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EXISTENCE OF SOLUTIONS FOR THE
DISCRETE COAGULATION-FRAGMENTATION

MODEL WITH DIFFUSION

Dariusz Wrzosek

Dedicated to Olga Ladyzhenskaya

1. Introduction

We consider the following infinite system of reaction-diffusion equations:

(1.1)

∂u1

∂t
= d1∆u1 − u1

∞∑
j=1

a1juj +
∞∑

j=1

b1ju1+j ,

∂ui

∂t
= di∆ui +

1
2

i−1∑
j=1

(ai−j,jui−juj − bi−j,jui)

− ui

∞∑
j=1

aijuj +
∞∑

j=1

bijui+j , i = 2, 3, . . . ,

on ΩT = Ω× (0, T ), subject to the initial condition

(1.2) ui(0, x) = Ui(x) for x ∈ Ω, i = 1, 2, . . .

and Neumann boundary condition

(1.3)
∂ui

∂ν
= 0 on ∂Ω× (0, T ), i = 1, 2, . . . ,
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where Ω ⊂ Rn is a bounded domain with smooth boundary, ν is an outward nor-
mal vector of Ω, and Ui ∈ L∞(Ω), i = 1, 2, . . . , are given nonnegative functions.
We will refer to problem (1.1)–(1.3) as problem (P).

The system (1.1) is a generalization of the discrete coagulation-fragmentation
model which describes the dynamics of cluster growth. Such models arise in
polymer science [9, 10, 16, 17], atmospheric physics [8] and colloidal chemistry
[15], to give a few examples. In models analyzed in this paper the clusters are
assumed to be discrete, i.e. they consist of a finite number of smaller particles
(resp. polymers and monomers in polymer physics).

The variable ui represents the concentration of i-clusters, that is, clusters
consisting of i identical elementary particles. The coagulation rates aij and
fragmentation rates bij are nonnegative constants such that aij = aji and bij =
bji, and di are the diffusion coefficients, di > 0, i = 1, 2, . . . The coefficient aij

represents reaction in which an (i + j)-cluster is formed from an i-cluster and a
j-cluster, whereas bij is due to break-up of an (i+j)-cluster into i- and j-clusters.
The first two terms in the ith equation describe the rate of change of i-clusters
caused by coagulation of smaller clusters and by fragmentation. The last two
terms represent the interaction of i-clusters with themselves and all others and
break-up of larger clusters into i-clusters. Since the size of clusters is not limited
a priori , an infinite number of variables is introduced.

A model taking into account the diffusion of clusters (in absence of fragmen-
tation) was given in [7]. Some properties of such a model are shown in [14].
We generalize some results from the previous paper [4], where existence and
uniqueness of solutions and mass conservation are studied under the hypothesis
that aij = rirj , bij = 0, ri = O(i), i, j ≥ 1.

After the manuscript of this article was accomplished the author learned
about results obtained by Collet and Poupaud in [5]. They prove the existence
of global-in-time solutions only in the case of equal diffusion coefficients in each
equation and for a fairly restricted range of coagulation and fragmentation coef-
ficients.

For a physical interpretation of the coefficients in the model we refer the
reader to [2, 7, 8, 9, 16]. A survey of different variants of the model and numerical
methods for the case without diffusion can be found in [6].

We assume two physically meaningful growth conditions of the coagulation
coefficients, namely

(H1) aij ≤ Aij for i, j ≥ 1, A > 0, and
(H2) aij ≤ A(i + j) for i, j ≥ 1, A > 0.

Many properties of the coagulation-fragmentation model without diffusion are
proved in [2] under the hypothesis (H2).
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The hypothesis (H2) is considered separately because in this case solutions
to problem (P) preserve for all t ≥ 0 the total mass M0 contained in the initial
distribution, i.e.

(1.4)
∞∑

i=1

i

∫
Ω

ui(x, t) dx =
∞∑

i=1

i

∫
Ω

Ui(x) dx = M0 for t ≥ 0.

From now on we assume that M0 < ∞.

It is known that in the case

aij = rirj , ri = iα, α > 1/2, bij = 0, di = d > 0, i, j ≥ 1,

(1.4) holds only locally in time. This is related to the sol-gel transition (see [9,
10, 16, 17]) for more details.

Similarly to the previous paper [4] solutions of problem (P) are constructed
as limits of solutions of finite systems.

The paper is organized as follows. In Section 2 we prove some uniform bounds
for solutions of finite systems approximating the original one. In Section 3 prob-
lem (P) is studied under the assumption that the diffusion coefficients di are
arbitrary positive constants. In comparison with the model without diffusion
[2], in order to show existence of global-in-time solutions we need the following
additional restriction on the fragmentation coefficients:

(H3) For each i ≥ 1 there exists γi > 0 such that

bi,j−i ≤ γiaij for j ≥ i + 1.

In this case we are able to prove the existence of global-in-time solutions satis-
fying

∞∑
i=1

i

∫
Ω

ui(x, t) dx ≤ M0.

In Section 4 we assume that:

(H4) there exist M ≥ 1 and d > 0 such that di = d for i ≥ M .

This enables us to prove the existence of solutions under more general assump-
tions on the reaction rate coefficients and also to show (1.4). If the diffusion
coefficients are the same in each equation the existence of solutions is proved
without any growth condition on bij (see Theorem 4.2).

We shall denote by L the L2-realization of the Laplace operator subject to
homogeneous Neumann boundary condition:

Lu = ∆u with D(L) = {u : u ∈ H2(Ω), ∂u/∂ν = 0},

and Ωt stands for Ω× (0, t).
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2. Approximation of solutions

Solutions of the infinite system are constructed in the process of approxi-
mation by the following systems (PN ) of 2N equations defined for any integer
N ≥ 2:

(2.1)

∂uN
1

∂t
= d1∆uN

1 − uN
1

N∑
i=1

a1ju
N
j +

N−1∑
j=1

b1ju
N
1+j ,

...

∂uN
i

∂t
= di∆uN

i +
1
2

i−1∑
j=1

(ai−j,ju
N
i−ju

N
j − bi−j,ju

N
i )

−
N∑

j=1

aiju
N
i uN

j +
N−i∑
j=1

biju
N
i+j for i = 2, . . . , N,

∂uN
i

∂t
= di∆uN

i +
1
2

N∑
j=i−N

aj,i−ju
N
j uN

i−j for N + 1 ≤ i ≤ 2N,

subject to boundary and initial conditions as in (1.2), (1.3).
Notice that this system corresponds to the first 2N equations of the system

(1.1) where

aij = 0 for i > N or j > N and bij = 0 for i + j > N.

In this section we prove some properties of (2.1) which will be useful for further
analysis.

Proposition 2.1. For any N ≥ 2 the system (PN ) has a unique nonnegative
solution {uN

k }2N
k=1 defined on Ω× (0, Tmax): for k = 1, . . . , 2N ,

uN
k ∈ C([0, Tmax[;L2(Ω)) and satisfies (1.2),

uN
k ∈ L∞loc([0, Tmax[;L∞(Ω)),

uN
k ∈ W 1,∞

loc (]0, Tmax[;L2(Ω)),

uN
k ∈ L∞loc(]0, Tmax[;D(L)),

and the equations of (PN ) are satisfied a.e. in Ω× (0, Tmax).

Proof. The system (PN ) can be rewritten in the form

∂uN
i

∂t
= diLuN

i + fi(uN
1 , . . . , uN

2N ) + uN
i gi(uN

1 , . . . , uN
2N ), i = 1, . . . , 2N,

where Li is the infinitesimal generator of an analytic semigroup of bounded linear
operators on L2(Ω), and fi, gi are locally Lipschitz continuous functions on R2N

with fi ≥ 0 on R2N
+ . By the general theory of reaction-diffusion equations (see
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e.g. [11], [13] or [12]) there exists a unique nonnegative, local-in-time solution of
(PN ). �

Multiplying the ith equation in (2.1) by a number gi and then summing them
up we obtain

(2.2)
2N∑
i=1

gi
∂uN

i

∂t
−

2N∑
i=1

gidi∆uN
i

=
1
2

∑
1≤i,j≤N

(gi+j − gi − gj)aiju
N
i uN

j

− 1
2

∑
1<i+j≤N

(gi+j − gi − gj)biju
N
i+j on Ω× (0, Tmax).

Setting gi = i for i = 1, . . . , 2N and integrating over Ωt, we obtain for 0 ≤ t <

Tmax the mass conservation formula

(2.3)
2N∑
i=1

∫
Ω

iuN
i (x, t) dx =

2N∑
i=1

∫
Ω

iUi(x) dx ≤ M0

and taking gi = 1 for i = 1, . . . , 2N we have

(2.4)
2N∑
i=1

∫
Ω

uN
i (x, t) dx +

1
2

∫ ∫
Ωt

∑
1≤i,j≤N

aiju
N
i uN

j

=
1
2

∫ ∫
Ωt

∑
1≤i+j≤N

biju
N
i+j +

2N∑
i=1

∫
Ω

Ui(x) dx.

The following lemma shows that under some restrictions on the reaction
coefficients the solutions to (PN ) are global in time.

Lemma 2.2. Under the hypothesis (H3) the solutions of (PN ) are global in
time and for i ≤ N ,

(2.5) ‖uN
i ‖L∞(Ω×(0,∞)) ≤ Ki,

uniformly with respect to N , where

(2.6) Ki = ki + 1 +

∑i−1
j=1 ai−j,jKi−jKj∑i−1

j=1 bi−j,j + aii

, ki = max{γi, ‖Ui‖∞}

for i ≥ 2 and K1 = k1. For N < i ≤ 2N ,

‖uN
i ‖L∞(Ωt) ≤ ‖Ui‖L∞(Ω) + t

( N∑
j=i−N

ai−j,jKi−jKj

)
for t > 0.

Proof. In the first equation of (PN ) take the test function

φ1 = (u1 − k1)+|[0,t],
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where k1 = max{γ1, ‖U1‖∞} and 0 ≤ t < Tm where Tm is the maximal existence
time. Integrating yields

1
2
‖(uN

1 (·, t)− k1)+‖22 + d1

∫ ∫
Ωt

|∇(uN
1 − k1)+|2

= −a11

∫ ∫
Ωt

(uN
1 − k1)2+ −

∫ ∫
Ωt

N∑
j=2

(a1ju
N
1 − b1j−1)uN

j (uN
1 − k1)+ ≤ 0

where the last inequality follows from (H3) and from the nonnegativity of solu-
tions. Thus, we have

‖uN
1 (·, t)‖L∞(Ω) ≤ k1 for 0 ≤ t < Tm,

uniformly with respect to N. Let ‖uN
j ‖L∞(Ωt) ≤ Kj for 1 ≤ j ≤ i− 1. We shall

show that

(2.7) ‖uN
i ‖L∞(Ωt) ≤ Ki,

where Ki is given by (2.6). To this end let us test the ith equation with the
function

φi = p(uN
i − ki)

p−1
+ |[0,t],

where p ≥ 2 and t < Tm. We then obtain, taking ki ≥ ‖Ui‖L∞(Ω),

(2.8) ‖(uN
i (t)− ki)+‖p

p + dip(p− 1)
∫ ∫

Ωt

|∇(uN
i − ki)+|2(uN

i − ki)
p−2
+

≤
∫ ∫

Ωt

( i−1∑
j=1

ai−j,jKi−jKj −
i−1∑
j=1

bi−j,j(uN
i − ki)+ − aii(uN

i − ki)2+

)
× p(uN

i − ki)
p−1
+ dx dt

−
∫ ∫

Ωt

( i−1∑
j=1

aiju
N
j uN

i +
N∑

j=i+1

(aiju
N
i − bi,j−i)uN

j

)
× p(uN

i − ki)
p−1
+ dx dt =: I1 − I2.

By (H3), I2 ≥ 0 if ki ≥ γi. Using the Young inequality “with ε” we find

I1 ≤ pp−1

(
p

p− 1

)1−p( i−1∑
j=1

aijKiKj

)p

ε1−p|Ω|t + ε

∫ ∫
Ωt

(uN
i − ki)

p
+

− p

( i−1∑
j=1

bi−j,j

) ∫ ∫
Ωt

(uN
i − ki)

p
+ + |Ω|t− paii

∫ ∫
Ωt

(uN
i − ki)

p
+.

Taking ε = p(
∑i−1

j=1 bi−j,j + aii) yields

(2.9) I1 ≤
(( i−1∑

j=1

aijKiKj

)p( i−1∑
j=1

bi−j,j + aii

)1−p

+ 1
)
|Ω|Tm



Discrete Coagulation-Fragmentation Model 285

and finally from (2.8) and (2.9) it follows that

(2.10) sup
t∈[0,Tm]

lim sup
p≥2

( ∫
Ω

(uN
i (x, t)− ki)pdx

)1/p

≤
( i−1∑

j=1

aijKiKj

)( i−1∑
j=1

bi−j,j + aii

)−1

+ 1,

which yields (2.7). Therefore, solutions can be prolonged for all t > 0, which
implies (2.5) and (2.6). The last statement of the theorem follows immediately
from the maximum principle. �

In Lemma 2.3, below, which will be used in Section 4, we shall use the
following formula: for M < N ,

(2.11)
2N∑

i=M

gi
∂uN

i

∂t
−

2N∑
i=M

gidi∆uN
i

=
1
2

∑
M≤i,j≤N

(gi+j − gi − gj)aiju
N
i uN

j

+
∑

1≤i<M≤j≤N

(gi+j − gj)aiju
N
i uN

j +
1
2

∑
1≤i,j≤M≤i+j

gi+jaiju
N
i uN

j

− 1
2

∑
T1

(gi+j − gi − gj)biju
N
i+j −

∑
T2

(gi+j − gj)biju
N
i+j

− 1
2

∑
T3

gi+jbiju
N
i+j .

where

T1 = {(i, j) : i + j ≤ N, i, j ≥ M},
T2 = {(i, j) : i + j ≤ N, j ≥ M, 1 ≤ i ≤ M − 1},
T3 = {(i, j) : i, j ≤ M ≤ i + j ≤ N},

which follows from (2.2) by setting gi = 0 for 1 ≤ i < M < N.

Lemma 2.3. Suppose (H4) and

(i) for 1 ≤ i < M there exists a positive constant γi such that

bi,j−i ≤ γiaij for j ≥ i + 1,

(ii)
∑∞

i=1 i2‖Ui‖∞ ≤ const.
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Then under the hypothesis (H1) there exists Tm > 0 and a constant C1(T ) such
that

sup
t∈[0,T ]

∥∥∥∥ 2N∑
i=1

i2uN
i (·, t)

∥∥∥∥
L∞(Ω)

≤ C1(T ) for T ∈ [0, Tm[,(2.12)

under the hypothesis (H2), (2.12) is true for Tm = ∞.(2.13)

Proof. To show (2.12) we proceed as in [4]. Let {uN
i }2N

i=1 be the solution
to (PN ). Taking in (2.11)

(2.14) gi =

{
i2 for i ≥ M,

0 for 1 ≤ i < M,

and using (H1) and Lemma 2.2 we obtain for %N =
∑2N

i=M i2uN
i ,

∂%N

∂t
− d∆%N ≤ A

∑
M≤i,j≤N

i2j2uN
i uN

j + A
∑

1≤i<M≤j≤N

i2j(i + 2j)uN
i uN

j

+
A

2

∑
1≤i,j≤M≤i+j

ij(i + j)2uN
i uN

j

≤ A(%N )2 + F1%
N + F2,

where

F1 = 3A

M−1∑
i=1

i2Ki, F2 =
A

2

∑
1≤i,j≤M≤i+j

ij(i + j)2KiKj ,

with Ki, i = 1, . . . ,M , given by (2.6). Applying the parabolic comparison prin-
ciple, we obtain

%N (x, t) ≤ w(t) on Ω× [0, Tm[,

where w : [0, Tm[ → R is the maximal solution of the o.d.e.

dw

dt
= Aw2 + F1w + F2, w(0) =

∞∑
i=M

i2‖Ui‖L∞(Ω).

Hence, for T < Tm,
2N∑
i=1

i2uN
i (x, t) ≤ C1(T ) for (x, t) ∈ ΩT ,

where

C1(T ) = sup
t∈[0,T ]

{ M−1∑
i=1

i2Ki + w(t)
}

.

To show (2.13) we shall first prove that there exists a constant C2(T ) such
that

(2.15) sup
t∈[0,T ]

∥∥∥∥ 2N∑
i=1

iuN
i (·, t)

∥∥∥∥
L∞(Ω)

≤ C2(T ) for all T ≥ 0.
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To this end, take in (2.11)

(2.16) gi =

{
0 for 1 ≤ i < M,

i for i > M.

Then ηN =
∑2N

i=M iuN
i satisfies

∂

∂t
ηN − d∆ηN ≤ A

∑
1≤i<M≤j≤N

i(i + j)uN
i uN

j +
A

2

∑
1≤i,j<M≤i+j

(i + j)2uN
i uN

j

≤ G1η
N + G2,

where

G1 = 2A
M−1∑
i=1

iKi, G2 =
A

2

∑
1≤i,j<M≤i+j

(i + j)2KiKj .

By the parabolic comparison principle, we obtain

ηN (x, t) ≤ z(t) on Ω× (0, T ),

where z : [0, T ] → R is the solution of the linear o.d.e.

dz

dt
= G1z + G2, z(0) =

∞∑
i=M

i‖Ui‖L∞(Ω).

Hence, the solution to (PN ) can be prolonged for all T > 0 and (2.15) follows
with

C2(T ) = sup
t∈[0,T ]

{ M−1∑
i=1

iKi + z(t)
}

.

Now, taking in (2.11) gi as in (2.14) and using (2.15) we have for %N =∑2N
i=M i2uN

i ,

∂%N

∂t
− d∆%N ≤ 2A

( N∑
j=M

juN
j

) 2N∑
i=M

i2uN
i

+ A
∑

1≤i<M≤j≤N

(i2 + 2ij)(i + j)uN
i uN

j

+
A

2

∑
1≤i,j<M≤i+j

(i + j)3uN
i uN

j

≤ H1%
N + H2,

where

H1 = 2AC2(T ) + 6A
M−1∑
i=1

iKi, H2 =
∑

1≤i,j<M≤i+j

(i + j)3KiKj .

Using again the comparison principle we obtain

%N (x, t) ≤ y(t) for (x, t) ∈ Ω× (0, T ),
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where y : [0, T ) → R is the solution of the linear o.d.e. defined for all T > 0,

dy

dt
= H1y + H2, y(0) =

∞∑
i=M

i2‖Ui‖L∞(Ω).

Thus, (2.13) follows with

C1(T ) = sup
t∈[0,T ]

{ M−1∑
i=1

i2Ki + y(t)
}

.

This completes the proof of Lemma 2.3. �

3. Existence of solutions in the case of
arbitrary positive diffusion coefficients

Theorem 3.1. Under the assumption (H3), if

(3.1) aij = o(j) for each i ≥ 1

then for T > 0 there exists a mild solution {ui}∞i=1 to (P) defined on Ω× (0,∞)
such that for i = 1, 2, . . . ,

‖ui‖L∞(Ω×(0,∞)) ≤ Ki where Ki is defined in (2.6),(3.2)

ui ∈ C([0, T ];L1(Ω)),(3.3)
∞∑

j=1

aijuj ,
∞∑

j=i+1

bi,j−iuj ∈ L∞(0, T ;L1(Ω)) for any T > 0(3.4)

and

(3.5)
∫

Ω

∞∑
i=1

iui(x, t) dx ≤ M0 for t ∈ [0, T ].

Proof. Let {uN
i }2N

i=1 be the solution to (PN ) defined on Ω × (0,∞). From
(3.1) it follows that for each i, there exists a constant c̃i such that

aij ≤ c̃ij for j ≥ 1.

Hence, by (2.3) we obtain, for each i and N > i,

(3.6) sup
t∈[0,T ]

∫
Ω

N∑
j=1

aiju
N
j (x, t) dx ≤ c̃iM0 for any T > 0.

Similarly, by (H3) and (2.3) we have

(3.7) sup
t∈[0,T ]

∫
Ω

N∑
j=i+1

bi,j−iu
N
j (x, t) dx ≤ c̃iγiM0 for any T > 0.

Let us denote the reaction terms in the ith equation of (PN ) by

FN
i = fN

i − uN
i gN

i + hN
i ,
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where

fN
i =

1
2

( i−1∑
j=1

ai−j,ju
N
j−iu

N
j − bi−j,ju

N
i

)
,

gN
i =

N∑
j=1

aiju
N
j , hN

i =
N−i∑
j=1

biju
N
i+j =

N∑
j=i+1

bi,j−iu
N
j

if i ≤ N , and

fN
i =

1
2

N∑
j=i−N

aj,i−ju
N
j uN

i−j , gN
i = 0, hN

i = 0

for N < i ≤ 2N .
By Lemma 2.2 and (3.6), (3.7) it follows that for N ≥ i,

(3.8) ‖fN
i − uN

i gN
i + hN

i ‖L∞(0,T ;L1(Ω)) ≤ Di,

where Di, i = 1, 2, . . . , are positive constants independent of N .
The operator L is closable in L1(Ω) and accretive in this space. Its clo-

sure L1 generates a compact, positive, analytic semigroup in L1(Ω) (see [1]).
Using (3.8) and applying to each equation the compactness result from [3, The-
orem 1(i)] yields, for i = 1, 2, . . . , relative compactness of {uN

i }∞N=i in the space
C([0, T ];L1(Ω)). Let {Nl}∞l=1 be the diagonal increasing sequence such that

(3.9) uNl
i → ui in C([0, T ];L1(Ω)), uNl

i → ui a.e. in ΩT

as l →∞, for all i = 1, 2, . . . For fixed l and i < Nl the function uNl
i is the mild

solution given by the Duhamel formula

(3.10) uNl
i (t) = etdiLUi +

∫ t

0

e(t−s)diL(fNl
i (s)− uNl

i (s)gNl
i (s) + hNl

i (s)) ds.

Notice that thanks to (3.6) and (3.7), for fixed i, (3.4) follows. By (3.9) and
Lemma 2.2 it follows that

fNl
i → 1

2

( i−1∑
j=1

ai−j,jui−juj − bi−j,jui

)
in C([0, T ];L1(Ω))

as l → ∞. In order to pass to the limit in (3.10) we shall show that for each
i = 1, 2, . . . ,

gNl
i →

∞∑
j=1

aijuj in L1(ΩT ),(3.11)

hNl
i →

∞∑
j=i+1

bi,j−iuj in L1(ΩT )(3.12)



290 D. Wrzosek

as l →∞. To this end notice that by (3.1) for fixed i and arbitrary ε > 0 there
exists l0 such that for any l > l0,∫ ∫

ΩT

Nl∑
j=Nl0

aiju
Nl
j <

ε

3
and

∫ ∫
ΩT

∞∑
j=Nl0

aijuj <
ε

3
,

where ε is such that
3M0Taij/j ≤ ε for j > Nl0 .

Thanks to (3.9) there exists l1 ≥ l0 such that for any l > l1,∫ ∫
ΩT

Nl0−1∑
j=1

aij |uNl
j − uj | ≤

ε

3
.

It follows that for l > l1,∫ ∫
ΩT

∣∣∣∣ Nl∑
j=1

aiju
Nl
j −

∞∑
j=1

aijuj

∣∣∣∣ < ε.

Hence (3.11) follows. The proof of (3.12) is similar, so we skip it. By Lemma 2.2,
(3.9) and (3.11) it follows that

uNl
i gNl

i → ui

∞∑
j=1

aijuj in L1(ΩT ) as l →∞,

which enables us to pass to the limit in (3.10).
Using the above reasoning one can construct a solution defined on Ω×(0,∞)

which satisfies (3.2), in the following way. Let {Tn}∞n=1 be any increasing se-
quence of positive numbers such that Tn →∞. Then using a compactness argu-
ment there exists a sequence {N1

l }∞l=1 such that for each i = 1, 2, . . . a solution

u1
i to (P) on the interval [0, T1] is defined as the limit of {uN1

l
i |[0,T1]}∞l=1. Let N2

l

be a subsequence of {N1
l }∞l=1 such that {uN2

l
i |[0,T2]}∞l=1 tends to the solution u2

i

defined on [0, T2]. Of course, the solutions u1
i and u2

i coincide on [0, T1]. Step by
step we define in this way the sequence {Nn

l }∞l=1 for any n ≥ 1. Hence, the solu-

tion ui to (P) on Ω× (0,∞) is defined as the limit of {uN l
l

i }∞l=1, where {N l
l }∞l=1

is the diagonal subsequence.
Passing to the limit we obtain (3.4) and (3.5) from (3.8) and (2.3) respec-

tively. �

Remark 1. Since the reaction terms in each equation are in the space
L∞(0, T ;L1(Ω)), we have ui ∈ Cα([δ, T ];L1(Ω)) for any 0 ≤ α < 1 and δ > 0,

which follows from the regularity result for mild solutions (see e.g. [12,
pp. 110–111]) applied separately to each equation.

Assuming some structural assumptions on the coefficients aij we are able to
prove the existence of strong solutions in L2(ΩT ).
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Theorem 3.2. Under the assumption (H3), suppose that there exists {ri}∞i=1

such that

aij = rirj ,(3.13)

ri = o(i) for i ≥ 1, and(3.14) ∑
i+j=k

bij ≤ Bk where B > 0.(3.15)

Then there exists a nonnegative solution {ui}∞i=1 to (P) defined on Ω × (0,∞)
such that (3.2) and (3.5) hold and for i = 1, 2, . . . ,

(3.16)

ui ∈ C([0, T ];L2(Ω)) for any T and satisfies (1.2),

ui ∈ W 1,2
loc (]0,∞[;L2(Ω)) ∩ L2

loc(]0,∞[;D(L)),
∞∑

i=1

riui ∈ L2(ΩT ) for any T > 0,

and the equations (1.1) are satisfied a.e. on Ω× (0,∞).

Proof. Let {uN
i }2N

i=1 be the solution of (PN ). Taking gi = 1 for i ≥ 1 in
(2.2) and integrating on Ωt we obtain, using (3.13),

(3.17)
2N∑
i=1

∫
Ω

uN
i (x, t) dx−

2N∑
i=1

∫
Ω

Ui(x) dx +
1
2

∫ ∫
Ωt

( N∑
i=1

riu
N
i

)2

=
1
2

∫ ∫
ΩT

N∑
k=2

∑
i+j=k

biju
N
k .

Hence, using (3.15) for any T > 0,

(3.18)
∥∥∥∥ N∑

i=1

riu
N
i

∥∥∥∥2

L2(ΩT )

≤ BTM0.

By (H3) we have for i = 1, 2, . . . ,

(3.19)
∫ ∫

ΩT

( N∑
j=i+1

bi,j−iu
N
j

)2

≤ γiri

∫ ∫
ΩT

( N∑
j=i+1

rju
N
j

)2

.

Therefore,

(3.20) ‖fN
i − uN

i gN
i + hN

i ‖L2(ΩT ) ≤ Di,

where Di, i = 1, 2, . . . , are positive constants independent of N .
Now, to end the proof, it is sufficient to use the existence result of Theorem

3.1. Since now the reaction terms are in the space L2(Ω) the regularity of
solutions in (3.16) follows from the standard theory of parabolic equations (see
e.g. [11, 13, 12]) applied separately to each equation in (P).
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4. Existence of mass preserving solutions

In this section we exploit the hypothesis (H4) which enables us to find better
estimates of the terms

∞∑
i=1

iui,
∞∑

j=1

aijuj ,
∞∑

j=i+1

bi,j−iuj .

Then the hypothesis (H3) can be modified in the following way:

(H3)M For each i ≥ 1, if 1 ≤ i < M then there exists γi > 0 such that

(4.1)
bi,j−i ≤ γiaij for j ≥ i + 1, and

bij = o(j2) for each i ≥ M.

Theorem 4.1. Under the assumptions (H4), (H3)M and (H1) or (H2), if

∞∑
i=1

i2‖Ui‖L∞(Ω) ≤ const

then there exists T > 0 such that (P) has a nonnegative solution {ui}∞i=1 on ΩT

such that for i = 1, 2, . . . ,

ui ∈ C([0, T ];L2(Ω)) and satisfies (1.2),

ui ∈ L∞(ΩT ) ∩W 1,2
loc (]0, T ];L2(Ω)),(4.2)

ui ∈ L2
loc(]0, T ];D(L)),

∞∑
j=1

aijuj ,
∞∑

j=i+1

bi,j−iuj ∈ L∞(ΩT ).(4.3)

The equations of (1.1) are satisfied a.e. on ΩT and

(4.4)
∞∑

k=1

∫
Ω

kuk(x, t) dx = M0 for t ∈ [0, T ].

Under the hypothesis (H2) the solution is defined on Ω × (0,∞) and the above
statement is true for any T > 0.

Proof. We proceed in much the same way as in the proof of Theorem 3.1.
By Lemma 2.3 there exists Tm > 0 such that for any N > 1 and 0 < T < Tm,

(4.5)
∥∥∥∥ N∑

j=1

aiju
N
j

∥∥∥∥
L∞(ΩT )

≤
∥∥∥∥Ai

N∑
j=1

juN
j

∥∥∥∥
L∞(ΩT )

≤ AiC1(T )

and by (4.1),

(4.6)
∥∥∥∥ N∑

j=i+1

bi,j−iu
N
j

∥∥∥∥
L∞(ΩT )

≤ c̃iC1(T ),
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where c̃i is a positive constant. Under the assumption (H2) the estimates above
are valid for any T > 0.

It follows that (3.20) still holds true. Using again the compactness argument
we can choose a subsequence {Nl}∞l=1 such that

uNl
i → ui in C([0, T ];L2(Ω)), uNl

i → ui a.e. in ΩT

as l →∞. By Lemma 2.3 it follows that for any k ≤ Nl,

(4.7)
∥∥∥∥ Nl∑

j=k

aiju
Nl
j

∥∥∥∥
L∞(ΩT )

+
∥∥∥∥ 2Nl∑

j=k

juNl
j (·, t)

∥∥∥∥
L∞(Ω)

≤ iA + 1
k

C1(T )

for 0 ≤ t ≤ T. By Lemma 2.3 and (4.1) it follows that for each i ≥ 1 and for
ε > 0 there exists k0 > i such that∥∥∥∥ Nl∑

j=k0

bi,j−iu
Nl
j

∥∥∥∥
L∞(ΩT )

< ε,

where
C1(T )

bi,j−i

j2
< ε for j ≥ k0.

Proceeding as in the last part of the proof of Theorem 3.1 one shows (3.11)
and (3.12) with L1(ΩT ) replaced by L2(ΩT ). Similarly, by (4.7) for 0 ≤ t ≤ T ,

2Nl∑
j=1

juNl
j (·, t) →

∞∑
j=1

juj(·, t) in L1(Ω) as l →∞.

Hence, using (2.3) we obtain (4.4). Finally, by (4.5) and (4.6) we arrive at (4.3)
by passing to the limit. �

The following theorem shows the existence of solutions under the assumption
(H2) for arbitrarily fast fragmentation. However, to prove it we need all diffusion
coefficients to be the same in each equation.

Theorem 4.2. In the case (H2), if di = d > 0 for i ≥ 1 and

(4.8)
∞∑

i=1

i2‖Ui‖L∞ ≤ const,

then for arbitrary bij ≥ 0, i, j ≥ 1, there exists a mild solution {ui}∞i=1 to (P)
defined on Ω× (0,∞) such that for any T > 0 and each i = 1, 2 . . . ,

ui ∈ C([0, T ];L1(Ω)) and satisfies (1.2),
∞∑

j=1

aijuj ∈ L∞(ΩT ),
∞∑

j=1

bi,j−iuj ∈ L1(ΩT ),

∫
Ω

∞∑
i=1

iui(x, t) dx = M0 for t ∈ [0, T ].
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Proof. For any N > 2 let {uN
i }2N

i=1 be the solution of (PN ). Setting M = 1
in Lemma 2.3 we have for T > 0,

(4.9)
∥∥∥∥ 2N∑

j=1

j2uN
j

∥∥∥∥
L∞(ΩT )

≤ C1(T )

without any growth condition on bij . In particular, it follows that the solution
is global in time. Now, taking in (2.2) gi = i2 for i = 1, . . . , 2N, integrating over
Ωt and using (H2) we obtain for 0 < t ≤ T ,

(4.10)
∫

Ω

2N∑
i=1

i2uN
i (x, t) dx +

∫ ∫
Ωt

∑
1<i+j≤N

ijbiju
N
i+j

≤ |Ω|TA(C1(T ))2 +
∞∑

i=1

∫
Ω

i2Ui(x) dx.

Hence, for each i and N > i there exists a constant ĉi independent of N such
that for i = 1, 2, . . . ,

(4.11)
∫ ∫

ΩT

N−i∑
j=1

biju
N
i+j ≤ ĉi(T ).

For each i inequalities (4.10) and (4.11) imply the uniform bound

‖fN
i − uN

i gN
i + hN

i ‖L1(0,T ;L1(Ω)) ≤ const.

Using the compactness argument from [3, Theorem 1(ii)] one can choose a sub-
sequence {Nl}∞l=1 such that

uNl
i → ui in Lq(0, T ;L1(Ω)) for any 1 ≤ q < ∞,

uNl
i → ui a.e. in ΩT

as l → ∞, for all i = 1, 2, . . . In the same way as in the proof of Theorem 3.1
one shows (3.11) using (4.9). To show (3.12) notice that due to (4.10) for each
i ≥ 1 and k < Nl − i, ∫ ∫

ΩT

Nl−i∑
j=k

biju
Nl
i+j ≤

ĉi(T )
k

.

Now, passing to the limit in the Duhamel formula as l →∞ we obtain

uNl
i → ui in C([0, T ];L1(Ω)).

By (4.10) for 0 < t ≤ T we have∫
Ω

2N∑
i=k

iuN
i (x, t)dx ≤ const

k
,

hence (1.4) follows. �
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Remark 2. In [2] the existence of solutions for the model without diffusion
is proved under the same assumptions on aij and bij as in the above theorem. It
is worth pointing out that the result is shown there under the only assumption
that the total mass contained in the initial data is finite, M0 < ∞. We assume
more, (4.8), but our proof seems to be shorter than that in [2]. It is not known
to the author how to transfer the result from [2] to our case.

Remark 3. In general there is no uniqueness of solutions for the system (1.1)
even for the case without diffusion (see [2]). In the particular case of aij = rirj

and ri = Ai + B where A,B are constants (A > 0, B ≥ 0), bij = 0 for i, j ≥ 1,

and (H4) holds, uniqueness of solutions is proved in [4].
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