ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF 1D-BURGERS EQUATION WITH QUASI-PERIODIC FORCING

Ya. G. Sinai
Dedicated to Jürgen Moser

1. Introduction

We study in this paper the asymptotics of solutions of 1D-Burgers equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}+\frac{\partial\left(u^{2}\right)}{\partial x}=\nu \frac{\partial^{2} u}{\partial x^{2}}+\beta F_{\alpha}^{\prime}(x) \tag{1}
\end{equation*}
$$

as $t \rightarrow \infty$ for the case of quasi-periodic forcing, i.e.

$$
F_{\alpha}(x)=\sum_{n=\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}} f_{n} \exp \{2 n i(n, \alpha+x \omega)\}
$$

Here $\alpha=\left(\alpha_{1}, \ldots, \alpha_{d}\right) \in \operatorname{Tor}^{d}$, and $(\alpha+x \omega) \in \operatorname{Tor}^{d}$ is the orbit of the quasiperiodic flow $\left\{S^{x}\right\}$ on Tor^{d}, i.e. $S^{x} \alpha=\alpha+x \omega,-\infty<x<\infty$. We shall assume that ω is Diophantine, i.e. $|(\omega, n)| \geq K /|n|^{\gamma}$ for positive constants γ, K, $|n|=\sum_{i=1}^{d}\left|n_{i}\right| \neq 0$. The coefficients f_{n} decay so fast that $\sum\left|f_{n}\right| \cdot|n|^{r}<\infty$ for some $r>1$. Then $F_{\alpha}, F_{\alpha}^{\prime}$ can be considered as values of continuous functions $F, d F / d x$ on Tor^{d} along the orbit of $\left\{S^{x}\right\}$.

The case $d=1$ was considered in [Si1]. It was shown there that any solution $u(x, t)$ for which $u(x, 0), \int_{0}^{x} u(y, 0) d y$ are periodic functions of some period R

[^0]converges as $t \rightarrow \infty$ to a limit $u_{0}(x)$ which does not depend on $u(x, 0)$. The limiting solution satisfies the equation
\[

$$
\begin{equation*}
\frac{d u_{0}^{2}}{d x}=\nu \frac{d^{2} u_{0}}{d x^{2}}+\beta F_{\alpha}^{\prime}(x) \tag{2}
\end{equation*}
$$

\]

or

$$
\begin{equation*}
\nu \frac{d u_{0}}{d x}-u_{0}^{2}+\beta F_{\alpha}(x)+C=0 \tag{3}
\end{equation*}
$$

where C is a constant. This is a Riccati-type equation closely connected with the corresponding Schroedinger equation. To see this we put

$$
v_{0}=\exp \left\{-1 / \nu \int_{0}^{x} u_{0}(z) d z\right\}
$$

Then

$$
\begin{equation*}
-\nu v_{0}^{\prime \prime}+\frac{\beta F_{\alpha}+C}{\nu} v_{0}=0 \tag{4}
\end{equation*}
$$

For $d=1$ all functions $u(x, t), u_{0}(x), v_{0}(x)$ are periodic functions of period 1 . Then (4) shows that v_{0} is a periodic eigen-function of the Schroedinger operator with periodic potential

$$
L_{\alpha} \psi=-\nu \frac{d^{2} \psi}{d x^{2}}+\beta \frac{F_{\alpha}(x)}{\nu} \psi
$$

We are interested in periodic eigen-functions for which $v_{0}^{\prime} / v_{0}=-u_{0} / \nu$ is also a continuous periodic function. This is possible only if v_{0} is positive, i.e. v_{0} has to be the ground state of (4).

This argument gives the form of the limiting solution $u_{0}(x)$. The statement about the convergence to u_{0} follows from the ergodic theorem for Markov chains with compact phase space. The convergence to the limit is actually exponential (see details in [Si1]).

In this paper we extend these results to the case of general quasi-periodic forcing, i.e. $d>1$. The initial conditions $u(x, 0)$ again are assumed to be periodic with some period $R>0$ so that their primitives $\int_{0}^{x} u(y, 0) d y$ are also periodic. Without this assumption, the asymptotic behavior can be quite different and not universal.

The same arguments as above can be applied to show that the limiting solution $u_{0}(x)$ can be expressed through the ground state of the same Schroedinger operator

$$
\begin{equation*}
L_{\alpha}=-\nu \frac{d^{2}}{d x^{2}}+\frac{\beta F_{\alpha}}{\nu} \tag{5}
\end{equation*}
$$

considered on the whole line R^{1}. However, in this case the ground state exists only for small enough β while for large β we have Anderson localization and the
absence of ground state (see [Si2], [FSW]). We shall consider related problems in another publication.

For small β we shall use the following theorem by S. M. Kozlov (see [K1]):
Kozlov Theorem. Let \mathcal{H}^{r} be the Sobolev space of periodic functions

$$
F(\alpha)=\sum f_{n} \exp \{2 \pi i(n, \alpha)\} \quad \text { for which } \sum_{n \in \mathbb{Z}^{d}}|n|^{r}\left|f_{n}\right|<\infty
$$

Given Diophantine ω and $r \geq 1$ one can find $\beta_{0}>0$ and r_{1} such that for any $F \in \mathcal{H}^{r_{1}}$ and $|\beta| \leq \beta_{0}$ the Schroedinger operator L_{α} has the ground state. This means that one can find positive $H \in \mathcal{H}^{r}$ and $\lambda \in R^{1}$ for which

$$
L_{\alpha} H\left(S^{x} \alpha\right)=\lambda H\left(S^{x} \alpha\right)
$$

The main result of this paper is the following theorem.
Theorem 1. We assume that $|\beta| \leq \beta_{0}$ where $\beta_{0}>0$ is so small that we can use Kozlov Theorem for $F \in \mathcal{H}^{r_{1}}$ with large enough r_{1} and $r>1+2 \gamma$. There exists a quasi-periodic function $u_{0}(x)=U_{0}\left(S^{x} \alpha\right), U_{0} \in \mathcal{H}^{r}$ such that for every initial condition $u(x, 0)$ for which $u(x, 0), \int_{0}^{x} u(y, 0) d y$ are continuous periodic functions of some period R,

$$
\lim _{t \rightarrow \infty} u(x, t)=u_{0}(x) \quad \text { for every } x \in R^{1}
$$

Remarks. 1. The smoothness of u_{0} is determined by the smoothness of $H(\alpha)$ in Kozlov's Theorem.
2. The statement of the theorem is actually true for a much wider class of initial conditions (see Section 2).

2. Proof of Theorem 1

We use the Hopf-Cole substitution $u=-\nu \varphi_{x} / \varphi($ see $[\mathrm{H}],[\mathrm{C}]$, [Si1]) which leads to the heat equation for φ.

$$
\begin{equation*}
\varphi_{t}=\nu \varphi_{x x}+\frac{\beta}{\nu} F_{\alpha}(x) \varphi \tag{6}
\end{equation*}
$$

Without any loss of generality, we may assume that $\int F(\alpha) d \alpha=0$. The Feyn-man-Kac formula (see [S]) enables one to write φ as the functional integral

$$
\begin{equation*}
\varphi(x, t)=\int_{-\infty}^{\infty} \exp \left\{-\frac{w(y)}{\nu}\right\} K(y, 0 ; x, t) d y \tag{7}
\end{equation*}
$$

where $w(x)=\int_{0}^{x} u(z ; 0) d z$ and K is the partition function

$$
\begin{equation*}
K(y, s ; x, t)=\int \exp \left\{\frac{\beta}{2 \nu} \int_{s}^{t} F(\alpha+b(\tau) \omega) d \tau\right\} d W_{(x, t)}^{(y, s)}(b) \tag{8}
\end{equation*}
$$

Here W is the (non-normed) Wiener measure on the Borel σ-algebra of Wiener trajectories $b(\tau), s \leq \tau \leq t$, for which $b(t)=x, b(s)=y$. The diffusion constant of this measure is 2ν. The point $(x, t)((y, 0))$ is considered as the initial (end) point of b and time goes in the inverse direction.

The solution of the Burgers equation can be written as the ratio

$$
\begin{equation*}
u(x, t)=-\nu \frac{\frac{\partial}{\partial x} \int \exp \left\{-\frac{w(b(0))}{\nu}+\frac{\beta}{2 \nu} \int_{0}^{t} F^{\prime}(\alpha+b(\tau) \cdot \omega) d \tau\right\} d W_{(x, t)}(b)}{\int \exp \left\{-\frac{w(b(0))}{\nu}+\frac{\beta}{2 \nu} \int_{0}^{t} F(\alpha+b(\tau) \omega) d \tau\right\} d W_{(x, t)}(b)} \tag{9}
\end{equation*}
$$

where $W_{(x, t)}$ is the Wiener measure on trajectories $b(s), s \leq t$ such that $b(t)=x$.
If β is small enough we can use Kozlov's Theorem which allows us to pass from the partition function $K(y, s ; x, t)$ to the probability density $p(y, s ; x, t)$ by putting

$$
p(y, s ; x, t)=\frac{K(y, s ; x, t) H(\alpha+y \omega)}{\lambda^{t-s} H(\alpha+x \omega)}
$$

and λ is the corresponding eigen-value. It is easy to check that p satisfies Chap-man-Kolmogorov equation and thus determines a probability distribution of a diffusion process taking place on the orbit of the flow $\left\{S^{x} \alpha\right\}$. The probability density p satisfies Fokker-Plank-Kolmogorov equation

$$
\frac{\partial p}{\partial s}=\nu \frac{\partial^{2} p}{\partial y^{2}}-\frac{\partial}{\partial y}\left(\frac{H^{\prime}(\alpha+y \omega)}{H(\alpha+y \omega)} \cdot p\right)
$$

This equation shows also that the diffusion process considered on the whole torus Tor ${ }^{d}$ has an invariant measure given by the density

$$
\left.\frac{1}{H(\alpha)} \frac{d H(\alpha+t \omega)}{d t}\right|_{t=0}
$$

Using p we can write another expression for the solution u :

$$
\begin{equation*}
u(x, t)=-\nu \frac{\frac{\partial}{\partial x}\left[H(\alpha+x \omega) \int_{-\infty}^{\infty} \exp \left\{-\frac{w(y)}{\nu}\right\} p(y, 0 ; x, t) d y\right.}{H(\alpha+x \omega) \int_{-\infty}^{\infty} \exp \left\{-\frac{w(y)}{\nu}\right\} p(y, 0 ; x, t) d y} \tag{10}
\end{equation*}
$$

In Section 3 we show that our diffusion process satisfies local central limit theorem of probability theory which we shall formulate as a separate statement.

Theorem 2. For $t \rightarrow \infty$ the function p has the following asymptotic representation

$$
(x, t ; y, s)=\frac{1}{\sqrt{2 \pi \sigma(t-s)}} \exp \left\{-\frac{1}{2} \frac{(y-x)^{2}}{\sigma(t-s)}\right\}(1+\delta(x, t ; y, s))
$$

where the remainder $\delta(x, t ; y, s)$ satisfies the inequalities:
(i) $\delta(x, t ; y, s), \partial \delta(x, t ; y, s) / \partial x$ tend to zero uniformly in y in any interval of the form $(-C \sqrt{t-s}, C \sqrt{t-s}) ; C$ is an arbitrary constant;
(ii) $|p(x, t ; y, s)| \leq h\left(\frac{y-x}{\sqrt{t-s}}\right) \cdot \frac{1}{\sqrt{t-s}}$,

$$
\left|\frac{\partial p(x, t ; t, s)}{\partial x}\right| \leq h\left(\frac{y-x}{\sqrt{t-s}}\right) \cdot \frac{1}{\sqrt{t-s}}, \text { where } h \in L^{1}\left(R^{1}\right)
$$

Using Theorem 2 we can easily finish the proof of Theorem 1. Indeed, from Theorem 2 we conclude that

$$
\int_{-\infty}^{\infty} \exp \left\{-\frac{w(y)}{\nu}\right\} \frac{p(y, 0 ; x, t)}{H(\alpha+y \omega)} d y=a+\varepsilon(x, t)
$$

where a is a constant, $\varepsilon(x, t), \partial \varepsilon(x, t) / \partial x \rightarrow 0$ as $t \rightarrow \infty$ for any x. In view of (10) it implies

$$
\lim _{t \rightarrow \infty} u(x, t)=-\nu \frac{H^{\prime}(\alpha+x \omega)}{H(\alpha+x \omega)}
$$

The last expression also gives the form of the limiting solution which is consistent with our arguments at the beginning of Section 1.

Proof of Theorem 2

The central limit theorem for quasi-periodic diffusion processes was proven by S. M. Kozlov (see [K2]). We shall describe here a different approach based on the theory of Levy excursions and some ideas from [Si3].

We consider the torus $\operatorname{Tor}^{d-1}=\left\{\alpha \mid \alpha_{d}=0\right\}$ and the induced map $T=$ $S^{1 / \omega_{d}}$ on Tor^{d-1} corresponding to our flow $\left\{S^{x}\right\}$. It is clear that for $\alpha=$ $\left(\alpha_{1}, \ldots, \alpha_{d-1}, 0\right)$ its image $T \alpha=\left(\alpha_{1}+\omega_{1} / \omega_{d}, \ldots, \alpha_{d-1}+\omega_{d-1} / \omega_{d}, 0\right)$. In the arguments in this section, we assume that the initial point α is given. Without any loss of generality we may assume that $\alpha \in \operatorname{Tor}^{d-1}$. In what follows, we use the notation $\alpha^{(0)}$ for α and put $\alpha^{(m)}=T^{m} \alpha^{(0)},-\infty<m<\infty$. We can represent also the sequence $\left\{\alpha^{(m)}\right\}$ as the one-dimensional lattice $\left\{m / \omega_{d}\right\} \subset R^{1}$. Having a trajectory $b(s)$ of our diffusion process, we can consider it also as a diffusion on R^{1}. This means that the x-coordinate on R^{1} corresponds to $S^{x} \alpha^{(0)}$. We shall use the notation $b(s)$ for such trajectories.

We take a point $\alpha^{(0)} \in \operatorname{Tor}^{d-1}$ and consider the set of trajectories $b(s)$ for which $b(0)=\alpha^{(0)}$ and $b(s)$ reaches $\alpha^{(1)}$ earlier than $\alpha^{(-1)}$. The probability of this set is denoted by $p\left(\alpha^{(0)}\right), 1-p\left(\alpha^{(0)}\right)$ is the probability of those trajectories which go out of $\alpha^{(0)}$ and reach $\alpha^{(-1)}$ earlier than $\alpha^{(1)}$. In this way we get a simple random walk on Tor^{d-1} in the sense of [Si3]. I owe the following lemma to M. Aizenman.

Lemma 1. This random walk is symmetric, i.e.

$$
\int_{\operatorname{Tor}^{d-1}} \ln p(\alpha) d \alpha=\int_{\operatorname{Tor}^{d-1}} \ln (1-p(\alpha)) d \alpha
$$

Proof. We have the following symmetry of the partition function

$$
K(y, s ; x, t)=K(y, 0 ; x, t-s)=K(x, 0 ; y, t-s)
$$

which follows from the map $\{b(\tau)\} \rightarrow\{b((t-s)-\tau)\}$ preserving the statistical weight $\exp \left\{\beta / 2 \nu \int_{0}^{t-s} F(\alpha+b(\tau) \omega) d \tau\right\}$. Therefore, for probabilities p, we have

$$
\text { const } \leq \frac{p(y, s ; x, t)}{p(x, s ; y, t)} \leq \mathrm{const}
$$

which shows that the mean drift of our diffusion process is zero. Lemma is proven.

We take any point $\alpha^{(0)} \in \operatorname{Tor}^{d-1}$ and consider trajectories $\{b(s)\}$ which go out of $\alpha^{(0)}$, i.e. $b(0)=\alpha^{(0)}$. A positive cycle is a part $\{b(s), 0 \leq s \leq \tau\}$ such that
(i) $b(s) \neq \alpha^{(-1)}$ for all $0 \leq s \leq \tau$,
(ii) $b(s)=\alpha^{(1)}$ for at least one $s, 0 \leq s \leq \tau$; denote by s_{0} the minimal s with this property,
(iii) $b(s) \neq \alpha^{(0)}$ for $s_{0} \leq s<\tau$,
(iiii) $b(\tau)=\alpha^{(0)}$.
In an analogous way, one can define negative cycles. We shall study the distribution of the length τ of positive cycles using the ideas of [Si3], [Si4]. Any cycle has the following structure. A trajectory goes out of a $\alpha^{(0)}$ and at some random moment ξ_{1} reaches $\alpha^{(1)}$ not coming to α^{-1} in between. After that, it has several positive cycles which start from $\alpha^{(1)}$. We denote the number of these cycles by ν_{1} and their lengths by $\tau_{1}, \ldots, \tau_{\nu_{1}}$. After the last cycle there follows a final piece of the trajectory when it goes out of $\alpha^{(1)}$ and comes to a $\alpha^{(0)}$ earlier than to $\alpha^{(2)}$. Let the length of this piece be η_{1}. We denote by $p_{\alpha^{(0)}}^{(+)}(t)$ the probability density that the length of the positive cycle is t. Using strong Markov property of the process b we can write

$$
\begin{align*}
p_{\alpha^{(0)}}^{(+)}(t)= & \sum_{\nu_{1}=0}^{\infty} \int_{0}^{t} d u q_{\alpha^{(0)}, \xi_{1}}(u) \int p_{\alpha^{(1)}}\left(u_{1}\right) \ldots p_{\alpha^{(1)}}\left(u_{\nu_{1}}\right) \tag{11}\\
& \cdot q_{\alpha^{(1)}, \xi_{2}}\left(t-\left(u+u_{1}+u_{\nu_{1}}\right)\right) d u_{1} \ldots d u_{\nu_{1}} .
\end{align*}
$$

Here $q_{\alpha, \xi_{1}}, q_{T \alpha, \xi_{2}}$ are the densities of the distributions of ξ_{1}, ξ_{2} respectively. It is tacitly assumed that these densities are zero if the values of the arguments are negative.

We introduce Laplace transforms

$$
\begin{aligned}
\varphi_{\alpha}^{(+)}(\lambda) & =\int_{0}^{\infty} e^{-\lambda t} p_{\alpha}^{(+)}(t) d t, \psi_{\alpha, \xi_{1}}(\lambda)=\int e^{-\lambda t} q_{\alpha, \xi_{1}}(t) d t \\
\psi_{T \alpha, \xi_{2}}(\lambda) & =\int_{0}^{\infty} e^{-\lambda t} q_{T \alpha, \xi_{2}}(t) d t
\end{aligned}
$$

Multiplying both sides of (10) by $e^{-\lambda t}$ and integrating over t from 0 to ∞ we arrive at the expression

$$
\begin{equation*}
\varphi_{\alpha}^{(+)}(\lambda)=\psi_{\alpha, \xi_{1}}(\lambda) \frac{1}{1-\varphi_{T \alpha}^{(+)}(\lambda)} \cdot \psi_{T \alpha, \xi_{2}}(\lambda) \tag{12}
\end{equation*}
$$

It is easy to see that the distributions of ξ_{1} and ξ_{2} decay exponentially. Therefore $\psi_{\alpha, \xi_{1}}, \psi_{T \alpha, \xi_{2}}$ are analytic functions of λ in some neighbourhood of $\lambda=0$. The methods and the arguments in [Si3] give a possibility to show that $\varphi_{\alpha}^{(+)}(\lambda)=$ $\varphi_{\alpha}^{(+)}(0)-C(\alpha) \lambda^{1 / 2}(1+0(1))$ as $\lambda \rightarrow 0$. Here $C(\alpha)>0$ depends only on $\alpha \in$ Tor d. It follows from Tauberian theorems for Laplace transforms that $p_{\alpha}^{(+)}(t) \sim C_{1}(\alpha) / t^{3 / 2}$ as $t \rightarrow \infty$. In other words, the distribution $p_{\alpha}^{(+)}(t)$ belongs to the domain of attraction of the one-sided stable law with exponent $\alpha=1 / 2$ (see $[\mathrm{GK}],[\mathrm{F}]$). In the same way, one can study the asymptotics of the distribution of the lengths of negative cycles.

We return back to our diffusion process $b(s), s>0$. Each realization determines a random walk on the lattice $\left\{m / \omega_{d}\right\}$ which we shall denote by $B(n)$, $0 \leq n<\infty$. We have also random moments of time $\mathcal{T}(n)$ which are determined uniquely from the expression

$$
B(n)=k \Leftrightarrow b(\mathcal{T}(n))=k .
$$

It is clear that $0=\mathcal{T}(0)<\mathcal{T}(1)<\ldots<\mathcal{T}(n)<\ldots, \mathcal{T}(n) \rightarrow \infty$ as $n \rightarrow \infty$.
Let y lie between $\alpha^{(k)}$ and $\alpha^{(k+1)}$ on the orbit $\left\{S^{x} \alpha^{(0)},-\infty<x<\infty\right\}$. If $b(0)=y$ then one can find a $\mathcal{T}(n)$ such that $b(\mathcal{T}(n))=\alpha^{(k)}$ or $\alpha^{(k+1)}$ and $b(s)$ remains within the interval $\left(\alpha^{k-1)}, \alpha^{(k+1)}\right)$ in the first case and inside the interval $\left(\alpha^{(k)}, \alpha^{(k+2)}\right.$ in the second case when s changes between $\mathcal{T}(n)$ and t. We can write

$$
p(y, 0 ; x, t)=\int d P_{k}(s) q_{k}(t-s)
$$

in the first case and

$$
p(y, 0 ; x, t)=\int d P_{k+1}(s) q_{k}^{\prime}(t-s)
$$

in the second one where q_{k}, q_{k}^{\prime} are the corresponding conditional probability densities to be at $t=0$ at y and to remain within the above-mentioned intervals. All these probabilities depend also on $\alpha^{(k)}$ or $\alpha^{(k+1)}$ respectively. It is easy to see that they both decay exponentially as functions of $t-s$. The functions $P_{k}(s)$ are the distribution functions of $\mathcal{T}(n)$. The same arguments as in [Si3] show that $\mathcal{T}(n)$ can be represented as a sum of k independent random variables where each variable belongs to the domain of attraction of the one-sided stable law with exponent $\alpha=1 / 2$. Therefore, the density of the distribution of $\mathcal{T}(n) / k^{2}$ converges to $\left(1 / \sqrt{2 \pi z^{3} \sigma}\right) \exp \{-\sigma / 2 z\}$ where $\sigma>0$ is a constant. If we write $y=k+y_{1}, \mathcal{T}(n)=t-\tau$ where τ is the transition time from k or $k+1$
to y then the convergence mentioned above easily implies that the density of distribution of $(b(0)-b(t)) / \sqrt{t}=(y-x) / \sqrt{t}$ converges to the Gaussian density. Other estimates of Theorem 2 can be also easily obtained along these lines.

References

[C] J. Cole, On a quasilinear parabolic equation occurring in aerodynamics, Quart. Appl. Math. 9 (1951), 225-236.
[F] W. Feller, An Introduction to Probability Theory and Its Application, John Wiley \& Sons, Inc., New York, 1971.
[FSW] J. Fröhlich, T. Spencer and P. Wittwer, Localization for a class of one-dimensional Schroedinger operators, Comm. Math. Phys. 132 (1990), 5-25.
[GK] B. V. Gnedenko and A. N. Kolmogorov, Limit Theorems for Sums of Independent Random Variables, vol. 293, Addison-Wesley, 1968.
$[\mathrm{H}]$ E. Hopf, The partial differential equation $u_{t}+u u_{x}=\mu u_{x x}$, Comm. Pure Appl. Math. 3 (1950), 201-230.
[K1] S. M. Kozlov, Reducibility of Quasi-Periodic Differential Operators and the Method of Averaging, vol. 46, Proceedings of Moscow Mathematical Society, 1983, pp. 99-122.
[K2] , Averaging Method and Random Walks in Non-homogenous Media, vol. 40, Uspekhi Math. Nauk, 1985, pp. 61-120.
[S] B. Simon, Functional Integration and Quantum Physics, vol. 296, Academic Press, New York, 1979.
[Si1] Ya. G. Sinai, Two results concerning asymptotic behavior of solutions of the burgers equation with force, J. Statist. Physics 64 (1991), 1-12.
[Si2] \qquad , Anderson localization for one-dimensional, difference Schroedinger operator with quasi-periodic potential, J. Statist. Physics 46 (1987), 861-909.
[Si3] \qquad Random walks on tori, J. Statist. Physics (to appear).
[Si4] , Distribution of Some Functionals of the Integral of the Brownian Motion, Theoret. and Math. Physics 90 (1992), 323-353.

Ya. G. Sinai
Mathematics Department
Princeton University
Princeton, USA
and
Landau Institute of Theoretical Physics
Moscow, RUSSIA

[^0]: 1991 Mathematics Subject Classification. 35A25, 35B10, 35B40.
 Key words and phrases. Asymptotic behaviour of solutions, periodic solutions.
 I thank NSF and RFFI for financial support (Grant DMS-9706794 and Grant 96-01-0037).
 I thank W. Schlag for useful remarks.

