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GRADIENT ESTIMATES FOR SOLUTIONS
OF THE NAVIER–STOKES EQUATIONS

Robert Finn — Vsevolod Solonnikov

Dedicated to O. A. Ladyzhenskaya on the occasion of her seventy-fifth birthday

The motivation for this paper derives from the classical property of solutions
of the Laplace equation

(1) ∆w = 0

in a bounded domain Ω, that the gradient at interior points is bounded in mag-
nitude, depending only on the distance d to S = ∂Ω and on a bound for |w| on S.
This property was extended by Odqvist [7], under some smoothness hypotheses
on S, to solutions of the Stokes equations

∆~w = ∇p,(2)

div ~w = 0,(3)

for slow stationary viscous fluid flows. We ask whether an analogous property
also holds for solutions ~w(x) of the full Navier–Stokes equations for stationary
viscous fluid flows

∆~w −R~w · ∇~w = ∇p,(4)

div ~w = 0.(5)
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We shall consider such solutions in a bounded domain Ω ⊂ Rn, n = 2 or 3, with
boundary S ∈ C(2+α), α ∈ (0, 1). Let ~w(x) be a solution of (4, 5) in Ω, twice
differentiable on Ω and having trace ~a on S in L1. We prove first:

Theorem 1. For any solution ~w(x) in Ω, if p > n and x ∈ Ω, then there
is a bound on the magnitude |D~w| of the first derivatives, depending only on
‖~a‖L1(S), on ‖~w‖L2p(Ω), on R, and on the distance to S. The bound does not
otherwise depend on the particular solution considered.

Proof. We represent ~w(x) in terms of Green’s tensor

(6) G(x, y) = X(x, y) + X (x, y)

and the associated pressure tensor

(7) P (x, y) = Π(x, y) + π(x, y)

of Odqvist [7], corresponding to the linearized equations (2, 3). Here

(8) X = (Xij) =


1
4π

{
δij log

1
|x− y|

+
(xi − yi)(xj − yj)

|x− y|2

}
if n = 2,

1
8π

{
δij

|x− y|
+

(xi − yi)(xj − yj)
|x− y|3

}
if n = 3,

denotes the “fundamental solution tensor” and

(9) Π = (Πi) =
1

ωn−1

{
xi − yi

|x− y|n

}
the associated “fundamental pressure vector”, with ωn being the area of the unit
n-sphere. We obtain the relations

~w(x) =
∫

S

~a · ν · TyG(x, y) dωy + R

∫
Ω

G · (~w · ∇)~w dy(10a)

= ~w0(x)−R

∫
Ω

~w · (~w · ∇y)G dy(10b)

in view of (5). Here ν is the unit exterior normal on S, and the operator Tu

denotes the stress tensor,

(11) (Tu)ij =
(

∂ui

∂xj
+

∂uj

∂xi

)
− δijp

(see [7] for details). The surface integral in (10) provides the (unique) solution
~w0(x) of the Stokes linearization (2, 3) corresponding to the data ~a. If x, y lie in
the intersection with Ω of any fixed ball of radius % < 1/2, then

(12)
|G(x, y)| < C log

1
|x− y|

if n = 2, |G(x, y)| < C
1

|x− y|
if n = 3,

|∇G(x, y)| < C|x− y|1−n, P (x, y) < C |x− y|1−n,
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C being a generic constant that is uniform for all such balls. Further, for any
two points x, x′ lying exterior to a ball of radius r0 about y, we have for any
ε > 0,

(13)

|G(x, y)−G(x′, y)| < C
|x− x′|1−ε

rn−1
0

,

|∇G(x, y)−∇G(x′, y)| < C
|x− x′|1−ε

rn
0

,

|P (x, y)− P (x′, y)| < C
|x− x′|1−ε

rn
0

,

for some C depending only on Ω and on ε.
We find additionally, using these estimates, that

(14) |Dx∇yG(x, y)| < |Dx∇yX(x− y)|+ M(x, y)

where M(x, y), a bound for derivatives of the regular part of Green’s tensor, is
bounded depending only on the distance of x to S.

We wish to use these results and the representation (10b) to estimate the
pointwise magnitude of |~w| and of the derivatives |D~w| at interior points in
terms of global averaging information on ~w in the closed domain. We begin with
the observation, from (10b), that if p > n and 1/p+1/q = 1, then q < n/(n− 1),
so that by (12), |∇G|q is summable over Ω and

|~w(x)| ≤ R

( ∫
Ω

|~w|2p dy

)1/p( ∫
Ω

|∇G|q dy

)1/q

+ max
S
|TG|

∫
S

|~a| dω(15)

≤ C1R‖~w‖2L2p(Ω) + C2‖~a‖L1(S)

with C1, C2 depending only on the distance of x from S.
We cannot differentiate (10b) directly, as the derivatives of ∇G are not inte-

grable at the singularity. However, from (10b), if 1/p + 1/q = 1 then

|~w(x)− ~w(x′)| ≤ R

∣∣∣∣ ∫
Ω

~w · (~w · ∇y)(G(x, y)−G(x′, y)) dy

∣∣∣∣(16)

+
∣∣∣∣ ∫

S

~a · (TG(x, y)− TG(x′, y)) · ν dωy

∣∣∣∣
≤ R

( ∫
Ω

|~w|2p dy

)1/p( ∫
Ω

|∇yG(x, y)−∇yG(x′, y)|q dy

)1/q

+ max
S
|TG(x, y)− TG(x′, y)|

∫
S

|~a| dωy.

We choose q < n/(n− 1) and then ε small enough that (n− 1 + ε)q < n. Using
the estimates (13) we verify that

(17)
( ∫

Ω

|∇yG(x, y)−∇yG(x′, y)|q dy

)1/q

< C|x− x′|α
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for some α > 0, depending only on q, on ε, and on Ω. The choice of ε can be
made to depend only on q. Thus, if for some p > n, ‖~w‖L2p(Ω) < ∞, then in
any fixed compact subdomain of Ω, ~w satisfies a fixed Hölder condition

(18) |~w(x)− ~w(x′)| < (C1R‖~w‖2L2p(Ω) + C2‖~a‖L1(S)) |x− x′|α,

the positive constants C and α depending only on p and on the subdomain.
We now observe that for any fixed vector ~w′,

(19)
∫

Ω

~w′ · (~w · ∇y)G dy = 0.

Thus, setting ~w′ = ~w(x′) for some fixed x′ ∈ Ω, we find

(20) ~w(x) =
∫

S

~a · ν · TG dωy −R

∫
Ω

(~w − ~w′) · (~w · ∇y)G dy,

an expression that by (12) and (18) can be differentiated at x = x′ to yield

(21) D~w(x) =
∫

S

~a · ν ·DxTG dωy −R

∫
Ω

(~w(y)− ~w(x)) · (~w ·Dx∇y)G dy.

Let d = dist(x, S), and let Bd/2 be the ball of radius d/2 about x.
From (21) and the preceding estimates we find

(22) |D~w(x)| < max
S
|DxTyG|

∫
S

|~a| dωy

+ R max
Bd/2

|~w|
∫

Bd/2

|~w(y)− ~w(x)| · |Dx∇yG| dy

+ R

∫
Ω\Bd/2

|~w(y)− ~w(x)| · |~w(y)| · |Dx∇yG| dy

< Cd−n

∫
S

|~a| dωy + CR(dα + |ln d|)
(

R‖~w‖2L2p(Ω) +
∫

S

|~a| dωy

)2

+ 2R

( ∫
Ω

|~w|2p dy

)1/p( ∫
Ω\Bd/2

|Dx∇yG|q dy

)1/q

< C1d
−n‖~a‖L1(Ω) + C2R(dα + |ln d|)(R‖~w‖2L2p(Ω) + ‖~a‖L1(S))2

+ C3Rd−1‖~w‖2L2p(Ω).

This completes the proof of Theorem 1.

Corollary 1. Let ~w(x) be a solution of (4, 5) in Ω and suppose |~w(x)| <

M < ∞ in Ω. Then |D~w(x)| is bounded in Ω, depending only on M , on R and
on the distance of x to the boundary S.

Corollary 1 corresponds in general form to the classical gradient bound for
harmonic functions in terms of a bound for the function over the domain and on
the distance to the boundary. The statement following (1) above, of a gradient
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bound in terms of distance to the boundary S and on a bound for |~w| on S,
reduces for solutions of (1) to the maximum principle. No maximum principle
or result that can replace it in such a context has, however, been established for
solutions of (4, 5). The question arises whether an a priori gradient bound of
the type just described can nevertheless be valid for such solutions. Indeed, it
follows from Odqvist’s estimates (12) above that in a given smooth domain such
a bound does hold for solutions of (2, 3). That result can also be inferred from
the Remark following the proof of Proposition 1 below, which has the appearance
of a maximum principle. Nevertheless, the bound obtained by those procedures
conceivably depends—as do the bounds of Theorem 1 and Corollary 1—on the
particular region of definition, and not just on boundary magnitude of |~w| and
distance to the boundary.

The following example, which applies equally to the systems (2, 3) and (4, 5),
illustrates the kind of behavior that can occur. We consider, in the annular plane
domain 1/ ln2 P < r < P , the explicit solution ~w = (u, v) with

(23) u = A
y

P
ln

r

P
, v = −A

x

P
ln

r

P
.

This example is a particular case of a family of exact solutions given by Hamel
in 1916 [3]. We observe that ~w vanishes on the outer boundary r = P . Choosing
A = P , we find that |~w| tends uniformly to zero on the inner boundary as P →∞.
Nevertheless, both |~w(

√
P , 0)| and |∇~w(

√
P , 0)| increase unboundedly in P , with

distance to the boundary also becoming unbounded. Thus, at arbitrarily large
distances to the boundary, and with boundary data arbitrarily small, the velocity
field and its gradient can simultaneously become arbitrarily large.

The example is not conclusive, as the associated pressure is not single-valued
for circuits enclosing the origin; thus, the solution should best be considered as
being periodic over a logarithmic Riemann surface. It should be of considerable
interest to investigate the question numerically; one such possibility could be to
calculate the solutions in a two-dimensional disk, corresponding to bounded and
smooth, but successively more rapidly oscillating, boundary data. It is known
that smooth solutions exist for such data subject only to an outflow condition
(see [2], [5], [6]), although uniqueness and stability have been proved for them
only under the hypothesis that the derivatives of the data are sufficiently small.

Interior gradient bounds for solutions of (4, 5) depending only on distance to
the boundary and on bounds for the boundary data and their derivatives can be
inferred from the material in [2], [5], [6]. In what follows, we restrict ourselves
to the (physical) case n = 3, for which we intend to show in particular that such
bounds can in fact be obtained using merely Hölder smoothness of the data. We
shall prove:
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Theorem 2. For any solution ~w(x) of (4, 5) in Ω, there is a bound on
|D~w(x)|, depending only on R, on dist(x, S), on ‖~a‖Lp(S), p > 4, and on the
W

1/2
2 (S) norm of ~a.

Remark. Since the W
1/2
2 norm can be estimated by a Hölder norm with

exponent γ > 1/2, the bound mentioned in the statement of the theorem can be
taken dependent on the Cγ(S) norm of ~a.

In virtue of Theorem 1, the proof of Theorem 2 reduces to the evaluation of
the L2p-norm of ~w (p > 3). As the first step, we estimate this norm by ‖~w‖L6(Ω)

and by the norms of the data.
We consider again the representation formula (10b) and, according to [7],

write the solution ~w0 of the Stokes problem

(24) ∆~w0 = ∇p0, ∇ · ~w0 = 0, ~w0|S = ~a,

in the form of the double layer potential

(25) ~w0(x) =
∫

S

P (x, y)~h(y) dωy

where P (x, y) is a matrix-valued kernel satisfying the estimates

(26) |DjP (x, y)| ≤ c(|j|)|x− y|−|j|−2,

∫
S

|P (x, y)| dωy ≤ c,

and ~h(y) can be determined from the system of integral equations on S

~h(x) +
∫

S

K(x, y)~h(y) dωy = ~a(x)

with a weakly singular matrix-valued kernel K(x, y), i.e.

|K(x, y)| ≤ c|x− y|−2+β , β ∈ (0, 1), x, y ∈ S.

If
∫

S
~a · ~n dω = 0, then

(27) ~h(x) = ~a(x) +
∫

S

R(x, y)~a(y) dωy

where R(x, y) is a resolvent kernel with the same properties as K(x, y), so

(28) ‖~h‖Lr(S) ≤ c‖~a‖Lr(S), 1 ≤ r ≤ ∞.

From these estimates and from (26) the following proposition follows.
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Proposition 1. We have the inequality

(29) ‖~w0‖Lq(Ω) ≤ c‖~a‖Lp(S), q ≥ p ≥ 1, p > 2
3q.

Proof. We take arbitrary p and q satisfying the conditions in (29) and set

3
2q

+ 1− 1
p

=
1
ϑ

, ϑ ∈ (0, 1).

In virtue of the Hölder inequality,

|~w0(x)| ≤
( ∫

S

|P (x, y)|3ϑ/2|~h(y)|p dωy

)1/q

≤
( ∫

S

|~h(y)|p dωy

)1/p−1/q( ∫
S

|P (x, y)|ϑ dωy

)1−1/p

,

from which (29) follows with

c =
(

sup
x∈Ω

∫
S

|P (x, y)|ϑ dωy

)1−1/p(
sup
y∈S

∫
Ω

|P (x, y)|3ϑ/2 dx

)1/q

.

Remark. From (25)–(27) it also follows that

sup
Ω
|~w0(x)| ≤ c sup

S
|~a(x)|.

This inequality was announced in [9].
We call attention here to a paper by Kratz [4] in which an explicit estimate

is given for maxΩ |~w0| in terms of maxS |~a|, in the particular case in which Ω is
an n-dimensional ball.

Consider the vector field

~u(x) =
∫

Ω

G(x, y)(~w · ∇)~w(y) dy = −
∫

Ω

~w(y) · (~w · ∇y)G(x, y) dy.

Making use of (13) and of the Hardy–Littlewood–Sobolev lemma on the estimates
of potentials with weakly singular kernels, we obtain the following inequality:

‖~u‖Lq(Ω) ≤ c‖~w‖2L2s1 (Ω),
1
s1
≤ 1

q
+

1
3
, q ≥ s1 > 1.

This inequality and Proposition 1 imply

(30) ‖~w‖Lq(Ω) ≤ c(‖~a‖Lp(S) + R‖~w‖2L6(Ω)),

where q ∈ (6, 3p/2), p > 4.
Further, in virtue of the Sobolev imbedding theorem,

(31) ‖~w‖L6(Ω) ≤ c‖~w‖W 1
2 (Ω).

The final step of the proof is the application of estimates of the Dirichlet integral
of ~w obtained in [2], [5], [6] under hypotheses of sufficient smoothness of the data
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~a and/or extendability of ~a into Ω in the form ~a = rot~b, ~b ∈ W 2
2 (Ω). We shall

show that such an extension can be obtained for arbitrary ~a ∈ W
1/2
2 (S) satisfying

the necessary compatibility condition.

Proposition 2. Every ~a ∈ W
1/2
2 (S) such that

(32)
∫

S

~a · ν dω = 0

can be extended into Ω in the form ~a = rot~b, ~b ∈ W 2
2 (Ω), satisfying the inequality

(33) ‖~b‖W 2
2 (Ω) ≤ c‖~a‖

W
1/2
2 (S)

.

Proof. Following the ideas of the paper [2], we are looking for ~b = ~b′ +~b′′

with

(34) ~ν · rot~b′ = ~a · ~ν ≡ a′, rot~b′′ = ~a− rot~b′ ≡ ~a′′, ~a′′ · ~ν = 0

and with both ~b′ and ~b′′ satisfying (33).
We represent a′ in the form

a′ =
M∑

k=1

a′k(x)

where a′k ∈ W
1/2
2 (S) are functions with compact supports: supp a′k ⊂ Sk, satis-

fying the condition ∫
Sk

a′k dω = 0

and the estimate ∑
k

‖a′k‖2W 1/2
2 (Sk)

≤ c‖a′‖2
W

1/2
2 (S)

.

We assume that diam Sk is small and that in a local cartesian coordinate system
{y1, y2, y3} with y3-axis directed along the interior normal −~ν(ξk), ξk ∈ S, Sk

can be given by the equation

y3 = F (y′), y′ = (y1, y2) ∈ Σd = {|y′| ≤ d}.

We construct ~b′k(y) defined in a certain neighborhood of the origin and satisfying
the boundary condition

~ν · rot~b′k|S = a′k

or

(35) ν1

(
∂bk3

∂y2
− ∂bk2

∂y3

)
+ ν2

(
∂bk1

∂y3
− ∂bk3

∂y1

)
+ ν3

(
∂bk2

∂y1
− ∂bk1

∂y2

)
= a′k.

We assume that

(36) bk3|Sk
=

∂bk3

∂y3

∣∣∣∣
Sk

=
∂bk1

∂y3

∣∣∣∣
Sk

=
∂bk2

∂y3

∣∣∣∣
Sk

= 0.
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Then the preceding equation reduces to

∂bk2

∂y1
− ∂bk1

∂y2
=

a′k
ν3

≡ gk,

or, if we “rectify” Sk introducing the coordinates

z1 = y1, z2 = y2, z3 = y3 − F (y′),

to

(37)
∂u1

∂z1
+

∂u2

∂z2
= gk(z′, F (z′))

where

(38) u1(z′) = bk2(z′, F (z′)), −u2(z′) = bk1(z′, F (z′)).

Equation (37) was analyzed, in particular, in the paper [1] where the solution
was constructed which had a compact support and satisfied the inequalities

‖u1‖2W m
2 (Σd) + ‖u2‖2W m

2 (Σd) ≤ c‖gk‖2W m−1
2 (Σd)

for m = 1, 2 and (by interpolation) for m = 3/2. We can extend uk into R2\Σd by
zero and construct a vector field~bk ∈ W 2

2 (R3
+) satisfying the boundary conditions

(36) and (38) (which we interpret as conditions on Σd) and the inequality

‖~bk‖2W 2
2 (R3

+) ≤ c‖~u‖2
W

3/2
2 (Σd)

≤ c‖gk‖2W 1/2
2 (Σd)

.

This can be done by standard methods of the theory of Sobolev spaces (see, for
example, [8]). Multiplying bk by an appropriate cut-off function we can make
the support of ~bk compact without violating of equation (27). In the initial
coordinates {x1, x2, x3}, ~bk(x) is a vector field defined in Ω and different from
zero in a certain neighborhood of ξk. Clearly, ~b′ =

∑M
k=1

~bk satisfies equation
(34) and inequality (33).

Now we turn to the determination of ~b′′(x). We define it as a vector field
from W 2

2 (Ω) satisfying the boundary conditions

(39) ~b′′|S = 0,
∂~b′′

∂ν

∣∣∣∣
S

= ~a′′ × ~ν

and the inequality

‖~b′′‖W 2
2 (Ω) ≤ c‖~a′′ × ~ν‖

W
1/2
2 (S)

≤ c‖~a′′‖
W

1/2
2 (S)

≤ ‖~a‖
W

1/2
2 (S)

.

In virtue of (39),

rot~b′′|S = ~ν × ∂~b′′

∂ν

∣∣∣∣
S

= ~ν × [~a′′ × ~ν ] = ~a′′.

The proposition is proved.
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This proposition leads to the following improved result:

Theorem 3. For every ~a ∈ W
1/2
2 (S) satisfying the necessary condition∫

S

~a · ν dω = 0

the system (4, 5) has at least one solution ~w ∈ W 1
2 (Ω) satisfying the inequality

(40) ‖~w‖W 1
2 (Ω) ≤ C(‖~a‖

W
1/2
2 (S)

+ ‖~a‖2
W

1/2
2 (S)

)

for some C > 0 depending only on Ω.

Now, (31) and (40) imply

‖~w‖L6(Ω) ≤ C(‖~a‖
W

1/2
2 (S)

+ ‖~a‖2
W

1/2
2 (S)

),

and the proof of Theorem 2 is complete.

Similar estimates can be obtained for |p(x)|, as well as for the Hölder norms
of D~w and p in an arbitrary domain ω ⊂ Ω bounded away from S. One can also
find bounds for higher order derivatives of ~w and p making use of well known
“local estimates”. For instance, if dist(ω, S) ≥ d and ω′ is a strictly interior
subdomain of ω, then

‖~w‖C2+α(ω′) + ‖p‖C1+α(ω′) ≤ c(‖(~w · ∇)~w‖Cα(ω) + sup
ω
|~w(x)|).

Since the right-hand side is already evaluated, we obtain estimates of D2 ~w,∇p

etc.
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