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ON THE EFFECT OF DOMAIN TOPOLOGY
IN A SINGULAR PERTURBATION PROBLEM

E. Norman Dancer — Juncheng Wei

1. Introduction

In this paper, we study the following nonlinear elliptic equation

(1.1)

{
ε24u− u+ up = 0 in Ω,

u > 0 in Ω and u = 0 on ∂Ω,

where Ω ⊂ RN (N ≥ 2) is a smooth bounded domain, 1 < p < (N + 2)/(N − 2)
for N ≥ 3, 1 < p < ∞ for N = 2 and ε > 0 is a positive small parameter.
Our interest in (1.1) arises from two aspects. First, (1.1) is a typical singular
perturbation problem. Singular perturbation problems have received much at-
tention lately due to their significances in applications such as chemotaxis (see
[18] and [19]), population dynamics (see [1], [16]) and chemical reaction theory
(see [1]), etc. Secondly, we are interested in the effect of the properties of the do-
main, such as geometry, topology on the solutions of nonlinear elliptic problems.
Problem (1.1) can be a prototype.

Recently, the geometry of the domain on the solutions of (1.1) has been a
subject of study. Beginning in [20], Ni and Wei studied the “least-energy solu-
tions” of (1.1) and showed that for ε sufficiently small, the least-energy solution
has only one local maximum point Pε and Pε must lie in the most centered part
of Ω, namely, d(Pε, ∂Ω) → maxP∈Ω d(P, ∂Ω), where d(P, ∂Ω) is the distance from
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P to ∂Ω. On the other hand, in [26], a kind of converse was proved. Namely, for
each strictly local maximum point of the distance function d(x, ∂Ω), there is a
solution of (1.1) with only one local maximum point near that point. This shows
that the geometry of the domain plays a very important role in the multiplicity
of solutions of (1.1). In [27], the effect of the geometry of Ω on single-peaked so-
lutions has been studied. In particular, both necessary and sufficient conditions
for the existence of single-peaked solutions are established. These conditions
depend highly on the geometry of the domain. Some further studies in this
direction are in [9], [13], [17], etc.

On the other hand, Benci and Cerami [5] and [6] studied the effect of the
topology of Ω on solutions of (1.1). More precisely, they showed that there are
at least cat(Ω) + 1 solutions for ε � 1. In fact, what they actually showed was
there are at least cat (Ω) + 1 single-peaked solutions (i.e., solutions with single
maximum point), where cat (Ω) denotes the category of Ω.

In this paper, we will study the effect of domain topology on multiple-peak
solutions (i.e., solutions with more than 1 local maximum points). Note that
when Ω is a ball or some symmetric domains, there are no multiple-peak solu-
tions, see [12]. Thus the existence and multiplicity of multiple-peak solutions are
related to the geometry and topology of Ω.

To state our results, we introduce some notations. Let w be the unique
solution of 

4w − w + wp = 0 in RN ,

w > 0 in RN , w(0) = max zεRNw(z),

w(z) → 0 at ∞.

Let J(w) = (1/2)
∫

RN |∇w|2+(1/2)
∫

RN w2−(1/(p+1))
∫

RN wp+1 be its “energy”.
Let ck = kJ(w). For any u ∈W 1,2

0 (Ω), we define an energy functional

Jε(u) =
ε2

2

∫
Ω

|∇u|2 +
1
2

∫
Ω

u2 − 1
p+ 1

∫
Ω

up+1.

We called a family of solutions of (1.1) k-peak if ε−NJε(u) → ck. It is easy to see
by blow up arguments that a k-peak solution uε, uε has only k local maximum
points for ε small. (See the proof of Theorem 1.1 in [20]. Note that there they
proved for single-peaked case but the arguments there can be easily modified to
treat multiple peak case). More precisely we have

Lemma 1.1. Let uε be a family of k-peaked solutions, then for ε sufficiently
small, uε has only k local maximum points P 1

ε , . . . , P
k
ε ∈ Ω and we have

d(P jε , ∂Ω)/ε→∞, |P iε − P jε |/ε→∞, i 6= j, i, j = 1, . . . , k.
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Moreover, ∥∥∥∥u− k∑
j=1

w((x− P εj )/ε)
∥∥∥∥ → 0

as ε→ 0, where

‖u‖2 := ε−N
(
ε2

∫
Ω

|∇u|2 +
∫

Ω

u2

)
.

Set
Jck+η
ε = {u ∈ H1

0 (Ω) | ε−NJε(u) ≤ ck + η}
and

Jck−η
ε = {u ∈ H1

0 (Ω) | ε−NJε(u) ≤ ck − η}
for 0 < η < I(w). In this paper, we study the case when k = 2. Our main
result is

Theorem 1.1. The contribution to the relative homology

H∗(Jc2+ηε , Jc2−ηε )

of 2-peak positive solutions as ε→ 0, 0 < η < I(w) is equal to H∗(T ), where T
is the quotient space of (Ω× Ω,M(Ω))× (D2, S1) under a free Z2 group action
which comes since we can interchange the two maxima and M(Ω) = {x ∈ Ω×Ω |
x1 = x2}.

Remark. More precisely, we mean there is a neighborhood Vε of the 2-peak
solutions such that H∗(Jc2+ηε ∩ Vε, Jc2−ηε ∩ Vε) is equal to H∗(T ).

An interesting corollary is

Corollary 1.2. If the reduced homology H∗(Ω, Z2) 6= 0 is nontrivial, then
for ε sufficiently small, there is a 2-peak solution for (1.1).

Another by-product of the proof of the theorem is the following necessary
conditions of the locations of the 2-peaks.

Theorem 1.2. There is a δ > 0 such that if uε is a 2-peak solution and
let P ε1 , P ε2 be its only two local maximum points, then d(P ε1 , ∂Ω) ≥ δ > 0,
d(P ε2 , ∂Ω) ≥ δ > 0. Moreover, if P ε1 → P1, P ε2 → P2, then |P1 − P2| ≥
2min (d(P1, ∂Ω), d(P2, ∂Ω)).

Remarks. For some rather symmetric domains, it is proved in [12] that there
are no 2-peaked positive solutions. On the other hand, a number of authors have
constructed 2-peak positive solutions on some contractible domains. Thus the
complete answer when there are 2-peak positive solutions is complicated. Note
also that in 2 and 3 dimensions, our assumption on Ω is equivalent to assuming
Ω is not contractible. This follows from standard topology (see Rourke and
Sanderson [23] for the more complicated 3 dimensional case). It seems likely
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that a similar result holds for much more general nonlinearities and that if Ω
is complicated one can use the theorem to obtain multiple positive 2 peaked
solutions.

Theorem 1.1 and Corollary 1.2 point out the importance of the topology
of the domain on the multiplicity of solutions of (1.1). For example, when
Ω = Ω1\Ω0 where Ω1,Ω0 are contractible domains (e.g. Ω is an annulus), then
H∗(Ω, Z2) 6= 0, hence (1.1) has a 2-peaked solutions. Note that in [9] and [13],
rather strong local geometric conditions were placed on Ω in order to show the
existence of 2-peaked solutions.

Theorem 1.1 was motivated by the results of [4], where they studied a nearly
critical exponent problem and computed the effect of domain topology on the
blow up solutions.

This paper is organized as follows. In Section 2, technical framework is set
up and we make a preliminary analysis of problem (1.1) in Section 3. We prove
Theorem 1.1 in Section 4 and Corollary 1.2 in Section 5.

Throughout this paper, unless otherwise stated, the letter C will always
denote various generic constants which are independent of ε, for ε sufficiently
small. The notations O(A), o(a) always mean that |O(A)| ≤ C|A|, o(a)/a → 0
as ε→ 0, respectively.

Acknowledgement. The research of the first author is partially supported
by Australian Research Council while the research of the second author is sup-
ported by a Direct Grant from the Chinese University of Hong Kong and an
Earmarked Grant from RGC of Hong Kong.

2. Technical framework

In this section, we introduce some notations and set up a technical frame-
work. We shall follow [4] and [27]. First we define PΩw to be the projection of
w((x− P )/ε) into H1

0 (Ω), i.e. PΩw((x− P )/ε) is the unique solution of

{
ε24u− u+ wp((x− P )/ε) = 0 in Ω,

u = 0 on ∂Ω.

Sometimes we use Pw to denote PΩw((x− P )/ε) and Pwi for PΩw((x− Pi)/ε)
or PΩw((x− xi)/ε).

By the Maximum Principle, 0 ≤ PΩw < w. Let

x = εy + P, ϕε,P (y) = w(y)− PΩw((x− P )/ε), β = 1/ε,

ψε,P (x) = −ε logϕε,P (y), β = 1/ε,

Vε,P (y) = eβψε,P (P )ϕε,P (y), ψε(P ) = ψε,P (P ).
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It is easy to see that ψε,P (x) is the unique solution of

(2.2)

{
ε2∆u− |∇u|2 + 1 = 0 in Ω,

u(x) = −ε logw((x− P )/ε) on ∂Ω.

The following properties are proved in [20].

Proposition 2.1.

(i) There exist a constant C1 such that

‖ψε,P (x)‖L∞(Ω) ≤ C1.

(ii) ψε,P (x) → ψP (x) uniformly on Ω as ε→ 0, where ψP (x) in the unique
viscosity solution of the following Hamilton-Jacobi equation

(2.3)

{
|∇u|2 = 1 in Ω,

u(x) = |x− P | on ∂Ω.

Indeed, ψP (x) = infz∈∂Ω(|z−P |+L(x, z)), where L(x, z) is the infimum
of T such that there exists ξ(s) ∈ C0,1([0, T ],Ω) with ξ(0) = x, ξ(T ) = z

and |dξ/ds| ≤ 1, a.e. in [0, T ]. Furthermore, ψP (P ) = 2d(P,Ω).
(iii) For every sequence εk → 0, there is a subsequence εkl

→ 0, such that
Vεkl

,P → VP uniformly on every compact set of RN , where VP is a
positive solution of

(2.4)

{
∆u− u = 0 in RN ,

u(0) = 1, u > 0 in RN .

Furthermore, for any σ1 > 0,

sup
y∈Ωεkl

,P

e−(1+σ1)|y||Vεkl
,P (y)− VP (y)| → 0 as εkl

→ 0.

For a > 0, we define a subset of H1
0 (Ω)

Fa =
{
Pw

(
x− x1

ε

)
+ Pw

(
x− x2

ε

) ∣∣∣∣ d(x1, ∂Ω)
ε

>
1
a
,

d(x2, ∂Ω)
ε

>
1
a
,
|x1 − x2|

ε
>

1
a

}
Let

Λa =
{

(α1, α2, x1, x2) ∈ R2 × Ω2

∣∣∣∣ |αi − 1| < 4a,

d(xi, ∂Ω)
ε

>
1
4a
, i = 1, 2,

|x1 − x2|
ε

>
1
4a

}
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Set

〈u, v〉 = ε−N
( ∫

Ω

ε2∇u∇v + uv

)
, ‖u‖2 = 〈u, v〉,

Ωε := {y | εy + P0 ∈ Ω},

where P0 ∈ Ω is a fixed point.

EQ = {v ∈ H1
0 (Ω) | 〈v, Pw1〉 = 〈v, Pw2〉 = 〈v, ∂iPw1〉 = 〈v, ∂iPw2〉 = 0,

i = 1, . . . , N},

where we use Q = (P1, P2) and ∂iPwj to denote ∂Pwj/∂Pj,i. Note that Pj =
(Pj,1, . . . , Pj,N ), j = 1, 2.

Then, as in [4] or [9], it is easy to prove

Lemma 2.1. If a is small and u ∈ W 1,2
0 (Ω) is such that infhεFa ‖u − h‖ is

small then the minimizing problem

inf
(α,x)∈Λa

∥∥∥∥u− 2∑
i=1

αiPwi

∥∥∥∥
has a unique solution. Moreover, u can be expressed as

u = α1Pw1 + α2Pw2 + v

where v ∈ Ex. The expression is unique modulo interchanging both (α1, P1) with
(α2, P2).

Therefore, by Lemmas 1.1 and 2.1, there exists a diffeomorphism between a
neighbourhood of the possible 2-peak solutions of (1.1) we are interested in and
the quotient of the open set

Mη =
{

(α, x, v) ∈ R2 × Ω2 ×H1
0 (Ω)

∣∣∣∣ |αi − 1| < η,

d(xi, ∂Ω)
ε

>
1
η
,
|x1 − x2|

ε
>

1
η
, ‖v‖ < η

}
where we identify (α1, α2, x1, x2, v) with (α2, α1, x2, x1, v) and η > 0 is a some
suitable constant. Note that the quotient map is smooth on Mη.

Let us define the functional

Kε : Mη → R, m = (α, x, v) → ε−NJε(α1Pw1 + α2Pw2 + v).

It also follows easily (see Proposition 1 of [4] or Proposition 2.2 of [9]) that
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Proposition 2.2. m = (α, x, v) ∈ Mη is a critical point of Kε if and only
if u = α1Pw1 +α2Pw2 +v is a critical point of Jε, i.e. if and only if there exists
(A,C) ∈ R2 ×R2N such that the following holds.

(E)



(Eαi
)

∂Kε

∂αi
= 0, ∀i = 1, 2,

(Exi
)

∂Kε

∂xi,j
=

N∑
k=1

Cik

〈
∂2Pwi

∂xi,j∂xi,k
, v

〉
, ∀i = 1, 2, j = 1, . . . , N,

(Ev)
∂Kε

∂v
= A1Pw1 +A2Pw2 +

∑
i=1,2,j=1,... ,N

Cij
∂Pwi
∂xi,j

3. Preliminary analysis

In this section, we use equations (E) to derive a preliminary analysis of
problem (1.1). More precisely, we shall prove the following

Theorem 3.1. There is a δ > 0 such that if uε is a 2-peak solution and
let P ε1 , P ε2 be its only two local maximum points, then d(P ε1 , ∂Ω) ≥ δ > 0,
d(P ε2 , ∂Ω) ≥ δ > 0. Moreover, if P ε1 → P1, P ε2 → P2, then |P1 − P2| ≥
2 min(d(P1, ∂Ω), d(P2, ∂Ω)).

Set

w1 = w((x− P ε1 )/ε), w2 = w((x− P ε2 )/ε),

δε,P1,P2 = ϕε,P1(P1) + ϕε,P2(P2) + w(|P1 − P2|/ε).

Recall that ϕε,P (x) = w((x− P )/ε)− Pw((x− P )/ε) and ψε(P ) := ψε,P (P ).
We first state some useful lemmas.

Lemma 3.2. Let f ∈ C(RN ) ∩ L∞(RN ), g ∈ C(RN ) be radially symmetric
and satisfy for some α ≥ 0, β ≥ 0, γ ∈ R,

f(x) exp(α|x|)|x|β → γ as |x| → ∞,∫
RN

|g(x)| exp(α|x|)(1 + |x|β) <∞.

Then( ∫
RN

f(x+ y)g(x) dx
)

exp(α|y|)|y|β → γ

∫
RN

g(x) exp(−αx1) dx as |y| → ∞.

For the proof, see Proposition 1.2 of [3].
We then have the following estimates.
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Lemma 3.3.

1
w(|P ε1 − P ε2 |/ε)

∫
RN

wp1w2 → γ1 > 0.(1)

ε

w(|P1 − P2|/ε)

∫
RN

wp1
∂w2

∂P2,j
(2)

=
1

w(|P1 − P2|/ε)

∫
RN

wp1w
′

2

P2,j − xj
|εy + P1 − P2|

→ −P2,j − P1,j

|P2 − P1|
γ2

for some constants γ1 > 0, γ2 > 0.

Proof. Note that |P ε1 − P ε2 |/ε → ∞ as ε → 0 by Lemma 1.1 and w(y) ∼
|y|(1−N)/2e−|y| as |y| → ∞, by Lemma 3.2,

( ∫
RN

wp1w2 dx

)
exp(|P ε1 − P ε2 |/ε)(|P ε1 − P ε2 |/ε)(N−1)/2 → γ

∫
RN

w(y)e−αy1 dy.

Note that γ > 0. Hence

1
w(|P1 − P2|/ε)

∫
RN

wp1w2 → γ1 > 0.

Similarly, we have (2). �

We first deal with the v-part of u, in order to show that it is negligible with
respect to the concentration phenomena.

The proof of the following proposition is very similar to that of Lemma 4.2
in [26] and of Proposition 4 in [22, p. 15] and is thus omitted. Note that we do
not have troubles close to the boundary because the region we are working with
stays far enough from the boundary so that we do not have difficulties.

Proposition 3.4. There exists a ε0 > 0, η0 > 0 such that if ε < ε0,
‖v‖ < η0 then there exists a smooth map which to any (α, P, v) such that
(α, P, 0) ∈ Mη associates vε,α,P ∈ EP , ‖vε,α,P ‖ < η0 such that (Ev) is satisfied
for some (A,C) ∈ R× R2N . Such a vε,α,P is unique and minimizes Kε(α, P, v)
with respect to v in {v ∈ EP | ‖v‖ < η0} and we have the estimates

(3.1) ‖vε,α,P ‖2 ≤ O(ϕ1+2σ
ε,P1

(P1) + ϕ1+2σ
ε,P2

(P2) + w1+2σ(|P1 − P2|/ε))

where 2σ = min(1, p− 1).
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Once vε,α,P is obtained, we can estimate A1, A2, Cij in Proposition 2.2. In fact
we have by Appendix C in [27] (set Γ1 :=

∫
RN wp+1, Γ2 :=

∫
RN pwp−1(∂w/∂yi)2)

〈Pwi, Pwi〉 = Γ1 +O(ϕε,Pi(Pi)), i = 1, 2,〈
Pwi,

∂

∂Pi,j
Pwi

〉
= O

(
ϕε,Pi

(Pi)
ε

)
, i = 1, 2,〈

∂Pwi
∂Pi,j

,
∂Pwi
∂Pi,k

〉
=

1
ε2

Γ2δjk +O

(
ϕε,Pi(Pi)

ε2

)
, i = 1, 2,〈

∂Kε

∂v
, Pwi

〉
=
∂Kε

∂αi
,〈

∂Kε

∂v
,
∂Pwi
∂Pi,j

〉
=

1
αi

∂Kε

∂Pi,j
.

Explicit computations yield

∂Kε

∂α1
=α1

∫
Ωε

wp1Pw1 + α2

∫
Ωε

wp2Pw1 −
∫

Ωε

(α1Pw1 + α2Pw2)pPw1

=
∫

RN

wp+1(α1 − αp1) +O(ϕε,P1(P1) + w(|P1 − P2|/ε)),

∂Kε

∂α2
=

∫
RN

wp+1(α2 − αp2) +O(ϕε,P2(P2) + w(|P1 − P2|/ε)),

∂Kε

∂Pi,j
=

∫
Ωε

(α1w
p
1 + α2w

p
2)

(
αi
∂Pwi
∂Pi,j

)
−

∫
Ωε

(α1Pw1 + α2Pw2 + v)p
(
αi
∂Pwi
∂Pi,j

)
=O((ϕε,P1(P1) + ϕε,P2(P2) + w(|P1 − P2|/ε))/ε).

By using equation (Ev) and the previous estimates we obtain a system of
equations.

A1(Γ1 +O(ϕε,P1)(P1)) +A2

(
w

(
|P1 − P2|

ε

))
+ CijO

(
ϕε,P1(Pi)

ε

)
=

〈
∂Kε

∂v
, Pw1

〉
=
∂Kε

∂α1
= 0,

A1

(
w

(
|P1 − P2|

ε

))
+A2(Γ1 +O(ϕε,P2(P2)) + CijO

(
ϕε,P2(P2)

ε

)
=

〈
∂Kε

∂v
, Pw2

〉
=
∂Kε

∂α2
= 0,

A1

(
δε,P1,P2

ε

)
+A2

(
δε,P1,P2

ε

)
+ Cij

(
Γ2δij
ε2

+O

(
δε,P1,P2

ε

))
=

〈
∂Kε

∂v
,
∂Pwi
∂Pi,j

〉
=

1
αi

∂Kε

∂Pi,j
= O

(
δε,P1,P2

ε

)
.
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Since w((P1−P2)/ε), ϕε,P1(P1), ϕε,P2(P2) are small, we can think of this system
for Ai, Cij/ε as a small perturbation of an invertible diagonal system. Hence

Ai =O(ϕε,P1(P1) + ϕε,P2(P2) + w(|P1 − P2|/ε)), i = 1, 2,

Cij = εO(ϕε,P1(P1) + ϕε,P2(P2) + w(|P1 − P2|/ε)).

Therefore the equation (EPi,j
) becomes

ε
∂Kε

∂Pi,j
=

N∑
k=1

Cik

〈
∂2Pwi

∂Pi,j∂Pi,k
, v

〉
= O(ϕ1+σ

ε,P1
(P1) + ϕ1+σ

ε,P2
(P2) + w1+σ(|P1 − P2|/ε)).

But

ε
∂Kε

∂P1,j
= ε

∫
Ωε

(α1w
p
1 + α2w

p
2)
∂Pwi
∂P1,j

− ε

∫
Ωε

(α1Pw1 + α2Pw)p
∂Pw1

∂P1,j

+O(ϕ1+σ
ε,P1

(P1) + ϕ1+σ
ε,P2

(P2) + w1+σ(|P1 − P2|/ε))

= ε

∫
Ωε

(
wp1

∂w1

∂P1,j
− (Pw1)p

∂w1

∂P1,j

)
+ ε

∫
Ωε

(
wp−1

2

∂w

∂P1,j
w2

)
+O(ϕ1+σ

ε,P1
(P1) + ϕ1+σ

ε,P2
(P2) + w1+σ(|P1 − P2|/ε)).

Hence we have

Lemma 3.5. Equation (EPi,j
) is equivalent to

(EP1) ε

∫
Ωε

(
wp1

∂w1

∂P1,j
− (Pw1)p

∂w1

∂P1,j

)
+ ε

∫
Ωε

(
wp−1

1

∂w

∂P1,j
w2

)
= O(ϕ1+σ/2

ε,P1
(P1) + ϕ1+σ

ε,P2
(P2) + w1+σ(|P1 − P2|/ε)),

(EP2) ε

∫
Ωε

(
wp2

∂w2

∂P2,j
− (Pw2)p

∂w2

∂P2,j

)
+ ε

∫
Ωε

(
wp−1

2

∂w2

∂P2,j
w1

)
= O(ϕ1+σ

ε,P1
(P1) + ϕ1+σ

ε,P2
(P2) + w1+σ(|P1 − P2|/ε)).

We can now prove Theorem 3.1.

Proof. We first show that there exists δ > 0 such that for ε sufficiently
small

min(d(P ε1 , ∂Ω), d(P ε2 , ∂Ω)) ≥ δ > 0.

Suppose not. Suppose d(P ε2 , ∂Ω) → 0. We shall discuss three cases.
Case 1. limε→0 ϕε,P ε

1
(P ε1 )/ϕε,P ε

2
(P ε2 ) = 0.

In this case, if limε→0 w(|P ε1 −P ε2 |/ε)/ϕε,P ε
2
(P ε2 ) = 0, then we have by (EP ε

2
)

(noting that the second integral in equation (EP ε
2
) is of order w(|P ε1 −P ε2 |/ε) by

Lemma 3.2), we have

1
ϕε,P ε

2
(P ε2 )

ε

∫
Ωε

(wp2 − (Pw2)p)
∂w2

∂P ε2,j
→ 0.
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By Lemma 5.1 of [27], this is impossible if d(P ε2 , ∂Ω) → 0.
If limε→0 w((P ε1 − P ε2 )/ε)/ϕε,P ε

2
(P ε2 ) = ∞, then limε→0 ϕε,P ε

1
(P ε1 )/w((P ε1 −

P ε2 )/ε) = 0. By (EP ε
2
) we have

1
w(|P ε1 − P ε2 |/ε)

ε

∫
Ωε

wp2
∂w1

∂P ε1,j
→ 0

for all j = 1, . . . , N , which is impossible by Lemma 3.2 since P ε1 6= P ε2 . We are
left with one case, i.e.

lim
ε→0

w((P ε1 − P ε2 )/ε)
ϕε,P ε

2
(P ε2 )

→ K > 0.

Since d(P ε2 , ∂Ω) → 0, we conclude that

d(P ε1 , ∂Ω) → 0, d(P ε2 , ∂Ω) → 0, |P ε1 − P ε2 | → 0.

Moreover, we have

lim
ε→0

ϕε,P ε
1
(P ε1 )

w((P ε1 − P ε2 )/ε)
= 0.

By equation (EP ε
1
), we have

ε

w(|P ε1 − P ε2 |/ε)

∫
Ωε

wp1
∂w2

∂P ε2,j
→ 0,

a contradiction to Lemma 3.2. Hence case 1 is false.
Case 2. A similar argument shows that limε→0 ϕε,P ε

2
(P ε2 )/ϕε,P ε

1
(P ε1 ) = 0 is

impossible.
Hence we now have

lim
ε→0

ϕε,P ε
2
(P ε2 )

ϕε,P ε
1
(P ε1 )

= K1 > 0 and lim
ε→0

w(|P ε1 − P ε2 |/ε)
ϕε,P ε

1
(P ε1 )

= K2 > 0.

Adding equation (EP ε
1
) and (EP ε

2
) and noting that by Lemma 3.2,

ε

∫
Ωε

wp−1
1

∂w1

∂P1,j
w2 + ε

∫
Ωε

wp−1
2

∂w2

∂P2,j
w1

/
w

(
P ε1 − P ε2

ε

)
= −γ2

P ε1 − P ε2
|P ε1 − P ε2 |

(1 + o(1))− γ2
P ε2 − P ε1
|P ε1 − P ε2 |

(1 + o(1)) → 0.

We obtain, by Lemmas 3.5, 3.2 and 5.1 of [27]

ε

ϕε,P ε
1
(P ε1 )

∫
Ωε

((Pw1)p − wp1)
∂w1

∂P ε1,j

+
ε

ϕε,P ε
1
(P ε1 )

∫
Ωε

((Pw2)p − wp2)
∂w2

∂P ε2,j
→ Cν 6= 0,

where C > 0 is a positive constant and ν is the outer normal at P0 where
P ε1 , P

ε
2 → P0 ∈ ∂Ω. A contradiction again! Hence d(P ε1 , ∂Ω) ≥ σ > 0,

d(P ε2 , ∂Ω) ≥ σ > 0.
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We next show that if P ε1 → P1, P
ε
2 → P2, then

|P1 − P2| ≥ 2 min(d(P1, ∂Ω), d(P2, ∂Ω)).

Suppose not, then

|P1 − P2| < 2 min(d(P1, ∂Ω), d(P2, ∂Ω)).

Hence

lim
ε→0

ϕε,P ε
1
(P ε1 )

w(|P ε1 − P ε2 |/ε)
= 0, lim

ε→0

ϕε,P ε
2
(P ε2 )

w(|P ε1 − P ε2 |/ε)
= 0.

Thus by equation (EP ε
1
), we have

ε

w(|P ε1 − P ε2 |/ε)

∫
Ωε

w2w
p
1

∂w1

∂P1,j
→ 0,

which is impossible by Lemma 3.2 again. Hence Theorem 3.1 is proved. �

4. Proof of Theorem 1.1

Let η be a fixed number such that 0 < η < I(w). Our aim in this section
is to compute the contribution to the relative topology of Jc2+ηε with respect to
Jc2−ηε of the 2-peak positive solutions to (1.1) that we studied before.

We first have a rough estimate of the energy.

Lemma 4.1. There exist c0 > 0, 0 < σ0 < 0.01, d > 0 such that for ε
sufficiently small and any 2-peak positive solution uε, we have

ε−NJε(uε) ≥ c2 − c0e
−β(2+3σ0)d.

Proof. We use the notation of Section 3. By Theorem 3.1 and Proposi-
tion 3.4, we have ‖vε,α,x‖ = O(e−(2+3σ0)βd) for some d > 0, 0 < σ0 < 0.01,
where β = 1/ε.

By equations (Eα1), we have

0 =
∂Kε

∂α1
=

∫
Ωε

α1w
p
1Pw1 + α2

∫
Ωε

wp2Pw1 −
∫

Ωε

(α1Pw1 + α2Pw2 + υ)pPw1

=(α1 − αp1)
∫

Ωε

(Pw1)p+1 + α1

∫
Ωε

[wp1Pw1 − (Pw1)p+1]

+ α2

∫
Ωε

wp2Pw1 + αp1

∫
Ωε

(Pw1)p+1 −
∫

Ωε

(α1Pw1 + α2Pw2 + υ)pPw1.

Hence α1 = 1 +O(e−β(2+3σ0)d). Similarly, α2 = 1 +O(e−β(2+3σ0)d). Thus

ε−NJε(uε) = ε−NJε(α1Pw1 + α2Pw2 + vε,α,x)

= 2I(w) +O(e−β(2+3σ0)d) ≥ c2 − c0e
−β(2+3σ0)d.

Lemma 4.1 is thus proved. �
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Let us now define

max
x,d(x,∂Ω)≥d

ϕε,x(x) = w(2dε/ε).

(Note that dε = d+ o(1).) By Lemma 4.1, we just need to compute the relative
topology between the levels c2 + η and c2−C1e

−2dε/ε for some C1 > 0. Namely,
we have

(Jc2+ηε , Jc2−ηε ) ∼= (Jc2+ηε , Jc2−C1e
−2dε/ε

ε )

for ε sufficently small and some C1 > 0.
We now construct an open neighbourhood Vε of the eventual 2-peak positive

solutions to (1.1) such that on the boundary of Vε, either −J ′ε is pointing inward
Vε or Jε is less than c2 − C1e

−2dε/ε. We also show below that Vε contains all
positive critical points with energy near c2 and it is easy to see that it contains
no sign changing solutions.

Let C2 be a sufficiently large number to be defined later. We use the letter
C to denote various constants which depend on Ω only. Set

Vε = {(α, x, v) | |αi − 1| < α0e
−(1+2σ0)d/2ε, d(xi, ∂Ω) > d, i = 1, 2,

|x1 − x2| > (2− ε logC2)dε, v ∈ Ex and ‖v − vε,α,x‖ < ν0e
−(1+2σ0)d/ε}.

Note that for (α, x, v) ∈ Vε and d small,

w(|x1 − x2|/ε) ≤ C2 max
d(x,∂Ω)≥d

ϕε,x(x),

‖vε,α,x‖ ≤ Ce−(1+2σ0)d/ε, ‖v‖ ≤ Ce−(1+2σ0)d/ε,

by Proposition 3.4 and since P1, P2 are not close to the boundary and not close
together (and d is small). Note that the estimate holds on more than Vε. This
estimate shows that all the positive critical points with energy close to c2 lie
in Vε.

Next we show that Vε satisfies the above properties. We first consider the
variable α. Note that

∂Kε

∂α1
=

∫
Ωε

α1w
p
1Pw1 + α2

∫
Ωε

wp2Pw1 −
∫

Ωε

(α1Pw1 + α2Pw2 + υ)pPw1

=(α1 − αp1)
∫

Ωε

(Pw1)p+1 + α1

∫
Ωε

(wp1Pw1 − (Pw1)p+1)

+ α2

∫
Ωε

wp2Pw1 + αp1

∫
Ωε

(Pw1)p+1 −
∫

Ωε

(α1Pw1 + α2Pw2 + υ)pPw1

= I1 + I2 + I3

where I1, I2 and I3 will be defined in a moment.
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Now

I2 = α1

∫
Ωε

(wp1Pw1 − (Pw1)p+1) = O(e−2d/ε)

and

I3 =α2

∫
Ωε

wp2Pw1 + αp1

∫
Ωε

(Pw1)p+1 −
∫

Ωε

(α1Pw1 + α2Pw2 + υ)pPw1

=α2

∫
Ωε

wp2Pw1 −
∫

Ωε

(α2Pw2)pPw1

+
∫

Ωε

(αp1(Pw1)p + (α2Pw2)p + p(α1Pw1)p−1v

− (α1Pw1 + α2Pw2 + v)p)(Pw1) + pαp1

∫
Ωε

(Pw1)pv = O(e−2d/ε).

Finally,

I1 = (α1 − αp1)
∫

Ωε

(Pw1)p+1 = (α1 − αp1)
∫

RN

wp+1 +O(e−2d/ε)

(note that Pw1 − w1 = O(e−2βd)).
Hence on the boundary of |αi − 1| ≤ Ce−(1+2σ0)d/2ε, we have

∂Kε

∂α1
= (α1 − αp1)

∫
RN

wp+1 +O(e−2d/ε).

Similarly,
∂Kε

∂α2
= (α2 − αp2)

∫
RN

wp+1 +O(e−2d/ε).

Hence, for some 0 < λ < 1, we have

Kε(α, x, v) = Kε(1, x, v) +
2∑
i=1

∂Kε

∂αi
(λα+ 1− λ, x, v)(αi − 1)

= Kε(1, x, v) +
2∑
i=1

(O(e−2d/ε) + (αi − αpi ))(αi − 1)

= Kε(1, x, v)− Ce−(2+2σ0)d/ε.

But

Kε(1, x, v) =
1
2

〈 2∑
i=1

Pwi,
2∑
i=1

Pwi

〉
+

1
2
〈v, v〉 − 1

p+ 1

∫
Ωε

( 2∑
i=1

Pwi + v

)p+1

=
1
2

∫
Ωε

(wp1 + wp2)(Pw1 + Pw2)

+
1
2
〈v, v〉 − 1

p+ 1

∫
Ωε

( 2∑
i=1

Pwi + v

)p+1
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=
1
2

∫
Ωε

wp1Pw1 +
1
2

∫
Ωε

wp2Pw1 +
1
2

∫
Ωε

wp1Pw2

+
1
2

∫
Ωε

wp2Pw2 +
1
2
〈v, v〉 − 1

p+ 1

∫
Ωε

( 2∑
i=1

Pwi + v

)p+1

=
(

1
2
− 1
p+ 1

) ∫
RN

wp+1 +
(

1
2
− 1
p+ 1

) ∫
RN

wp+1

+ (C + o(1))ϕε,x1(x1) + (C + o(1))ϕε,x2(x2)

+
∫

Ωε

wp2w1 −
1

p+ 1

∫
Ωε

((p+ 1)(w1)pw2 + (p+ 1)(w2)pw1)

+O(e−(2+σ0)d/ε)

≤ c2 + (C + o(1)) max
d(x,∂Ω)≥d

ϕε,x(x)−
∫

Ωε

wp2w1

≤ c2 − C(C2 − C)e−2dε/ε < c2 − C1e
−2dε/ε

if C1 < C(C2 − C). Hence we obtain Kε(α, x, v) < c2 − C1e
−2dε/ε.

Secondly, we consider the variable v. We claim that if ν0 is large enough
then we have for (α, x, v) ∈ Vε, ‖v− vε,α,x‖ = ν0‖vε,α,x‖ and ε small enough, we
have

(v − vε,α,x)
∂Kε

∂v
(α, x, v) > 0.

In fact, let v − vε,α,x = ‖vε,α,x‖ϕ. Then

(v − vε,α,x)
∂Kε

∂v
=

∫
Ωε

∇v∇(v − vε,α,x) + v(v − vε,α,x)

− p

∫
Ωε

(α1Pw1 + α2Pw2)p−1(v − vε,α,x)v +O(‖vε,α,x‖2+δ1)

= ‖vε,α,x‖2
( ∫

Ωε

|∇ϕ|2 + ϕ2 − p

∫
Ωε

(α1Pw1 + α2Pw2)p−1ϕ2

)
− ‖vε,α,x‖

( ∫
Ωε

∇vε,α,x∇ϕ+ vε,α,x · ϕ

− p

∫
Ωε

(α1Pw1 + Pw2)p−1vε,α,x · ϕ) +O(‖vε,α,x‖2+δ1) > 0

if ν0 is large enough, where δ1 = min(1, p− 1).
Thirdly, we consider the variable x1 − x2. For |x1 − x2| = (2 − ε logC2)dε

small, we have

Kε(α, x, v)

=
1
2

〈 2∑
i=1

αiPwi,
2∑
i=1

αiPwi

〉
+

1
2
〈v, v〉 − 1

p+ 1

∫
Ω

( 2∑
i=1

αiPwi + v

)p+1
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=
1
2

∫
Ωε

(α1w
p
1 + α2w

p
2)(α1Pw1 + α2Pw2)

+
1
2
〈v, v〉 − 1

p+ 1

∫
Ωε

( 2∑
i=1

αiPwi + v

)p+1

=
1
2
α2

1

∫
Ωε

wp1Pw1 +
1
2
α1α2

∫
Ωε

wp2Pw1 +
1
2
α1α2

∫
Ωε

wp1Pw2

+
1
2
α2

2

∫
Ωε

wp2Pw2 +
1
2
〈v, v〉 − 1

p+ 1

∫
Ωε

( 2∑
i=1

αiPwi + v

)p+1

≤
(
α2

1

2
− αp+1

1

p+ 1

) ∫
RN

wp+1 +
(
α2

2

2
− αp+1

2

p+ 1

) ∫
RN

wp+1

+
∫

Ωε

wp2w1 −
1

p+ 1

∫
Ωε

((p+ 1)(w1)pw2 + (p+ 1)(w2)pw1)

+ (C + o(1))ϕε,x1(x1) + (C + o(1))ϕε,x2(x2) +O(e−(2+σ0)d/ε)

≤ c2 +O(e−(2+σ0)d/ε) + (C + o(1)) max
d(x,∂Ω)≥d

ϕε,x(x)−
∫

Ωε

wp2w1

≤ c2 − C(C2 − C)e−2dε/ε ≤ c2 − C1e
−2dε/ε

if we choose C(C2 − C) ≥ C1.
Finally, we consider the variable x1, x2. If d(xi, ∂Ω) = d for i = 1 or 2

(possibly both), we then have

∂Kε

∂x1
=

∫
Ωε

(α1w
p
1 + α2w

p
2)α1

∂Pw1

∂x1
−

∫
Ωε

(α1Pw1 + α2Pw2 + v)p
∂Pw1

∂x1

=
∫

Ωε

(α1w
p
1 + α2w

p
2)α1

∂Pw1

∂x1
−

∫
Ωε

(α1Pw1 + α2Pw2)pα1
∂Pw1

∂x1

+O(e−(1+δ) min(2d(x1,∂Ω),2d(x2,∂Ω),|x1−x2|)/ε)

=
∫

Ωε

(α1w
p
1 + α2w

p
2)α1

∂Pw1

∂x1

−
∫

Ωε

((α1Pw1)p + p(αPw1)p−1α2Pw2 + α2(Pw2)p)α1
∂Pw1

∂x1

+O(e−(1+δ) min(2d(x1,∂Ω),2d(x2,∂Ω),|x1−x2|)/ε)

=
∫

Ωε

(wp1 − (Pw1)p)
∂Pw1

∂x1
+

∫
Ωε

(wp2 − (Pw2)p)
∂Pw1

∂x1

− p

∫
Ωε

wp−1
1 w2

∂w1

∂x1
+O(e−(1+δ) min(2d(x1,∂Ω),2d(x2,∂Ω),|x1−x2|)/ε)

=
∫

Ωε

((wp1 − (Pw1)p)
∂w1

∂x1
− p

∫
Ωε

wp−1
1 w2

∂w1

∂x1

+O(e−(1+δ) min(2d(x1,∂Ω),2d(x2,∂Ω),|x1−x2|)/ε) = J1 − J2 + Er

where J1 and J2 are defined at the last equality and Er is the error term.
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For x ∈ ∂Ωd := {x ∈ Ω : d(x, ∂Ω) = d}, let νx be its outward normal
and for d sufficiently small, let x ∈ ∂Ω be such that |x − x| = d(x, ∂Ω), then
νx = νx + o(d). We first compute

νxε

∫
Ωε

(wp1 − (Pw1)p)
∂w1

∂x1
.

By Section 3 of [27],

1
ϕε,x1(x1)

∫
Ωε

ε(wp1 − (Pw1)p)
∂w1

∂x1
→ Cνx,

for some C > 0. Hence

νx ·
ε

ϕε,x1(x1)

∫
Ω

(wp1 − (Pw1)p)
∂w1

∂x1
→ Cνx · νx > 0.

We next compute J2. Since |x1 − x2| > (2− ε logC2)dε, we have that

w

(
x1 − x2

ε

)
≤ C2 max

d(x,∂Ω)≥d
ϕε,x(x).

Note that when d is very small, we have maxd(x,∂Ω)≥d ϕε,x(x) is obtained at a
point x′ with d(x′, ∂Ω) = d since ∇ψε,x = −νx + o(1) as ε → 0 (see Section 3
of [27]). Hence

max
d(x,∂Ω)≥d

ϕε,x(x) = ϕε,x′(x′).

On the other hand, for d(x′, ∂Ω) = d(x1, ∂Ω) = d, we have ψε,x′(x′) = ψε,x1(x1)+
O(ε). Hence

max
d(x,∂Ω)≥d

ϕε,x(x) = O(ϕε,x1(x1)).

But we have

ε

∫
Ωε

wp−1
1 w2

∂w1

∂x1

w(|x1 − x2|/ε)
=

1
w(|x1 − x2|/ε)

∫
Ωε

wp−1
1 w

′

1w2
x1 − x

|x− x1|

→
∫

RN

wp
w
′
(r)
|r|

· (x1 − x2)
|x1 − x2|

=
(
−

∫
RN

wp+1w
′
(r)
r

)
(x2 − x1)
|x2 − x1|

.

Note that when d is very small and x2 is close to x1 (d(x2, ∂Ω) > d), we have

lim
d→0

x2 − x1

|x2 − x1|
· νx ≤ 0.

Hence limd→0−νx · J2/w(|x1 − x2|/ε) ≥ 0. Therefore, in any case, we have

νx1ε
∂Kε

∂x1
= ϕε,x1(x1)Cνx · νx + o(ϕε,x1(x1)) > 0.

Similarly, νx2ε∂Kε/∂x2 > 0. Thus, for x ∈ ∂Ωd, we have ∂Kε/∂x is pointing
outward to Vε.
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We now turn to the computation of the relative topology. The first step is
concerned with the v-variable. We set

K̃ε(α, x) = Kε(α, x, vε,α,x) for (α, x) ∈ Ṽε,

where

Ṽε := {(α, x) | |αi − α| < α0e
−(1+2σ0)d/2ε,

d(xi, ∂Ω) > d, |x1 − x2| > (2− ε logC2)d}

Then from Morse Theory we have, since vε,α,x is a strict nondegenerate minimizer
of Kε in a fixed neighborhood (uniform in the other variables) of v = 0, that

Kc2+η
ε ∩ Vε = Vε = {(α, x, v) | (α, x) ∈ Ṽε, v ∈ Ex ∩Bν0e−(1+2σ0)d/ε(vε,α,x)}

and

Kc2−C1e
−2dε/ε

ε ∩ Vε
= {(α, x) ∈ Ṽε) | (α, x) ∈ Ṽε, K̃ε ≤ c2 − C1e

2dε/ε, v ∈ D(α, x)},

where D(α, x) is a subset of Ex topologically equivalent to a disk.
Set τ := e−2dε/ε. Therefore

(Kc2+η
ε ∩ Vε,Kc2−C1τ

ε ∩ Vε) ∼= (Ṽε, K̃c2−C1τ
ε ∩ Ṽε).

In the next step we define ˜̃
Kε = K̃ε(α, x) for

x ∈ ˜̃
Vε = {x | d(xi, ∂Ω) ≥ d, |x1 − x2| > (2− ε logC2)dε},

where α = α(x) is such that ∂ eKε

∂α (α, x) = 0. Such an α = (α1, α2), |αi − 1| < η0,
i = 1, 2, is unique and corresponds to a strict and nondegenerate maximum (the
proof is similar to that of [15]). Morse theory yields

K̃c2−C1τ
ε ∩ Ṽε = {(α, x) ∈ Ṽε |

˜̃
Kε ≤ c2 − c̃τ and α ∈ D}

∪ {(α, x) ∈ Ṽε |
˜̃
K(x) > c2 − c̃τ and α ∈ C(x)},

where c̃ < C1.
Here, D denotes that 2-square [α− 1, α+ 1]2, topologically equivalent to the

unit disk D2 of R2 and C(x) is equal to D with a subset equivalent to a disk

deleted, whose radius goes to zero as ˜̃
Kε(x) goes to c2 −C1τ . At the same time

Ṽε = ˜̃
Vε ×D.

Then, we have a natural map

T : ( ˜̃
Vε,

˜̃
Kε

c2−ecτ ∩ ˜̃
Vε)× (D2, S1) → (Ṽε, K̃ε

c2−C1τ ∩ Ṽε).
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T is injective if we identify points (x1, x2) with (x2, x1). Since all the critical

values for ˜̃
Kε on ˜̃

Vε are larger than c2 − c̃τ , T is also surjective and then is an
isomorphism of the quotient of the left hand side by the Z2 action and the right
hand side.

Let us now compute ˜̃
K(x). We first note that

Jε(α1Pw1 + α2Pw2 + vε,α,x)

=
1
2

∫
Ωε

∇
( 2∑
i=1

αiPwi

)
∇

( 2∑
i=1

αiPwi

)
+

( 2∑
i=1

αiPwi

)( 2∑
i=1

αiPwi

)

+
1
2
〈vε,α,x, vε,α,x〉 −

1
p+ 1

∫
Ωε

( 2∑
i=1

αiPwi + vε,α,x

)p+1

=
1
2

∫
Ωε

( 2∑
i=1

αiw
p
i

)( 2∑
i=1

αiPwi

)
− 1
p+ 1

∫
Ωε

( 2∑
i=1

αiPwi

)p+1

+O(e2d/ε)

=
1
2

∫
Ωε

(α2
1w

p
1Pw1 + α1α2(w

p
1Pw2 + wp2Pw1) + α2

2w
p
2Pw2)

− 1
p+ 1

∫
Ωε

( 2∑
i=1

αp+1
i (Pwi)p+1 + (p+ 1)(α1Pw1)p(α2Pw2)

+ (p+ 1)(α2Pw2)p(α1Pw1)
)

+ high order term.

Here the high order term means o(e−2dε/ε).
We now compute αi. In fact, from (Eα) we have

α1

∫
wp1Pw1 + α2

∫
wp2Pw1 −

∫
(α1Pw1 + α2Pw2 + vε,α,x)pPw1 = 0.

Hence

α1

( ∫
Ωε

wp1Pw1

)
− αp1

∫
Ωε

(Pw1)p+1 − pαp−1
1

∫
Ωε

(w1)pPw2

− αp2

∫
Ωε

(Pw2)pPw1 + α2

∫
Ωε

wp2Pw1

−
∫

Ωε

((α1Pw1)p + p(α1Pw1)p−1Pw2 + αp2(Pw2)p

− (α1Pw1 + α2Pw2 + vε,α,x)p)Pw1 = 0.

We then have the first rough estimates

|αi − 1| = O
(
e−2 min(d(x1,∂Ω),d(x2,∂Ω),|x1−x2|/2)/ε)

= O(e−2 min(dε,d)/ε), i = 1, 2.
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Similar to previous computations we have that

˜̃
Kε(x) =

1
2

(
α2

1

∫
Ωε

wp1Pw1 + 2α1α2

∫
Ωε

wp1Pw2 + α2
2

∫
Ωε

wp2Pw2

)
− 1
p+ 1

∫
Ωε

(α1Pw1 + α2Pw2)p+1 +O(e−(2+σ0)d/ε)

=
(

1
2
α2

1 −
1

p+ 1
αp+1

1

) ∫
RN

wp+1

+
(

1
2
α2

2 −
1

p+ 1
αp+1

2

) ∫
RN

wp+1 − (2 + o(1))
∫

RN

wp1w2

+ (C + o(1))ϕε,x1(x1) + (C + o(1))ϕε,x2(x2)

= c2 − (C + o(1))w(|x1 − x2|/ε)
+ (C + o(1))ϕε,x1(x1) + (C + o(1))ϕε,x2(x2).

Thus ˜̃
Kε

c2−ecτ ∩ ˜̃
Vε = {x ∈ ˜̃

Vε | w(|x1 − x2|/ε) > c̃τ/(C + o(1))(4.2)

+ Cϕε,x1(x1) + Cϕε,x2(x2)}

= {x ∈ ˜̃
Vε | |x1 − x2| < (2− ε logC3)dε}

for some C3. Now we choose C2 sufficiently large so that C2 > C3. It is easy to

see that for d small {x ∈ ˜̃
Vε | |x1−x2| < (2−ε logC3)dε} retracts by deformation

onto {x ∈ ˜̃
Vε | |x1 − x2| < (2− ε logC2)dε}. Therefore

( ˜̃
Vε,

˜̃
Kε

c2−ecτ ∩ ˜̃
Vε) ∼=(˜̃Vε, {x ∈ ˜̃

Vε | |x1 − x2| < (2− ε logC3)dε})
∼=({x ∈ Ωd | |x1 − x2| > (2− ε logC2)dε},
{x ∈ Ωd| | (2− ε logC2)dε < |x1 − x2| < (2− ε logC3)dε})

∼=(Ω× Ω,M(Ω))

for d small, which completes the proof of Theorem 1.1.

5. Proof of Corollary 1.2

In this section, we prove Corollary 1.2. From now on the homology will
always denote reduced singular homology with coefficients in Z2.

Firstly, note that the diagonal M(Ω) := {(x1, x2) ∈ Ω × Ω : x1 = x2} is
homeomorphic to Ω and hence M(Ω) and Ω have the same homology. Next,
we prove that H∗(Ω × Ω,M(Ω)) is non-trivial. If not, the exactness of the
homology sequence for the pair (Ω × Ω,M(Ω)) (as in [24], p. 184) implies that
the natural inclusion of M(Ω) into Ω×Ω induces an isomorphism of H∗(Ω×Ω)
and H∗(M(Ω)) = H∗(Ω). To see that this is impossible, first note that, by [14,
Proposition 8.3.3], Hr(Ω) = 0 for r > n. Thus, by our assumption, there exists a
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k such that Hk(Ω) 6= {0} while Hr(Ω) = {0} if r > k (note that k > 0 since Ω is
connected and H̃ denotes the reduced homology). By the Kunneth formula for
the homology of a product (see [24, p. 235]) it follows that H2k(Ω × Ω) 6= {0}.
Note that we use that the coefficients are chosen to avoid torsion problems. Hence
Ω × Ω and Ω have different homology and thus H∗(Ω × Ω,M(Ω)) is nontrivial.
Hence by the Kunneth formula again, (Ω×Ω,M(Ω))× (D2, S1) has non-trivial
homology.

We have a Z2 group action on X = (Ω× Ω)×D2. Let p̃ denote the natural
mapping on the orbit space B and let B0 = p̃((Ω × Ω × S1) ∪ M(Ω) × D2).
We apply Smith theory as on p. 143 of Bredon [8] with p = 2. In particular,
we use 7.5 and 7.6 there and use that since p = 2, σ = τ and σ̃ = σ (Note
that σ and τ are defined on p. 122 there). We see from the exactness of the
triangle that if H∗(p̃X, p̃X0) = H∗(B,B0) is trivial, then H∗(X,X0) is trivial
(where X0 = (Ω × Ω × S1) ∪M(Ω) ×D2). However, by what we have already
proved and the universal coefficient theorem (as in [8, p. 247–248]) H∗(X,X0) is
nontrivial. Thus H∗(B,B0) is nontrivial and hence by the universal coefficient
theorem again, H∗(B,B0) is nontrivial, as required. This proves the corollary.
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