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0. Introduction

In Section 1 of this paper we consider a flow with a circular chain-recurrent set
and describe, with the help of the Reidemeister torsion, the connection between
the topology of the attraction domain of an attractor and the dynamics of the
flow on the attractor. We show in Theorem 3 that the Reidemeister torsion of a
level surface of a Lyapunov function and of the attraction domain of an attractor
is calculated as a special value of the twisted Lefschetz zeta function build via
closed orbits in the attractor. In Section 2 we continue the study of analytical
properties of the Nielsen zeta function. The Nielsen zeta function Nf (z) has
a positive radius of convergence which has a sharp estimate in terms of the
topological entropy of the map f [15]. In Theorem 5 of Section 2 we propose
another proof of the positivity of the radius and give an exact algebraic lower
estimate for the radius using the Reidemeister trace formula for the generalized
Lefschetz numbers.
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1. Topology of an attraction domain,
twisted Lefschetz zeta function and Reidemeister torsion

1.1. Preliminaries. Assume that on a smooth compact manifold M of
dimension n there is given a tangent vector field X of class C1, and consider the
corresponding system of differential equations

(1)
dx

dt
= X(x).

Let φ(t, x) be the trajectory of (1) passing through the point x for t = 0. We
shall say that a set I is an attractor or an asymptotically stable compact invariant
set for the system (1) if for any neighbourhood U of I there is a neighbourhood
W with I ⊂ W ⊂ U such that

1) for any x ∈ W , φ(t, x) ∈ U for t ∈ [0,∞),
2) for any x ∈ W , φ(t, x) → I as t →∞.

By a Lyapunov function V (x) for an attractor I we mean a function that satisfies
the following conditions:

1) V ∈ C1(U − I), V ∈ C(U),
2) V (x) > 0, x ∈ U − I; V (x) = 0, x ∈ I,
3) the derivative along the system (1) satisfies dV (x)/dt < 0 in U − I.

Such a Lyapunov function for I always exists [36]. Suppose that S is a level
surface of a Lyapunov function V in U . The condition 3) and the Implicit Func-
tion Theorem imply that S is a compact smooth (n − 1)-dimensional manifold
transverse to the trajectories of (1), and these trajectories intersect S on the
descending side of the Lyapunov function V . Any two level surfaces of V are
diffeomorphic. Note that the manifold S is determined up to diffeomorphism by
the behaviour of the trajectories of (1) in U − I and does not depend on the
choice of the Lyapunov function V and its level. Let N ⊃ I,dim N = n, be a
compact smooth manifold with boundary ∂N = S.

In this article we will study the dependence of the topology of the attraction
domain

D = {x ∈ M − I : φ(t, x) → I as t →∞}
of the attractor I and of the level surface S of the Lyapunov function V on the
dynamical properties of the system (1) on the attractor. The investigation of the
topological structure of the level surfaces of Lyapunov functions was initiated by
Wilson [36]. Note that the attraction domain D is diffeomorphic to S×R1, since
each trajectory of (1) in D intersects the (n−1)-dimensional manifold S exactly
once. Hence the homology groups of D and S are isomorphic.

If (1) has a finite number of closed orbits and is a Morse–Smale system then
in [11] (see also Subsection 1.2 below) we have described the topology of the
attraction domain with the help of an analog of Morse inequalities.



Dynamical Zeta Functions 261

In Subsection 1.3 we consider the flow (1) with a circular chain-recurrent set
R ⊂ I, i.e. there is a smooth map θ : U → R1/Z, U a neighbourhood of R in
N , on which d

dt (θ ◦ φ(t, x)) > 0. In other words, there is a cross-section of the
flow (1) on R, namely, a level set of θ on int(U). For instance, if R is finite, i.e.
consists of finitely many closed orbits, then R is circular. More generally, if φ

on R has no stationary points and the topological dimension of R is 1, then R is
circular. For example, if φ is a nonsingular Smale flow, so that R is hyperbolic
and 1-dimensional, then R is circular.

If the flow (1) has a circular chain-recurrent set R then we describe in The-
orem 3 the connection between the topology of the attraction domain and the
dynamics of the flow on the attractor with the help of the twisted Lefschetz zeta
function and Reidemeister torsion.

1.2. Morse–Smale systems. We assume in this subsection that the sys-
tem (1) is given in Rn and is a Morse–Smale system on the manifold N , i.e. the
following conditions are satisfied:

1) the set Ω of nonwandering trajectories of (1) is the union of a finite
number of hyperbolic stationary points and hyperbolic closed trajecto-
ries,

2) the stable and unstable manifolds of stationary points and closed tra-
jectories intersect transversely.

The stable and unstable manifolds of a stationary point or a closed trajectory p

are denoted by W s(p) and W u(p). Let ak be the number of stationary points p

of (1) in I such that dim W u(p) = k, and bk the number of closed orbits q of (1)
in I such that dim W u(q) = k. Set Mk = ak + bk + bk+1, Bk = dim Hk(D;Q) =
dim Hk(S;Q); finally, χ(D) = χ(S) is the Euler characteristic of D and S.

Theorem 1 ([11]). The numbers Bk and Mk satisfy the following inequali-
ties:

(2)

B0 ≤ M0 + Mn−1 −Mn,

B1 −B0 ≤ M1 −M0 + Mn−2 −Mn−1 + Mn,

B2 −B1 + B0 ≤ M2 −M1 + M0 + Mn−3 −Mn−2 + Mn−1 −Mn,

...
n−1∑
i=0

(−1)iBi = χ(S) = χ(D) = (1 + (−1)n−1)
n∑

i=0

(−1)iMi.

The last identity in Theorem 1 is also true in a more general situation.
Namely, assume that (1) is an autonomous system of differential equations having
a finite number of stationary points in the attractor I. Denote by Index(p) the
index of the vector field X at the stationary point p.
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Theorem 2 ([11]).

(3) χ(D) = χ(S) = ((−1)n − 1)
∑
p∈I

Index(p).

Proof. The vector field X is directed on ∂N into N . Therefore from the
Poincaré–Hopf theorem, by replacing X by −X we obtain

χ(N) = (−1)n
∑
p∈I

Index(p).

It is known that χ(∂N) = (1 + (−1)n−1)χ(N). Hence

χ(D) = χ(S) = ((−1)n − 1)
∑
p∈I

Index(p).

Since for a hyperbolic stationary point p with dim W u(p) = k the index of
the vector field at p is (−1)k, we obtain

Corollary 1. Suppose the stationary points on I are hyperbolic, and ak is
the number of stationary points of I with dim W u(p) = k. Then

(4) χ(D) = χ(S) = ((−1)n − 1)
n∑

k=0

(−1)kak.

For n = 3, S is a union of a finite number of spheres with handles. Suppose
m is the number of connected components, and h is the total number of handles
of the manifold S. Then χ(S) = 2m− 2h. Hence we obtain

Corollary 2. We have

(5) m− h = −
∑
p∈I

Index(p).

If the stationary points are hyperbolic then

m− h = a0 − a1 + a2 − a3.

1.3. Reidemeister torsion. In 1936 Reidemeister [31] classified up to
PL equivalence the lens spaces S3/Γ where Γ is a finite cyclic group of fixed
point free orthogonal transformations. He used a certain new invariant which
was quickly extended by Franz [17], who used it to classify the generalized lens
spaces S2n+1/Γ. This invariant is a ratio of determinants concocted from a Γ-
equivariant chain complex of S2n+1 and a nontrivial character % : Γ → U(1) of Γ.
Such a % determines a flat bundle E over S2n+1/Γ such that E has holonomy %.
The new invariant is now called the Reidemeister torsion or R-torsion of E. The
Reidemeister torsion is closely related to the K1 groups of algebraic K-theory.
The results of Reidemeister and Franz were extended by de Rham [32] to spaces
of constant curvature +1.
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Later Milnor [27] identified the Reidemeister torsion with the Alexander poly-
nomial, which plays a fundamental role in the theory of knots and links. Then
Cheeger [5] and Müller [28] proved that the Reidemeister torsion coincides with
the analytical torsion of Ray and Singer [30].

Recently a connection between the Lefschetz type dynamical zeta functions
and the Reidemeister torsion was established by D. Fried [19, 20]. The work of
Milnor [26] was the first indication that such a connection exists.

In [13] a connection was established between the Reidemeister torsion and
Reidemeister zeta function. We obtained an expression for the Reidemeister
torsion of the mapping torus of the dual map of a group endomorphism in terms
of the Reidemeister zeta function of the endomorphism. The result is obtained by
expressing the Reidemeister zeta function in terms of the Lefschetz zeta function
of the dual map, and then applying the theorem of D. Fried. This means that
the Reidemeister torsion counts the fixed point classes of all iterates of f , i.e.
periodic point classes of f .

Like the Euler characteristic, the Reidemeister torsion is algebraically de-
fined. Roughly speaking, the Euler characteristic is a graded version of the
dimension, extending the dimension from a single vector space to a complex of
vector spaces. In a similar way, the Reidemeister torsion is a graded version of
the absolute value of the determinant of an isomorphism of vector spaces. Let
di : Ci → Ci+1 be a cochain complex C∗ of finite-dimensional vector spaces over
C with Ci = 0 for i < 0 and for large i. If the cohomology Hi = 0 for all i

we say that C∗ is acyclic. If one is given positive densities ∆i on Ci then the
Reidemeister torsion τ(C∗,∆i) ∈ (0,∞) for acyclic C∗ is defined as follows:

Definition 1. Consider a chain contraction δi : Ci → Ci−1, i.e. a linear
map such that d ◦ δ + δ ◦ d = id. Then d + δ determines a map (d + δ)+ : C+ :=⊕

C2i → C− :=
⊕

C2i+1 and a map (d + δ)− : C− → C+. Since the map
(d + δ)2 = id + δ2 is unipotent, (d + δ)+ must be an isomorphism. One defines
τ(C∗,∆i) := |det(d + δ)+| (see [20]).

Reidemeister torsion is defined in the following geometric setting. Suppose
K is a finite complex and E is a flat, finite-dimensional, complex vector bundle
with base K. We recall that a flat vector bundle over K is essentially the same
thing as a representation of π1(K) when K is connected. If p ∈ K is a base
point then one may move the fibre at p in a locally constant way around a loop
in K. This defines an action of π1(K) on the fibre Ep of E above p. We call
this action the holonomy representation % : π → GL(Ep). Conversely, given a
representation % : π → GL(V ) of π on a finite-dimensional complex vector space
V , one may define a bundle E = E% = (K̃ × V )/π. Here K̃ is the universal
cover of K, and π acts on K̃ by covering transformations and on V by %. The
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holonomy of E% is %, so the two constructions give the equivalence of flat bundles
and representations of π.

If K is not connected then it is simpler to work with flat bundles. One
then defines the holonomy as a representation of the direct sum of π1 of the
components of K. In this way, the equivalence of flat bundles and representations
is recovered.

Suppose now that one has on each fibre of E a positive density which is
locally constant on K. In terms of %E this assumption just means |det %E | = 1.
Let V denote the fibre of E.

Then the cochain complex Ci(K;E) with coefficients in E can be identified
with the direct sum of copies of V associated with each i-cell σ of K. The
identification is achieved by choosing a base point in each component of K and
a base point from each i-cell. By choosing a flat density on E we obtain a
preferred density ∆i on Ci(K;E). One defines the R-torsion of (K, E) to be
τ(K;E) = τ(C∗(K;E),∆i) ∈ (0,∞).

The Reidemeister torsion of an acyclic bundle E on K has many nice prop-
erties. Suppose that A and B are subcomplexes of K. Then we have a multi-
plicative law:

(6) τ(A ∪B;E) · τ(A ∩B;E) = τ(A;E) · τ(B;E),

which is interpreted as follows. If three of the bundles E|A∪B , E|A∩B , E|A, E|B
are acyclic then so is the fourth and the equality (6) holds.

Another property is the simple homotopy invariance of the Reidemeister
torsion. Suppose K ′ is a subcomplex of K obtained by an elementary collapse of
an n-cell σ in K. This means that K = K ′∪σ∪σ′ where σ′ is an (n−1)-cell of K

such that ∂σ′ = σ′∩K ′ and σ′ ⊂ ∂σ, i.e. σ′ is a free face of σ. So one can push σ′

through σ into K ′ giving a homotopy equivalence. Then H∗(K;E) = H∗(K ′;E)
and

(7) τ(K;E) = τ(K ′;E).

By iterating elementary collapses and their inverses, one obtains a homotopy
equivalence of complexes that is called simple. Plainly, by iterating (7), the Rei-
demeister torsion is a simple homotopy invariant. In particular, τ is invariant
under subdivision. This implies that for a smooth manifold, one can unambigu-
ously define τ(K;E) to be the torsion of any smooth triangulation of K.

In the case K = S1 is a circle, let A be the holonomy of a generator of the
fundamental group π1(S1). The bundle E is acyclic iff I − A is invertible and
then

(8) τ(S1;E) = |det(I −A)|.
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Note that the choice of a generator is irrelevant as I − A−1 = (−A−1)(I − A)
and |det(−A−1)| = 1.

These three properties of the Reidemeister torsion are the analogues of the
properties of Euler characteristic (cardinality law, homotopy invariance and nor-
malization on a point), but there are differences. Since a point has no acyclic
representations (H0 6= 0) one cannot normalize τ on a point as we do for the Eu-
ler characteristic, and so one must use S1 instead. The multiplicative cardinality
law for the Reidemeister torsion can be made additive just by using log τ , so
the difference here is inessential. More important for some purposes is that the
Reidemeister torsion is not an invariant under a general homotopy equivalence:
as mentioned earlier this is in fact why it was invented.

It might be expected that the Reidemeister torsion counts something geo-
metric (like the Euler characteristic). D. Fried showed that it counts the periodic
orbits of a flow and the periodic points of a map.

1.4. The Reidemeister torsion of the level surface of a Lyapunov
function and of the attraction domain of the attractor. In this subsec-
tion we consider the flow (1) with a circular chain-recurrent set R ⊂ I. The
Reidemeister torsion of the attraction domain D and of the level surface S is the
relevant topological invariant of D and S which is calculated in Theorem 3 and
Corollary 3 via closed orbits of the flow (1) in the attractor I.

The point x ∈ M is called chain-recurrent for the flow (1) if for any ε > 0
there exist points x1 = x, x2, . . . , xn = x and real numbers t(i) ≥ 1 such that
%(φ(t(i), xi), xi+1) < ε for 1 ≤ i < n. Let R ⊂ I be a set of chain-recurrent
points of (1) on the manifold N defined above. We assume in this section that
R is circular , i.e. there is a smooth map θ : U → R1/Z, U a neighbourhood of R

in N , on which d
dt (θ ◦φ(t, x)) > 0. In other words, there is a cross-section of the

flow (1) on R, namely, a level set of θ on int(U). For instance, if R is finite, i.e.
consists of finitely many closed orbits, then R is circular. More generally, if φ

on R has no stationary points and the topological dimension of R is 1, then R is
circular. For example, if φ is a nonsingular Smale flow, so that R is hyperbolic
and 1-dimensional, then R is circular.

If U ⊂ N is such that
⋂

t∈R1 φt(U) = J is compact and J ⊂ int(U), then
we say that U is an isolating neighbourhood of the isolated invariant set J .
According to Conley [6], there is a continuous function G : N → R1 such that
G is decreasing on N − R and G(R) is nowhere dense in R1. Taking an open
neighbourhood W of G(R) and U = G−1(W ), we see that U is an isolating
neighbourhood for some isolating invariant set J and that J → R as W → G(R)
[18]. This proves that the chain-recurrent set R can be approximated by the
isolated invariant set J . In particular, we can make J circular. Further, there
are finitely many points xi < xi+1 in R1 −G(R) such that G−1[xi, xi+1] isolates
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an invariant set Ji so that J =
⋃

Ji is as close as we like to R. In particular,
we can make J circular. In the sequel we need isolating blocks [6]. A compact
isolating neighbourhood Bi of Ji is said to be an isolating block if:

1) Bi is a smooth manifold with corners,
2) ∂Bi = b+

i ∪b−i ∪b0
i where each term is a compact manifold with boundary,

3) the trajectories φ(t, x) are tangent to b0
i and ∂b0

i = (b+
i ∪ b−i ) ∩ b0

i ,
4) the trajectories φ(t, x) are transverse to b+

i and b−i , enter Bi through
b+
i and exit through b−i .

Since Ji is circular there is a smooth map θi : Bi → R1/Z such that d
dt (θi ◦

φ(t, x)) > 0 on Bi. By perturbing θi, we can make θi transverse to 0 ∈ R1/Z
on Bi, b

+
i , b−i , b0

i , ∂b+
i , ∂b−i , ∂b0

i . Now let Yi = θ−1
i (0) ∪ b−i , and Zi = b−i . Then

(Yi, Zi) is a simplicial pair. We define a continuous map ri : Yi → Yi as follows.
If yi 6∈ Zi then ri(y) = φ(τ, y) where τ = τ(y) > 0 is the smallest positive time
t for which φ(t, y) ∈ Yi. Since φ(t, x) exits transversely through b−i = Zi, we see
that τ(y) is near 0 for y near Zi. Thus τ extends continuously to Zi if we set
τ |Zi

= 0. Now let E be a flat complex vector bundle of finite dimension on Bi.
There is a bundle map αi : r∗i (E|Yi

) → E|Yi
defined by pulling back along the

trajectory from y to ri(y), using the flat connection on E. This determines an
endomorphism

(9) (αi)∗ : H∗(Yi, Zi; r∗i E) → H∗(Yi, Zi;E).

Since there is a natural induced map r∗i : H∗(Yi, Zi;E) → H∗(Yi, Zi; r∗i E) we
obtain the endomorphism

(10) βi = (αi)∗r∗i : H∗(Yi, Zi;E) → H∗(Yi, Zi;E).

So the relative Lefschetz number

(11) L(βi) =
n−1∑
k=0

(−1)k Tr (βi)k

is defined. According to Atiyah and Bott [2] the numbers L(βi) can be computed
from the fixed point set of ri in Yi −Zi. If Fix(ri)−Zi is a finite set of points p

with the Lefschetz index IndexL(ri, p) and (αi)p : Ep → Ep is the endomorphism
of the fibre at p, then one has the relative Lefschetz formula

(12) L(βi) =
∑

p

IndexL(ri, p) · Tr (αi)p.

We see that L(βn
i ), n ≥ 1, counts the periodic points of period n for βi which

are not in Zi, i.e. the closed orbits of system (1) that wrap n times around R1/Z
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under θi, with a weight coming from the holonomy of E around these closed
orbits. Now, consider the twisted Lefschetz zeta function [18] for E and (Bi, b

−
i ):

(13) Li(z) ≡ Lβi
(z) := exp

( ∞∑
n=1

L(βn
i )

n
zn

)
.

We now turn to the R-torsion of pairs. Suppose that L is a CW-subcomplex
of K and consider the relative cochain complex

C∗(K, L;E) = ker(C∗(K;E) → C∗(L;E|L)).

Then one has a natural isomorphism |C∗(K, L;E)| ∼=
⊗

j |V |, where j runs over
the i-cells in K − L. So our flat density on E gives a density ∆i on the relative
i-cochains in E. Thus we again have an R-torsion denoted by τ(K, L;E,Di) for
some choice of positive densities Di on Hi(K, L;E). If Hi(K, L;E) = 0, we say
that E is acyclic for (K, L), and we simply write τ(K, L;E) when the Di are
chosen standard. Let %E : π1(N, p) → GL(Ep) be the holonomy representation
for an acyclic bundle E on an orientable manifold N,dim N = n, let %∗E be the
contragredient representation of %E and E∗ the flat complex vector bundle with
holonomy %∗E . We suppose that det %E = 1. Let L∗i (z) be the twisted Lefschetz
zeta function for E∗ and (Bi, b

−
i ), and

(14) L∗(z) =
∏

i

L∗i (z), L(z) =
∏

i

Li(z).

Theorem 3. We have

(15) τ(D;E) = τ(S;E) = |L(1)|−1 · |L∗(1)|ε(n),

where ε(n) = (−1)n.

Proof. Consider the function G : N → R1 defined at the beginning of this
subsection. Smoothing the level set G−1(xi) by sliding it along the flow, one
obtains a smooth region Ni ⊂ N with

G−1((−∞, xi − ε)) ⊂ Ni ⊂ G−1((−∞, xi + ε))

such that the trajectories φ(t, x) are transverse to ∂Ni, for large i we have Ni = N

and ∂N− = ∅. If ε is small then Ni+1 −Ni isolates Ji. Thus by the properties
of the Reidemeister torsion [18] one finds

(16) τ(N ;E) =
∏

i

τ(Ni+1, Ni;E) =
∏

i

τ(Bi, bi;E).

D. Fried proved [18] that E is acyclic for (Bi, b
−
i ) iff I −βi is invertible and then

(17) τ(Bi, bi;E) = |Li(z)|−1|z=1.
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So we have

(18) τ(N ;E) =
∏

i

|Li(1)|−1 = |L(1)|−1.

Since ∂N = S, from the multiplicative law (6) for the Reidemeister torsion it
follows that

(19) τ(N ;E) = τ(N,S;E) · τ(S;E).

Using Milnor’s duality theorem for the Reidemeister torsion [27] we have

(20) τ(N,S;E) = τ(N ;E∗)(−1)n

.

Hence

(21) τ(N ;E∗) =
∏

i

|L∗i (1)|−1 = |L∗(1)|−1.

Since the attraction domain D is diffeomorphic to S × R1, we get τ(D;E) =
τ(S;E) by the simple homotopy invariance of the Reidemeister torsion. Now
from (18)–(21) we have

τ(D;E) = τ(S;E) = τ(N ;E) · τ−1(N,S;E)

= τ(N ;E) · τ(N ;E∗)(−1)n+1
= |L(1)|−1 · |L∗(1)|(−1)n

.

Suppose now that the system (1) on the manifold N is a nonsingular almost
Morse–Smale system. This means that (1) has finitely many hyperbolic prime
periodic orbits γ and no other chain-recurrent points. Over the orbit γ lies a
strongly unstable bundle Eu(γ) of some dimension u(γ). Let δ(γ) be +1 if Eu

is orientable and −1 if it is not. Let ε(γ) = (−1)u(γ).

Corollary 3. We have

τ(D;E) = τ(S;E)

=
∏
γ

|det(I − δ(γ)%E(γ))|ε(γ) ×
( ∏

γ

|det(I − δ(γ)%∗E(γ))|ε(γ)

)(−1)n+1

.

Proof. According to D. Fried [18], if Ji is a prime hyperbolic closed orbit
γ then

|Li(1)|−1 = |det(I − δ(γ)%E(γ))|ε(γ).

Now, the statement follows from Theorem 3.
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2. Nielsen zeta function

2.1. Preliminaries. We assume everywhere in this section X to be a con-
nected, compact polyhedron and f : X → X to be a continuous map. Taking a
dynamical point of view, we consider the iterates of f . In the theory of discrete
dynamical systems the following zeta functions are known: the Artin–Mazur zeta
function [1]

ζf (z) := exp
( ∞∑

n=1

F (fn)
n

zn

)
,

where F (fn) is the number of isolated fixed points of fn; the Ruelle zeta function
[33]

ζg
f (z) := exp

( ∞∑
n=1

zn

n

∑
x∈Fix(fn)

n−1∏
k=0

g(fk(x))
)

,

where g : X → C is a weight function (if g = 1 we recover ζf (z)); the Lefschetz
zeta function

Lf (z) := exp
( ∞∑

n=1

L(fn)
n

zn

)
,

where

L(fn) :=
dim X∑
k=0

(−1)k Tr[fn
∗k : Hk(X; Q) → Hk(X; Q)]

are the Lefschetz numbers of the iterates of f ; reduced mod 2 Artin–Mazur and
Lefschetz zeta functions [16]; twisted Artin–Mazur and Lefschetz zeta functions
[18], which have coefficients in the group ring ZH of an abelian group H.

The above zeta functions are directly analogous to the Hasse–Weil zeta func-
tion of an algebraic manifold over a finite field [35]. The Lefschetz zeta function
is always a rational function of z and is given by the formula

Lf (z) =
dim X∏
k=0

det(I − f∗k · z)(−1)k+1
.

This immediately follows from the trace formula for the Lefschetz numbers of
the iterates of f . The Artin–Mazur zeta function has a positive radius of con-
vergence for a dense set in the space of smooth self-maps of a compact smooth
manifold [1]. Manning proved the rationality of the Artin–Mazur zeta function
for diffeomorphisms of a compact smooth manifold satisfying Smale’s Axiom A
[25]. The knowledge that a zeta function is rational is important because it
shows that the infinite sequence of coefficients is closely interconnected, and is
given by the finite set of zeros and poles of the zeta function.

The Artin–Mazur zeta function and its modification count periodic points of
a map geometrically, while the Lefschetz type zeta functions do this algebraically
(with a weight given by index theory). Another way to count the periodic points
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is given by Nielsen theory. Let p : X̃ → X be the universal covering of X

and f̃ : X̃ → X̃ a lifting of f , i.e. p ◦ f̃ = f ◦ p. Two liftings f̃ and f̃ ′ are
called conjugate if there is a γ ∈ Γ ∼= π1(X) such that f̃ ′ = γ ◦ f̃ ◦ γ−1. The
subset p(Fix(f̃)) ⊂ Fix(f) is called the fixed point class of f determined by the
lifting class [f̃ ]. A fixed point class is called essential if its index is nonzero. The
number of lifting classes of f (and hence the number of fixed point classes, empty
or not) is called the Reidemeister number of f , denoted by R(f) (see [31]). This is
a positive integer or infinity. The number of essential fixed point classes is called
the Nielsen number of f , denoted by N(f). The Nielsen number is always finite.
R(f) and N(f) are homotopy invariants. In the category of compact, connected
polyhedra the Nielsen number of a map is equal to the least number of fixed
points of maps with the same homotopy type as f (see [34]).

If we consider the iterates of f , we may define several zeta functions connected
with Nielsen fixed point theory (see [9, 10, 15]). We assume throughout this
article that R(fn) < ∞ for all n > 0. The Reidemeister zeta function of f and
the Nielsen zeta function of f are defined as power series:

Rf (z) := exp
( ∞∑

n=1

R(fn)
n

zn

)
, Nf (z) := exp

( ∞∑
n=1

N(fn)
n

zn

)
.

Rf (z) and Nf (z) are homotopy invariants.

2.2. Radius of convergence of the Nielsen zeta function. In this
section we find a sharp estimate for the radius of convergence of the Nielsen zeta
function in terms of the topological entropy of the map. It follows from this
estimate that the Nielsen zeta function has a positive radius of convergence.

2.2.1. Radius and topological entropy. The most widely used measure for the
complexity of a dynamical system is the topological entropy. For the convenience
of the reader, we include its definition. Let f : X → X be a self-map of a
compact metric space. For given ε > 0 and n ∈ N, a subset E ⊂ X is said
to be (n, ε)-separated under f if for each pair x 6= y in E there is 0 ≤ i < n

such that d(f i(x), f i(y)) > ε. Let sn(ε, f) denote the largest cardinality of any
(n, ε)-separated subset E under f . Thus sn(ε, f) is the greatest number of orbit
segments x, f(x), . . . , fn−1(x) of length n that can be distinguished from one
another provided we can only distinguish between points of X that are at least
ε apart. Now let

h(f, ε) := lim sup
n

1
n

log sn(ε, f), h(f) := lim sup
ε→0

h(f, ε).

The number 0 ≤ h(f) ≤ ∞, which is shown to be independent of the metric d

used, is called the topological entropy of f . If h(f, ε) > 0 then, up to resolution
ε > 0, the number sn(ε, f) of distinguishable orbit segments of length n grows
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exponentially with n. So h(f) measures the growth rate in n of the number
of orbit segments of length n with arbitrarily fine resolution. A basic relation
between Nielsen numbers and topological entropy was found by N. Ivanov [22]
and independently by Aronson and Grines. We present here a very short proof
of Jiang [24] of Ivanov’s inequality.

Lemma 1 ([22]). We have

h(f) ≥ lim sup
n

1
n

log N(fn).

Proof. Let δ be such that every loop in X of diameter < 2δ is contractible.
Let ε > 0 be a small number such that d(f(x), f(y)) < δ whenever d(x, y) < 2ε.
Let En ⊂ X be a set consisting of one point from each essential fixed point class
of fn. Thus |En| = N(fn). By the definition of h(f), it suffices to show that En

is (n, ε)-separated. Suppose it is not so. Then there are two points x 6= y ∈ En

such that d(f i(x), f i(y)) ≤ ε for 0 ≤ i < n, hence for all i ≥ 0. Pick a path
ci from f i(x) to f i(y) of diameter < 2ε for 0 ≤ i < n and let cn = c0. By the
choice of δ and ε, f ◦ ci ' ci+1 for all i, so fn ◦ c0 ' cn = c0. This means x, y

are in the same fixed point class of fn, contradicting the construction of En.

This inequality is remarkable in that it does not require smoothness of the
map and provides a common lower bound for the topological entropy of all maps
in a homotopy class.

We denote by R the radius of convergence of the Nielsen zeta function Nf (z).
Let h = inf h(g) over all maps g of the same homotopy type as f .

Theorem 4 ([15]). For a continuous map of a compact polyhedron X into
itself,

(22) R ≥ exp(−h) > 0.

Proof. The inequality R ≥ exp(−h) follows from the previous lemma, the
Cauchy–Hadamard formula, and the homotopy invariance of the radius R of the
Nielsen zeta function Nf (z). Consider a smooth compact manifold M which is
a regular neighbourhood of X, and a smooth map g : M → M of the same
homotopy type as f . It is known [29] that the entropy h(g) is finite. Thus
exp(−h) ≥ exp(−h(g)) > 0.

2.2.2. Algebraic lower estimate for the radius of convergence. In this sub-
section we propose another proof of positivity of the radius R and give an exact
algebraic lower estimate for R using the Reidemeister trace formula for gener-
alized Lefschetz numbers. Pick a base point x0 ∈ X and a path w from x0 to
f(x0). Let f̃∗ : π1(X, x0) → π1(X, x0) be the composition

π = π1(X, x0)
f∗→ π1(X, f(x0))

w∗→ π1(X, x0).
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The fundamental group π = π1(X, x0) splits into f̃∗-conjugacy classes. Two
elements α, β ∈ π1(X, x0) are said to be f̃∗-conjugate if there is a γ ∈ π1(X, x0)
such that β = f̃∗(γ)αγ−1. Let πf denote the set of f̃∗-conjugacy classes, and
Zπf the abelian group freely generated by πf . We will use the bracket notation
a → [a] for both projections π → πf and Zπ → Zπf . Let x be a fixed point of f .
Take a path c from x0 to x. The f̃∗-conjugacy class in π of the loop c · (f ◦ c)−1,
which is evidently independent of the choice of c, is called the coordinate of x.
Two fixed points are in the same fixed point class F iff they have the same
coordinates. This f̃∗-conjugacy class is thus called the coordinate of the fixed
point class F and denoted by cdπ(F, f) (compare with description in Section 1).

The generalized Lefschetz number or Reidemeister trace [31] is defined as

(23) Lπ(f) :=
∑
F

Index(F, f) · cdπ(F, f) ∈ Zπf ,

the summation being over all essential fixed point classes F of f . The Nielsen
number N(f) is the number of nonzero terms in Lπ(f), and the indices of the
essential fixed point classes appear as the coefficients in Lπ(f). This invariant
used to be called the Reidemeister trace because it can be computed as an
alternating sum of traces on the chain level as follows [31, 34]. Assume that X is
a finite cell complex and f : X → X is a cellular map. A cellular decomposition
ed
j of X lifts to a π-invariant cellular structure on the universal covering X̃.

Choose an arbitrary lift ẽd
j for each ed

j . They constitute a free Zπ-basis for the
cellular chain complex of X̃. The lift f̃ of f is also a cellular map. In every
dimension d, the cellular chain map f̃ gives rise to a Zπ-matrix F̃d with respect
to the above basis, i.e. F̃d = (aij) if f̃(ẽd

i ) =
∑

j aij ẽ
d
j , where aij ∈ Zπ. Then we

have the Reidemeister trace formula

(24) Lπ(f) =
∑

d

(−1)d[Tr F̃d] ∈ Zπf .

Now we describe an alternative approach to the Reidemeister trace formula
proposed recently by Jiang [24]. This approach is useful when we study the
periodic points of f , i.e. the fixed points of the iterates of f .

The mapping torus Tf of f : X → X is the space obtained from X × [0,∞)
by identifying (x, s + 1) with (f(x), s) for all x ∈ X, s ∈ [0,∞). On Tf there is
a natural semiflow φ : Tf × [0,∞) → Tf , φt(x, s) = (x, s + t) for all t ≥ 0. Then
the map f : X → X is the return map of the semiflow φ. A point x ∈ X and a
positive number τ > 0 determine the orbit curve φ(x,τ) := φt(x)0≤t≤τ in Tf .

Take the base point x0 of X as the base point of Tf . It is known that
the fundamental group H := π1(Tf , x0) is obtained from π by adding a new
generator z and adding the relations z−1gz = f̃∗(g) for all g ∈ π = π1(X, x0).
Let Hc denote the set of conjugacy classes in H. Let ZH be the integral group



Dynamical Zeta Functions 273

ring of H, and let ZHc be the free abelian group with basis Hc. We again use
the bracket notation a → [a] for both projections H → Hc and ZH → ZHc.
If Fn is a fixed point class of fn, then f(Fn) is also a fixed point class of fn

and Index(f(Fn), fn) = Index(Fn, fn). Thus f acts as an index-preserving
permutation on the fixed point classes of fn. By definition, an n-orbit class On

of f is the union of elements of an orbit of this action. In other words, two points
x, x′ ∈ Fix(fn) are in the same n-orbit class of f if and only if some f i(x) and
some f j(x′) are in the same fixed point class of fn. The set Fix(fn) splits into
a disjoint union of n-orbit classes. A point x is a fixed point of fn or a periodic
point of period n if and only if the orbit curve φ(x,n) is a closed curve. The free
homotopy class of the closed curve φ(x,n) will be called the H-coordinate of the
point x, written cdH(x, n) = [φ(x,n)] ∈ Hc. It follows that periodic points x of
period n and x′ of period n′ have the same H-coordinate if and only if n = n′

and x, x′ belong to the same n-orbit class of f . Thus it is possible, equivalently,
to define x, x′ ∈ Fix fn to be in the same n-orbit class if and only if they have
the same H-coordinate.

Recently, Jiang [24] has considered the generalized Lefschetz number with
respect to H,

(25) LH(fn) :=
∑
On

Index(On, fn) · cdH(On) ∈ ZHc,

and proved the following trace formula:

(26) LH(fn) =
∑

d

(−1)d[Tr (zF̃d)n] ∈ ZHc,

where F̃d are the Zπ-matrices defined above and zF̃d is regarded as a ZH-matrix.
For any set S let ZS denote the free abelian group with the specified basis

S. The norm in ZS is defined by

(27)
∥∥∥∥∑

i

kisi

∥∥∥∥ :=
∑

i

|ki| ∈ Z,

when the si in S are all different.
For a ZH-matrix A = (aij), define its norm by ‖A‖ :=

∑
i,j ‖aij‖. Then

we have the inequalities ‖AB‖ ≤ ‖A‖ · ‖B‖ when A,B can be multiplied, and
‖TrA‖ ≤ ‖A‖ when A is a square matrix. For a matrix A = (aij) in ZS, its
matrix of norms is defined to be the matrix Anorm := (‖aij‖), which is a matrix
of nonnegative integers. In what follows, the set S will be π, H or Hc. We
denote by s(A) the spectral radius of A, s(A) = limn ‖An‖1/n, which coincides
with the largest modulus of an eigenvalue of A.
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Theorem 5. For any continuous map f of any compact polyhedron X into
itself the Nielsen zeta function has a positive radius of convergence R, which
admits the following estimates:

(28) R ≥ 1

maxd ‖zF̃d‖
> 0

and

(29) R ≥ 1

maxd s(F̃ norm
d )

> 0.

Proof. By homotopy invariance we can suppose that f is a cell map of a
finite cell complex. By the definition, the Nielsen number N(fn) is the number
of nonzero terms in Lπ(fn). The norm ‖LH(fn)‖ is the sum of the absolute
values of the indices of all the n-orbit classes On. It equals ‖Lπ(fn)‖, the sum
of the absolute values of the indices of all the fixed point classes of fn, because
any two fixed point classes of fn contained in the same n-orbit class On must
have the same index. From this we have

N(fn) ≤ ‖Lπ(fn)‖ = ‖LH(fn)‖ =
∥∥∥∥∑

d

(−1)d[Tr (zF̃d)n]
∥∥∥∥

≤
∑

d

‖[Tr (zF̃d)n]‖ ≤
∑

d

‖Tr (zF̃d)n‖ ≤
∑

d

‖(zF̃d)n‖ ≤
∑

d

‖zF̃d‖n

(see [24]). The radius of convergence R is given by the Cauchy–Hadamard for-
mula:

1/R = lim sup
n

(N(fn)/n)1/n = lim sup
n

(N(fn))1/n.

Therefore we have

R =
1

lim supn(N(fn))1/n
≥ 1

maxd ‖zF̃d‖
> 0.

The inequalities

N(fn) ≤ ‖Lπ(fn)‖=‖LH(fn)‖ =
∥∥∥∥∑

d

(−1)d[Tr (zF̃d)n]
∥∥∥∥ ≤ ∑

d

‖[Tr (zF̃d)n]‖

≤
∑

d

‖Tr (zF̃d)n‖ ≤
∑

d

Tr ((zF̃d)n)norm ≤
∑

d

Tr ((zF̃d)norm)n

≤
∑

d

Tr ((F̃d)norm)n

and the definition of the spectral radius give the estimate

R =
1

lim supn(N(fn))1/n
≥ 1

maxd s(F̃ norm
d )

> 0.



Dynamical Zeta Functions 275

Example 1. Let X be a surface with boundary, and f : X → X be a map.
Fadell and Husseini [7] devised a method of computing the matrices of the lifted
chain map for surface maps. Suppose {a1, . . . , ar} is a free basis for π1(X). Then
X has the homotopy type of a bouquet B of r circles which can be decomposed
into one 0-cell and r 1-cells corresponding to the ai, and f has the homotopy
type of a cellular map g : B → B. By homotopy invariance, we can replace f

with g in computations. The homomorphism f̃∗ : π1(X) → π1(X) induced by
f and g is determined by the images bi = f̃∗(ai), i = 1, . . . , r. The fundamental
group π1(Tf ) has a presentation π1(Tf ) = 〈a1, . . . , ar, z | aiz = zbi, i = 1, . . . , r〉.
Let

D = (∂bi/∂aj)

be the Jacobian in Fox calculus (see [4]). Then, as pointed out in [7], the matrices
of the lifted chain map g̃ are

F̃0 = (1), F̃1 = D = (∂bi/∂aj).

Now, we can find estimates for the radius R from (28) and (29).

2.3. Polyhedra with finite fundamental group and the Nielsen zeta
function. Let W be the complex vector space of complex-valued class functions
on the finite fundamental group π1(X). A class function is a function which
takes the same value on every element of a usual congruence class. The map
f̃∗ : π1(X, x0) → π1(X, x0) induces a linear map B : W → W defined by

B(g) := g ◦ f̃∗.

Remark 1. The characteristic functions of the congruence classes in
π1(X, x0) form a basis of W , and are mapped to one another by B (the map
need not be a bijection). Therefore the trace of B is the number of elements
of this basis which are fixed by B. By Theorem 5 of [13], this is equal to the
Reidemeister number of f .

Theorem 6. Let X be a connected, compact polyhedron with finite fun-
damental group π. Suppose that the action of π on the rational homology
of the universal cover X̃ is trivial, i.e. for every covering translation α ∈ π,
α∗ = id : H∗(X̃; Q) → H∗(X̃; Q). If L(fn) 6= 0 for every n > 0, then

(30) Nf (z) = Rf (z) =
1

det(1−Bz)
.

If L(fn) = 0 only for a finite number of n, then

(31) Nf (z) = exp(P (z)) ·Rf (z) = exp(P (z)) · 1
det(1−Bz)

,

where P (z) is a polynomial.
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Proof. If L(fn) 6= 0 for every n > 0, then N(fn) = R(fn) = TrBn for
every n > 0 (see Remark 1 above and Theorems 5 and 9 of [13]). We now
calculate directly

Rf (z) = exp
( ∞∑

n=1

R(fn)
n

zn

)
= exp

( ∞∑
n=1

TrBn

n
zn

)
= exp

(
Tr

∞∑
n=1

Bn

n
zn

)
= exp(Tr(− log(1−Bz))) =

1
det(1−Bz)

.

If L(fn) = 0, then N(fn) = 0. So Nf (z)/Rf (z) = exp(P (z)), where P (z) is
a polynomial whose degree is the maximal n such that L(fn) = 0.

Corollary 4. Let X̃ be a compact 1-connected polyhedron which is a ra-
tional homology n-sphere, where n is odd. Let π be a finite group acting freely
on X̃ and let X = X̃/π. Then Theorem 6 applies.

Corollary 5. If X is a closed 3-manifold with finite π, then Theorem 6
applies.

Example 2 ([3]). Let f : S2 ∨ S4 → S2 ∨ S4 be a continuous map of the
bouquet of spheres such that f |S4 = idS4 and the degree of f |S2 : S2 → S2 is
−2. Then L(f) = 0, hence N(f) = 0 since S2 ∨ S4 is simply connected. For
k > 1 we have L(fk) = 2+(−2)k 6= 0, therefore N(fk) = 1. From this we obtain
by direct calculation

(32) Nf (z) = exp(−z) · 1
1− z

.

2.4. Concluding remarks and open questions. We would like to men-
tion that in all known cases the Nielsen zeta function is a nice function. By this
we mean that it is a product of the exponential of a polynomial with a function
some power of which is rational. Maybe this is a general pattern.

For the case of an almost nilpotent fundamental group (i.e. group with poly-
nomial growth, in view of Gromov’s theorem [21]) we believe that some power
of the Reidemeister zeta function is a rational function. We intend to prove
this conjecture by identifying the Reidemeister number on the nilpotent part of
the fundamental group with the number of fixed points in the direct sum of the
duals of the quotients of successive terms in the central series. We then hope
to show that the Reidemeister number of the whole induced endomorphism on
the fundamental group is the sum of the numbers of orbits of such fixed points
under the action of the finite quotient group (i.e. the quotient of the whole group
by the nilpotent part). The situation for fundamental groups with exponential
growth is very different. There one can expect the Reidemeister number to be
infinite as long as the induced endomorphism is injective.



Dynamical Zeta Functions 277

References

[1] M. Artin and B. Mazur, On periodic points, Ann. of Math. 81 (1965), 82–99.

[2] M. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes II,

Ann. of Math. 88 (1968), 451–491.

[3] I. Babenko and S. Bogaty̆ı, private communication.

[4] J. S. Birman, Braids, Links and Mapping Class Groups, Ann. of Math. Stud., vol. 82,

Princeton Univ. Press, Princeton, 1974.

[5] J. Cheeger, Analytic torsion and the heat equation, Ann. of Math. 109 (1979), 259–322.

[6] C. Conley, Isolated Invariant Sets and the Morse Index, CBMS Regional Conf. Ser. in

Math., vol. 38, Amer. Math. Soc., 1978.

[7] E. Fadell and S. Husseini, The Nielsen number on surfaces, Topological Methods in
Nonlinear Functional Analysis, Contemp. Math., vol. 21, Amer. Math. Soc., Providence,

1983, pp. 59–98.

[8] A. L. Fel’shtyn, Zeta functions in Nielsen theory, Funktsional. Anal. i Prilozhen. 22

(1988), no. 1, 87–88 (Russian); English transl., Functional Anal. Appl. 22 (1988), 76–77.

[9] , New zeta functions for dynamical systems and Nielsen fixed point theory, Lec-
ture Notes in Math., vol. 1346, Springer-Verlag, 1988, pp. 33–55.

[10] , The Reidemeister zeta function and the computation of the Nielsen zeta func-

tion, Colloq. Math. 62 (1991), 153–166.

[11] A. L. Fel’shtyn and I. Gontareva, An analogue of Morse inequalities for a domain
of attraction, Vestnik Leningrad. Univ. Mat. 17 (1984), no. 2, 16–20. (Russian)

[12] A. L. Fel’shtyn and R. Hill, Dynamical zeta functions, Nielsen theory and Rei-

demeister torsion, Nielsen Theory and Dynamical Systems, Contemp. Math., vol. 152,

Amer. Math. Soc., 1993, pp. 43–69.

[13] , The Reidemeister zeta function with applications to Nielsen theory and a con-
nection with Reidemeister torsion, K-theory 8 (1994), 367–393.

[14] A. L. Fel’shtyn, R. Hill and P. Wong, Reidemeister numbers of equivariant maps,

Topology Appl. 67 (1995), 119–131.

[15] A. L. Fel’shtyn and V. B. Pilyugina, The Nielsen zeta function, Funktsional. Anal.

i Prilozhen. 19 (1985), no. 4, 61–67 (Russian); English transl., Functional Anal. Appl.
19 (1985), 300–305.

[16] J. Franks, Homology and Dynamical Systems, CBMS Regional Conf. Ser. in Math.,

vol. 49, Amer. Math. Soc., 1982.
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