −ε2∆ψ + ψ = 0 y in Ω,

∂ψ

∂n
= −(1− η)c0

∂Uε,x

∂n
y on ∂Ω,
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where η is a smooth function compactly contained in B2σ(q) and η = 1 if y ∈
Bσ(q). Then,

ψ = ψ1 + ψ2.

It follows from the maximum principle that ψ1 ≥ 0. On the other hand, we have

ψ2(y) = −
∫

∂Ω

(1− η)c0
∂Uε,x(z)
∂n

G(z, y) dz.

Since η = 1 for y ∈ Bσ(q), we see from the above relation that

|ψ2(y)| ≤ Ce−(1+σ)d(x,∂Ω)/ε, for all y ∈ ∂Ω ∩Bσ(q).

As a result,

ψ(y) ≥ −Ce−(1+σ)d(x,∂Ω)/ε, for all y ∈ ∂Ω ∩Bσ(q).

Hence,

Pε,ΩUε,x ≥ c0Uε,x − Ce−(1+σ)d(x,∂Ω)/ε ≥ c0e
−(1+θ)d(x,∂Ω)/ε,

for all y ∈ ∂Ω ∩Bσ(q), and the result follows. �

Lemma 2.6. We have∫
Ω

Up−2
ε,x

∂Uε,x

∂xi
ϕε,x = −ε2

∫
∂Ω

Pε,ΩUε,x
∂

∂n

(
∂Uε,x

∂xi

)
+O

(
εN−1e−pd(x,∂Ω)/ε

)
.

Moreover, if ∂Ω ∩ ∂Bd(x,∂Ω)(x) contains exactly one point q, then

N∑
i=1

∫
Ω

Up−2
ε,x

∂Uε,x

∂xi
ϕε,xνi ≥ c0ε

N−1e−(2+θ)d(x,∂Ω)/ε,

for any θ > 0, where ν is the outward unit normal of ∂Ω at q.

Proof. Multiplying (2.1) by ∂Uε,x

∂xi
and integrating by parts, we get

(2.16)
∫

Ω

Up−2
ε,x

∂Uε,x

∂xi
ϕε,x = ε2

∫
∂Ω

∂ϕε,x

∂n

∂Uε,x

∂xi
− ε2

∫
∂Ω

ϕε,x
∂

∂n

(
∂Uε,x

∂xi

)
= ε2

∫
∂Ω

Pε,ΩUε,x
∂

∂n

∂Uε,x

∂xi

+ ε2
∫

∂Ω

∂Uε,x

∂n

∂Uε,x

∂xi
− ε2

∫
∂Ω

Uε,x
∂

∂n

(
∂Uε,x

∂xi

)
.

But

(2.17) ε2
∫

∂Ω

∂Uε,x

∂n

∂Uε,x

∂xi
− ε2

∫
∂Ω

Uε,x
∂

∂n

(
∂Uε,x

∂xi

)
=

∫
Ω

ε2
[
∆Uε,x

∂Uε,x

∂xi
− Uε,x∆

(
∂Uε,x

∂xi

)]
= −(p− 2)

∫
Ω

Up−1
ε,x

∂Uε,x

∂xi
= (p− 2)

∫
RN\Ω

Up−1
ε,x

∂Uε,x

∂xi

= O
(
εN−1e−pd(x,∂Ω)/ε

)
.
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Combining (2.16) and (2.17) yields∫
Ω

Up−2
ε,x

∂Uε,x

∂xi
ϕε,x = −ε2

∫
∂Ω

Pε,ΩUε,x
∂

∂n

(
∂Uε,x

∂xi

)
(2.18)

+O
(
εN−1e−pd(x,∂Ω)/ε

)
.

Suppose ∂Ω ∩ ∂Bd(x,∂Ω)(x) contains exactly one point q. Since in a small
neighbourhood of q,

∂

∂n

(
xi − yi

|y − x|

)
= − 〈n, ν〉

|y − x|
+
〈n, y − x〉〈ν, y − x〉

|y − x|3
= o(1),

and thus
N∑

i=1

∂

∂n

(
∂Uε,x

∂xi

)
νi =

N∑
i=1

∂2Uε,x

∂r2

〈
y − x

|y − x|
, n

〉
xi − yi

|y − x|
νi

+
N∑

i=1

∂Uε,x

∂r

∂

∂n

(
xi − yi

|y − x|

)
νi

≤ −c0εN−1e−(1+2θ)d(x,∂Ω)/ε,

which, together (2.15) and (2.18), gives the result. �

3. Interior Neumann Problem

Let

(3.1) I(u) =
1
2

∫
Ω

(ε2|Du|2 + u2)− 1
p

∫
Ω

|u|p, u ∈ H1(Ω).

For fixed integer k > 0, let

α = (α1, . . . , αk) ∈ Rk,(3.2)

x = (x1, . . . , xk) ∈ RkN , xi ∈ RN , i = 1, . . . , k.(3.3)

Define

Dk,δ = {x : x ∈ Ω, |xi − xj | ≥ 2δ, i 6= j, d(xi, ∂Ω) ≥ δ, i = 1, . . . , k},
Mε,δ = {(α, x, v): |αi − 1| ≤ δ, i = 1, . . . , k; x ∈ Dk,δ,

v ∈ Eε,x,k, ‖v‖ε ≤ δεN/2}.

Let

(3.4) J(α, x, v) = I

( k∑
i=1

αiPε,ΩUε,xi
+ v

)
, (α, x, v) ∈Mε,δ.

It is well known that if δ > 0 is small enough, (α, x, v) ∈ Mε,δ is a critical
point of J(α, x, v) if and only if u =

∑k
i=1 αiPε,ΩUε,xi + v is a positive critical

point of I(u). See [20]. So we just need to estimate the number of critical
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points (α, x, v) ∈Mε,δ for J(α, x, v), that is, to find (α, x, v) ∈Mε,δ and Al, Bli,
i = 1, . . . , k, such that

(3.5)
∂J(α, x, v)

∂xli
=

N∑
j=1

Blj

〈
∂2Pε,ΩUε,xl

∂xli∂xlj
, v

〉
ε

, i = 1, . . . , N, l = 1, . . . , k,

∂J(α, x, v)
∂αl

= 0, l = 1, . . . , k,(3.6)

∂J(α, x, v)
∂v

=
k∑

l=1

AlPε,ΩUε,xl
+

k∑
l=1

N∑
j=1

Blj
∂Pε,ΩUε,xl

∂xlj
.(3.7)

We first reduce the problem of finding a critical point for J(α, x, v) to that
of finding a critical point for a function defined in a finite dimensional domain.
We will proceed in a similar way as [4], [8].

Proposition 3.1. There are ε0 > 0 and δ > 0, such that for each ε ∈
(0, ε0], there is a unique C1-map (αε(x), vε(x)):Dk,δ → Rk ×H1(Ω), satisfying
vε(x) ∈ Eε,x,k and

∂J(αε, x, vε)
∂αl

= 0, l = 1, . . . , k,(3.8) 〈
∂J(αε, x, vε)

∂v
, ω

〉
ε

= 0, for all ω ∈ Eε,x,k.(3.9)

Besides, if k ≥ 2, then for l = 1, . . . , k

(3.10) |αεl − 1| =O

( k∑
j=1

e−(1+σ)d(xj ,∂Ω)/ε +
∑
i 6=j

e−(1+σ)|xi−xj |/(2ε)

)
,

‖vε‖ε =O

(
εN/2

( k∑
j=1

e−(1+σ)d(xj ,∂Ω)/ε +
∑
i 6=j

e−(1+σ)|xi−xj |/(2ε)

))
,(3.11)

and if k = 1, then

(3.12) |αεl − 1|εN/2 + ‖vε‖ε = O
(
εN/2e−(1+σ)d(x,∂Ω)/ε

)
,

where σ is some positive constant. Moreover,

(3.13) vε(σkx) = vε(x), σkαε(σkx) = αε(x).

Proof. The proof of the existence part is standard. See [4], [8], and also
[1], [20]. The estimates (3.10) and (3.11) follows from the same procedure as in
Proposition 2.3 of [8] and Lemmas 2.1 and 2.2. Finally, (3.13) is a direct conse-
quence of the fact J(α, x, v) = J(σkα, σkx, v) and the uniqueness of (αε(x), vε(x))
satisfying (3.6) and (3.7). We thus omit the details. �

Let (αε(x), vε(x)) be the function attained in Proposition 3.1. Define

(3.14) K([x]) = J(αε(x), x, vε(x)), [x] ∈ Dk,δ/σk.
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Then from (3.13) we see K([x]) is well defined in Dk,δ/σk.

Lemma 3.2. Dk,δ is a covering space of Dk,δ/σk.

Proof. For any [x] ∈ Dk,δ/σk, we have |xi − xj | ≥ 2δ, for all i 6= j. So we
can choose γ > 0 small enough, such that Bγ(xi) ∩ Bγ(xj) = ∅. Suppose that
there are y, z ∈ Bγ(x1) × . . . × Bγ(xk) with [y] = [z]. Then y = σkz, and thus
|y − z| > 4δ. This is a contradiction. �

It follows from the lifting path theorem that x ∈ Dk,δ is a critical point of
J(αε(x), x, vε(x)) if and only if [x] ∈ Dk,δ/σk is a critical point of K([x]).

Proof of Theorem 1.1. From Proposition 3.1, for any x ∈ Dε,R, we have

(3.15) J(αε(x), x, vε(x))

= J(1, x, 0) +O

[
εN

( k∑
i=1

e−(2+σ)d(xi,∂Ω)/ε +
∑
i 6=j

e−(1+σ)|xi−xj |/ε

)]
.

But in view of lemmas 2.3 and 2.4, we have

(3.16) J(1, x, 0) = εN

(
1
2
− 1
p

)
kA+

1
2

k∑
i=1

τε,xi
−

∫
Ω

k−1∑
j=1

( k∑
i=j+1

Uε,xi

)p−1

Uε,xj

+O

[
εN

( k∑
i=1

e−(2+σ)d(xi,∂Ω)/ε +
∑
i 6=j

e−(1+σ)|xi−xj |/ε

)]
,

where A =
∫

RN Up. Inserting (3.16) into (3.15), we obtain

(3.17) J(αε(x), x, vε(x))

= εN

(
1
2
− 1
p

)
kA+

1
2

k∑
i=1

τε,xi
−

∫
Ω

k−1∑
j=1

( k∑
i=j+1

Uε,xi

)p−1

Uε,xj

+O

[
εN

( k∑
i=1

e−(2+σ)d(xi,∂Ω)/ε +
∑
i 6=j

e−(1+σ)|xi−xj |/ε

)]
.

Define

cε,k = kεN

(
1
2
− 1
p

)
A− e−3δ/ε.

Then we see from (3.17) that

J(αε(x), x, vε(x)) < cε,k,

if d(xi, ∂Ω) = δ for some i, or |xi − xj | = 2δ for some i 6= j. That is

K([x]) < cε,k, for all [x] ∈ ∂(Dδ,k/σk).

So from the Ljusternik–Schnirelman theory, we have

(3.18) #{[x] : DK([x]) = 0,K([x]) ≥ cε,k} ≥ CatDδ,k/σk
({K([x]) ≥ cε,k}).
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On the other hand, it is easy to check from (3.17) that

(3.19) D4δ,k/σk ⊂ {K([x]) ≥ cε,k}.

Combining (3.18) and (3.19), we obtain

#{[x] : DK([x]) = 0,K([x]) ≥ cε,k} ≥ CatDδ,k/σk
(D4δ,k/σk) = CatAk

Ak.

So we have completed the proof of Theorem 1.1. �

Proof of Theorem 1.2. Let (αε(x), vε(x)) be the map obtained in Propo-
sition 3.1. Define

K1(x) = Jε(αε(x), x, vε(x)), for all x ∈ Ωδ,

Then

(3.20) K1(x) =
(

1
2
− 1
p

)
εNA+

1
2
τε,x + o(τε,x).

Let

cε,1 = εN

(
1
2
− 1
p

)
A− e−3δ/ε.

It is not difficult to see that K1(x) < cε,1 if x ∈ ∂Ωδ and Ω4δ ⊂ {K1(x) ≥ cε,1}.
So the result follows from the Ljusternik–Schnirelman theory. �

Remark 3.3. The idea to prove Theorem 1.1 can also be used to estimate
the number of boundary k-peak solutions for (1.1). So we see that the number
of boundary k-peak solutions for (1.1) is at least CatA′

k
(A′k), where

A′k = {(x1, . . . , xk) :xj ∈ ∂Ω,H(xj) ≥ max
∂Ω

H(x)− δ,

|xi − xj | ≥ δ, i, j = 1, . . . , k, i 6= j}/σk,

where H(x) is the mean curvature function of ∂Ω.

Remark 3.4. By (3.20), it is easy to see that if x0 ∈ Ω is a strictly local
maximum point of the function d(x, ∂Ω), we can construct a solution of the form
uε = αεPε,ΩUε,xε

+ vε satisfying αε → 1, xε → x0, vε ∈ Eε,xε
and ‖vε‖2

ε = o(εN )
as ε→ 0.

It is also interesting to characterize the location of the peaks of the interior
k-peak solutions for (1.1). This is not easy if k ≥ 3, because it is very difficult to
control the distances between different peaks. On the other hand, consider the
following problem

(3.21) max{K(x) : x ∈ Dk,δ}.

From (3.17), we see that K(x) is decreasing if one of xj moves toward ∂Ω or
|xi − xj | → 0 for some i 6= j. This implies that the maximum xε of (3.21) is
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an interior point in Dk,δ and hence a critical point of K(x). As a result, (1.1)
always has a interior k-peak solution

uε =
k∑

j=1

αεjPε,ΩUε,xεj
+ vε,

such that xε = (xε1, . . . , xεk) is a maximum of problem (3.21). Moreover, from
(3.17), we see that as ε → 0, xε tends to a point which is a maximum point of
the following function

(3.22) min{2d(xi, ∂Ω), |xi − xj |, i, j = 1, . . . , k, i 6= j}.

In order to locate the maximum of (3.22), we only need to put k disjoint open
balls Bη(xi) in Ω, and try to make η as large as possible. Let S be the set of all
the points (x1, . . . , xk) such that xj , j = 1, . . . , k, is the center of Bη(xj) that
makes η attain its maximum. Then the maximum point of (3.22) is contained
in S.

Before we close this section, we discuss briefly the location of the peak of the
interior single peak solution.

Proposition 3.5. Suppose that uε = αεPε,ΩUε,xε
+ vε is an interior single

peak solution for (1.1), satisfying αε → 1, vε ∈ Eε,xε
, ‖vε‖ε = o(εN/2) and

xε → x ∈ Ω as ε→ 0, then x satisfies∫
∂Ω

y − x

|y − x|
dµ = 0,

where dµ is a measure on ∂Ω, which is one of the weak limits of the sequence

Pε,ΩUε,xε

∂2Uε,xε

∂2r∫
∂Ω

Pε,ΩUε,xε

∂2Uε,xε

∂2r

.

Proof. Since uε = αεPε,ΩUε,xε
+ vε is solution of (1.1), we know

(3.23) |αε − 1|+ ε−N/2‖vε‖ε = O
(
e−(1+σ)d(x,∂Ω)/ε

)
.

See the proof of Proposition 3.1. On the other hand, we have〈
αεPε,ΩUε,xε

+ vε,
∂Pε,ΩUε,xε

∂xj

〉
=

∫
Ω

(
αεPε,ΩUε,xε

+ vε

)p−1 ∂Pε,ΩUε,xε

∂xj
,

which, in view of (3.23), is equivalent to

(3.24)
∫

Ω

Up−2
ε,xε

∂Uε,xε

∂xj
ϕε,x = O

(
εN−1e−(2+σ)d(x,∂Ω)/ε

)
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By Lemma 2.6, we deduce from the above relation that∫
∂Ω

Pε,ΩUε,xε

∂2Uε,xε

∂2r

yj − xεj

|yj − xεj |
+ o

( ∫
∂Ω

Pε,ΩUε,xε

∂2Uε,xε

∂2r

)
= O

(
εN−1e−(2+σ)d(xε,∂Ω)/ε

)
,

where r = |y − x|. Using Lemma 2.5, we obtain∫
∂Ω

Pε,ΩUε,xε

∂2Uε,xε

∂2r

yj − xεj

|yj − xεj |∫
∂Ω

Pε,ΩUε,xε

∂2Uε,xε

∂2r

= o(1),

Thus, ∫
∂Ω

yj − xj

|y − x|
dµ = 0.

This completes the proof of the lemma. �

Remark 3.6. It is easy to see that the support of the measure µ contains
in

∂Ω ∩ {y : |y − x| = d(x, ∂Ω)},
and if ∂Ω ∩ {y : |y − x| = d(x, ∂Ω)} = {x0}, then µ = δx0 . So if x ∈ Ω is a point
such that there is an interior single peak solution for (1.1) with its peak near x,
then ∂Ω ∩ {y : |y − x| = d(x, ∂Ω)} contains at least two points. The result in
Proposition 3.5 is similar to that in [23]. It is interesting to consider whether
the measure defined here and the measure defined in [23] are same.

4. Exterior Neumann Problem

The aim of this section is to prove Theorem 1.3. Since most of the calculations
are similar to those in Section 3, we merely sketch the proof. First, we need the
following lemma.

Lemma 4.1. Let X be a topological space and let A1, A2 and Y be closed
subsets of X satisfying A1 ⊂ Y ⊂ A2. Suppose that A2 can be deformed into
A1, that is, there is a continuous map H(x, t) : A2 × [0, 1] → A2 such that
H(x, 0) = x, H(x, 1) ⊂ A1, H(x, t) = x, for all x ∈ A1, t ∈ [0, 1], then

CatX(X,Y ) ≥ CatX(X,A1).

Proof. Suppsoe that CatX(X,Y ) = m. Then there are X0, . . . , Xm, and
continuous maps h0(x, t), . . . , hm(x, t), such that

X =
m⋃

l=0

Xl,

(i) hl(0, x) = x, l = 0, . . . ,m;
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(ii) hl(1, x) = xl, for all x ∈ Xl, l = 1, . . . ,m;
(iii) h0(1, X0) ⊂ Y and h0(x, t) = x, for all t ∈ [0, 1], x ∈ Y ∩X0.

Define

h∗0(t, x) =

{
h0(2t, x) t ∈ [0, 1/2], x ∈ X0,

H(2t− 1, h0(1, x)) t ∈ [1/2, 1], x ∈ X0.

Since h0(1, X0) ⊂ Y ⊂ A2, we see that h∗0(t, x) is well defined in [0, 1] ×X0

and is continuous. It is easy to see that h∗0(0, x) = x, h∗0(1, X0) ⊂ A1. Moreover,
for any x ∈ A1 ∩X0 and t ∈ [0, 1], we have

h∗0(t, x) =

{
h0(2t, x) = x for all t ∈ [0, 1/2],

H(2t− 1, h0(x, 1)) = H(2t− 1, x) = x for all t ∈ [1/2, 1].

Thus, by the definition of the relative category, we have CatX(X,A1) ≤ m. �

Proof of Theorem 1.3. (i) We define DT = BT (0)∩Ω1δ, where T > 0 is
a large constant. Let

c′ε,2 = εN (A− e−d2/ε), c′ε,1 = εN (A− e−d1/ε),

where d2 > 0 is a large constant with T > 2d2, and d1 > 0 is a small constant
with d1 < δ. Let

J2(α, x, v) =: I(αPε,ΩUε,x + v).

Step 1. It is standard to prove that there is an ε0 > 0, such that for each
ε ∈ (0, ε0], there is a C1-map (αε(x), vε(x)) : DT → R+ × H1(Ω), such that
vε(x) ∈ Eε,x,1 and

∂J2

∂α
= 0(4.1) 〈

∂J2

∂v
, ω

〉
= 0, for all ω ∈ Eε,x,1.(4.2)

Moreover, for some σ > 0,

|αε − 1|εN/2 + ‖vε‖ε = O
(
εN/2e−(1+σ)d(x,∂Ω1)/ε

)
.

Step 2. Define

K2(x) = I(αε(x)Pε,ΩUε,x + vε(x)), x ∈ DT .

Then it follows from Lemma 2.1 that

K2(x) < c′ε,1, if x ∈ ∂Ω1δ,

K2(x) > c′ε,2, if |x| = T.

Combining Steps 1–2, we conclude

#{x : DK2(x) = 0, x ∈ DT , c
′
ε,1 < K2(x) ≤ c′ε,2} ≥ CatDT

(K2,cε,2 ,K2,cε,1),
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where K2,c = {x : K2(x) > c}. But it is easy to check that K2,cε,1 ⊂ DT , and

{x : T/2 ≤ |x| ≤ T} ⊂ K2,cε,2 ⊂ {x : d2/2 ≤ |x| ≤ T}.

So by Lemma 4.1, we have

#{x : DK2(x) = 0, x ∈ DT , c
′
ε,1 < K2(x) ≤ c′ε,2}

≥ CatDT
(DT , {x : T/2 ≤ |x| ≤ T})

and the result follows.
(ii) As in the proof of Proposition 3.5, we have

(4.3)
∫

∂Ω1

Pε,Ω1Uε,xε

∂2Uε,xε

∂r2
yj − xεj

|yj − xεj |
+ o

( ∫
∂Ω1

Pε,Ω1Uε,xε

∂2Uε,xε

∂r2

)
= O

(
e−(2+σ)d(xε,∂Ω1)/ε

)
.

Since RN \Ω1 is convex, we know that ∂Ω1 ∩Bd(xε,∂Ω)(xε) contains exactly one
point q, and 〈(y − xε)/|yj − xεj |, n〉 ≥ β > 0 for y in a small neighbourhood
of q, where n is the outward unit normal of ∂Ω1 at q. So, (4.3), together with
Lemma 2.5, implies

e−(2−θ)d(xε,∂Ω)/ε ≤ O
(
e−(2+σ)d(xε,∂Ω)/ε

)
,

for each θ > 0. This is a contradiction. �
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