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MULTIPLICITY OF NODAL SOLUTIONS FOR
ELLIPTIC EQUATIONS WITH SUPERCRITICAL

EXPONENT IN CONTRACTIBLE DOMAINS

Donato Passaseo

Introduction

This paper is concerned with existence and multiplicity of solutions for the
problem

P (Ω, p)


∆u + |u|p−2u = 0 in Ω,

u = 0 on ∂Ω,

u+ 6≡ 0, u− 6≡ 0 in Ω,

where Ω is a bounded domain in Rn, with n ≥ 3 and p > 2∗ = 2n/(n− 2) (2∗ is
the critical exponent for the Sobolev embedding H1,2

0 (Ω) ↪→ Lp(Ω)). Following
the notation introduced in [3], we shall refer to the solutions of P (Ω, p) as nodal
solutions.

It is well known that the main difficulty in problems of this type is related
to the lack of compactness due to the presence of the exponent p > 2n/(n− 2).
Therefore the classical topological methods of calculus of variations cannot be
applied in a straightforward way. When 2 < p < 2n/(n − 2), the existence of
positive and nodal solutions for the problem

(∗)


∆u + |u|p−2u = 0 in Ω,

u = 0 on ∂Ω,

u 6≡ 0 in Ω,
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does not depend on the shape of Ω; on the contrary, when p ≥ 2n/(n−1), no solu-
tion can exist if Ω is starshaped, as a consequence of the well known Pokhozhaev
identity (see [36]). The solvability of problem (∗) when p ≥ 2n/(n − 2) seems
to be strictly related to the shape of Ω: if p = 2n/(n − 2), important results
of Bahri and Coron (see [4], [15]) guarantee the existence of positive solutions
for (∗) in domains Ω having nontrivial topology (in a suitable sense); afterwards
existence and multiplicity results of positive solutions have been stated even in
some contractible domains (see [16], [17], [27], [28], [31]).

Problem (∗) with p > 2n/(n − 2) has been studied in [33]–[35]: in [33] and
[34] one can find examples of domains Ω, nontrivial in the sense of Bahri–Coron
[4], where problem (∗) has no solution for p > 2n/(n − 2); on the other hand,
in [35] it is proved that for all p > 2n/(n− 2) one can find contractible domains
where the number of positive solutions of (∗) is arbitrarily large (other problems
with supercritical nonlinearity are studied in [22]–[25]).

In [8] Brezis and Nirenberg showed that some perturbations of the equation
by lower order terms can guarantee the existence of positive solutions, indepen-
dently of the shape of the domain. Afterwards many authors (see [2], [10]–[12],
[18], [43], [39]) studied existence and multiplicity of nontrivial solutions for the
problem

Pλ(Ω)


∆u + λu + |u|p−2u = 0 in Ω,

u = 0 on ∂Ω,

u 6≡ 0 in Ω,

with p = 2n/(n − 2) and λ > 0. In particular, nodal solutions are obtained in
[12].

A nonexistence result for the nodal solutions of Pλ(Ω) is stated in [3]: if Ω
is a ball of Rn with n = 4, 5, 6, then there exists λ∗ > 0 such that Pλ(Ω) has no
radial solution for λ < λ∗; on the contrary, for n ≥ 7, in [39] and [12] it is proved
that there exist infinitely many radial nodal solutions of Pλ(Ω) for all λ > 0.

Problem Pλ(Ω), with λ = 0 and p = 2n/(n− 2), is studied in [21], where the
existence of a nodal solution of P0(Ω) is proved in some symmetric domains (the
same as those considered in [27]).

In the present paper we show that for every p > 2n/(n − 2) there exist
contractible domains Ω (the same as those introduced in [27] and [35]) such
that problem P (Ω, p) has nodal solutions: for all h ∈ N we find a bounded
domain Dh and h perturbations, obtained by removing h subsets χ1, . . . , χh of
small capacity, such that Dh \

⋃h
i=1 χi is a contractible domain and the problem

P (Dh \
⋃h

i=1 χi, p) has at least h2 nodal solutions.

Indeed, for any fixed sets χr and χs (not necessarily distinct), we find a
solution u of P (Dh \

⋃h
i=1 χi, p) such that u+ and u− concentrate near χr and
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χs respectively as their capacity tends to zero; therefore different pairs (χr, χs)
give rise to different solutions and so we have on the whole h2 nodal solutions.

As in [12] and in [21], an important role in finding the nodal solutions is
played by the set

M = {u ∈ H1,2
0 (Ω) : u± 6≡ 0, f ′(u)[u±] = 0}.

Notice that M is not a smooth submanifold of H1,2
0 (Ω); therefore we shall use a

special device, based on a result of C. Miranda (see [26]).
Since the arguments used in [27] and in [21] when p = 2n/(n − 2) do not

apply when p > 2n/(n− 2) (see Remark 3.4), in this paper we introduce suitable
obstacles, which, combined with the symmetry properties of the domains, allow
us to overcome the difficulties given by the lack of compactness, due to the
presence of the supercritical nonlinearities.

The main result obtained in this paper is stated in Theorem 2.2; some qual-
itative properties of the solutions obtained are described in Proposition 3.2.

In the next section we recall some notions of “subdifferential calculus”, which
we shall use in studying problems with obstacle.

1. Preliminary results

In this section we specify the variational framework of P (Ω, p): solving this
problem is equivalent to finding critical points of a functional on a suitable con-
straint. Moreover, we recall the notion and some properties of the subdifferential
(see, for instance, [13], [14]), which we shall use in next sections.

The solutions of P (Ω, p) are the critical points of the functional f : H1,2
0 (Ω)∩

Lp(Ω) → R defined by

(1.1) f(u) =
1
2

∫
Ω

|Du|2 dx− 1
p

∫
Ω

|u|p dx,

which belong to

(1.2) M = {u ∈ H1,2
0 (Ω) ∩ Lp(Ω) : u+ 6≡ 0, u− 6≡ 0,

f ′(u)[u+] = f ′(u)[u−] = 0}.

The space H1,2
0 (Ω) ∩ Lp(Ω) is endowed with the norm

(1.3) ‖u‖ =
( ∫

Ω

|Du|2 dx

)1/2

+
( ∫

Ω

|u|p dx

)1/p

in such a way that f is a C2-functional in H1,2
0 (Ω) ∩ Lp(Ω).
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Definition 1.1. Let X be a normed vector space and Φ : X → R ∪ {∞}
be a given function. We shall call the set D(Φ) = {u ∈ X : Φ(u) < ∞} the
domain of Φ. For all u ∈ D(Φ) we define the subdifferential of Φ at u to be the
set ∂−Φ(u) consisting of all α in X ′ (the dual space of X) such that

lim inf
v→u

Φ(v)− Φ(u)− α(v − u)
‖v − u‖

≥ 0.

Φ is said to be subdifferentiable at u if ∂−Φ(u) 6= ∅; moreover, we say that u is
a lower critical point for Φ if 0 ∈ ∂−Φ(u).

Examples 1.2. It is easy to verify that, if X = H1,2
0 (Ω)∩Lp(Ω) is endowed

with the norm (1.3) and if g(u) =
∫
Ω
|Du|2 dx, then ∂−f(u) = {f ′(u)} and

∂−g(u) = {g′(u)} where

f ′(u)[v] =
∫

Ω

DuDv dx−
∫

Ω

|u|p−2uv dx,

g′(u)[v] =
∫

Ω

DuDv dx ∀v ∈ H1,2
0 (Ω) ∩ Lp(Ω).

For every subset E of X, let IE be the function defined by

IE(u) =

{
0 if u ∈ E,

∞ if u ∈ X \ E.

If u ∈ V = {u ∈ H1,2
0 (Ω) :

∫
Ω
|u|p dx = 1}, then one can verify that α ∈ ∂−IV (u)

if and only if there exists λ ∈ R such that

α(v) = λ

∫
Ω

|u|p−2uv dx ∀v ∈ H1,2
0 (Ω) ∩ Lp(Ω).

If K is a convex subset of X and u ∈ K, then α ∈ ∂−IK(u) if and only if

α(v − u) ≤ 0 ∀v ∈ K.

Remark 1.3. Notice that, if Φ and Γ are two functions in X with values in
R ∪ {∞} and if u ∈ D(Φ + Γ), then

∂−Φ(u) + ∂−Γ(u) ⊆ ∂−(Φ + Γ)(u).

Simple examples show that, in general, the opposite inclusion does not hold.
However, if the function Φ is differentiable at u, then

{Φ′(u)}+ ∂−Γ(u) = ∂−(Φ + Γ)(u).

Definition 1.4. Let K be a subset of H1,2
0 (Ω)∩Lp(Ω) and u ∈ K ∩V . We

say that K and V are nontangent at u if

∂−IK(u) ∩ ∂−IV (u) = {0}.
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Proposition 1.5. Let K be a subset of H1,2
0 (Ω) ∩ Lp(Ω) and u ∈ K ∩ V .

If K and V are nontangent at u, then

∂−(IK + IV )(u) = ∂−IK(u) + ∂−IV (u).

For the proof it suffices to argue as in [13] and [14].
All the domains Ω ⊂ Rn we shall consider in this paper have radial symmetry

with respect to the xn-axis; therefore it is natural to look for solutions of P (Ω, p)
in the space of functions having the same symmetry.

Definition 1.6. We say that Ω has radial symmetry with respect to the
xn-axis if the following property holds:

x ∈ Ω ⇔ (0, . . . , 0, %(x), xn) ∈ Ω where %(x) =
( n−1∑

i=1

x2
i

)1/2

.

Analogously, we say that a function u, defined in a domain Ω having radial
symmetry with respect to xn-axis, has the same symmetry if

u(x) = u(0, . . . , 0, %(x), xn) ∀x ∈ Ω.

If Ω has radial symmetry, we shall denote by HS(Ω) the subspace of H1,2
0 (Ω)

consisting of the radial functions.

It is well known that every critical point for the functional f constrained on
HS(Ω) ∩ Lp(Ω) is a critical point for f in H1,2

0 (Ω) ∩ Lp(Ω).

Remark 1.7. Notice that, if Ω is a bounded domain having radial symmetry
with respect to the xn-axis and moreover

inf
{ n−1∑

i=1

x2
i : x = (x1, . . . , xn) ∈ Ω

}
> 0,

then the space HS(Ω) is isomorphic to H1,2
0 (Ω̃), where Ω̃ = {(%, t) ∈ R2 :

(0, . . . , 0, %, t) ∈ Ω} (Ω̃ is a bounded domain in R2). Consequently, HS(Ω) is
compactly embedded in Lq(Ω) for all q ≥ 1.

2. Nodal solutions in contractible domains

In this section we obtain for all p > 2n/(n − 2) a bounded contractible do-
main Ω (having radial symmetry with respect to the xn-axis) such that problem
P (Ω, p) has nodal solutions (see Theorem 2.2).

Notations 2.1. Set B(x, %) = {y ∈ Rn : |y − x| < %} for x ∈ Rn and for
% > 0. For all positive integer h, let

Th =
{

x = (x1, . . . , xn) ∈ Rn :
n−1∑
i=1

x2
i < 1, 0 < xn < h + 1

}
;
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for i = 1, . . . , h put ci = (0, . . . , 0, i) ∈ Rn; given σ1, . . . , σh with 0 < σi < 1/2
for i = 1, . . . , h, set

Dh = Th\
h⋃

i=1

B(ci, σi), χε =
{

x ∈ Rn :
n−1∑
i=1

x2
i ≤ ε2, xn ≥ 1

}
, Ωh

ε = Dh\χε.

For all ε > 0, every function u of H1,2
0 (Ωh

ε ) is understood to be extended in Dh

by zero.
Moreover, put

‖u‖q =
( ∫

Dh

|u|q dx

)1/q

∀u ∈ Lq(Dh) (q ≥ 1).

Notice that all the domains Th, Dh and Ωh
ε have radial symmetry with respect

to the xn-axis; moreover, Ωh
ε is a bounded contractible domain for all ε > 0.

Set

Fi = {x = (x1, . . . , xn) ∈ Rn : i ≤ xn ≤ i + 1} ∀i = 1, . . . , h;

for every pair (r, s), with r, s = 1, . . . , h, let Kr,s be the set defined by

Kr,s = {u ∈ HS(Dh) : u± 6≡ 0, u+(x)/‖u+‖p ≤ 1 ∀x ∈ Dh \ Fr,

u−(x)/‖u−‖p ≤ 1 ∀x ∈ Dh \ Fs}.

Theorem 2.2. Let p > 2n/(n − 2). For all ε > 0 and h ∈ N let Ωh
ε

be the domain defined above. Then there exists ε > 0 such that, for all ε ∈
]0, ε[, problem P (Ωh

ε , p) has at least h2 distinct solutions ur,s,ε (r, s = 1, . . . , h).
Moreover, for every pair (r, s), the solution ur,s,ε minimizes the functional f in
Hs(Ωh

ε ) ∩M ∩Kr,s (see (1.1), (1.2) and Notations 2.1). Furthermore, we have

lim
ε→0+

f(ur,s,ε) = 0.

The proof is based on the following lemmas.

Lemma 2.3. There exists ε > 0 such that, for all ε ∈ ]0, ε[, the minimum

min{f(u) : u ∈ HS(Ωh
ε ) ∩M ∩Kr,s}

is achieved. Moreover,

lim
ε→0+

min{f(u) : u ∈ HS(Ωh
ε ) ∩M ∩Kr,s} = 0.

Proof. Fix r and s in {1, . . . , h}. First remark that

(2.1) lim
ε→0+

inf{f(u) : u ∈ HS(Ωh
ε ) ∩M ∩Kr,s} = 0.
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In fact, choose z ∈ HS(Ω0) with

Ω0 =
{

x = (x1, . . . , xn) ∈ Rn : |x| < 2,
n−1∑
i=1

x2
i > 1

}
such that z ≥ 0 in Ω0 and

∫
Ω0

zp dx = 1; for all ε > 0 and x ∈ Rn set zε,x(x) =
z((x− x)/ε) (we understand that z is extended by zero outside Ω0); fix x(r) =
(0, . . . , 0, x

(r)
n ) and x(s) = (0, . . . , 0, x

(s)
n ) such that x(r) 6= x(s) and (see Notations

2.1)

r + σr < x(r)
n < r + 1− σ(r+1), s + σs < x(s)

n < s + 1− σ(s+1);

if we set ζε = (‖Dzε‖22/‖zε‖p
p)

1/(p−2)(zε,x(r) − zε,x(s)), it is easy to verify that
ζε ∈ HS(Ωh

ε ) ∩M ∩Kr,s for ε > 0 small enough and that limε→0 f(ζε) = 0.
Now set (see Notations 2.1)

λ = min
{ ∫

Dh∩F0

|Du|2 dx : u ∈ H1,2
0 (Dh),

∫
Dh∩F0

u2 dx = 1
}

.

Notice that, if u ∈ H1,2
0 (Ωh

ε ) satisfies

0 < sup{u(x) : x ∈ Ωh
ε ∩ F0} < λ1/(p−2),

then

(2.2)
∫

Ωh
ε∩F0

|u|p dx < λ

∫
Ωh

ε∩F0

u2 dx ≤
∫

Ωh
ε∩F0

|Du|2 dx,

because |u(x)|p < λu2(x) if 0 < |u(x)| < λ1/(p−2).

Let (uε,i)i be a minimizing sequence for f on HS(Ωh
ε )∩M ∩Kr,s. Since (2.1)

holds, we can assume that, for ε > 0 small enough,

‖Du±ε,i‖
2
2 = ‖u±ε,i‖

p
p < λp/(p−2) ∀i ∈ N;

in particular, since uε,i ∈ Kr,s for all i ∈ N, we have

(2.3) sup{u±ε,i(x) : x ∈ Ωh
ε ∩ F0} < λ1/(p−2) ∀i ∈ N.

Let us prove that, up to a subsequence, (uε,i)i converges in H1,2
0 (Ωh

ε ) to a
function uε which yields the minimum of f on HS(Ωh

ε ) ∩ M ∩ Kr,s. In fact,
since the sequence (uε,i)i is bounded in H1,2

0 (Ωh
ε ), up to a subsequence we have

(uε,i)i → uε and (u±ε,i)i → u±ε weakly in H1,2
0 (Ωh

ε ), in L2(Ωh
ε ) and almost every-

where in Ωh
ε , for a suitable uε ∈ HS(Ωh

ε ).
Then it suffices to prove that:

(a) limi→∞ ‖u±ε,i‖p = ‖u±ε ‖p > 0,
(b) limi→∞ ‖Du±ε,i‖2 = ‖Du±ε ‖2,
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because these properties imply uε ∈ HS(Ωh
ε ) ∩M ∩Kr,s and

f(uε) = lim
i→∞

f(uε,i) = inf{f(u) : u ∈ HS(Ωh
ε ) ∩M ∩Kr,s}.

To prove (a), we remark that, since

(2.4) inf
{ n−1∑

i=1

x2
i : x ∈ Ωh

ε \ F0

}
> 0,

the subspace of H1,2(Ωh
ε \F0) consisting of the radial functions vanishing on ∂Ωh

ε

(in the sense of H1,2), endowed with the equivalent norm

‖u‖ =
( ∫

Ωh
ε \F0

|Du|2 dx

)1/2

,

is compactly embedded in Lp(Ωh
ε \ F0) for all p ≥ 1. Therefore we have

lim
i→∞

∫
Ωh

ε \F0

(u±ε,i)
p dx =

∫
Ωh

ε \F0

(u±ε )p dx.

Moreover,

lim
i→∞

∫
Ωh

ε∩F0

(u±ε,i)
p dx =

∫
Ωh

ε∩F0

(u±ε )p dx

by the Lebesgue theorem, because of (2.3), and so limi→∞ ‖u±ε,i‖p = ‖u±ε ‖p.

Let us prove that ‖u+
ε ‖p > 0: (2.4) implies that there exists a constant cε > 0

such that

cε

( ∫
Ωh

ε \F0

|u|p dx

)1/p

≤
( ∫

Ωh
ε \F0

|Du|2 dx

)1/2

∀u ∈ HS(Ωh
ε ).

Then, if sup{u+
ε,i(x) : x ∈ Ωh

ε ∩ F0} = 0, we have (since uε,i ∈ M)

‖u+
ε,i‖

p
p = ‖Du+

ε,i‖
2
2 ≥ c2

ε‖u+
ε,i‖

2
p

and so (as ‖u+
ε,i‖p 6= 0)

(2.5) ‖u+
ε,i‖p ≥ c2/(p−2)

ε .

On the contrary, if
sup{u+

ε,i(x) : x ∈ Ωh
ε ∩ F0} > 0,

then from (2.3) and (2.2) it follows that∫
Ωh

ε∩F0

|u+
ε,i|

p dx <

∫
Ωh

ε∩F0

|Du+
ε,i|

2 dx,

which implies, since uε,i ∈ M ,∫
Ωh

ε \F0

|u+
ε,i|

p dx >

∫
Ωh

ε \F0

|Du+
ε,i|

2 dx.



Multiplicity of Nodal Solutions 253

Consequently, we have ( ∫
Ωh

ε \F0

|u+
ε,i|

p dx

)1/p

> c2/(p−2)
ε ,

which implies (2.5) in this case too; so

‖u+
ε ‖p = lim

i→∞
‖u+

ε,i‖p ≥ c2/(p−2)
ε > 0.

In an analogous way one can prove that ‖u−ε ‖p ≥ c
2/(p−2)
ε .

Let us prove (b): since uε,i ∈ M for all i ∈ N, we have limi→∞ ‖Du±ε,i‖22 =
limi→∞ ‖u±ε,i‖p

p = ‖u±ε ‖p
p. Thus we have to prove that ‖Du±ε ‖22 = ‖u±ε ‖p

p.
Notice that 0 < ‖Du±ε ‖22 ≤ ‖u±ε ‖p

p; so, if we set t±ε = (‖Du±ε ‖22/‖u±ε ‖p
p)

1/(p−2),
we have 0 < t±ε ≤ 1.

Consequently, the function

ũε = t+ε u+
ε − t−ε u−ε

lies in HS(Ωh
ε ) ∩M ∩Kr,s and so

(2.6) f(ũε) ≥ inf{f(u) : u ∈ HS(Ωh
ε ) ∩M ∩Kr,s}.

On the other hand, we have f(u) = (1/2− 1/p)‖Du‖22 for all u ∈ M . Therefore

f(ũε) = (1/2− 1/p)‖Dũε‖22(2.7)

= (1/2− 1/p)[(t+ε )2‖Du+
ε ‖22 + (t−ε )2‖Du−ε ‖22]

≤ (1/2− 1/p)‖Duε‖22 ≤ lim
i→∞

(1/2− 1/p)‖Duε,i‖22

= lim
i→∞

f(uε,i) = inf{f(u) : u ∈ HS(Ωh
ε ) ∩M ∩Kr,s}.

Taking into account (2.6), we have in particular

[1− (t+ε )2]‖Du+
ε ‖22 + [1− (t−ε )2]‖Du−ε ‖22 = 0

with 1 − (t±ε )2 ≥ 0 and ‖Du±ε ‖22 > 0. Therefore we must have t±ε = 1, that is,
‖Du±ε ‖22 = ‖u±ε ‖p

p. �

Remark 2.4. It is easy to verify that, on the contrary, the minimum of f

on HS(Ωh
ε )∩M does not exist and that inf{f(u) : u ∈ HS(Ωh

ε )∩M} = 0 for all
ε > 0 (see also Remark 3.4).

Lemma 2.5. For all ε ∈ ]0, ε[ (see Lemma 2.3), let ur,s,ε ∈ HS(Ωh
ε ) be a

minimum point for f on HS(Ωh
ε )∩M ∩Kr,s. Then the function u+

r,s,ε minimizes
the functional g(u) = ‖Du‖22 in the set

{u ∈ HS(Ωh
ε ) : u ≥ 0 in Ωh

ε ,

∫
Ωh

ε

uu−r,s,ε dx = 0,

‖u‖p = ‖u+
r,s,ε‖p, u(x) ≤ ‖u+

r,s,ε‖p ∀x ∈ Ωh
ε \ Fr}.

An analogous property holds for u−r,s,ε.
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Proof. Suppose, by contradiction, that there exists u ∈ HS(Ωh
ε ) such that

u ≥ 0 in Ωh
ε , ∫

Ωh
ε

uu−r,s,ε dx = 0, ‖u‖p = ‖u+
r,s,ε‖p,

u(x) ≤ ‖u+
r,s,ε‖p ∀x ∈ Ωh

ε \ Fr, ‖Du‖2 < ‖Du+
r,s,ε‖2.

If we set t = (‖Du‖22/‖u‖p
p)

1/(p−2) and ũ = tu − u−r,s,ε, we have 0 < t < 1 and
ũ ∈ HS(Ωh

ε ) ∩M ∩Kr,s. It follows that

f(ũ) = (1/2− 1/p)‖Dũ‖22 = (1/2− 1/p)[t‖Du‖22 + ‖Du−r,s,ε‖22]
< (1/2− 1/p)[‖Du+

r,s,ε‖22 + ‖Du−r,s,ε‖22] = f(ur,s,ε),

which is a contradiction since ur,s,ε minimizes f in HS(Ωh
ε ) ∩M ∩Kr,s. �

Lemma 2.6. For all ε ∈ ]0, ε[ (see Lemma 2.3), let ur,s,ε be a minimum
point for f on HS(Ωh

ε ) ∩M ∩Kr,s. Then there exists ε1 > 0 such that:

(a) For all ε ∈ ]0, ε1[ the convex set

Kr
ε =

{
u ∈ HS(Ωh

ε ) :
∫

Ωh
ε

|u|u−r,s,ε dx = 0; |u(x)| ≤ 1 ∀x ∈ Ωh
ε \ Fr

}
and the manifold

Vε =
{

u ∈ HS(Ωh
ε ) :

∫
Ωh

ε

|u|p dx = 1
}

are nontangent at u+
r,s,ε/‖u+

r,s,ε‖p.
(b) For all ε ∈ ]0, ε1[ there exists λε ∈ R such that, for all v ∈ Kr

ε ,∫
Ωh

ε

Du+
r,s,ε

‖u+
r,s,ε‖p

D

(
v −

u+
r,s,ε

‖u+
r,s,ε‖p

)
dx− λε

∫
Ωh

ε

(u+
r,s,ε)

p−1

‖u+
r,s,ε‖p−1

p

(
v −

u+
r,s,ε

‖u+
r,s,ε‖p

)
dx ≥ 0.

Moreover, limε→0+ λε = 0.
(c) For all nonnegative, radially symmetric functions w ∈ C∞

0 (Ωh
ε ) we have∫

Ωh
ε

Du+
r,s,ε

‖u+
r,s,ε‖p

Dw dx− λε

∫
Ωh

ε

(u+
r,s,ε)

p−1

‖u+
r,s,ε‖p−1

p

w dx ≤ 0.

(d) limε→0+ sup{u+
r,s,ε(x)/‖u+

r,s,ε‖p : x ∈ Ωh
ε \ Fr} = 0.

Analogous properties hold for the function u−r,s,ε.

Proof. Notice that, since u+
r,s,ε minimizes the functional g(u) = ‖Du‖22 in

the set{
u ∈ HS(Ωh

ε ) :
∫

Ωh
ε

|u|u−r,s,ε dx = 0, ‖u‖p = ‖u+
r,s,ε‖p,

|u(x)| ≤ ‖u+
r,s,ε‖p ∀x ∈ Ωh

ε \ Fr

}
,
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the function u+
r,s,ε/‖u+

r,s,ε‖p minimizes g in Kr
ε ∩ Vε; moreover,

lim
ε→0+

‖Du+
r,s,ε‖2/‖u+

r,s,ε‖p = 0.

Using these properties, the proof can be concluded arguing as in [35] (see Lemmas
2.5–2.8 of [35]). �

Definition 2.7. For all ε ∈ ]0, ε1[ (see Lemma 2.6), let ur,s,ε be a function
minimizing f on HS(Ωh

ε ) ∩ M ∩ Kr,s. For all δ ∈ ]0, π/4[ and %0 ∈ ]0, 1[ set
Q%0,δ = [%0, 1]× [δ, π/2− δ] and define σ : Q%0,δ → HS(Ωh

ε ) ∩Kr,s by

σ(%, ϑ) =
u+

r,s,ε

‖u+
r,s,ε‖p

% cos ϑ−
u−r,s,ε

‖u−r,s,ε‖p

% sinϑ

(notice that σ(%, ϑ) 6= 0 for (%, ϑ) ∈ Q%0,δ).

Proof of Theorem 2.2. We shall only prove that, for r, s = 1, . . . , h and
for ε > 0 small enough, every function ur,s,ε which minimizes f on HS(Ωh

ε ) ∩
M ∩Kr,s is a solution of problem P (Ωh

ε , p); the fact that different solutions ur,s,ε

correspond to different pairs (r, s) will follow from the behaviour of the functions
ur,s,ε, stated in Section 3 (see Proposition 3.2).

Since limε→0+ ‖Dur,s,ε‖2/‖ur,s,ε‖p = 0 (see Lemma 2.3), and (see Lemma
2.6)

lim
ε→0+

sup
{

u+
r,s,ε(x)

‖u+
r,s,ε‖p

: x ∈ Ωh
ε \ Fr

}
= 0,

lim
ε→0+

sup
{

u−r,s,ε(x)

‖u−r,s,ε‖p

: x ∈ Ωh
ε \ Fs

}
= 0,

for ε > 0 small enough we have

(2.8)

{
sup{u+

r,s,ε(x)/‖u+
r,s,ε‖p : x ∈ Ωh

ε \ Fr} < 1,

sup{u−r,s,ε(x)/‖u−r,s,ε‖p : x ∈ Ωh
ε \ Fs} < 1;

(2.9) min
{

(cos ϑ)p−2
‖u+

r,s,ε‖2p
‖Du+

r,s,ε‖22
+ (sinϑ)p−2

‖u−r,s,ε‖2p
‖Du−r,s,ε‖22

: ϑ ∈ [0, π/2]
}
≥ 2.

Fix ε > 0 in such a way that properties (2.8) and (2.9) hold and (‖u+
r,s,ε‖2p +

‖u−r,s,ε‖2p)1/2 < 1; choose %0 > 0 small enough that

(2.10) %0 < (‖u+
r,s,ε‖2p + ‖u−r,s,ε‖2p)1/2,

(2.11) max
{

(%0 cos ϑ)p−2
‖u+

r,s,ε‖2p
‖Du+

r,s,ε‖22
+ (%0 sinϑ)p−2

‖u−r,s,ε‖2p
‖Du−r,s,ε‖22

:

ϑ ∈ [0, π/2]
}
≤ 2.
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Then choose δ ∈ ]0, π/4[ in such a way that the pair (%ε, ϑε) satisfying σ(%ε, ϑε) =
ur,s,ε lies in the interior of Q%0,δ and, moreover,

(2.12) min
{

(% cos δ)p−2
‖u+

r,s,ε‖2p
‖Du+

r,s,ε‖22
: % ∈ [%0, 1]

}
≥ (sin δ)p−2

‖u−r,s,ε‖2p
‖Du−r,s,ε‖22

,

(2.13) (sin δ)p−2
‖u+

r,s,ε‖2p
‖Du+

r,s,ε‖22
≤ min

{
(% cos δ)p−2

‖u−r,s,ε‖2p
‖Du−r,s,ε‖22

: % ∈ [%0, 1]
}

.

In order to show that ur,s,ε is a critical point for f , it suffices to prove that

f ′(ur,s,ε)[w] = 0 ∀w ∈ C∞
0 (Ωh

ε ) ∩HS(Ωh
ε ).

Suppose, by contradiction, that there exists w ∈ C∞
0 (Ωh

ε ) ∩ HS(Ωh
ε ) such that

f ′(ur,s,ε)[w] < 0. Then there exists a neighbourhood I(ur,s,ε) of ur,s,ε in HS(Ωh
ε )

∩ Lp(Ωh
ε ) such that f ′(u)[w] < 0 for u ∈ I(ur,s,ε). For all µ > 0 small enough,

choose zµ ∈ C0(Q%0,δ, R+) such that:

• sup{zµ(%, θ) : (%, ϑ) ∈ Q%0,δ} ≤ µ;
• zµ(%, ϑ) = µ for (%, ϑ) ∈ Q%0,δ such that |%− %ε|+ |ϑ− ϑε| ≤ µ/2;
• zµ(%, ϑ) = 0 for (%, ϑ) ∈ Q%0,δ such that |%− %ε|+ |ϑ− ϑε| ≥ µ.

Since properties (2.8) hold and u±r,s,ε 6= 0, it is easy to verify that there exists
µ > 0 small enough such that:

(2.14) zµ = 0 on the boundary of Q%0,δ;

(2.15) if (%, ϑ) ∈ Q%0,δ satisfies zµ(%, ϑ) > 0 and if t ∈ ]0, zµ(%, ϑ)[,

then σ(%, ϑ) + tw ∈ I(ur,s,ε);

(2.16) if (%, ϑ) ∈ Q%0,δ and t ∈ ]0, zµ(%, ϑ)],

then σ(%, ϑ) + tw ∈ Kr,s and [σ(%, ϑ) + tw]± 6≡ 0.

Since f ′(u)[w] < 0 for u ∈ I(ur,s,ε), if (%, ϑ) ∈ Q%0,δ satisfies zµ(%, ϑ) > 0 and if
t ∈ ]0, zµ(%, ϑ)[, we have

∂

∂t
f(σ(%, ϑ) + tw) < 0.

Then
f(σ(%, ϑ) + zµw) ≤ f(σ(%, ϑ)) ∀(%, ϑ) ∈ Q%0,δ

and
f(σ(%ε, ϑε) + zµw) < f(σ(%ε, ϑε)).

As (%ε, ϑε) is the unique maximum point of the function f ◦ σ, it follows that

max{f(σ(%, ϑ) + zµ(%, θ)w) : (%, ϑ) ∈ Q%0,δ} < f(ur,s,ε).

Therefore, taking into account that

σ(%, ϑ) + zµ(%, ϑ)w ∈ Kr,s ∀(%, ϑ) ∈ Q%0,δ
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and that
f(ur,s,ε) = min{f(u) : u ∈ HS(Ωh

ε ) ∩M ∩Kr,s},
we infer that

(2.17) {σ(%, ϑ) + zµ(%, ϑ)w : (%, ϑ) ∈ Q%0,δ} ∩M = ∅.

On the other hand, if we set

ϕ(u) =
‖u‖p

p

‖Du‖22
∀u ∈ HS(Ωh

ε ) ∩ Lp(Ωh
ε ) with u 6≡ 0 in Ωh

ε ,

the continuous function γ : Q%0,δ → R2, defined by γ(%, ϑ) = (γ1(%, ϑ), γ2(%, ϑ))
with

γ1(%, ϑ) = ϕ([σ(%, ϑ) + zµ(%, ϑ)w]+) + ϕ([σ(%, ϑ) + zµ(%, ϑ)w]−)− 2,

γ2(%, ϑ) = ϕ([σ(%, ϑ) + zµ(%, ϑ)w]+)− ϕ([σ(%, ϑ) + zµ(%, ϑ)w]−),

has the following properties:

(a) γ1(1, ϑ) ≥ 0 for ϑ ∈ [δ, π/2− δ],
(b) γ1(%0, ϑ) ≤ 0 for ϑ ∈ [δ, π/2− δ],
(c) γ2(%, δ) ≥ 0 for % ∈ [%0, 1],
(d) γ2(%, π/2− δ) ≤ 0 for % ∈ [%0, 1].

In fact, as zµ = 0 on the boundary of Q%0,δ, (a) follows from (2.9), (b) from
(2.11), (c) and (d) from (2.12) and (2.13).

Thus, applying a result of C. Miranda (see [26]), we deduce that there exists
(%, ϑ) ∈ Q%0,δ such that γ(%, ϑ) = 0, that is,

ϕ([σ(%, ϑ) + zµ(%, ϑ)w]+) = ϕ([σ(%, ϑ) + zµ(%, ϑ)w]−) = 1,

which implies σ(%, ϑ) + zµ(%, ϑ)w ∈ M, contrary to (2.17). �

3. Qualitative properties of the solutions and concluding remarks

In this section we describe the behaviour as ε → 0 of the solutions ur,s,ε given
by Theorem 2.2 (see Proposition 3.2). This behaviour implies, in particular, that
different solutions correspond to different pairs (r, s) for ε > 0 small enough, so
that we have h2 solutions of P (Ωh

ε , p). Moreover, we show that (unlike [21]) these
solutions ur,s,ε, which minimize f on HS(Ωh

ε ) ∩M ∩Kr,s, are not local minima
for f on M : indeed, we show that we cannot have local minima for f on M (see
Remark 3.4).

Finally, we discuss some possible generalizations of the results obtained in
this paper.

Notations 3.1. For all µ > 0, let Q1
µ, . . . , Qh

µ be the sets defined by

Qi
µ =

{
x = (x1, . . . , xn) ∈ Rn :

n−1∑
i=1

x2
i ≤ µ2, i ≤ xn ≤ i + 1

}
∀i = 1, . . . , h.
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Proposition 3.2. For all r, s = 1, . . . , h and ε ∈ ]0, ε[ (see Lemma 2.3), let
ur,s,ε be a solution of problem P (Ωh

ε , p), minimizing f in HS(Ωh
ε ) ∩ M ∩ Kr,s

(see Theorem 2.2). Then, for all r, s = 1, . . . , h, we have:

(a) lim
ε→0+

sup{u+
r,s,ε(x) : x ∈ Ωh

ε \Qr
µ} = 0 ∀µ > 0,

lim
ε→0+

sup{u−r,s,ε(x) : x ∈ Ωh
ε \Qs

µ} = 0 ∀µ > 0.

(b) lim
ε→0+

sup{u+
r,s,ε(x) : x ∈ Ωh

ε ∩Qr
µ} = ∞ ∀µ > 0,

lim
ε→0+

sup{u−r,s,ε(x) : x ∈ Ωh
ε ∩Qs

µ} = ∞ ∀µ > 0.

(c) lim
ε→0+

‖ur,s,ε‖q = 0 ∀q ≤ p.

(d) lim
ε→0+

∫
Ωh

ε∩Qr
µ

(u+
r,s,ε)

q dx = ∞ ∀q >
n

2
(p− 1), ∀µ > 0,

lim
ε→0+

∫
Ωh

ε∩Qs
µ

(u−r,s,ε)
q dx = ∞ ∀q >

n

2
(p− 1), ∀µ > 0.

For the proof it suffices to argue as in the proof of Propositions 2.11 and
3.11 of [35]. In particular, the proof of property (d) is based on the following
proposition.

Proposition 3.3. Let u be a solution of problem P (Ω, p) with p > 2. Denote
by λ1(Ω) the first eigenvalue of the operator −∆ in H1,2

0 (Ω), that is,

λ1(Ω) = min
{ ∫

Ω

|Du|2 dx : u ∈ H1,2
0 (Ω),

∫
Ω

u2 dx = 1
}

.

Then
sup
Ω

u± ≥ [λ1(Ω)]1/(p−2).

Proof. Set

λ+
1 = min

{ ∫
Ω

|Dv|2 dx : v ∈ H1,2
0 (Ω),

∫
Ω

v2 dx = 1,

∫
Ω

|v|u− dx = 0
}

.

Let v+ ≥ 0 be a minimizing function for λ+
1 . Then∫

Ω

Dv+Dw dx− λ+
1

∫
Ω

v+w dx = 0 ∀w ∈ H1,2
0 (Ω) such that

∫
Ω

|w|u− dx = 0;

in particular, for w = u+, we obtain∫
Ω

Dv+Du+ dx− λ+
1

∫
Ω

v+u+ dx = 0.

Notice that, obviously, λ+
1 ≥ λ1(Ω) and∫

Ω

Du+Dv+ dx−
∫

Ω

(u+)p−1v+ dx = 0



Multiplicity of Nodal Solutions 259

because u is a solution of P (Ω, p). Then we have∫
Ω

((u+)p−1 − λ+
1 u+)v+ dx = 0,

while, if supΩ u+ < [λ1(Ω)]1/(p−2), we should have∫
Ω

((u+)p−1 − λ+
1 u+)v+ dx < 0,

because (u+(x))p−1 < λ1(Ω)u+(x) ≤ λ+
1 u+(x) for all x ∈ Ω satisfying 0 <

u+(x) < [λ1(Ω)]1/(p−2), and v+(x) > 0 if u+(x) > 0.
Analogous arguments hold for u−. �

Remark 3.4. We already remarked that the minimum of f on HS(Ωh
ε )∩M

is not achieved. We can also prove that f does not even have local minimum
points on HS(Ωh

ε ) ∩M ; in particular, the solutions ur,s,ε given by Theorem 2.2,
which minimize f on HS(Ωh

ε ) ∩ M ∩ Kr,s, are not local minimum points for f

on HS(Ωh
ε ) ∩M .

In fact, for all u ∈ HS(Ωh
ε ) ∩M we can find a sequence (ui)i ∈ HS(Ωh

ε ) ∩M

such that ui → u in Lp(Ωh
ε ) and in H1,2

0 (Ωh
ε ) and, moreover, f(ui) < f(u) for

all i ∈ N. In order to get such a sequence, fix a nonnegative function z ∈
C∞

0 (B(0, 1)) having radial symmetry with respect to the xn-axis and such that∫
B(0,1)

zp dx = 1. For all % > 0 set z%(x) = z((x− x)/%) where x = (0, . . . , 0, xn)
with 0 < xn < 1− σ1 is a fixed point of the xn-axis (see Notations 2.1).

For all % > 0 and i ∈ N, let

ui,% =
(

1− 1
i

)1/p

u+ +
(

1
i

)1/p ‖u+‖p

‖z%‖p
z% − u−.

As in Remarks 2.13 and 3.12 of [35] one can verify that, for all i ∈ N,

lim
%→0+

‖u±i,%‖p = ‖u±‖p

and

lim
%→0+

‖Du+
i,%‖

2
2 =

(
1− 1

i

)2/p

‖Du+‖22 < ‖Du+‖22,

lim
%→0+

‖Du−i,%‖
2
2 = ‖Du−‖22.

Consequently, there exists an infinitesimal sequence (%i)i of positive numbers
such that, if we set

ui =
(‖Du+

i,%i
‖22

‖u+
i,%i
‖p

p

)1/(p−2)

u+
i,%i

−
(‖Du−i,%i

‖22
‖u−i,%i

‖p
p

)1/(p−2)

u−i,%i
,

the sequence (ui)i in HS(Ωh
ε ) ∩M has the desired properties.
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Notice that the nonexistence of local minimum points for f on HS(Ωh
ε ) ∩M

shows, in particular, that the arguments used in [27], [28], [21], [31], based on
the use of “barycentre functions” like

β(u) =
1

‖u‖p
p

∫
Ωh

ε

x|u(x)|p dx,

cannot apply for p > 2∗.

Remark 3.5. The methods used in this paper can be applied to study prob-
lems with more general nonlinear terms. For example, analogous existence and
multiplicity results can be proved for the nodal solutions of problems of the form

P (Ω, p, q)

{
∆u + a(u+)p−1 − b(u−)q−1 = 0,

u ∈ H1,2
0 (Ω),

with a, b ∈ R+ and p, q ≥ 2∗.

Remark 3.6. The domains Ωh
ε considered in this paper do not have a smooth

boundary; however, it is clear that the same methods can be used to state
analogous results for smooth symmetric domains having a more general shape.
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[29] , Molteplicità di soluzioni per certe disequazioni variazionali di tipo ellittico,
Boll. Un. Mat. Ital. B (7) 3 (1989), 639–667.
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