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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF 1D-BURGERS
EQUATION WITH QUASI-PERIODIC FORCING

Ya. G. Sinai

Dedicated to Jürgen Moser

1. Introduction

We study in this paper the asymptotics of solutions of 1D-Burgers equation

(1)
∂u

∂t
+
∂(u2)
∂x

= ν
∂2u

∂x2
+ βF ′α(x)

as t→∞ for the case of quasi-periodic forcing, i.e.

Fα(x) =
∑

n=(n1,... ,nd)∈Zd
fn exp{2ni(n, α+ xω)}.

Here α = (α1, . . . , αd) ∈ Tord, and (α + xω) ∈ Tord is the orbit of the quasi-
periodic flow {Sx} on Tord, i.e. Sxα = α + xω, −∞ < x < ∞. We shall
assume that ω is Diophantine, i.e. |(ω, n)| ≥ K/|n|γ for positive constants γ, K,
|n| =

∑d
i=1 |ni| 6= 0. The coefficients fn decay so fast that

∑
|fn| · |n|r <∞ for

some r > 1. Then Fα, F ′α can be considered as values of continuous functions
F , dF/dx on Tord along the orbit of {Sx}.

The case d = 1 was considered in [Si1]. It was shown there that any solution
u(x, t) for which u(x, 0),

∫ x

0
u(y, 0) dy are periodic functions of some period R
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converges as t → ∞ to a limit u0(x) which does not depend on u(x, 0). The
limiting solution satisfies the equation

(2)
du2

0

dx
= ν

d2u0

dx2
+ βF ′α(x)

or

(3) ν
du0

dx
− u2

0 + βFα(x) + C = 0,

where C is a constant. This is a Riccati-type equation closely connected with
the corresponding Schroedinger equation. To see this we put

v0 = exp
{
− 1/ν

∫ x

0

u0(z) dz
}
.

Then

(4) −νv′′0 +
βFα + C

ν
v0 = 0.

For d = 1 all functions u(x, t), u0(x), v0(x) are periodic functions of period 1.
Then (4) shows that v0 is a periodic eigen-function of the Schroedinger operator
with periodic potential

Lαψ = −ν d
2ψ

dx2
+ β

Fα(x)
ν

ψ.

We are interested in periodic eigen-functions for which v′0/v0 = −u0/ν is also
a continuous periodic function. This is possible only if v0 is positive, i.e. v0 has
to be the ground state of (4).

This argument gives the form of the limiting solution u0(x). The statement
about the convergence to u0 follows from the ergodic theorem for Markov chains
with compact phase space. The convergence to the limit is actually exponential
(see details in [Si1]).

In this paper we extend these results to the case of general quasi-periodic
forcing, i.e. d > 1. The initial conditions u(x, 0) again are assumed to be periodic
with some period R > 0 so that their primitives

∫ x

0
u(y, 0) dy are also periodic.

Without this assumption, the asymptotic behavior can be quite different and
not universal.

The same arguments as above can be applied to show that the limiting solu-
tion u0(x) can be expressed through the ground state of the same Schroedinger
operator

(5) Lα = −ν d
2

dx2
+
βFα

ν

considered on the whole line R1. However, in this case the ground state exists
only for small enough β while for large β we have Anderson localization and the
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absence of ground state (see [Si2], [FSW]). We shall consider related problems
in another publication.

For small β we shall use the following theorem by S. M. Kozlov (see [K1]):

Kozlov Theorem. Let Hr be the Sobolev space of periodic functions

F (α) =
∑

fn exp{2πi(n, α)} for which
∑

n∈Zd

|n|r|fn| <∞.

Given Diophantine ω and r ≥ 1 one can find β0 > 0 and r1 such that for any
F ∈ Hr1 and |β| ≤ β0 the Schroedinger operator Lα has the ground state. This
means that one can find positive H ∈ Hr and λ ∈ R1 for which

LαH(Sxα) = λH(Sxα).

The main result of this paper is the following theorem.

Theorem 1. We assume that |β| ≤ β0 where β0 > 0 is so small that we can
use Kozlov Theorem for F ∈ Hr1 with large enough r1 and r > 1 + 2γ. There
exists a quasi-periodic function u0(x) = U0(Sxα), U0 ∈ Hr such that for every
initial condition u(x, 0) for which u(x, 0),

∫ x

0
u(y, 0) dy are continuous periodic

functions of some period R,

lim
t→∞

u(x, t) = u0(x) for every x ∈ R1.

Remarks. 1. The smoothness of u0 is determined by the smoothness of
H(α) in Kozlov’s Theorem.

2. The statement of the theorem is actually true for a much wider class of
initial conditions (see Section 2).

2. Proof of Theorem 1

We use the Hopf–Cole substitution u = −νϕx/ϕ (see [H], [C], [Si1]) which
leads to the heat equation for ϕ.

(6) ϕt = νϕxx +
β

ν
Fα(x)ϕ.

Without any loss of generality, we may assume that
∫
F (α) dα = 0. The Feyn-

man–Kac formula (see [S]) enables one to write ϕ as the functional integral

(7) ϕ(x, t) =
∫ ∞

−∞
exp

{
− w(y)

ν

}
K(y, 0;x, t) dy,

where w(x) =
∫ x

0
u(z; 0) dz and K is the partition function

(8) K(y, s;x, t) =
∫

exp
{
β

2ν

∫ t

s

F (α+ b(τ)ω)dτ
}
dW

(y,s)
(x,t) (b).
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Here W is the (non-normed) Wiener measure on the Borel σ-algebra of Wiener
trajectories b(τ), s ≤ τ ≤ t, for which b(t) = x, b(s) = y. The diffusion constant
of this measure is 2ν. The point (x, t) ((y, 0)) is considered as the initial (end)
point of b and time goes in the inverse direction.

The solution of the Burgers equation can be written as the ratio

(9) u(x, t) = −ν
∂
∂x

∫
exp{−w(b(0))

ν + β
2ν

∫ t

0
F ′(α+ b(τ) · ω) dτ} dW(x,t)(b)∫

exp{−w(b(0))
ν + β

2ν

∫ t

0
F (α+ b(τ)ω) dτ} dW(x,t)(b),

where W(x,t) is the Wiener measure on trajectories b(s), s ≤ t such that b(t) = x.
If β is small enough we can use Kozlov’s Theorem which allows us to pass

from the partition function K(y, s;x, t) to the probability density p(y, s;x, t) by
putting

p(y, s;x, t) =
K(y, s;x, t)H(α+ yω)

λt−sH(α+ xω)
and λ is the corresponding eigen-value. It is easy to check that p satisfies Chap-
man–Kolmogorov equation and thus determines a probability distribution of a
diffusion process taking place on the orbit of the flow {Sxα}. The probability
density p satisfies Fokker–Plank–Kolmogorov equation

∂p

∂s
= ν

∂2p

∂y2
− ∂

∂y

(
H ′(α+ yω)
H(α+ yω)

· p
)
.

This equation shows also that the diffusion process considered on the whole torus
Tord has an invariant measure given by the density

1
H(α)

dH(α+ tω)
dt

∣∣∣
t=0

.

Using p we can write another expression for the solution u:

(10) u(x, t) = −ν
∂
∂x [H(α+ xω)

∫∞
−∞ exp{−w(y)

ν }p(y, 0;x, t) dy

H(α+ xω)
∫∞
−∞ exp{−w(y)

ν }p(y, 0;x, t) dy
.

In Section 3 we show that our diffusion process satisfies local central limit
theorem of probability theory which we shall formulate as a separate statement.

Theorem 2. For t→∞ the function p has the following asymptotic repre-
sentation

(x, t; y, s) =
1√

2πσ(t− s)
exp

{
− 1

2
(y − x)2

σ(t− s)

}
(1 + δ(x, t; y, s)),

where the remainder δ(x, t; y, s) satisfies the inequalities:

(i) δ(x, t; y, s), ∂δ(x, t; y, s)/∂x tend to zero uniformly in y in any interval
of the form (−C

√
t− s, C

√
t− s); C is an arbitrary constant;
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(ii) |p(x, t; y, s)| ≤ h

(
y − x√
t− s

)
· 1√

t− s
,∣∣∣∣∂p(x, t; t, s)∂x

∣∣∣∣ ≤ h

(
y − x√
t− s

)
· 1√

t− s
, where h ∈ L1(R1).

Using Theorem 2 we can easily finish the proof of Theorem 1. Indeed, from
Theorem 2 we conclude that∫ ∞

−∞
exp

{
− w(y)

ν

}
p(y, 0;x, t)
H(α+ yω)

dy = a+ ε(x, t),

where a is a constant, ε(x, t), ∂ε(x, t)/∂x → 0 as t → ∞ for any x. In view
of (10) it implies

lim
t→∞

u(x, t) = −νH
′(α+ xω)

H(α+ xω)
.

The last expression also gives the form of the limiting solution which is consistent
with our arguments at the beginning of Section 1.

Proof of Theorem 2

The central limit theorem for quasi-periodic diffusion processes was proven
by S. M. Kozlov (see [K2]). We shall describe here a different approach based
on the theory of Levy excursions and some ideas from [Si3].

We consider the torus Tord−1 = {α | αd = 0} and the induced map T =
S1/ωd on Tord−1 corresponding to our flow {Sx}. It is clear that for α =
(α1, . . . , αd−1, 0) its image Tα = (α1 + ω1/ωd, . . . , αd−1 + ωd−1/ωd, 0). In the
arguments in this section, we assume that the initial point α is given. Without
any loss of generality we may assume that α ∈ Tord−1. In what follows, we
use the notation α(0) for α and put α(m) = Tmα(0), −∞ < m < ∞. We can
represent also the sequence {α(m)} as the one-dimensional lattice {m/ωd} ⊂ R1.
Having a trajectory b(s) of our diffusion process, we can consider it also as a
diffusion on R1. This means that the x-coordinate on R1 corresponds to Sxα(0).
We shall use the notation b(s) for such trajectories.

We take a point α(0) ∈ Tord−1 and consider the set of trajectories b(s) for
which b(0) = α(0) and b(s) reaches α(1) earlier than α(−1). The probability of
this set is denoted by p(α(0)), 1− p(α(0)) is the probability of those trajectories
which go out of α(0) and reach α(−1) earlier than α(1). In this way we get a
simple random walk on Tord−1 in the sense of [Si3]. I owe the following lemma
to M. Aizenman.

Lemma 1. This random walk is symmetric, i.e.∫
Tord−1

`np(α) dα =
∫

Tord−1
`n(1− p(α)) dα.
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Proof. We have the following symmetry of the partition function

K(y, s;x, t) = K(y, 0;x, t− s) = K(x, 0; y, t− s)

which follows from the map {b(τ)} → {b((t− s)− τ)} preserving the statistical
weight exp{β/2ν

∫ t−s

0
F (α+ b(τ)ω) dτ}. Therefore, for probabilities p, we have

const ≤ p(y, s;x, t)
p(x, s; y, t)

≤ const

which shows that the mean drift of our diffusion process is zero. Lemma is
proven. �

We take any point α(0) ∈ Tord−1 and consider trajectories {b(s)} which go
out of α(0), i.e. b(0) = α(0). A positive cycle is a part {b(s), 0 ≤ s ≤ τ} such
that

(i) b(s) 6= α(−1) for all 0 ≤ s ≤ τ ,
(ii) b(s) = α(1) for at least one s, 0 ≤ s ≤ τ ; denote by s0 the minimal s

with this property,
(iii) b(s) 6= α(0) for s0 ≤ s < τ ,
(iiii) b(τ) = α(0).

In an analogous way, one can define negative cycles. We shall study the distri-
bution of the length τ of positive cycles using the ideas of [Si3], [Si4]. Any cycle
has the following structure. A trajectory goes out of a α(0) and at some random
moment ξ1 reaches α(1) not coming to α−1 in between. After that, it has several
positive cycles which start from α(1). We denote the number of these cycles by
ν1 and their lengths by τ1, . . . , τν1 . After the last cycle there follows a final piece
of the trajectory when it goes out of α(1) and comes to a α(0) earlier than to
α(2). Let the length of this piece be η1. We denote by p

(+)

α(0)(t) the probability
density that the length of the positive cycle is t. Using strong Markov property
of the process b we can write

p
(+)

α(0)(t) =
∞∑

ν1=0

∫ t

0

duqα(0),ξ1
(u)

∫
pα(1)(u1) . . . pα(1)(uν1)(11)

· qα(1),ξ2
(t− (u+ u1 + uν1))du1 . . . duν1 .

Here qα,ξ1 , qTα,ξ2 are the densities of the distributions of ξ1, ξ2 respectively. It
is tacitly assumed that these densities are zero if the values of the arguments are
negative.

We introduce Laplace transforms

ϕ(+)
α (λ) =

∫ ∞

0

e−λtp(+)
α (t) dt, ψα,ξ1(λ) =

∫
e−λtqα,ξ1(t) dt,

ψTα,ξ2(λ) =
∫ ∞

0

e−λtqTα,ξ2(t) dt.
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Multiplying both sides of (10) by e−λt and integrating over t from 0 to ∞ we
arrive at the expression

(12) ϕ(+)
α (λ) = ψα,ξ1(λ)

1

1− ϕ
(+)
Tα (λ)

· ψTα,ξ2(λ).

It is easy to see that the distributions of ξ1 and ξ2 decay exponentially. Therefore
ψα,ξ1 , ψTα,ξ2 are analytic functions of λ in some neighbourhood of λ = 0. The
methods and the arguments in [Si3] give a possibility to show that ϕ(+)

α (λ) =
ϕ

(+)
α (0) − C(α)λ1/2(1 + 0(1)) as λ → 0. Here C(α) > 0 depends only on

α ∈ Tord. It follows from Tauberian theorems for Laplace transforms that
p
(+)
α (t) ∼ C1(α)/t3/2 as t→∞. In other words, the distribution p(+)

α (t) belongs
to the domain of attraction of the one-sided stable law with exponent α = 1/2
(see [GK], [F]). In the same way, one can study the asymptotics of the distribu-
tion of the lengths of negative cycles.

We return back to our diffusion process b(s), s > 0. Each realization de-
termines a random walk on the lattice {m/ωd} which we shall denote by B(n),
0 ≤ n <∞. We have also random moments of time T (n) which are determined
uniquely from the expression

B(n) = k ⇔ b(T (n)) = k.

It is clear that 0 = T (0) < T (1) < . . . < T (n) < . . . , T (n) →∞ as n→∞.
Let y lie between α(k) and α(k+1) on the orbit {Sxα(0),−∞ < x < ∞}.

If b(0) = y then one can find a T (n) such that b(T (n)) = α(k) or α(k+1) and
b(s) remains within the interval (αk−1), α(k+1)) in the first case and inside the
interval (α(k), α(k+2) in the second case when s changes between T (n) and t. We
can write

p(y, 0;x, t) =
∫
dPk(s)qk(t− s)

in the first case and

p(y, 0;x, t) =
∫
dPk+1(s)q′k(t− s)

in the second one where qk, q′k are the corresponding conditional probability
densities to be at t = 0 at y and to remain within the above-mentioned intervals.
All these probabilities depend also on α(k) or α(k+1) respectively. It is easy to
see that they both decay exponentially as functions of t−s. The functions Pk(s)
are the distribution functions of T (n). The same arguments as in [Si3] show
that T (n) can be represented as a sum of k independent random variables where
each variable belongs to the domain of attraction of the one-sided stable law
with exponent α = 1/2. Therefore, the density of the distribution of T (n)/k2

converges to (1/
√

2πz3σ) exp{−σ/2z} where σ > 0 is a constant. If we write
y = k + y1, T (n) = t − τ where τ is the transition time from k or k + 1
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to y then the convergence mentioned above easily implies that the density of
distribution of (b(0)− b(t))/

√
t = (y − x)/

√
t converges to the Gaussian density.

Other estimates of Theorem 2 can be also easily obtained along these lines.

References

[C] J. Cole, On a quasilinear parabolic equation occurring in aerodynamics, Quart. Appl.
Math. 9 (1951), 225–236.

[F] W. Feller, An Introduction to Probability Theory and Its Application, John Wiley
& Sons, Inc., New York, 1971.
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