TRAJECTORY ATTRACTORS FOR THE 2D

 NAVIER-STOKES SYSTEM AND SOME GENERALIZATIONSVladimir V. Chepyzhov - Mark I. Vishik

To the memory of Juliusz Schauder

Introduction

We are dealing with the non-autonomous 2D Navier-Stokes system

$$
\begin{equation*}
\partial_{t} u+\nu L u+B(u)=g(x, t), \quad(\nabla, u)=0,\left.\quad u\right|_{\partial \Omega}=0, \tag{1}
\end{equation*}
$$

$x \in \Omega \Subset \mathbb{R}^{2}, t \geq 0, u=u(x, t)=\left(u^{1}, u^{2}\right) \equiv u(t), g=g(x, t)=\left(g^{1}, g^{2}\right) \equiv$ $g(t)$. Here $L u=-P \Delta u$ is the Stokes operator, $\nu>0, B(u)=P \sum_{i=1}^{2} u_{i} \partial_{x_{i}} u$; P is the orthogonal projector onto the space of divergence-free vector fields (see Section 1).

Consider the autonomous case: $g(x, t) \equiv g(x), g \in H$, to begin with. Suppose for $t=0$ we are given the initial condition

$$
\begin{equation*}
\left.u\right|_{t=0}=u_{0}, \quad u_{0} \in H \tag{2}
\end{equation*}
$$

The problem (1), (2) has a unique solution $u(t), t \geq 0$, which can be represented in the form $u(t)=S(t) u_{0}$. The family of mappings $\{S(t) \mid t \geq 0\}$ forms a semigroup: $S\left(t_{1}\right) S\left(t_{2}\right)=S\left(t_{1}+t_{2}\right)$ for $t_{1}, t_{2} \geq 0, S(0)=\mathrm{Id}$. A set $\mathfrak{A} \subset H$ is said to be an attractor of this semigroup (or an attractor of equation (1)) if \mathfrak{A}

1991 Mathematics Subject Classification. 35B40, 35K57.
The research described in this publication was made possible in part by Award No. RM1186 of the U.S. Civilian Reserch \& Development Foundation for the Independent States of the Former Soviet Union (CRDF) and by grant No. 96-01-00354 of Russian Foundation of Fundamental Research.
is compact in H, \mathfrak{A} is strictly invariant with respect to $\{S(t)\}: S(t) \mathfrak{A}=\mathfrak{A}$ for $t \geq 0$, and \mathfrak{A} attracts every bounded set B in H :

$$
\operatorname{dist}_{H}(S(t) B, \mathfrak{A}) \rightarrow 0 \quad(t \rightarrow \infty)
$$

(see, for example, [13], [20], [2], and the references cited there).
The non-autonomous equation (1) has been less studied. Let an external force $g_{0}(x, t) \equiv g_{0}(t)$ in (1) depend on $t, t \geq 0$. Assume the function g_{0} is translation-compact in $L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right) \equiv L_{2}^{\text {loc }}\left(\right.$ or in $\left.L_{2, w}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right) \equiv L_{2, w}^{\text {loc }}\right)$. This means that the family of translations $\left\{g_{0}(\cdot+h) \mid h \geq 0\right\}$ forms a precompact set in $L_{2}^{\text {loc }}$ (respectively, in $L_{2, w}^{\text {loc }}$). It is easy to formulate translation-compactness criterions (see Section 1). For example, g_{0} is translation-compact in $L_{2, w}^{\text {loc }}$ if and only if the following norm is finite:

$$
\begin{equation*}
\left\|g_{0}\right\|_{\mathrm{a}}^{2}=\sup _{t \geq 0} \int_{t}^{t+1}\left|g_{0}(s)\right|^{2} d s<\infty \tag{3}
\end{equation*}
$$

Denote by $\mathcal{H}_{+}\left(g_{0}\right)$ the hull of the function g_{0} in the space $L_{2, w}^{\text {loc }}$, i.e.

$$
\mathcal{H}_{+}\left(g_{0}\right)=[\{g(\cdot+h) \mid h \geq 0\}]_{L_{2, w}^{\mathrm{loc}},}
$$

where $[\cdot]_{X}$ means the closure in a topological space X.
Consider the family of equations (1) with external forces $g \in \mathcal{H}_{+}\left(g_{0}\right) \equiv \Sigma$. Let $\left\{U_{g}(t, \tau) \mid t \geq \tau \geq 0\right\}$ be a family of operators (called a process in H) such that $U_{g}(t, \tau) u_{\tau}=u_{g}(t), t \geq \tau \geq 0$, where u_{g} is a solution of equation (1) with the external force g and with the initial condition $\left.u\right|_{t=\tau}=u_{\tau} \in H$. Evidently, $U_{g}(t, \tau): H \rightarrow H, U_{g}(t, \theta) U_{g}(\theta, \tau)=U_{g}(t, \tau), U_{g}(\tau, \tau)=\mathrm{Id}$ for $t \geq \theta \geq \tau \geq 0$. Consider the family $\left\{U_{g}(t, \tau) \mid g \in \mathcal{H}_{+}\left(g_{0}\right)\right\}$ of processes corresponding to the family of equations (1) with external forces $g \in \mathcal{H}_{+}\left(g_{0}\right)$. (In the autonomous case, $g_{0}(t) \equiv g_{0}, \mathcal{H}_{+}\left(g_{0}\right)=\left\{g_{0}\right\}, U_{g}(t, \tau)=S(t-\tau)$.) It is known that this family has a uniform (with respect to $g \in \Sigma$) attractor \mathfrak{A}_{Σ} in H. More precisely, \mathfrak{A}_{Σ} is compact in H, it attracts every bounded set B in H uniformly with respect to $g \in \Sigma$:

$$
\sup _{g \in \Sigma} \operatorname{dist}_{H}\left(U_{g}(t, \tau) B, \mathfrak{A}_{\Sigma}\right) \rightarrow 0 \quad(t \rightarrow \infty) \quad \forall \tau \geq 0
$$

and \mathfrak{A}_{Σ} is a minimal compact, uniformly attracting set (see [9], [6], and [4] dealing with a more restrictive case). In [6], [4] the structure and properties of the uniform attractor for (1) were also studied.

In the present work we introduce and study a trajectory attractor \mathcal{A}_{Σ} for equation (1). We point out at once that a trajectory attractor \mathcal{A}_{Σ} is a compact set in the corresponding trajectory space of equations (1) that consists of their solutions $u_{g}(t), t \geq 0$, considered as functions of t with values in H. In the previous considerations, the attractor \mathfrak{A}_{Σ} was a compact subset of points in H.

Consider as before a fixed external force g_{0} which is a translation-compact function in $L_{2}^{\text {loc }}\left(\right.$ or in $\left.L_{2, w}^{\text {loc }}\right)$ and let $\mathcal{H}_{+}\left(g_{0}\right) \equiv \Sigma$ be the hull of g_{0} in $L_{2}^{\text {loc }}$. (The case when g_{0} is translation-compact in $L_{2, w}^{\text {loc }}$ is studied in Section 1.) Let $H^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right), \mathbf{r}=(2,2,1)$, be the Nikol'skiĭ space in $\left.Q_{t_{1}, t_{2}}=\Omega \times\right] t_{1}, t_{2}$ [(see [3]) of functions $\left.\varphi(x, t)=\varphi(t)=\left(\varphi^{1}, \varphi^{2}\right) \in H, t \in\right] t_{1}, t_{2}[$, with a finite norm

$$
\|\varphi\|_{H^{\mathrm{r}}\left(Q_{t_{1}, t_{2}}\right)}^{2}=\int_{Q_{t_{1}, t_{2}}}\left(\sum_{|\boldsymbol{\alpha}| \leq 2}\left|\partial_{x}^{\boldsymbol{\alpha}} \varphi(x, t)\right|^{2}+\left|\partial_{t} \varphi(x, t)\right|^{2}\right) d x d t
$$

To each external force $g \in \mathcal{H}_{+}\left(g_{0}\right)$ there corresponds a trajectory space \mathcal{K}_{g}^{+}. The space \mathcal{K}_{g}^{+}is the union of all solutions $u(t)=u_{g}(t), t \geq 0$, of equation (1) in the space $\left.H^{\mathbf{r}, \text { loc }}\left(Q_{+}\right) \equiv H^{\mathbf{r}, \text { loc }}, Q_{+}=\Omega \times\right] 0, \infty\left[\right.$ (i.e. $u \in H^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right)$ for all $] t_{1}, t_{2}\left[\subset \mathbb{R}_{+}\right)$. Let $\mathcal{K}^{+}=\bigcup_{g \in \mathcal{H}_{+}\left(g_{0}\right)} \mathcal{K}_{g}^{+}$be the union of all \mathcal{K}_{g}^{+}. The translation semigroup $\{T(h) \mid h \geq 0\}$ acts on $H^{\mathbf{r}, \text { loc }}$:

$$
T(h) \varphi(t)=\varphi(t+h), \quad h \geq 0
$$

Evidently, $T(h) u_{g}(\cdot)=u_{g}(\cdot+h)=u_{T(h) g}(\cdot) \in \mathcal{K}_{T(h) g}^{+}$. Therefore,

$$
\begin{equation*}
T(h) \mathcal{K}^{+} \subseteq \mathcal{K}^{+} \quad \forall h \geq 0 \tag{4}
\end{equation*}
$$

(the inclusion may be strict, see Section 1). It is proved that \mathcal{K}^{+}is closed in $H^{\mathbf{r}, \text { loc }}$. It is clear that the semigroup $\{T(h)\}$ is continuous on $H^{\mathbf{r}, \text { loc }}$. Denote by $H^{\mathbf{r}, \mathrm{a}}\left(Q_{+}\right) \equiv H^{\mathbf{r}, \mathrm{a}}$ the subset of $H^{\mathbf{r}, \text { loc }}$ of functions $\varphi(t), t \geq 0$, having a finite norm

$$
\|\varphi\|_{H^{\mathbf{r}, \mathrm{a}}}^{2}=\sum_{|\boldsymbol{\alpha}| \leq 2}\left\|\partial_{x}^{\boldsymbol{\alpha}} \varphi\right\|_{\mathrm{a}}^{2}+\left\|\partial_{t} \varphi\right\|_{\mathrm{a}}^{2}<\infty
$$

where $\|\cdot\|_{a}$ is defined in (3).
A trajectory attractor of the translation semigroup $\{T(h)\}$ acting on \mathcal{K}^{+}is a set $\mathcal{A}_{\Sigma} \subseteq \mathcal{K}^{+}$which is compact in $H^{\mathbf{r}, \text { loc }}$, bounded in $H^{\mathbf{r}, \text { a }}$, invariant with respect to $\{T(h)\}: T(h) \mathcal{A}_{\Sigma}=\mathcal{A}_{\Sigma}$ for $h \geq 0$, and has the following attraction property: for every set $B \subset \mathcal{K}^{+}$bounded in $H^{\mathbf{r}, \mathrm{a}}$, and for each $\left[t_{1}, t_{2}\right] \subset \mathbb{R}_{+}$the set $T(h) B$ tends to \mathcal{A}_{Σ} in the strong topology of the space $H^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right)$, i.e.

$$
\begin{equation*}
\operatorname{dist}_{H^{\mathrm{r}}\left(Q_{t_{1}, t_{2}}\right)}\left(T(h) B, \mathcal{A}_{\Sigma}\right) \rightarrow 0 \quad(h \rightarrow \infty) \tag{5}
\end{equation*}
$$

In Section 2, we construct the trajectory attractor \mathcal{A}_{Σ} of the translation semigroup $\{T(h)\}$ acting on \mathcal{K}^{+}. Section 1 deals with the trajectory attractor \mathcal{A}_{Σ} in the "weak" topology of $H_{w}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$under the assumption that g_{0} is translationcompact in $L_{2, w}^{\text {loc }}$ only. In this case $T(h) B$ tends to \mathcal{A}_{Σ} in the weak topology of $H^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right)$ for all $\left[t_{1}, t_{2}\right] \subset \mathbb{R}_{+}$. In Section 3, the structure of the trajectory attractor \mathcal{A}_{Σ} is described.

Trajectory attractors have been constructed for various equations and systems of PDE for which the corresponding Cauchy problem has non-unique solution or for which the uniqueness theorem has not been proved yet (see [7]-[10] and [5]).

In Section 4 we construct a trajectory attractor for the 3D Navier-Stokes system; the structure and some properties of the trajectory attractor are given as well. In particular, the trajectory attractor \mathcal{A}_{Σ} is stable with respect to small perturbations of the external force $g_{0}(x, t)$; the trajectory attractor $\mathcal{A}_{\Sigma}^{(N)}$ of the Faedo-Galerkin approximation system of order N tends to \mathcal{A}_{Σ} as $N \rightarrow \infty$ in the corresponding topology. Some other unexpected properties are also exhibited.

1. Trajectory attractor for the $2 \mathrm{D} \mathbf{N}-\mathrm{S}$ system with translation-compact external force in $L_{2, w}^{\text {loc }}$

We consider the Navier-Stokes system in a bounded domain $\Omega \Subset \mathbb{R}^{2}$. Excluding the pressure, the system can be written in the form

$$
\begin{equation*}
\partial_{t} u+\nu L u+B(u)=g(x, t), \quad(\nabla, u)=0,\left.\quad u\right|_{\partial \Omega}=0, \quad x \in \Omega, t \geq 0 \tag{1.1}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}\right), u=u(x, t)=\left(u^{1}, u^{2}\right), g=g(x, t)=\left(g^{1}, g^{2}\right) . L$ is the Stokes operator: $L u=-P \Delta u ; B(u)=B(u, u), B(u, v)=P(u, \nabla) v=P \sum_{i=1}^{2} u_{i} \partial_{x_{i}} v$, $\nu>0$ (see [16], [15], [19], [21]). By H, V, and H_{2} we denote respectively the closure in $\left(L_{2}(\Omega)\right)^{2},\left(H^{1}(\Omega)\right)^{2}$, and $\left(H^{2}(\Omega)\right)^{2}$ of the set $\mathcal{V}_{0}=\left\{v \mid v \in\left(C_{0}^{\infty}(\Omega)\right)^{2}\right.$, $(\nabla, v)=0\}$. P denotes the orthogonal projector in $\left(L_{2}(\Omega)\right)^{2}$ onto the Hilbert space H. The scalar products in H and in V are $(u, v)=\int_{\Omega}(u(x), v(x)) d x$ and $((u, v))=\langle L u, v\rangle=\int_{\Omega}(\nabla u(x), \nabla v(x)) d x$ and the norms are respectively $|u|=(u, u)^{1 / 2}$ and $\|u\|=\langle L u, u\rangle^{1 / 2}$. The norm in H_{2} is $\|\cdot\|_{2}$.

To describe the external force $g(x, s)$ in (1.1) consider the topological space $L_{2, w}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$. By definition, the space $L_{2, w}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)=L_{2, w}^{\text {loc }}$ is $L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)=L_{2}^{\text {loc }}$ endowed with the following local weak convergence topology. The sequence $\left\{g_{n}\right\}$ converges to g as $n \rightarrow \infty$ in $L_{2, w}^{\text {loc }}$ whenever $\int_{t_{1}}^{t_{2}}\left(g_{n}(s)-g(s), v(s)\right) d s \rightarrow 0(n \rightarrow$ $\infty)$ for all $\left[t_{1}, t_{2}\right] \subseteq \mathbb{R}_{+}$and all $v \in L_{2}\left(t_{1}, t_{2} ; H\right)$.

Suppose we are given some fixed external force $g_{0} \in L_{2}^{\text {loc }}$. Assume it is translation-compact (tr.-c.) in $L_{2, w}^{\text {loc }}$, i.e. the set $\left\{g_{0}(\cdot+h) \mid h \in \mathbb{R}_{+}\right\}$is precompact in $L_{2, w}^{\text {loc }}$. This condition is valid if and only if

$$
\begin{equation*}
\left\|g_{0}\right\|_{L_{2}^{a}\left(\mathbb{R}_{+} ; H\right)}^{2}=\left\|g_{0}\right\|_{\mathrm{a}}^{2}=\sup _{t \geq 0} \int_{t}^{t+1}\left|g_{0}(s)\right|^{2} d s<\infty \tag{1.2}
\end{equation*}
$$

(see [6]). Denote by $\mathcal{H}_{+}\left(g_{0}\right)$ the hull of the function g_{0} in $L_{2, w}^{\mathrm{loc}}: \mathcal{H}_{+}\left(g_{0}\right)=$ $\left[\left\{g_{0}(\cdot+h) \mid h \in \mathbb{R}_{+}\right\}\right]_{L_{2, w}^{\text {loc }}}$. Here $[\cdot]_{L_{2, w}^{\text {loc }}}$ means the closure in $L_{2, w}^{\text {loc }}$. It can be shown that the set $\mathcal{H}_{+}\left(g_{0}\right)$, which is a topological subspace of $L_{2, w}^{\text {loc }}$, is metrizable and the
corresponding metric space is complete. Moreover, every function $g \in \mathcal{H}_{+}\left(g_{0}\right)$ is tr.-c. in $L_{2, w}^{\mathrm{loc}}, \mathcal{H}_{+}(g) \subseteq \mathcal{H}_{+}\left(g_{0}\right)$, and $\|g\|_{\mathrm{a}} \leq\left\|g_{0}\right\|_{\mathrm{a}}$.

The translation semigroup $\{T(t) \mid t \geq 0\}=\{T(t)\}$ acts on $\mathcal{H}_{+}\left(g_{0}\right): T(t) g(s)$ $=g(s+t)$. Evidently, $T(t)$ is continuous in $L_{2, w}^{\text {loc }}$ and $T(t) \mathcal{H}_{+}\left(g_{0}\right) \subseteq \mathcal{H}_{+}\left(g_{0}\right)$ for $t \geq 0$.

We shall study the family of equations (1.1) with various external forces $g \in \mathcal{H}_{+}\left(g_{0}\right)$.

Denote by $Q_{t_{1}, t_{2}}$ the cylinder $\Omega \times\left[t_{1}, t_{2}\right]$, where $\left[t_{1}, t_{2}\right] \subset \mathbb{R}_{+}$.
Consider the space $H^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right), \mathbf{r}=(2,2,1)$ (see [3]), $H^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right)=L_{2}\left(t_{1}, t_{2}\right.$; $\left.H_{2}\right) \cap\left\{v \mid \partial_{t} v \in L_{2}\left(t_{1}, t_{2} ; H\right)\right\}$. The norm in $H^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right)$ is

$$
\begin{equation*}
\|v\|_{H^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right)}^{2}=\int_{t_{1}}^{t_{2}}\left(\|v(s)\|_{2}^{2}+\left|\partial_{t} v(s)\right|^{2}\right) d s \tag{1.3}
\end{equation*}
$$

Let us recall the existence and uniqueness theorem.
Theorem 1.1. Let $g \in L_{2}\left(t_{1}, t_{2} ; H\right)$ and $u_{0} \in V$. Then there exists a unique solution u of equation (1.1) belonging to the space $H^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right)$ such that $u\left(t_{1}\right)=u_{0}$. Moreover, $u \in C\left(\left[t_{1}, t_{2}\right] ; V\right)$.

This theorem is a variant of the classical result (see [14]-[16], [19], [2]). The proof uses the Faedo-Galerkin approximation method.

We shall study equation (1.1) in the semicylinder $Q_{+}=\Omega \times \mathbb{R}_{+}$, where $g \in \mathcal{H}_{+}\left(g_{0}\right)$.

Consider the space $H^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)=L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; H_{2}\right) \cap\left\{v \mid \partial_{t} v \in L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)\right\}$, i.e. $v \in H^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$if $\left\|\Pi_{t_{1}, t_{2}} v\right\|_{H^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right)}^{2}<\infty$ for every $\left[t_{1}, t_{2}\right] \subset \mathbb{R}_{+}$, where $\Pi_{t_{1}, t_{2}}$ is the restriction operator to the interval $\left[t_{1}, t_{2}\right]$. We introduce two different topological spaces $H_{s}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$and $H_{w}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$("strong" and"weak"). The space $H_{s}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$(resp. $\left.H_{w}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)\right)$is $H^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$with the following convergence topology. By definition, $v_{n} \rightarrow v(n \rightarrow \infty)$ in $H_{s}^{\mathbf{r}, l o c}\left(Q_{+}\right)$(resp. in $\left.H_{w}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)\right)$if $\Pi_{t_{1}, t_{2}} v_{n} \rightarrow \Pi_{t_{1}, t_{2}} v(n \rightarrow \infty)$ strongly in $H^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right)$ (respectively, $\Pi_{t_{1}, t_{2}} v_{n} \rightharpoonup \Pi_{t_{1}, t_{2}} v(n \rightarrow \infty)$ weakly in $\left.H^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right)\right)$ for all $\left[t_{1}, t_{2}\right] \subseteq \mathbb{R}_{+}$. It is easy to prove that the linear topological space $H_{s}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$is metrizable, for example, by means of the Fréchet metric generated by the seminorms $\left\|\Pi_{n, n+1} v\right\|_{H^{\mathbf{r}}\left(Q_{n, n+1}\right)}$, $n=0,1,2, \ldots$ The space $H_{w}^{\mathbf{r}, l o c}\left(Q_{+}\right)$is not metrizable, but it is a Hausdorff and Fréchet-Urysohn space with a countable topology base.

We shall also use the space $H^{\mathbf{r}, \mathrm{a}}\left(Q_{+}\right)$, which is a subspace of $H^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$. By definition, $v \in H^{\mathbf{r}, \mathrm{a}}\left(Q_{+}\right)$if the following norm is finite:

$$
\begin{equation*}
\|v\|_{H^{\mathrm{r}, \mathrm{a}}\left(Q_{+}\right)}^{2}=\|v\|_{\mathbf{r}, \mathrm{a}}^{2}=\sup _{t \geq 0}\left\|\Pi_{t, t+1} v\right\|_{H^{\mathrm{r}}\left(Q_{t, t+1}\right)}^{2} \tag{1.4}
\end{equation*}
$$

Evidently, $H^{\mathbf{r}, \mathrm{a}}\left(Q_{+}\right)$with the norm (1.4) is a Banach space. We shall not use the topology generated by the norm (1.4). We need the Banach space $H^{\mathbf{r}, \mathrm{a}}\left(Q_{+}\right)$ to define bounded sets in $H^{\text {r,loc }}\left(Q_{+}\right)$only.

With any external force $g \in \mathcal{H}_{+}\left(g_{0}\right)$ we associate the trajectory space \mathcal{K}_{g}^{+} that is the union of all solutions $u(s), s \geq 0$, of equation (1.1) in the space $H^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$. Notice that $|B(v)| \leq C|v|^{1 / 2}\|v\|^{2}\|v\|_{2}^{1 / 2}$; therefore any solution $u \in$ \mathcal{K}_{g}^{+}satisfies (1.1) in the strong sense of the space $L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$. By Theorem 1.1, the trajectory space \mathcal{K}_{g}^{+}is wide enough for each $g \in \mathcal{H}_{+}\left(g_{0}\right)$. Define $\mathcal{K}^{+}=$ $\mathcal{K}_{\mathcal{H}_{+}\left(g_{0}\right)}^{+}=\bigcup_{g \in \mathcal{H}_{+}\left(g_{0}\right)} \mathcal{K}_{g}^{+}$.

Lemma 1.1. If $g_{0} \in L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$ satisfies (1.2) then $\mathcal{K}^{+} \subset H^{\mathbf{r}, \mathrm{a}}\left(Q_{+}\right)$.
This lemma will be proved later on.
Consider the translation semigroup $\{T(t) \mid t \geq 0\}$ acting on $H^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$by the formula

$$
T(t) v(s)=v(s+t), \quad s \geq 0, v \in H^{\mathbf{r}, \operatorname{loc}}\left(Q_{+}\right)
$$

Obviously, the family $\left\{\mathcal{K}_{g}^{+} \mid g \in \mathcal{H}_{+}\left(g_{0}\right)\right\}$ of trajectory spaces corresponding to equation (1.1) satisfies the embedding

$$
\begin{equation*}
T(t) \mathcal{K}_{g}^{+} \subseteq \mathcal{K}_{T(t) g}^{+}, \quad \forall t \geq 0 \tag{1.5}
\end{equation*}
$$

In other words, for each $t \geq 0$, the function $u(s+t), s \geq 0$, is a solution of equation (1.1) with a shifted symbol $g(s+t)=T(t) g(s)$ for any solution $u \in \mathcal{K}_{g}^{+}$ of equation (1.1) with symbol $g \in \mathcal{H}_{+}\left(g_{0}\right)$. Hence, the translation semigroup $\{T(t)\}$ takes $\mathcal{K}^{+}=\mathcal{K}_{\mathcal{H}_{+}\left(g_{0}\right)}^{+}$into itself: $T(t) \mathcal{K}^{+} \subseteq \mathcal{K}^{+}, t \geq 0$.

In this section we study the trajectory attractor $\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ of the translation semigroup $\{T(t)\}$ acting on $\mathcal{K}^{+}=\mathcal{K}_{\mathcal{H}_{+}\left(g_{0}\right)}^{+}$. The set $\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ attracts every set $T(t) B$ as $t \rightarrow \infty$ in the topology of $\Theta_{+}^{\text {loc }}=H_{w}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$, where $B \subset \mathcal{K}^{+}$and B is bounded in the Banach space $\mathcal{F}_{+}^{\mathrm{a}}=H^{\mathbf{r}, \mathrm{a}}\left(Q_{+}\right)$.

Definition 1.1. Let Σ be a complete metric space and let Θ be a topological space. Consider a family of sets $\left\{\mathcal{K}_{\sigma} \mid \sigma \in \Sigma\right\}, \mathcal{K}_{\sigma} \subset \Theta$, depending on a parameter $\sigma \in \Sigma$. The family $\left\{\mathcal{K}_{\sigma} \mid \sigma \in \Sigma\right\}$ is said to be (Θ, Σ)-closed if the graph set $\bigcup_{\sigma \in \Sigma} \mathcal{K}_{\sigma} \times\{\sigma\}$ is closed in the topological space $\Theta \times \Sigma$ with the usual product topology.

Proposition 1.1. Let Σ be a compact metric space and $\left\{\mathcal{K}_{\sigma} \mid \sigma \in \Sigma\right\}$ be (Θ, Σ)-closed. Then the set $\mathcal{K}_{\Sigma}=\bigcup_{\sigma \in \Sigma} \mathcal{K}_{\sigma}$ is closed in Θ.

Proof. We use the standard reasoning. Let $u \notin \mathcal{K}_{\Sigma}=\bigcup_{\sigma \in \Sigma} \mathcal{K}_{\sigma}$. Then $(u, \sigma) \notin \bigcup_{\sigma^{\prime} \in \Sigma} \mathcal{K}_{\sigma^{\prime}} \times\left\{\sigma^{\prime}\right\}$ for all $\sigma \in \Sigma$. The set $\bigcup_{\sigma^{\prime} \in \Sigma} \mathcal{K}_{\sigma^{\prime}} \times\left\{\sigma^{\prime}\right\}$ is closed in $\Theta \times \Sigma$, so there is a neighbourhood $\mathcal{W}_{\sigma} \times \mathcal{O}_{\sigma}$ in $\Theta \times \Sigma$ such that $\mathcal{W}_{\sigma} \times \mathcal{O}_{\sigma} \cap$ $\left(\bigcup_{\sigma^{\prime} \in \Sigma} \mathcal{K}_{\sigma^{\prime}} \times\left\{\sigma^{\prime}\right\}\right)=\emptyset, u \in \mathcal{W}_{\sigma}, \sigma \in \mathcal{O}_{\sigma}$, where \mathcal{W}_{σ} and \mathcal{O}_{σ} are open sets in Θ and Σ respectively. The family $\left\{\mathcal{O}_{\sigma} \mid \sigma \in \Sigma\right\}$ forms an open covering of Σ. Since Σ is compact, there is a finite subcovering $\left\{\mathcal{O}_{\sigma_{i}} \mid i=1, \ldots, N\right\}$. Put $\mathcal{W}(u)=\bigcap_{i=1}^{N} \mathcal{W}_{\sigma_{i}}$. Evidently, $\mathcal{W}(u) \cap \mathcal{K}_{\Sigma}=\emptyset$. Hence, for every $u \notin \mathcal{K}_{\Sigma}$ there is a neighbourhood $\mathcal{W}(u)$ with $\mathcal{W}(u) \cap \mathcal{K}_{\Sigma}=\emptyset$, i.e. \mathcal{K}_{Σ} is closed in Θ.

Lemma 1.2. The family $\left\{\mathcal{K}_{g}^{+} \mid g \in \mathcal{H}_{+}\left(g_{0}\right)\right\}$ of trajectory spaces corresponding to equation (1.1) is $\left(\Theta_{+}^{\text {loc }}, \mathcal{H}_{+}\left(g_{0}\right)\right)$-closed and $\mathcal{K}^{+}=\mathcal{K}_{\mathcal{H}_{+}\left(g_{0}\right)}^{+}$is closed in $\Theta_{+}^{\text {loc }}$.

Proof. Assume that $u_{n} \in \mathcal{K}_{g_{n}}, g_{n} \in \mathcal{H}_{+}\left(g_{0}\right), u_{n} \rightarrow u(n \rightarrow \infty)$ in $\Theta_{+}^{\text {loc }}$ and $g_{n} \rightarrow g(n \rightarrow \infty)$ in $L_{2, w}^{\text {loc }}$. We claim that $u \in \mathcal{K}_{g}^{+}$. Indeed, for each fixed $\left[t_{1}, t_{2}\right] \subset$ \mathbb{R}_{+}we have $u_{n} \rightharpoonup u(n \rightarrow \infty)$ weakly in $H^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right)$. Thus, $\partial_{t} u_{n} \rightharpoonup \partial_{t} u(n \rightarrow \infty)$ weakly in $L_{2}\left(t_{1}, t_{2} ; H\right)$ and $\partial^{\boldsymbol{\alpha}} u_{n} \rightharpoonup \partial^{\boldsymbol{\alpha}} u(n \rightarrow \infty)$ weakly in $L_{2}\left(t_{1}, t_{2} ; H\right)$ for all $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}\right)$ with $|\boldsymbol{\alpha}| \leq 2$. In particular, by refining, we may assume that $u_{n} \rightarrow u(n \rightarrow \infty)$ almost everywhere in $Q_{t_{1}, t_{2}}$ and $B\left(u_{n}\right) \rightharpoonup B(u)(n \rightarrow \infty)$ weakly in $L_{2}\left(t_{1}, t_{2} ; H\right)$ (see the compactness theorems in [16], [19]). Therefore, in the equation

$$
\partial_{t} u_{n}+\nu L u_{n}+B\left(u_{n}\right)=g_{n}(x, t),
$$

we may pass to the limit as $n \rightarrow \infty$ weakly in $L_{2}\left(t_{1}, t_{2} ; H\right)$ and get

$$
\partial_{t} u+\nu L u+B(u)=g(x, t)
$$

so that $u \in \mathcal{K}_{g}^{+}$. Finally, it follows from Proposition 1.1 that $\mathcal{K}_{\mathcal{H}_{+}\left(g_{0}\right)}^{+}$is closed in $\Theta_{+}^{\text {loc }}$ since $\Sigma=\mathcal{H}_{+}\left(g_{0}\right)$ is a compact metric space.

Consider the translation semigroup $\{T(t)\}$ acting on the metric space $\mathcal{H}_{+}\left(g_{0}\right)$. Evidently, the semigroup $\{T(t)\}$ is continuous in $\mathcal{H}_{+}\left(g_{0}\right)$.

Definition 1.2. A set \mathfrak{A} is said to be a global attractor of a semigroup $\{S(t)\}$ acting on a complete metric space X if (i) \mathfrak{A} is compact in X and \mathfrak{A} attracts every bounded set $B: \operatorname{dist}_{X}(S(t) B, \mathfrak{A}) \rightarrow 0(t \rightarrow \infty)$; (ii) $S(t) \mathfrak{A}=\mathfrak{A}$ for all $t \geq 0$.

For the case $X=\Sigma=\mathcal{H}_{+}\left(g_{0}\right)$ we have
Proposition 1.2. The translation semigroup $\{T(t)\}$ acting on the compact metric space $\Sigma=\mathcal{H}_{+}\left(g_{0}\right)$ has a global attractor \mathfrak{A} which coincides with the ω limit set of Σ :

$$
\mathfrak{A}=\omega(\Sigma)=\bigcap_{t \geq 0}\left[\bigcup_{h \geq t} T(h) \Sigma\right]_{\Sigma}, \quad \omega(\Sigma) \subseteq \Sigma
$$

where $[\cdot]_{\Sigma}$ means the closure in Σ. Moreover, $T(t) \omega(\Sigma)=\omega(\Sigma)$ for $t \geq 0$.
This statement follows from well-known theorems from the theory of attractors of semigroups acting in metric spaces (see, for example, [2], [20], [13]).

Consider a more general scheme. Let Σ be a complete metric space. Let also \mathcal{F} be a Banach space. Assume $\mathcal{F} \subseteq \Theta$, where Θ is a Hausdorff topological space. Let a semigroup $\{T(t)\}$ act on $\Theta: T(t) \Theta \subseteq \Theta, t \geq 0$. Suppose we are given a family of sets $\left\{\mathcal{K}_{\sigma} \mid \sigma \in \Sigma\right\}, \mathcal{K}_{\sigma} \subseteq \mathcal{F}$. Put $\mathcal{K}_{\Sigma}=\bigcup_{\sigma \in \Sigma} \mathcal{K}_{\sigma}$.

Definition 1.3. A set $P \subseteq \Theta$ is said to be a uniformly (with respect to $\sigma \in \Sigma$) attracting set for the family $\left\{\mathcal{K}_{\sigma} \mid \sigma \in \Sigma\right\}$ in the topology Θ if for every bounded set B in \mathcal{F} and $B \subseteq \mathcal{K}_{\Sigma}$, the set P attracts $T(t) B$ as $t \rightarrow \infty$ in the topology of Θ, i.e. for every neighbourhood $\mathcal{O}(P)$ of P in Θ there exists $t_{1} \geq 0$ such that $T(t) B \subseteq \mathcal{O}(P)$ for all $t \geq t_{1}$.

Definition 1.4. A set $\mathcal{A}_{\Sigma} \subseteq \Theta$ is said to be a uniform (with respect to $\sigma \in \Sigma)$ attractor of the semigroup $\{T(t)\}$ on \mathcal{K}_{Σ} in the topology Θ if \mathcal{A}_{Σ} is compact in Θ and is a minimal compact uniformly attracting set of $\left\{\mathcal{K}_{\sigma} \mid \sigma \in \Sigma\right\}$, i.e. \mathcal{A}_{Σ} is contained in every compact uniformly attracting set P of $\left\{\mathcal{K}_{\sigma} \mid \sigma \in \Sigma\right\}$.

Let a semigroup $\{T(t)\}$ act on $\Sigma: T(t) \Sigma \subseteq \Sigma, t \geq 0$.
Definition 1.5. The family $\left\{\mathcal{K}_{\sigma} \mid \sigma \in \Sigma\right\}$ of trajectory spaces is said to be translation-coordinated (tr.-coord.) if for all $\sigma \in \Sigma$ and $u \in \mathcal{K}_{\sigma}$,

$$
T(t) u \in \mathcal{K}_{T(t) \sigma} \quad \forall t \geq 0
$$

It follows from (1.5) that the family $\left\{\mathcal{K}_{g}^{+} \mid g \in \mathcal{H}_{+}\left(g_{0}\right)\right\}$ is tr.-coord. with respect to the translation semigroup $\{T(t)\}$.

Proposition 1.3. Let Σ be a compact metric space and suppose that a continuous semigroup $\{T(t)\}$ acts on Σ and on $\Theta: T(t) \Sigma \subseteq \Sigma, T(t) \Theta \subseteq \Theta$, $t \geq 0$. Suppose we are given a family of sets $\left\{\mathcal{K}_{\sigma} \mid \sigma \in \Sigma\right\}, \mathcal{K}_{\sigma} \subseteq \mathcal{F}$. Assume that the family $\left\{\mathcal{K}_{\sigma} \mid \sigma \in \Sigma\right\}$ is (Θ, Σ)-closed and tr.-coord. Let there exist a uniformly (with respect to $\sigma \in \Sigma$) attracting set P for $\left\{\mathcal{K}_{\sigma} \mid \sigma \in \Sigma\right\}$ in Θ such that P is compact in Θ and P is bounded in \mathcal{F}. Then the semigroup $\{T(t)\}$ acting on $\mathcal{K}_{\Sigma}=\bigcup_{\sigma \in \Sigma} \mathcal{K}_{\sigma}$ has a uniform (with respect to $\sigma \in \Sigma$) attractor $\mathcal{A}_{\Sigma} \subseteq \mathcal{K}_{\Sigma} \cap P$ in the space Θ, and

$$
\begin{equation*}
T(t) \mathcal{A}_{\Sigma}=\mathcal{A}_{\Sigma} \quad \forall t \geq 0 \tag{1.6}
\end{equation*}
$$

Moreover,

$$
\mathcal{A}_{\Sigma}=\mathcal{A}_{\omega(\Sigma)}
$$

where $\mathcal{A}_{\omega(\Sigma)}$ is the uniform (with respect to $\sigma \in \omega(\Sigma)$) attractor of the family $\left\{\mathcal{K}_{\sigma} \mid \sigma \in \omega(\Sigma)\right\}, \mathcal{A}_{\omega(\Sigma)} \subseteq \mathcal{K}_{\omega(\Sigma)}$. Here $\omega(\Sigma)$ is the attractor of the semigroup $\{T(t)\}$ on $\Sigma, T(t) \omega(\Sigma)=\omega(\Sigma)$. The set $\mathcal{A}_{\Sigma}=\mathcal{A}_{\omega(\Sigma)}$ is compact in Θ and bounded in \mathcal{F}.

The proof of Proposition 1.3 is given in [5] (see also [10]).
In application to the Navier-Stokes system (1.1) in this section, $\Sigma=\mathcal{H}_{+}\left(g_{0}\right)$, $\mathcal{F}=\mathcal{F}_{+}^{\mathrm{a}}=H^{\mathbf{r}, \mathrm{a}}\left(Q_{+}\right), \Theta=\Theta_{+}^{\text {loc }}=H_{w}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right),\{T(t)\}$ is the translation semigroup, and $\left\{\mathcal{K}_{g}^{+} \mid g \in \mathcal{H}_{+}\left(g_{0}\right)\right\}$ is the family of trajectory spaces of equation (1.1). In this case a uniform (with respect to $\sigma \in \Sigma$) attractor $\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ is called
a trajectory attractor of the family $\left\{\mathcal{K}_{g}^{+} \mid g \in \mathcal{H}_{+}\left(g_{0}\right)\right\}$. In the next section we shall consider the "strong" space $\Theta=\Theta_{+}^{\text {loc }}=H_{s}^{\text {r,loc }}\left(Q_{+}\right)$.

Let us formulate the main result of this section.
Theorem 1.2. Let g_{0} be tr.-c. in $L_{2, w}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$. Then the translation semigroup $\{T(t)\}$ acting on $\mathcal{K}^{+}=\mathcal{K}_{\mathcal{H}_{+}\left(g_{0}\right)}^{+}$has a trajectory attractor $\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ in $\Theta_{+}^{\text {loc }}=H_{w}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$; the set $\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ attracts every set $B \subseteq \mathcal{K}^{+}$, bounded in $\mathcal{F}_{+}^{\mathrm{a}}=H^{\mathbf{r}, \mathrm{a}}\left(Q_{+}\right)$. The set $\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ is bounded in \mathcal{F}^{+}, compact in $\Theta_{+}^{\text {loc }}$, and it is invariant with respect to the translation semigroup: $T(t) \mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}=\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ for all $t \geq 0$. Moreover,

$$
\begin{equation*}
\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}=\mathcal{A}_{\omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)} \tag{1.7}
\end{equation*}
$$

where $\mathcal{A}_{\omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)}$ is the trajectory attractor of the family $\left\{\mathcal{K}_{g} \mid g \in \omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)\right\}$, $\mathcal{A}_{\omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)} \subseteq \mathcal{K}_{\omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)}$. Every function $u \in \mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ is tr. - c. in $\Theta_{+}^{\text {loc }}$.

Notice that the topology of the space $H_{w}^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right)$ is stronger than the uniform convergence topology of the space $C\left(\left[t_{1}, t_{2}\right] ; H\right), H_{w}^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right) \subset C\left(\left[t_{1}, t_{2}\right] ; H\right)$. So, we have

Corollary 1.1. For every set $B \subset \mathcal{K}^{+}$bounded in \mathcal{F}^{+}, one has

$$
\operatorname{dist}_{C([0, \Gamma] ; H)}\left(\Pi_{0, \Gamma} T(t) B, \Pi_{0, \Gamma} \mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}\right) \rightarrow 0 \quad(t \rightarrow \infty) \quad \forall \Gamma \geq 0
$$

Similarly, from the embedding $H_{w}^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right) \subset C_{w}\left(\left[t_{1}, t_{2}\right] ; V\right)$, we obtain
Corollary 1.2. For every set $B \subset \mathcal{K}^{+}$bounded in \mathcal{F}^{+}, and for all $v \in V$, one has

$$
\operatorname{dist}_{C([0, \Gamma])}\left(\Pi_{0, \Gamma} J_{v} T(t) B, \Pi_{0, \Gamma} J_{v} \mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}\right) \rightarrow 0 \quad(t \rightarrow \infty) \quad \forall \Gamma \geq 0
$$

where J_{v} is the mapping from $H_{w}^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right)$ into $C\left(\left[t_{1}, t_{2}\right]\right)$ given by $J_{v}(u(\cdot))=$ $((u(\cdot), v)),((\cdot, \cdot))$ being the scalar product in V.

To prove Theorem 1.2 we use Proposition 1.3. According to (1.5) and Lemma 1.2 we only have to check that the family $\left\{\mathcal{K}_{g}^{+} \mid g \in \mathcal{H}_{+}\left(g_{0}\right)\right\}$ of trajectory spaces corresponding to equation (1.1) has a uniformly (with respect to $g \in \mathcal{H}_{+}\left(g_{0}\right)$) attracting set P compact in $\Theta_{+}^{\text {loc }}$ and bounded in $\mathcal{F}_{+}^{\text {a }}$. This is the most difficult part of the proof. We separate the proof of this fact into a few lemmas.

Lemma 1.3. For all $u \in \mathcal{K}_{g}^{+}, g \in \mathcal{H}_{+}\left(g_{0}\right)$, the following estimates are valid:

$$
\begin{gather*}
|u(\tau+t)|^{2} \leq e^{-\lambda t}|u(\tau)|^{2}+C_{1}\|g\|_{\mathrm{a}}^{2}, \quad t, \tau \geq 0 \tag{1.8}\\
\|T(t) u\|_{L_{\infty}\left(\mathbb{R}_{+} ; H\right)}^{2} \leq e^{-\lambda t}|u(0)|^{2}+C_{1}\|g\|_{\mathrm{a}}^{2} \tag{1.9}
\end{gather*}
$$

where λ is the first eigenvalue of the operator $\nu L, C_{1}=\lambda^{-1}\left(1-e^{-\lambda}\right)^{-1}$;

$$
\begin{align*}
& \nu \int_{t}^{t+1}\|u(s)\|^{2} d s \leq|u(t)|^{2}+C_{2} \int_{t}^{t+1}|g(s)|^{2} d s \tag{1.10}\\
& \quad \nu\|T(t) u\|_{L_{2}^{a}\left(\mathbb{R}_{+} ; V\right)}^{2} \leq e^{-\lambda t}|u(0)|^{2}+C_{3}\|g\|_{a}^{2} \tag{1.11}
\end{align*}
$$

where $C_{2}=\lambda^{-1}, C_{3}=C_{1}+C_{2}, t \geq 0$.
Proof. Taking the scalar product in H of (1.1) with u, we get

$$
\begin{equation*}
\frac{d}{d t}|u(t)|^{2}+\lambda|u(t)|^{2} \leq \frac{d}{d t}|u(t)|^{2}+\nu\|u(t)\|^{2} \leq \lambda^{-1}|g(t)|^{2} \tag{1.12}
\end{equation*}
$$

and integrating from τ to $\tau+t$ we obtain

$$
|u(\tau+t)|^{2} \leq e^{-\lambda t}|u(\tau)|^{2}+\lambda^{-1} e^{-\lambda(\tau+t)} \int_{\tau}^{\tau+t}|g(s)|^{2} e^{\lambda s} d s
$$

Estimating the last expression, we get

$$
\begin{aligned}
\int_{\tau}^{\tau+t} & |g(s)|^{2} e^{-\lambda(\tau+t-s)} d s \\
& \leq \int_{\tau+t-1}^{\tau+t}|g(s)|^{2} e^{-\lambda(\tau+t-s)} d s+\int_{\tau+t-2}^{\tau+t-1}|g(s)|^{2} e^{-\lambda(\tau+t-s)} d s+\ldots \\
& \leq \int_{\tau+t-1}^{\tau+t}|g(s)|^{2} d s+e^{-\lambda} \int_{\tau+t-2}^{\tau+t-1}|g(s)|^{2} d s+e^{-2 \lambda} \int_{\tau+t-3}^{\tau+t-2}|g(s)|^{2} d s+\ldots \\
& \leq\|g\|_{\mathrm{a}}^{2}\left(1+e^{-\lambda}+e^{-2 \lambda}+\ldots\right)=\|g\|_{\mathrm{a}}^{2}\left(1-e^{-\lambda}\right)^{-1}
\end{aligned}
$$

So, inequality (1.8) is proved. Inequality (1.9) follows directly from (1.8). In the usual way, one derives (1.10) from (1.12). Combining (1.8) and (1.10), we get (1.11).

Lemma 1.4. For all $u \in \mathcal{K}_{g}^{+}, g \in \mathcal{H}_{+}\left(g_{0}\right)$,

$$
\begin{equation*}
\sup _{0 \leq t \leq \Gamma} t\|u(\tau+t)\|^{2} \leq C_{1}\left(\Gamma,|u(\tau)|^{2}, \int_{\tau}^{\tau+\Gamma}|g(s)|^{2} d s\right), \quad \Gamma, \tau \geq 0 \tag{1.13}
\end{equation*}
$$

where $C_{1}\left(\eta_{1}, \eta_{2}, \eta_{3}\right)$ is a continuous and increasing function with respect to each $\eta_{i} \geq 0$.

The proof is analogous to one given in [2]. We sketch the main points for convenience of the readers. For brevity, we suppose without loss of generality that $\nu=1$ and $\tau=0$. Multiplying equation (1.1) by $t L u$ we get

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}\left(t\|u(t)\|^{2}\right)-\frac{1}{2}\|u(t)\|^{2}+t\|u(t)\|_{2}^{2}+t(B(u), L u) \leq t|g(t)|^{2}+\frac{1}{4} t\|u(t)\|_{2}^{2} \tag{1.14}
\end{equation*}
$$

Recall that $(u, L u)=\|u\|^{2}$ and $(L u, L u)=\|u\|_{2}^{2}$. We also have

$$
\begin{align*}
& (B(u), L u) \leq|B(u)| \cdot\|u\|_{2} \tag{1.15}\\
& |B(u)| \leq c\left(\int_{\Omega}|u|^{2}|\nabla u|^{2} d x\right)^{1 / 2} \leq c\|u\|_{0,4}\|u\|_{1,4} \tag{1.16}\\
& \|u\|_{0,4} \leq c_{1}\|u\|^{1 / 2}|u|^{1 / 2}, \quad\|u\|_{0,4} \leq c_{2}\|u\|_{2}^{1 / 2}\|u\|^{1 / 2} \tag{1.17}
\end{align*}
$$

(see inequalities (1.17) in [15], [21]). It follows from (1.15)-(1.17) that

$$
\begin{align*}
|B(u)| & \leq c_{3}\|u\|_{2}^{1 / 2}\|u\| \cdot|u|^{1 / 2} \tag{1.18}\\
t(B(u), L u) & \leq t c_{3}\|u\|_{2}^{3 / 2}\|u\| \cdot|u|^{1 / 2} \leq \frac{t}{4}\|u\|_{2}^{2}+\frac{t c_{4}}{2}\|u\|^{4}|u|^{2} . \tag{1.19}
\end{align*}
$$

Using (1.14) and (1.19) we obtain

$$
\begin{equation*}
\frac{d}{d t}\left(t\|u(t)\|^{2}\right)+t\|u(t)\|_{2}^{2} \leq\|u(t)\|^{2}+2 t|g(t)|^{2}+t c_{4}\|u(t)\|^{4}|u(t)|^{2} \tag{1.20}
\end{equation*}
$$

Define $z(t)=t\|u(t)\|^{2}$. Consequently,

$$
z^{\prime}(t) \leq b(t)+\gamma(t) z(t), \quad b(t)=\|u(t)\|^{2}+2 t|g(t)|^{2}, \quad \gamma(t)=c_{4}\|u(t)\|^{2}|u(t)|^{2}
$$

Applying the Gronwall inequality, we get

$$
z(t) \leq \int_{0}^{t} b(s) \exp \left(\int_{s}^{t} \gamma(\theta) d \theta\right) d s \leq\left(\int_{0}^{t} b(s) d s\right) \exp \left(\int_{0}^{t} \gamma(s) d s\right)
$$

Using (1.12), we have

$$
\begin{equation*}
|u(t)|^{2}+\int_{0}^{t}\|u(s)\|^{2} d s \leq|u(0)|^{2}+\lambda^{-1} \int_{0}^{t}|g(s)|^{2} d s \tag{1.21}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
t\|u(t)\|^{2} \leq & \left(\int_{0}^{t}\left(\|u(s)\|^{2}+2 s|g(s)|^{2}\right) d s\right) \exp \left(\int_{0}^{t} c_{4}\|u(s)\|^{2}|u(s)|^{2} d s\right) \\
\leq & \left(|u(0)|^{2}+\left(\lambda^{-1}+2 t\right) \int_{0}^{t}|g(s)|^{2} d s\right) \\
& \times \exp \left(c_{4}\left(|u(0)|^{2}+\lambda^{-1} \int_{0}^{t}|g(s)|^{2} d s\right)^{2}\right) .
\end{aligned}
$$

Finally,

$$
\begin{equation*}
\sup _{0 \leq t \leq \Gamma} t\|u(t)\|^{2} \leq C_{1}\left(\Gamma,|u(0)|^{2}, \int_{0}^{\Gamma}|g(s)|^{2} d s\right) \tag{1.22}
\end{equation*}
$$

where $C_{1}\left(\eta_{1}, \eta_{2}, \eta_{3}\right)=\left(\eta_{2}+\left(\lambda^{-1}+2 \eta_{1}\right) \eta_{3}\right) \exp \left(c_{4}\left(\eta_{2}+\lambda^{-1} \eta_{3}\right)^{2}\right)$.
Inequality (1.13) implies that

$$
\begin{equation*}
\|u(t+\tau+1)\|^{2} \leq C_{1}\left(1,|u(t+\tau)|^{2}, \int_{t+\tau}^{t+\tau+1}|g(s)|^{2} d s\right) \tag{1.23}
\end{equation*}
$$

Taking sup in (1.23) with respect to $\tau \geq 0$, we obtain, according to (1.9),

$$
\begin{aligned}
\|T(t+1) u\|_{L_{\infty}\left(\mathbb{R}_{+} ; V\right)}^{2} & \leq C_{1}\left(1,\|T(t) u\|_{L_{\infty}\left(\mathbb{R}_{+} ; H\right)}^{2},\|T(t) g\|_{\mathrm{a}}^{2}\right) \\
& \leq C_{2}\left(e^{-\lambda t}|u(0)|^{2},\|g\|_{\mathrm{a}}^{2}\right) .
\end{aligned}
$$

Hence we get
Corollary 1.3. For all $u \in \mathcal{K}_{g}^{+}, g \in \mathcal{H}_{+}\left(g_{0}\right)$,

$$
\|T(t+1) u\|_{L_{\infty}\left(\mathbb{R}_{+} ; V\right)}^{2} \leq C_{2}\left(e^{-\lambda t}|u(0)|^{2},\|g\|_{\mathrm{a}}^{2}\right), \quad t \geq 0
$$

Lemma 1.5. For all $u \in \mathcal{K}_{g}^{+}, g \in \mathcal{H}_{+}\left(g_{0}\right)$,

$$
\begin{align*}
\int_{\tau}^{\tau+\Gamma}(s-\tau)\left(\|v(s)\|_{2}^{2}\right. & \left.+\left|\partial_{t} v(s)\right|^{2}\right) d s \leq C_{3}\left(\Gamma,|u(\tau)|^{2}, \int_{\tau}^{\tau+\Gamma}|g(s)|^{2} d s\right) \tag{1.24}\\
\|T(t+1) u\|_{\mathbf{r}, \mathrm{a}}^{2} & =\sup _{\tau \geq t+1} \int_{\tau}^{\tau+1}\left(\|u(s)\|_{2}^{2}+\left|\partial_{t} u(s)\right|^{2}\right) d s \tag{1.25}\\
& \leq C_{4}\left(e^{-\lambda t}|u(0)|^{2},\|g\|_{\mathrm{a}}^{2}\right)
\end{align*}
$$

where τ, t, Γ are positive and arbitrary.
Proof. It is sufficient to prove (1.24) for $\tau=0$ and $\nu=1$. It follows from (1.20)-(1.22) that

$$
\begin{align*}
& \int_{0}^{\Gamma} s\|u(s)\|_{2}^{2} d s \tag{1.26}\\
& \leq \int_{0}^{\Gamma}\|u(s)\|^{2} d s+2 \Gamma \int_{0}^{\Gamma}|g(s)|^{2} d s \\
& \quad+c_{4}\left(\sup _{0 \leq t \leq \Gamma}|u(t)|^{2}\right)\left(\sup _{0 \leq t \leq \Gamma} t\|u(t)\|^{2}\right) \int_{0}^{\Gamma}\|u(s)\|^{2} d s \\
& \leq|u(0)|^{2}+\lambda^{-1} \int_{0}^{\Gamma}|g(s)|^{2} d s+2 \Gamma \int_{0}^{\Gamma}|g(s)|^{2} d s \\
&+c_{4}\left(|u(0)|^{2}+\lambda^{-1} \int_{0}^{\Gamma}|g(s)|^{2} d s\right)^{2} C_{1}\left(\Gamma,|u(0)|^{2}, \int_{0}^{\Gamma}|g(s)|^{2} d s\right) \\
&= C_{3}^{\prime}\left(\Gamma,|u(0)|^{2}, \int_{0}^{\Gamma}|g(s)|^{2} d s\right)
\end{align*}
$$

Now, equation (1.1) implies directly that

$$
\begin{align*}
& \left(\int_{0}^{\Gamma} s\left|\partial_{t} v(s)\right|^{2} d s\right)^{1 / 2} \tag{1.27}\\
\leq & \left(\int_{0}^{\Gamma} s\|u(s)\|_{2}^{2} d s\right)^{1 / 2}+\left(\int_{0}^{\Gamma} s|B(u)|^{2} d s\right)^{1 / 2}+\left(\int_{0}^{\Gamma} s|g(s)|^{2} d s\right)^{1 / 2} \\
\leq & C_{3}^{\prime}\left(\Gamma,|u(0)|^{2}, \int_{0}^{\Gamma}|g(s)|^{2} d s\right) \\
& +\Gamma^{1 / 2}\left(\int_{0}^{\Gamma}|g(s)|^{2} d s\right)^{1 / 2}+c_{3}\left(\int_{0}^{\Gamma} s\|u(s)\|_{2}\|u(s)\|^{2}|u(s)| d s\right)^{1 / 2}
\end{align*}
$$

We have used inequality (1.18). At the same time by (1.22) and (1.26), we get

$$
\begin{equation*}
\int_{0}^{\Gamma} s\|u(s)\|_{2}\|u(s)\|^{2}|u(s)| d s \leq \int_{0}^{\Gamma} s\|u(s)\|^{4}|u(s)|^{2} d s+\int_{0}^{\Gamma} s\|u(s)\|_{2}^{2} d s \tag{1.28}
\end{equation*}
$$

$$
\begin{aligned}
& \leq\left(\sup _{0 \leq t \leq \Gamma}|u(t)|^{2}\right)\left(\sup _{0 \leq t \leq \Gamma} t\|u(t)\|^{2}\right) \int_{\tau}^{\Gamma}\|u(s)\|^{2} d s+C_{3}^{\prime}\left(\Gamma,|u(0)|^{2}, \int_{0}^{\Gamma}|g(s)|^{2} d s\right) \\
& \leq\left(|u(0)|^{2}+\lambda^{-1} \int_{0}^{\Gamma}|g(s)|^{2} d s\right)^{2} C_{1}\left(\Gamma,|u(0)|^{2}, \int_{0}^{\Gamma}|g(s)|^{2} d s\right)+C_{3}^{\prime}(\cdot) .
\end{aligned}
$$

Combining (1.27) and (1.28) we obtain

$$
\begin{equation*}
\int_{0}^{\Gamma} s\left|\partial_{t} v(s)\right|^{2} d s \leq C_{3}^{\prime \prime}\left(\Gamma,|u(0)|^{2}, \int_{0}^{\Gamma}|g(s)|^{2} d s\right) \tag{1.29}
\end{equation*}
$$

Summing (1.26) and (1.29), we derive (1.24). From (1.24) it follows for $\Gamma=2$ that

$$
\begin{equation*}
\int_{t+\tau+1}^{t+\tau+2}\left(\|v(s)\|_{2}^{2}+\left|\partial_{t} v(s)\right|^{2}\right) d s \leq C_{3}\left(2,|u(t+\tau)|^{2}, \int_{t+\tau}^{t+\tau+2}|g(s)|^{2} d s\right) \tag{1.30}
\end{equation*}
$$

Taking sup in (1.30) with respect to $\tau \geq 0$, we obtain, according to (1.9),

$$
\|T(t+1) u\|_{\mathbf{r}, \mathrm{a}}^{2} \leq C_{3}\left(2,\|T(t) u\|_{L_{\infty}\left(\mathbb{R}_{+} ; H\right)}^{2}, 2\|T(t) g\|_{\mathrm{a}}^{2}\right) \leq C_{4}\left(e^{-\lambda t}|u(0)|^{2},\|g\|_{\mathrm{a}}^{2}\right)
$$

Lemma 1.1 follows from a more general
Lemma 1.6. For all $u \in \mathcal{K}_{g}^{+}, g \in \mathcal{H}_{+}\left(g_{0}\right)$,

$$
\begin{equation*}
\int_{\tau}^{\tau+\Gamma}\left(\|v(s)\|_{2}^{2}+\left|\partial_{t} v(s)\right|^{2}\right) d s \leq C_{5}\left(\|u(\tau)\|^{2}, \int_{\tau}^{\tau+\Gamma}|g(s)|^{2} d s\right) \tag{1.31}
\end{equation*}
$$

for $\tau, \Gamma \geq 0$, and

$$
\|u\|_{\mathbf{r}, \mathrm{a}}^{2}=\sup _{\tau \geq 0} \int_{\tau}^{\tau+1}\left(\|u(s)\|_{2}^{2}+\left|\partial_{t} u(s)\right|^{2}\right) d s \leq C_{6}\left(\|u(0)\|^{2},\|g\|_{\mathrm{a}}^{2}\right) .
$$

Proof. Similarly to (1.20) we get

$$
\begin{aligned}
& \frac{d}{d t}\left(\|u(t)\|^{2}\right)+\|u(t)\|_{2}^{2} \leq 2|g(t)|^{2}+c_{4}\|u(t)\|^{4}|u(t)|^{2} \\
& z_{1}^{\prime}(t) \leq b_{1}(t)+\gamma(t) z_{1}(t), \quad z_{1}(t)=\|u(t)\|^{2}, \quad b_{1}(t)=2|g(t)|^{2} \\
& z_{1}(t) \leq\left(z_{1}(0)+\int_{0}^{t} b_{1}(s) d s\right) \exp \left(\int_{0}^{t} \gamma(s) d s\right)
\end{aligned}
$$

So, using (1.21), we obtain, as above, (1.31). Finally, combining (1.31) with $\tau \in[0,1]$ and (1.25) with $\tau \in] 1, \infty[$ we get

$$
\begin{aligned}
\|u\|_{\mathbf{r}, \mathrm{a}}^{2} & =\sup _{\tau \geq 0} \int_{\tau}^{\tau+1}\left(\|u(s)\|_{2}^{2}+\left|\partial_{t} u(s)\right|^{2}\right) d s \\
& \leq \max \left\{C_{5}\left(\|u(0)\|^{2},\|g\|_{\mathrm{a}}^{2}\right), C_{4}\left(|u(0)|^{2},\|g\|_{\mathrm{a}}^{2}\right)\right\}=C_{6}\left(\|u(0)\|^{2},\|g\|_{\mathrm{a}}^{2}\right)
\end{aligned}
$$

Coming back to the proof of Theorem 1.2, we construct a uniformly attracting set P in $\Theta_{+}^{\text {loc }}$ for the translation semigroup $\{T(t)\}$ acting on $\mathcal{K}^{+}=\mathcal{K}_{\mathcal{H}_{+}\left(g_{0}\right)}^{+}$. From (1.25) it follows that

$$
\begin{equation*}
\|T(t+1) u\|_{\mathbf{r}, \mathrm{a}}^{2} \leq C_{4}\left(e^{-\lambda t}\|u\|_{\mathbf{r}, \mathrm{a}}^{2},\|g\|_{\mathrm{a}}^{2}\right) \leq C_{4}\left(e^{-\lambda t}\|u\|_{\mathbf{r}, \mathrm{a}}^{2},\left\|g_{0}\right\|_{\mathrm{a}}^{2}\right) \tag{1.32}
\end{equation*}
$$

for $u \in \mathcal{K}^{+}$, since $\|g\|_{\mathrm{a}} \leq\left\|g_{0}\right\|_{\mathrm{a}}$ for all $g \in \mathcal{H}_{+}\left(g_{0}\right)$. Consider the set

$$
P_{0}=\left\{v \in \mathcal{F}_{+}^{\mathrm{a}} \mid\|v\|_{\mathbf{r}, \mathrm{a}}^{2} \leq C_{4}\left(1,\left\|g_{0}\right\|_{\mathrm{a}}^{2}\right)\right\}
$$

Evidently, P_{0} is the desired attracting set. Indeed, if $B \subseteq \mathcal{K}^{+} \cap \mathcal{F}_{+}^{\text {a }}$ is a bounded set of trajectories then $e^{-\lambda t}\|u\|_{\mathbf{r}, \mathrm{a}}^{2} \leq 1$ for all $u \in B$ whenever $t \geq t^{\prime} \gg 1$ and therefore, by (1.32), $T(t+1) B \subseteq P_{0}$. Hence P_{0} is even a uniformly absorbing set. Notice that the set P_{0} is bounded in $\mathcal{F}_{+}^{\text {a }}$ and compact in $\Theta_{+}^{\text {loc }}=H_{w}^{\text {r,loc }}\left(Q_{+}\right)$. The latter is true since the topology in $H_{w}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$is generated by the weak topology of the Banach spaces $H^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right)=L_{2}\left(t_{1}, t_{2} ; H_{2}\right) \cap\left\{v \mid \partial_{t} v \in L_{2}\left(t_{1}, t_{2} ; H\right)\right\}$. Recall that $u_{n} \rightharpoonup u(n \rightarrow \infty)$ weakly in $H^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right)$ whenever $\partial_{t} u_{n} \rightharpoonup \partial_{t} u(n \rightarrow$ $\infty)$ weakly in $L_{2}\left(t_{1}, t_{2} ; H\right)$ and $\partial^{\boldsymbol{\alpha}} u_{n} \rightharpoonup \partial^{\boldsymbol{\alpha}} u(n \rightarrow \infty)$ weakly in $L_{2}\left(t_{1}, t_{2} ; H\right)$ for all $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}\right)$ with $|\boldsymbol{\alpha}| \leq 2$. That is, a bounded set in $H^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right)$ is weakly compact in $H^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right)$.

Remark 1.1. The set P_{0}, being a compact subspace of $H_{w}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$, is a metrizable space and the corresponding metric space is compact. This follows from the fact that a ball of a separable Banach space endowed with the weak topology of this space is metrizable and compact. The translation semigroup $\{T(t)\}$ is continuous on P_{0} and $T(t)$ takes P_{0} into itself: $T(t) P_{0} \subseteq P_{0}$ for all $t \geq 0$. So Proposition 1.2 is applicable. In particular, the set $\mathfrak{A}=\omega\left(P_{0}\right)$ is a global attractor of the semigroup $\{T(t)\}$ acting on P_{0}. Moreover, $\mathfrak{A}=\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ because P_{0} is a uniformly absorbing set of the family $\left\{\mathcal{K}_{g}^{+} \mid g \in \mathcal{H}_{+}\left(g_{0}\right)\right\}$ of trajectory spaces. This reasoning proves the first part of Theorem 1.2. To prove property (1.7) we have to use a more subtle reasoning (see [5]).

2. Trajectory attractor for the $2 \mathrm{D} \mathbf{N}-\mathrm{S}$ system with translation-compact external force in $L_{2}^{\text {loc }}$

Now consider the case when the external force $g(x, s)$ in (1.1) is a tr.-c. function in $L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$. The space $L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)=L_{2}^{\text {loc }}$ is endowed with the following local strong convergence topology. A sequence $\left\{g_{n}\right\}$ converges to g as $n \rightarrow \infty$ in $L_{2}^{\text {loc }}$ whenever $\int_{t_{1}}^{t_{2}}\left|g_{n}(s)-g(s)\right|^{2} d s \rightarrow 0(n \rightarrow \infty)$ for each $\left[t_{1}, t_{2}\right] \subseteq$ \mathbb{R}_{+}. The space $L_{2}^{\text {loc }}$ is metrizable and complete. A function $g \in L_{2}^{\text {loc }}$ is tr.-c. in $L_{2}^{\text {loc }}$ whenever the set $\left\{g(\cdot+h) \mid h \in \mathbb{R}_{+}\right\}$is precompact in $L_{2}^{\text {loc }}$. The criterion of being tr.-c. in $L_{2}^{\text {loc }}$ is given in [6]. We recall that a function $g \in L_{2}^{\text {loc }}$ is tr.-c. in $L_{2}^{\text {loc }}$ if and only if
(i) for every $h \geq 0$ the set $\left\{\int_{t}^{t+h} g(\cdot, s) d s \mid t \in \mathbb{R}_{+}\right\}$is precompact in H;
(ii) there is a function $\beta(s)>0, s>0$, such that $\beta(s) \rightarrow 0+(s \rightarrow 0+)$ and

$$
\int_{t}^{t+1}|g(s)-g(s+l)|^{2} d s \leq \beta(|l|) \quad \forall t \geq 0
$$

Remark 2.1. Let us give a simple sufficient condition. A function $g \in L_{2}^{\text {loc }}$ is tr.-c. in $L_{2}^{\text {loc }}$ if

$$
\left\|\Pi_{0,1} g(\cdot+t)\right\|_{H^{\delta}\left(Q_{0,1}\right)} \leq M \quad \forall t \geq 0
$$

for some $\delta>0$. Here $H^{\delta}\left(Q_{0,1}\right)=H^{\delta}\left(\Omega \times\left[t_{1}, t_{2}\right]\right)$ is the Sobolev space of order δ.
Suppose we are given a fixed tr.-c. function g_{0} in $L_{2}^{\text {loc }}$. Evidently, g_{0} is tr.-c. in $L_{2, w}^{\text {loc }}$ as well. Consider the set $\left\{g_{0}(\cdot+h) \mid h \in \mathbb{R}_{+}\right\}$. Notice that $\left[\left\{g_{0}(\cdot+h) \mid\right.\right.$ $\left.\left.h \in \mathbb{R}_{+}\right\}\right]_{L_{2, w}^{\text {loc }}} \equiv\left[\left\{g_{0}(\cdot+h) \mid h \in \mathbb{R}_{+}\right\}\right]_{L_{2}^{\text {loc }}}$ and the corresponding topological subspaces of $L_{2, w}^{\text {loc }}$ and $L_{2}^{\text {loc }}$ are homeomorphic. Hence, $\mathcal{H}_{+}\left(g_{0}\right)=\left[\left\{g_{0}(\cdot+h) \mid\right.\right.$ $\left.\left.h \in \mathbb{R}_{+}\right\}\right]_{\Xi}$ does not depend on $\Xi=L_{2, w}^{\text {loc }}$ or $\Xi=L_{2}^{\text {loc }}$. As usual, the topological space $\mathcal{H}_{+}\left(g_{0}\right)$ is compact and every function $g \in \mathcal{H}_{+}\left(g_{0}\right)$ is tr.-c. in $L_{2}^{\text {loc }}, \mathcal{H}_{+}(g) \subseteq$ $\mathcal{H}_{+}\left(g_{0}\right)$, and $\|g\|_{\mathrm{a}} \leq\left\|g_{0}\right\|_{\mathrm{a}}$.

Now consider the "strong" space $H_{s}^{\mathbf{r}}$,loc $\left(Q_{+}\right)$introduced in Section 1. Recall that $v_{n} \rightarrow v(n \rightarrow \infty)$ in $H_{s}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$if $\Pi_{t_{1}, t_{2}} v_{n} \rightarrow \Pi_{t_{1}, t_{2}} v(n \rightarrow \infty)$ strongly in $H^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right)$ with respect to the norm (1.3) for each $\left[t_{1}, t_{2}\right] \subseteq \mathbb{R}_{+}$. The linear topological space $H_{s}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$is metrizable and complete.

To each $g \in \mathcal{H}_{+}\left(g_{0}\right)$ there corresponds the trajectory space \mathcal{K}_{g}^{+}that is the union of all solutions $u(s), s \geq 0$, of equation (1.1) in the space $H^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$. Consider the family $\left\{\mathcal{K}_{g}^{+} \mid g \in \mathcal{H}_{+}\left(g_{0}\right)\right\}$ and the union $\mathcal{K}_{\mathcal{H}_{+}\left(g_{0}\right)}^{+}=\bigcup_{g \in \mathcal{H}_{+}\left(g_{0}\right)} \mathcal{K}_{g}^{+}$.

In this section we study the trajectory attractor $\mathcal{A}_{\mathcal{H}+\left(g_{0}\right)}$ of the translation semigroup $\{T(t)\}$ acting on $\mathcal{K}^{+}=\mathcal{K}_{\mathcal{H}_{+}\left(g_{0}\right)}$ in the "strong" topological space $H_{s}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$. The set $\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ attracts every set $T(t) B$ as $t \rightarrow \infty$ in the topology of $\Theta_{+}^{\text {loc }}=H_{s}^{\text {r,loc }}\left(Q_{+}\right)$, where $B \subset \mathcal{K}^{+}$and B is bounded in the Banach space $\mathcal{F}_{+}^{\mathrm{a}}=H^{\mathbf{r}, \mathrm{a}}\left(Q_{+}\right)$.

Theorem 2.1. Let g_{0} be tr.-c. in $L_{2}^{\text {loc }}$. Then the trajectory attractor $\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ in $H_{w}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$of the translation semigroup $\{T(t)\}$ acting on \mathcal{K}^{+}from Theorem 1.2 serves as the trajectory attractor in $H_{s}^{\mathbf{r}, \operatorname{loc}}\left(Q_{+}\right)$of this semigroup. In particular, for every set $B \subset \mathcal{K}^{+}$,

$$
\operatorname{dist}_{H^{\mathbf{r}}\left(Q_{0, \Gamma}\right)}\left(T(t) B, \mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}\right) \rightarrow 0 \quad(t \rightarrow \infty) \quad \forall \Gamma>0
$$

The set $\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ is bounded in \mathcal{F}^{+}, and compact in $H_{s}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$. Every function $u \in \mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ is tr.-c. in $H_{s}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$.

Notice that if the trajectory attractor in $H_{s}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$exists then it coincides with the trajectory attractor $\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ in $H_{w}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$since the embedding $H_{s}^{\mathbf{r}, \operatorname{loc}}\left(Q_{+}\right) \subseteq H_{w}^{\mathbf{r}, \operatorname{loc}}\left(Q_{+}\right)$is continuous and the trajectory attractor is the minimal attracting set. So to apply Proposition 1.3 we have to produce an attracting set P_{1} that is compact in $H_{s}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$and bounded in $\mathcal{F}_{+}^{\mathrm{a}}=H^{\mathbf{r}, a}\left(Q_{+}\right)$.

From the continuous embedding $H_{s}^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right) \subset C\left(\left[t_{1}, t_{2}\right] ; V\right)$ and from Theorem 2.1, we deduce

Corollary 2.1. For every set $B \subset \mathcal{K}^{+}$bounded in \mathcal{F}^{+}, one has

$$
\operatorname{dist}_{C([0, \Gamma] ; V)}\left(\Pi_{0, \Gamma} T(t) B, \Pi_{0, \Gamma} \mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}\right) \rightarrow 0 \quad(t \rightarrow \infty) \quad \forall \Gamma \geq 0
$$

Proof of Theorem 2.1. Consider the set $P_{0}^{\prime}=P_{0} \cap \mathcal{K}^{+}$, where P_{0} is the absorbing set constructed in Section 1. Evidently, P_{0}^{\prime} is uniformly absorbing for the family $\left\{\mathcal{K}_{g}^{+} \mid g \in \mathcal{H}_{+}\left(g_{0}\right)\right\}$. Put

$$
P_{1}=S(1) P_{0}^{\prime}=\left\{\widetilde{u}_{g} \equiv u_{g}(s+1), s \geq 0 \mid u_{g} \in \mathcal{K}_{g}^{+} \cap P_{0}, g \in \mathcal{H}_{+}\left(g_{0}\right)\right\}
$$

The set P_{1} is uniformly absorbing for the family $\left\{\mathcal{K}_{g}^{+} \mid g \in \mathcal{H}_{+}\left(g_{0}\right)\right\}$ as well. To complete the proof of Theorem 2.1 we have to establish the following

Lemma 2.1. The set P_{1} is compact in $H_{s}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$.
It is easy to prove the following statement using the diagonal process.
Proposition 2.1. The set B is compact in $H_{s}^{\mathbf{r}, \text { loc }}\left(Q_{+}\right)$if and only if $\Pi_{0, \Gamma} B$ is compact in $H^{\mathbf{r}}\left(Q_{0, \Gamma}\right)$ for every $\Gamma>0$.

Proof of Lemma 2.1. Fix $\Gamma>0$. Let $\widetilde{u}^{n}(s)=T(1) u^{n}(s)=u^{n}(s+1)$ be any sequence from $P_{1}, u^{n} \in \mathcal{K}_{g_{n}}^{+} \cap P_{0}, g_{n} \in \mathcal{H}_{+}\left(g_{0}\right)$. Without loss of generality, we may assume that

$$
\begin{equation*}
\int_{0}^{\Gamma+1}\left|g_{n}(s)-g(s)\right|^{2} d s \rightarrow 0 \quad(n \rightarrow \infty) \tag{2.1}
\end{equation*}
$$

for some $g \in \mathcal{H}_{+}\left(g_{0}\right)$. Let us show that the sequence $\left\{\widetilde{u}^{n}\right\}$ is precompact in $H^{\mathbf{r}}\left(Q_{0, \Gamma}\right)$. Since $u^{n} \in P_{0}$, we have

$$
\begin{equation*}
\left\|u^{n}(\cdot)\right\|_{H^{\mathbf{r}}\left(Q_{0, \Gamma+1}\right)} \leq M(\Gamma+1) \quad \forall n \in \mathbb{N}, \tag{2.2}
\end{equation*}
$$

where the positive function $M(\theta)$ is non-decreasing. We can represent the function $u^{n}(s)$ as a sum of two functions:

$$
u^{n}(s)=u_{1}^{n}(s)+u_{2}^{n}(s), \quad s \geq 0
$$

where $u_{1}^{n}(s)$ and $u_{2}^{n}(s)$ are solutions of the following problems:

$$
\begin{align*}
& \partial_{t} u_{1}^{n}(t)+L u_{1}^{n}(t)=0, \quad t \geq 0 \tag{2.3}\\
& u_{1}^{n}(0)=u^{n}(0),\left.\quad u_{1}^{n}\right|_{\partial \Omega}=0, \quad\left\|u_{1}^{n}(0)\right\| \leq M_{1} \tag{2.4}\\
& \partial_{t} u_{2}^{n}(t)+L u_{2}^{n}(t)=-B\left(u^{n}(t)\right)+g_{n}(t), \quad t \geq 0 \tag{2.5}\\
& u_{2}^{n}(0)=0,\left.\quad u_{2}^{n}\right|_{\partial \Omega}=0 \tag{2.6}
\end{align*}
$$

Accordingly, $\widetilde{u}^{n}(s)=\widetilde{u}_{1}^{n}(s)+\widetilde{u}_{2}^{n}(s)$.
Since u_{1}^{n} is a solution of the Stokes problem (2.3), (2.4), we obtain

$$
\begin{equation*}
\int_{0}^{t+1}\left(\left\|u_{1}^{n}(s)\right\|_{2}^{2}+\left|\partial_{t} u_{1}^{n}(s)\right|^{2}\right) d s \leq M_{2}\left(t+1,\left\|u_{1}^{n}(0)\right\|\right)=M_{3}(t+1) \tag{2.7}
\end{equation*}
$$

for $0 \leq t \leq \Gamma$. Let $\psi(t)$ be a cut-off function:

$$
\psi(t) \equiv 1, \quad t \geq 1 ; \quad \psi(t) \equiv 0, \quad 0 \leq t \leq 1 / 2 ; \quad \psi \in C_{0}^{\infty}(\mathbb{R}), \quad \psi(t) \geq 0
$$

It follows from (2.3) that

$$
\partial_{t}\left(\psi(t) u_{1}^{n}(t)\right)+L\left(\psi(t) u_{1}^{n}(t)\right)=\psi^{\prime}(t) u_{1}^{n}(t)
$$

Differentiating this equation in t and setting $\partial_{t}\left(\psi(t) u_{1}^{n}(t)\right)=p^{n}$, we get

$$
\begin{aligned}
& \partial_{t} p^{n}+L p^{n}=\psi^{\prime \prime}(t) u_{1}^{n}(t)+\psi^{\prime}(t) \partial_{t} u_{1}^{n}(t), \\
& p^{n}(0)=0,\left.\quad p^{n}\right|_{\partial \Omega}=0
\end{aligned}
$$

So,

$$
\begin{align*}
\int_{0}^{t+1}\left(\left|L \partial_{t}\left(\psi u_{1}^{n}\right)\right|^{2}+\mid \partial_{t}^{2}\right. & \left.\left.\left(\psi u_{1}^{n}\right)\right|^{2}\right) d s \tag{2.8}\\
& =\int_{0}^{t+1}\left(\left\|p^{n}(s)\right\|_{2}^{2}+\left|\partial_{t} p^{n}(s)\right|^{2}\right) d s \\
& \leq C \int_{0}^{t+1}\left(\left|u_{1}^{n}\right|^{2}+\left|\partial_{t} u_{1}^{n}\right|^{2}\right) d s \leq M_{4}(t+1)
\end{align*}
$$

Combining (2.8) and (2.7), we obtain

$$
\begin{equation*}
\int_{0}^{t+1} \psi^{2}(s)\left(\left\|\partial_{t} u_{1}^{n}(s)\right\|_{2}^{2}+\left|\partial_{t}^{2} u_{1}^{n}(s)\right|^{2}\right) d s \leq M_{5}(t+1) \tag{2.9}
\end{equation*}
$$

Now we apply the operator L to both sides of equation (2.3) and get

$$
L^{2} u_{1}^{n}(t)=-\partial_{t} L u_{1}^{n}(t),\left.\quad L u_{1}^{n}\right|_{\partial \Omega}=-\left.\partial_{t} u_{1}^{n}\right|_{\partial \Omega}=0
$$

Therefore

$$
\begin{equation*}
\int_{0}^{t+1} \psi^{2}(s)\left|L^{2} u_{1}^{n}(s)\right|^{2} d s=\int_{0}^{t+1} \psi^{2}(s)\left|\partial_{t}\left(L u_{1}^{n}(s)\right)\right|^{2} d s \leq M_{6}(t+1) \tag{2.10}
\end{equation*}
$$

Finally, by virtue of (2.7), (2.9), and (2.10), we conclude that

$$
\int_{1}^{t+1}\left(\left\|\partial_{t} u_{1}^{n}(s)\right\|_{2}^{2}+\left|\partial_{t}^{2} u_{1}^{n}(s)\right|^{2}+\left\|u_{1}^{n}(s)\right\|_{2}^{2}+\left\|u_{1}^{n}(s)\right\|_{4}^{2}\right) d s \leq M_{7}(t+1)
$$

In particular, the sequence $\left\{u_{1}^{n}\right\}$ is compact in $H^{\mathbf{r}}\left(Q_{1, \Gamma+1}\right)$ and $\left\{\widetilde{u}_{1}^{n}\right\}$ is compact in $H^{\mathbf{r}}\left(Q_{0, \Gamma}\right)$.

Now we shall prove that the sequence $\left\{u_{2}^{n}\right\}$ is compact in $H^{\mathbf{r}}\left(Q_{0, \Gamma+1}\right)$ as well. According to (2.5) it is sufficient to prove that the sequence $B\left(u^{n}\right)=B\left(u^{n}, u^{n}\right)$ is precompact in $L_{2}(0, \Gamma+1 ; H)$. (From (2.1) it follows that the sequence $\left\{g_{n}\right\}$ is precompact in $L_{2}(0, \Gamma+1 ; H)$.) The sequence $\left\{u^{n}\right\}$ is bounded in $H^{\mathbf{r}}\left(Q_{0, \Gamma+1}\right)$, hence, by refining, we may assume that $u_{n} \rightharpoonup u(n \rightarrow \infty)$ weakly in $H^{\mathbf{r}}\left(Q_{0, \Gamma+1}\right)$. Thus, $\partial_{t} u_{n} \rightharpoonup \partial_{t} u(n \rightarrow \infty)$ weakly in $L_{2}(0, \Gamma+1 ; H)$ and $\partial^{\boldsymbol{\alpha}} u_{n} \rightharpoonup \partial^{\boldsymbol{\alpha}} u(n \rightarrow \infty)$ weakly in $L_{2}(0, \Gamma+1 ; H)$ for each $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}\right)$ with $|\boldsymbol{\alpha}| \leq 2$. Let us prove that

$$
\begin{equation*}
B\left(u^{n}\right) \rightarrow B(u) \quad(n \rightarrow \infty) \quad \text { strongly in } L_{2}(0, \Gamma+1 ; H) \tag{2.11}
\end{equation*}
$$

By the Nikol'skiĭ theorem (see [3]),

$$
\begin{equation*}
H^{\mathbf{r}}\left(Q_{0, \Gamma+1}\right) \subset H_{q}^{\varrho}\left(Q_{0, \Gamma+1}\right), \quad \mathbf{r}=\left(r_{1}, r_{2}, r_{3}\right), \quad \varrho=\left(\varrho_{1}, \varrho_{2}, \varrho_{3}\right), \quad q \geq 2, \tag{2.12}
\end{equation*}
$$

whenever

$$
\begin{equation*}
\varrho_{j} / r_{j} \leq 1-(1 / 2-1 / q)\left(1 / r_{1}+1 / r_{2}+1 / r_{3}\right), \quad j=1,2,3 . \tag{2.13}
\end{equation*}
$$

Moreover, the embedding (2.12) is compact if the inequalities in (2.13) are strict.
The values $\mathbf{r}=\left(r_{1}, r_{2}, r_{3}\right)=(2,2,1), \varrho=\left(\varrho_{1}, \varrho_{2}, \varrho_{3}\right)=(1,1,0), q \leq 4$ meet the conditions (2.13), since $\varrho_{j} / r_{j} \leq 1 / 2 \leq 1-(1 / 2-1 / q) 2$. So we conclude that

$$
\begin{equation*}
\left\|\frac{\partial v}{\partial x_{i}}\right\|_{L_{q}\left(Q_{0, \Gamma+1}\right)} \leq C_{q}\|v\|_{H^{\mathbf{r}}\left(Q_{0, \Gamma+1}\right)}, \quad i=1,2,2 \leq q \leq 4 . \tag{2.14}
\end{equation*}
$$

For $q<4$ the embedding $H^{\mathbf{r}}\left(Q_{0, \Gamma+1}\right) \Subset H_{q}^{(1,1,0)}\left(Q_{0, \Gamma+1}\right)$ is compact. Similarly, taking $\varrho=\left(\varrho_{1}, \varrho_{2}, \varrho_{3}\right)=(0,0,0), \varrho_{j} / r_{j}=0<1-\left(1 / 2-1 / q_{1}\right) 2$ for all $q_{1} \geq 2$, we obtain

$$
\|v\|_{L_{q_{1}}\left(Q_{0, \Gamma+1}\right)} \leq C_{q_{1}}^{\prime}\|v\|_{H^{\mathbf{r}}\left(Q_{0, \Gamma+1}\right)}
$$

and the embedding $H^{\mathbf{r}}\left(Q_{0, \Gamma+1}\right) \Subset L_{q_{1}}\left(Q_{0, \Gamma+1}\right)$ is compact.

Finally, we get

$$
\begin{align*}
& \left\|B\left(u^{n}\right)-B(u)\right\|_{L_{2}(0, \Gamma+1 ; H)} \tag{2.15}\\
& \equiv\left\|B\left(u^{n}\right)-B(u)\right\| \leq\left\|B\left(u^{n}-u, u^{n}\right)\right\|+\left\|B\left(u, u^{n}-u\right)\right\| \\
& \leq \\
& \quad C\left(\int_{Q_{0, \Gamma+1}}\left|u^{n}-u\right|^{2}\left|\nabla u^{n}\right|^{2} d x d s\right)^{1 / 2} \\
& \quad+C\left(\int_{Q_{0, \Gamma+1}}|u|^{2}\left|\nabla\left(u^{n}-u\right)\right|^{2} d x d s\right)^{1 / 2} \\
& \leq \\
& \quad C_{1}\left(\int_{Q_{0, \Gamma+1}}\left|\nabla u^{n}\right|^{3} d x d s\right)^{1 / 3}\left(\int_{Q_{0, \Gamma+1}}\left|u^{n}-u\right|^{6} d x d s\right)^{1 / 6} \\
& \quad+C_{1}\left(\int_{Q_{0, \Gamma+1}}|u|^{6} d x d s\right)^{1 / 6}\left(\int_{Q_{0, \Gamma+1}}\left|\nabla\left(u^{n}-u\right)\right|^{3} d x d s\right)^{1 / 6}
\end{align*}
$$

Since $H^{\mathbf{r}}\left(Q_{0, \Gamma+1}\right) \Subset H_{3}^{(1,1,0)}\left(Q_{0, \Gamma+1}\right)$ and $H^{\mathbf{r}}\left(Q_{0, \Gamma+1}\right) \Subset L_{6}\left(Q_{0, \Gamma+1}\right)$, we get

$$
\int_{Q_{0, \Gamma+1}}\left|\nabla\left(u^{n}-u\right)\right|^{3} d x d s \rightarrow 0, \quad \int_{Q_{0, \Gamma+1}}\left|u^{n}-u\right|^{6} d x d s \rightarrow 0 \quad(n \rightarrow \infty)
$$

and, by (2.14) and (2.2),

$$
\int_{Q_{0, \Gamma+1}}\left|\nabla u^{n}\right|^{3} d x d s \leq M^{\prime}
$$

Therefore, the right-hand side of (2.15) tends to zero as $n \rightarrow \infty$ and (2.11) is proved.

Thus, the right-hand sides of (2.5) form a precompact set in $L_{2}(0, \Gamma+1 ; H)$ and, hence, the set $\left\{u_{2}^{n}\right\}$ of solutions is precompact in $H^{\mathbf{r}}\left(Q_{0, \Gamma+1}\right)$. Consequently, $\left\{\widetilde{u}_{2}^{n}\right\}$ is precompact in $H^{\mathbf{r}}\left(Q_{0, \Gamma}\right)$. The sum $\left\{\widetilde{u}^{n}\right\}$ of two precompact sequences $\left\{\widetilde{u}_{1}^{n}\right\}$ and $\left\{\widetilde{u}_{2}^{n}\right\}$ is precompact in $H^{\mathbf{r}}\left(Q_{0, \Gamma}\right)$. Lemma 2.1 is proved.

3. On the structure of trajectory attractors

In this section we shall describe the structure of the trajectory attractors from Theorems 1.2 and 2.1 in terms of complete trajectories of equation (1.1), i.e. when solutions $u(s), s \in \mathbb{R}$, are determined on the whole time axis \mathbb{R}.

Let the function $g_{0}(x, s)$ satisfy (1.2) and let $\mathcal{H}_{+}\left(g_{0}\right)$ be the hull of g_{0} in $L_{2, w}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$. As usual, $\mathcal{H}_{+}\left(g_{0}\right)$ is a complete metric space and the translation semigroup $\{T(t)\}$ acts on $\mathcal{H}_{+}\left(g_{0}\right), T(t) \mathcal{H}_{+}\left(g_{0}\right) \subseteq \mathcal{H}_{+}\left(g_{0}\right), T(t)$ is continuous for all $t \geq 0$. Consider the attractor $\omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)$ of the semigroup $\{T(t)\}$ on $\mathcal{H}_{+}\left(g_{0}\right)$,

$$
\begin{equation*}
T(t) \omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)=\omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right) \quad \forall t \geq 0 \tag{3.1}
\end{equation*}
$$

(see Proposition 1.2).

Similarly to $L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$ and $L_{2}^{\text {a }}\left(\mathbb{R}_{+} ; H\right)$ we consider the spaces $L_{2}^{\text {loc }}(\mathbb{R} ; H)$ and $L_{2}^{\mathrm{a}}(\mathbb{R} ; H)$ of functions on the whole axis. The space $L_{2}^{\mathrm{a}}(\mathbb{R} ; H)$ has the norm

$$
\|\zeta\|_{L_{2}^{a}(\mathbb{R} ; H)}^{2}=\sup _{t \in \mathbb{R}} \int_{t}^{t+1}|\zeta(s)|^{2} d s<\infty .
$$

Consider an external force $g \in \omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)$. The invariance property (3.1) implies that there is a function $g_{1} \in \omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)$ such that $T(1) g_{1}=g$. Consider the function $\zeta(s), s \geq-1, \zeta(s)=g_{1}(s+1)$. Obviously, $\zeta(s) \equiv g(s)$ for $s \geq 0$, hence, ζ is a prolongation of g on the semiaxis $\left[-1, \infty\left[\right.\right.$. Next, there is $g_{2} \in$ $\omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)$ such that $T(1) g_{2}=g_{1}, T(2) g_{2}=g$. Put $\zeta(s)=g_{2}(s+2)$ for $s \geq-2$. Evidently, the function ζ is well defined, since $g_{2}(s+2)=g_{1}(s+1)$ for $s \geq-1$. Continuing this process, we define $\zeta(s)=g_{n}(s+n)$ for $s \in[-n, \infty[$, where $g_{n} \in \omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)$ and $n \in \mathbb{N}$. We have defined a function $\zeta(s), s \in \mathbb{R}$, which is a prolongation of the initial external force $g(s), s \in \mathbb{R}_{+}$. Moreover, ζ has the following property: $\Pi_{+} \zeta_{t} \in \omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)$ for all $t \in \mathbb{R}$, where $\zeta_{t}(s)=\zeta(t+s)$. Here $\Pi_{+}=\Pi_{0, \infty}$ is the restriction operator to the semiaxis \mathbb{R}_{+}. Evidently, $\zeta \in$ $L_{2}^{\mathrm{a}}(\mathbb{R} ; H)$ and $\|\zeta\|_{L_{2}^{a}(\mathbb{R} ; H)}^{2} \leq\left\|g_{0}\right\|_{L_{2}^{a}\left(\mathbb{R}_{+} ; H\right)}^{2}$.

Definition 3.1. (i) A function $\zeta \in L_{2}^{\mathrm{a}}(\mathbb{R} ; H)$ is said to be a complete external force in $\omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)$ if $\Pi_{+} \zeta_{t}(\cdot)=\Pi_{+} \zeta(t+\cdot) \in \omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)$, for all $t \in \mathbb{R}$. Let $Z\left(g_{0}\right)$ be the set of all complete external forces in $\mathcal{H}_{+}\left(g_{0}\right)$.

As shown above, for every symbol $g \in \omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)$ there exists at least one complete external force ζ which is the prolongation of g for negative s. Notice at once that, in general, this prolongation need not be unique.

By analogy to Section 1 , for the cylinder $Q=\Omega \times \mathbb{R}$ we introduce the space $H^{\mathbf{r}, \text { loc }}(Q)=L_{2}^{\text {loc }}\left(\mathbb{R} ; H_{2}\right) \cap\left\{v \mid \partial_{t} v \in L_{2}^{\text {loc }}(\mathbb{R} ; H)\right\}$, i.e. $v \in H^{\mathbf{r}, \text { loc }}(Q)$ if

$$
\left\|\Pi_{t_{1}, t_{2}} v\right\|_{H^{\mathbf{r}}\left(Q_{t_{1}, t_{2}}\right)}^{2}<\infty \quad \forall\left[t_{1}, t_{2}\right] \subseteq \mathbb{R}
$$

We shall use the topological spaces $H_{s}^{\mathbf{r}, \text { loc }}(Q), H_{w}^{\mathbf{r}, l o c}(Q)$, and the Banach space $H^{\mathbf{r}, \mathrm{a}}(Q)$ with the norm

$$
\|v\|_{H^{\mathbf{r}, \mathrm{a}}(Q)}^{2}=\|v\|_{\mathbf{r}, \mathrm{a}}^{2}=\sup _{t \in \mathbb{R}}\left\|\Pi_{t, t+1} v\right\|_{H^{\mathbf{r}}\left(Q_{t, t+1}\right)}^{2}
$$

Suppose we are given some complete external force $\zeta(s), s \in \mathbb{R}$, in $\omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)$. Consider the equation

$$
\begin{equation*}
\partial_{t} u+\nu L u+B(u)=\zeta(x, t), \quad(\nabla, u)=0,\left.\quad u\right|_{\partial \Omega}=0, \quad x \in \Omega, t \in \mathbb{R} \tag{3.2}
\end{equation*}
$$

Definition 3.2. The kernel \mathcal{K}_{ζ} of equation (3.2) with the complete external force $\zeta \in Z\left(g_{0}\right)$ is the set of all solutions $u(s), s \in \mathbb{R}$, of equation (3.2) that are in the space $H^{\mathbf{r}, \mathrm{a}}(Q)$.

The following theorem specifies the structure of the trajectory attractor from Theorems 1.2 and 2.1.

Theorem 3.1. (i) Let g_{0} be tr.-c. in $L_{2, w}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$. Then the trajectory attractor $\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ in $H_{w}^{\mathrm{r}, \text { loc }}\left(Q_{+}\right)$of the translation semigroup $\{T(t)\}$ acting on $\mathcal{K}^{+}=\mathcal{K}_{\mathcal{H}_{+}\left(g_{0}\right)}^{+}$can be represented in the form

$$
\begin{equation*}
\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}=\mathcal{A}_{\omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)}=\Pi_{+}\left(\bigcup_{\zeta \in Z\left(g_{0}\right)} \mathcal{K}_{\zeta}\right)=\Pi_{+} \mathcal{K}_{Z\left(g_{0}\right)} . \tag{3.3}
\end{equation*}
$$

The set $\mathcal{K}_{Z\left(g_{0}\right)}$ is compact in $H_{w}^{\mathbf{r}, \text { loc }}(Q)$ and bounded in $H^{\mathbf{r}, \mathbf{a}}(Q)$. For all $\zeta \in Z\left(g_{0}\right)$ the kernel \mathcal{K}_{ζ} is non-empty and every function $u \in \mathcal{K}_{\zeta}$ is tr.-c. in $H_{w}^{\text {r,loc }}(Q)$.
(ii) Let g_{0} be tr.-c. in $L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$. Then the set $\mathcal{K}_{Z\left(g_{0}\right)}$ is compact in $H_{s}^{\mathbf{r}, \text { loc }}(Q)$ and every function $u \in \mathcal{K}_{\zeta}$ for $\zeta \in Z\left(g_{0}\right)$ is tr.-c. in $H_{s}^{\mathbf{r}, \text { loc }}(Q)$.

The proof of Theorem 3.1 is given in [5] and it uses the invariance property (1.6) of the trajectory attractor $\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}: T(t) \mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}=\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ for $t \geq 0$.

Remark 3.1. It was mentioned above that, in general, the prolongation ζ of an external force $g \in \omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)$ for $s<0$ need not be unique. Let us describe an important case when it is unique. Let g_{0} be a tr.-c. function in $L_{2}^{\text {a }}\left(\mathbb{R}_{+} ; H\right)$, i.e. the set $\left\{g_{0}(\cdot+h) \mid h \in \mathbb{R}_{+}\right\}$is precompact in the Banach space $L_{2}^{\text {a }}\left(\mathbb{R}_{+} ; H\right)$ with the uniform norm (1.2) and, hence, the hull $\mathcal{H}_{+}\left(g_{0}\right)$ is compact in $L_{2}^{2}\left(\mathbb{R}_{+} ; H\right)$. It can be proved that there exists a unique function $\widetilde{g}_{0}(s), s \in \mathbb{R}$, such that \widetilde{g}_{0} is tr.-c. in $L_{2}^{a}(\mathbb{R} ; H)$ and

$$
\int_{t}^{t+1}\left|g_{0}(s)-\widetilde{g}_{0}(s)\right|^{2} d s \rightarrow 0 \quad(t \rightarrow \infty)
$$

Therefore, $\omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)=\mathcal{H}_{+}\left(\widetilde{g}_{0}\right)$. Tr.-c. functions in $L_{2}^{\mathrm{a}}(\mathbb{R} ; H)$ are also called almost periodic functions in the Stepanov sense. These functions have all the main properties of usual almost periodic functions (in the Bohr or Bochner-Amerio sense, see [1]). In particular, the translation semigroup $\{T(t)\}$ is invertible on $\mathcal{H}_{+}\left(\widetilde{g}_{0}\right)$ and $\mathcal{H}_{+}\left(\widetilde{g}_{0}\right)=\Pi_{+} \mathcal{H}\left(\widetilde{g}_{0}\right)$, where $\mathcal{H}\left(\widetilde{g}_{0}\right)=\left[\left\{\widetilde{g}_{0}(\cdot+h) \mid h \in \mathbb{R}\right\}\right]_{L_{2}^{a}(\mathbb{R} ; H)}$ is the hull of the almost periodic function \widetilde{g}_{0}. Finally, in (3.3), $Z\left(g_{0}\right)=\mathcal{H}\left(\widetilde{g}_{0}\right)$ and every external force $g \in \omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)$ has a unique prolongation for $s<0$ as an almost periodic function.

To conclude the section we describe the uniform (with respect to $g \in \mathcal{H}_{+}\left(g_{0}\right)$) attractor $\mathfrak{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ for the family $\left\{U_{g}(t, \tau) \mid t \geq \tau \geq 0\right\}, g \in \mathcal{H}_{+}\left(g_{0}\right)$, of processes corresponding to equation (1.1). By Theorem 1.1, for every $g \in \mathcal{H}_{+}\left(g_{0}\right)$, one defines a process $\left\{U_{g}(t, \tau) \mid t \geq \tau \geq 0\right\}$ acting on $V: U_{g}(t, \tau) u_{\tau}=u_{g}(t)$, where u_{g} is a solution of (1.1) with the initial condition $\left.u\right|_{t=\tau}=u_{\tau}, \tau \geq 0$. Now consider the set $Z\left(g_{0}\right)$. In a similar way, to each $\zeta \in Z\left(g_{0}\right)$ there corresponds a complete process $\left\{U_{\zeta}(t, \tau) \mid t \geq \tau, \tau \in \mathbb{R}\right\}, U_{\zeta}(t, \tau) u_{\tau}(t)=u_{\zeta}(t)$, where $u_{\zeta}(t)$ is a solution of (3.2) with the initial condition $\left.u\right|_{t=\tau}=u_{\tau}, \tau \in \mathbb{R}$. Consider the kernel \mathcal{K}_{ζ} corresponding to ζ.

We denote by $\mathcal{K}_{\zeta}(t)$ the kernel section at time $t \in \mathbb{R}: \mathcal{K}_{\zeta}(t)=\{u(t) \mid u(\cdot) \in$ $\left.\mathcal{K}_{\zeta}\right\} \subset V$. It is clear that

$$
U_{\zeta}(t, \tau) \mathcal{K}_{\zeta}(\tau)=\mathcal{K}_{\zeta}(t) \quad \forall t \geq \tau, \tau \in \mathbb{R}
$$

Using Theorem 3.1, Corollary 2.1, and Corollary 1.2 we get
Corollary 3.1. (i) If g_{0} is tr.-c. in $L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$ then the set

$$
\begin{equation*}
\mathfrak{A}_{\mathcal{H}_{+}\left(g_{0}\right)}=\bigcup_{\zeta \in Z\left(g_{0}\right)} \mathcal{K}_{\zeta}(0) \tag{3.4}
\end{equation*}
$$

is the uniform (with respect to $g \in \mathcal{H}_{+}\left(g_{0}\right)$) attractor $\mathfrak{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ in V of the family of processes $\left\{U_{g}(t, \tau) \mid t \geq \tau \geq 0\right\}, g \in \mathcal{H}_{+}\left(g_{0}\right)$, and the set $\mathfrak{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ is compact in V.
(ii) If g_{0} is tr.-c. in $L_{2, w}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$ then the set $\mathfrak{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ defined in (3.4) serves as the uniform (with respect to $g \in \mathcal{H}_{+}\left(g_{0}\right)$) attractor in V_{w} (with the weak topology of V) and it is bounded in V. In particular, $\mathfrak{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ is the uniform attractor in $H_{1-\delta}, \mathfrak{A}_{\mathcal{H}_{+}\left(g_{0}\right)} \Subset H_{1-\delta}, 0<\delta \leq 1$.

4. Trajectory attractors for the $3 \mathrm{D} \mathbf{N}-\mathrm{S}$ system

In this section we shall construct a trajectory attractor for the non-autonomous Navier-Stokes system in a 3 D domain $\Omega \Subset \mathbb{R}^{3}$. The structure of the trajectory attractor will be described and some properties of the attractor will be given. Only a brief general scheme will be sketched, without proofs and detailed explanations. This part will be expounded in more detail in another publication (see also [7], [10], [18]).

Consider the 3D Navier-Stokes system in the semicylinder $Q_{+}=\Omega \times \mathbb{R}_{+}$:

$$
\begin{gather*}
\partial_{t} u+\nu L u+B(u)=g(x, t), \quad(\nabla, u)=0, \\
\left.u\right|_{\partial \Omega}=0, \quad x \in \Omega \Subset \mathbb{R}^{3}, \quad t \geq 0, \tag{4.1}
\end{gather*}
$$

where $x=\left(x_{1}, x_{2}, x_{3}\right), u=u(x, t)=\left(u^{1}, u^{2}, u^{3}\right), g=g(x, t)=\left(g^{1}, g^{2}, g^{3}\right) . L$ is the 3D Stokes operator: $L u=-P \Delta u ; B(u)=B(u, u), B(u, v)=P(u, \nabla) v=$ $P \sum_{i=1}^{3} u_{i} \partial_{x_{i}} v$. The spaces H and V are determined similar to the 2D case. Suppose $g \in L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$.

Let there be given an initial external force $g_{0} \in L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$ in (4.1). Assume that g_{0} is tr.-c. in $L_{2, w}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right) \equiv L_{2, w}^{\text {loc }}$, i.e.

$$
\begin{equation*}
\left\|g_{0}\right\|_{L_{2}^{\mathrm{a}}\left(\mathbb{R}_{+} ; H\right)}^{2}=\left\|g_{0}\right\|_{\mathrm{a}}^{2}=\sup _{t \in \mathbb{R}_{+}} \int_{t}^{t+1}\left|g_{0}(s)\right|^{2} d s<\infty \tag{4.2}
\end{equation*}
$$

Let $\Sigma=\mathcal{H}_{+}\left(g_{0}\right) \equiv\left[\left\{g_{0}(\cdot+t) \mid t \geq 0\right\}\right]_{L_{2, w}^{\mathrm{loc}}\left(\mathbb{R}_{+} ; H\right)}$ be the hull of the function g_{0} in the space $L_{2, w}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$. It can be proved that $\mathcal{H}_{+}\left(g_{0}\right)$ is a complete metric space. The translation semigroup $\{T(t)\}$ is continuous on $\mathcal{H}_{+}\left(g_{0}\right)$ and $T(t) \mathcal{H}_{+}\left(g_{0}\right) \subseteq$ $\mathcal{H}_{+}\left(g_{0}\right)$ for all $t \geq 0$; moreover, $\|g\|_{\mathrm{a}}^{2} \leq\left\|g_{0}\right\|_{\mathrm{a}}^{2}$ for every $g \in \mathcal{H}_{+}\left(g_{0}\right)$.

To study the trajectory attractor of equation (4.1) we consider the family of those equations with various external forces $g \in \mathcal{H}_{+}\left(g_{0}\right)$.

To describe a trajectory space \mathcal{K}_{g}^{+}of equation (4.1) with the external force g we shall consider weak solutions of equation (4.1) in the space $L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; V\right) \cap$ $L_{\infty}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$. If $u \in L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; V\right) \cap L_{\infty}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$ then equation (4.1) makes sense in the distribution space $D^{\prime}\left(\mathbb{R}_{+} ; V^{\prime}\right)$, where V^{\prime} is the dual space of V. This is the usual way to define weak solutions of equation (4.1) (see [16]).

Definition 4.1. The trajectory space \mathcal{K}_{g}^{+}is the union of all weak solutions $u \in L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; V\right) \cap L_{\infty}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$ of equation (4.1) with the external force g that satisfy the inequality

$$
\begin{equation*}
\frac{1}{2} \frac{d}{d t}|u(t)|^{2}+\nu\|u(t)\|^{2} \leq(g(t), u(t)), \quad t \in \mathbb{R}_{+} \tag{4.3}
\end{equation*}
$$

This inequality should be read as follows: for each $\psi \in C_{0}^{\infty}(] 0, \infty[), \psi \geq 0$,

$$
\begin{equation*}
-\frac{1}{2} \int_{0}^{\infty}|u(s)|^{2} \psi^{\prime}(s) d s+\nu \int_{0}^{\infty}\|u(s)\|^{2} \psi(s) d s \leq \int_{0}^{\infty}(g(s), u(s)) \psi(s) d s \tag{4.4}
\end{equation*}
$$

Let us formulate the existence theorem:
Theorem 4.1. Let $g \in L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$ and $u_{0} \in H$. Then there exists a weak solution u of equation (4.1) belonging to the space $L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; V\right) \cap L_{\infty}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$ such that $u(0)=u_{0}$ and u satisfies inequality (4.4).

The existence theorem is a classical result (see [14]-[16], [19]). The proof uses the Faedo-Galerkin approximation method. To get (4.4) one has to pass to the limit in the corresponding a priori equality involving the sequence $\left\{u_{m}\right\}$ of Faedo-Galerkin approximations.

Remark 4.1. For the 3D case, the uniqueness problem is still open. Also, it is not known whether every weak solution of (4.1) satisfies inequality (4.3).

It can be shown that every weak solution $u \in L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; V\right) \cap L_{\infty}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$ of equation (4.1) satisfies

$$
\partial_{t}^{1 / 4-\varepsilon} u \in L_{2}^{\mathrm{loc}}\left(\mathbb{R}_{+} ; H\right) \quad \forall \varepsilon, 0<\varepsilon<1 / 4,
$$

(see [16]), and $\partial_{t} u \in L_{4 / 3}^{\mathrm{loc}}\left(\mathbb{R}_{+} ; V^{\prime}\right)$ (see [20]). Consider the following space:

$$
\begin{aligned}
\mathcal{F}_{+}^{\text {loc }}= & L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; V\right) \cap L_{\infty}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right) \\
& \cap\left\{v \mid \partial_{t}^{1 / 4-\varepsilon} v \in L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; V^{\prime}\right)\right\} \cap\left\{v \mid \partial_{t} v \in L_{4 / 3}^{\mathrm{loc}}\left(\mathbb{R}_{+} ; V^{\prime}\right)\right\},
\end{aligned}
$$

where ε is fixed, $0<\varepsilon<1 / 4$. The space $\mathcal{F}_{+}^{\text {loc }}$ is endowed with the following "weak" convergence topology.

Definition 4.2. A sequence $\left\{v_{n}\right\} \subset \mathcal{F}_{+}^{\text {loc }}$ converges (in a weak sense) to $v \in \mathcal{F}_{+}^{\text {loc }}$ as $n \rightarrow \infty$ if $v_{n} \rightarrow v(n \rightarrow \infty)$ weakly in $L_{2}\left(t_{1}, t_{2} ; V\right)$, *-weakly in $L_{\infty}\left(t_{1}, t_{2} ; H\right), \partial_{t}^{1 / 4-\varepsilon} v_{n} \rightarrow \partial_{t}^{1 / 4-\varepsilon} v(n \rightarrow \infty)$ weakly in $L_{2}\left(t_{1}, t_{2} ; H\right)$, and $\partial_{t} v_{n} \rightarrow \partial_{t} v(n \rightarrow \infty)$ weakly in $L_{4 / 3}\left(t_{1}, t_{2} ; V^{\prime}\right)$ for all $\left[t_{1}, t_{2}\right] \subset \mathbb{R}_{+}$.

The space $\mathcal{F}_{+}^{\text {loc }}$ with the above weak topology is denoted by $\Theta_{+}^{\text {loc }}$. We shall also use the space

$$
\begin{aligned}
\mathcal{F}_{+}^{\mathrm{a}}= & L_{2}^{\mathrm{a}}\left(\mathbb{R}_{+} ; V\right) \cap L_{\infty}^{\mathrm{a}}\left(\mathbb{R}_{+} ; H\right) \\
& \cap\left\{v \mid \partial_{t}^{1 / 4-\varepsilon} v \in L_{2}^{\mathrm{a}}\left(\mathbb{R}_{+} ; V^{\prime}\right)\right\} \cap\left\{v \mid \partial_{t} v \in L_{4 / 3}^{\mathrm{a}}\left(\mathbb{R}_{+} ; V^{\prime}\right)\right\},
\end{aligned}
$$

which is a subspace of $\mathcal{F}_{+}^{\text {loc }}$. If X is a Banach space then $L_{p}^{\mathrm{a}}\left(\mathbb{R}_{+} ; X\right)$ means the subspace of $L_{p}^{\text {loc }}\left(\mathbb{R}_{+} ; X\right)$ having the finite norm

$$
\|v\|_{L_{p}^{a}\left(\mathbb{R}_{+} ; X\right)}^{p}=\sup _{t \geq 0} \int_{t}^{t+1}\|v(s)\|_{X}^{p} d s
$$

Similarly, the space $L_{p}^{\mathrm{a}}(\mathbb{R} ; X)$ has the norm

$$
\|v\|_{L_{p}^{a}(\mathbb{R} ; X)}^{p}=\sup _{t \in \mathbb{R}} \int_{t}^{t+1}\|v(s)\|_{X}^{p} d s
$$

Lemma 4.1. (i) $\mathcal{K}_{g}^{+} \subset \mathcal{F}_{+}^{\mathrm{a}}$ for all $g \in \mathcal{H}_{+}\left(g_{0}\right)$.
(ii) For every $u \in \mathcal{K}_{g}^{+}$,

$$
\begin{equation*}
\|T(t) u(\cdot)\|_{\mathcal{F}_{+}^{a}} \leq C\|u(\cdot)\|_{L_{\infty}(0,1 ; H)}^{2} \exp (-\lambda t)+R_{0} \quad \forall t \geq 0 \tag{4.5}
\end{equation*}
$$

where λ is the first eigenvalue of the operator $\nu L ; C$ depends on λ, and R_{0} depends on λ and $\left\|g_{0}\right\|_{L_{2}^{\text {a }}\left(\mathbb{R}_{+} ; H\right)}^{2}$.

Put

$$
\mathcal{K}_{\Sigma}^{+}=\bigcup_{g \in \mathcal{H}_{+}\left(g_{0}\right)} \mathcal{K}_{g}^{+}, \quad \Sigma=\mathcal{H}_{+}\left(g_{0}\right)
$$

The translation semigroup $\{T(t) \mid t \geq 0\}$ acts on \mathcal{K}_{Σ}^{+}:

$$
T(t) u(s)=u(t+s), \quad s \geq 0
$$

Evidently

$$
T(t) u \in \mathcal{K}_{T(t) g}^{+} \quad \forall u \in \mathcal{K}_{g}^{+}, \quad t \geq 0
$$

so the family $\left\{\mathcal{K}_{g}^{+} \mid g \in \mathcal{H}_{+}\left(g_{0}\right)\right\}$ is translation-coordinated. Therefore

$$
T(t) \mathcal{K}_{\Sigma}^{+} \subseteq \mathcal{K}_{\Sigma}^{+} \quad \forall t \geq 0
$$

It is clear that every mapping $T(t)$ is continuous in $\Theta_{+}^{\text {loc }}$.
It follows from (4.5) that the ball $B_{0}=\left\{\|v\|_{\mathcal{F}_{+}^{a}} \leq 2 R_{0}\right\}$ serves as a uniformly absorbing set of the translation semigroup $\{T(t)\}$ acting on \mathcal{K}_{Σ}^{+}. The set B_{0} is bounded in $\mathcal{F}_{+}^{\text {a }}$ and it is compact in $\Theta_{+}^{\text {loc }}$.

Lemma 4.2. The family $\left\{\mathcal{K}_{g}^{+} \mid g \in \Sigma\right\}$ is $\left(\Theta_{+}^{\text {loc }}, \mathcal{H}_{+}\left(g_{0}\right)\right)$-closed and \mathcal{K}_{Σ}^{+}is closed in $\Theta_{+}^{\text {loc }}$.

In this way, by Lemmas 4.1 and 4.2, Proposition 1.2 is applicable.
Let $\omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)$ denote the global attractor of the semigroup $\{T(t)\}$ on $\mathcal{H}_{+}\left(g_{0}\right)$. Here

$$
\omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)=\bigcap_{\tau \geq 0}\left[\bigcup_{t \geq \tau} T(t) \mathcal{H}_{+}\left(g_{0}\right)\right]_{L_{2, w}^{\mathrm{loc}}}
$$

is the ω-limit set of $\mathcal{H}_{+}\left(g_{0}\right)$.
Let $Z\left(g_{0}\right)$ be the set of all complete external forces in $\mathcal{H}_{+}\left(g_{0}\right)$, i.e. the set of all functions $\zeta \in L_{2}^{\text {loc }}(\mathbb{R} ; H)$ such that $\zeta_{t} \in \omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)$ for all $t \in \mathbb{R}$, where $\zeta_{t}(s)=\Pi_{+} \zeta(s+t), s \geq 0$. Evidently, for every $g \in \omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)$ there is at least one $\zeta \in Z\left(g_{0}\right)$ such that $\zeta(s)$ is a prolongation of $g(s)$ for negative s. To each complete external force $\zeta \in Z\left(g_{0}\right)$ there corresponds the kernel \mathcal{K}_{ζ} of equation (4.1). The kernel \mathcal{K}_{ζ} consists of all weak solutions $u(s), s \in \mathbb{R}$, of the equation

$$
\partial_{t} u+\nu L u+B(u)=\zeta(x, t), \quad t \in \mathbb{R}
$$

that satisfy inequality (4.4) and that are in the space

$$
\begin{aligned}
\mathcal{F}^{\mathrm{a}}= & L_{2}^{\mathrm{a}}(\mathbb{R} ; V) \cap L_{\infty}^{\mathrm{a}}(\mathbb{R} ; H) \\
& \cap\left\{v \mid \partial_{t}^{1 / 4-\varepsilon} v \in L_{2}^{\mathrm{a}}\left(\mathbb{R} ; V^{\prime}\right)\right\} \cap\left\{v \mid \partial_{t} v \in L_{4 / 3}^{\mathrm{a}}\left(\mathbb{R} ; V^{\prime}\right)\right\} .
\end{aligned}
$$

Let us formulate the main
Theorem 4.2. Let g_{0} be tr.-c. in $L_{2, w}^{\mathrm{loc}}\left(\mathbb{R}_{+} ; H\right)$. Then the translation semigroup $\{T(t)\}$ acting on $\mathcal{K}_{\Sigma}^{+}\left(\Sigma=\mathcal{H}_{+}\left(g_{0}\right)\right)$ has a trajectory attractor $\mathcal{A}_{\Sigma}=$ $\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ in $\Theta_{+}^{\text {loc }}$. The set $\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ is bounded in $\mathcal{F}_{+}^{\text {a }}$ and compact in $\Theta_{+}^{\text {loc }}$. Moreover,

$$
\mathcal{A}_{\mathcal{H}+\left(g_{0}\right)}=\mathcal{A}_{\omega\left(\mathcal{H}_{+}\left(g_{0}\right)\right)}=\Pi_{+}\left(\bigcup_{\zeta \in Z\left(g_{0}\right)} \mathcal{K}_{\zeta}\right)=\Pi_{+} \mathcal{K}_{Z\left(g_{0}\right)}
$$

The kernel \mathcal{K}_{ζ} is non-empty for all $\zeta \in Z\left(g_{0}\right)$; the set $\mathcal{K}_{Z\left(g_{0}\right)}$ is bounded in $\mathcal{F}^{\text {a }}$ and compact in Θ^{loc}.

The detailed proof of Lemmas 4.1, 4.2, and Theorem 4.2 is given in [5].
Notice that the following embedding is continuous: $\Theta_{+}^{\text {loc }} \subset L_{2}^{\text {loc }}\left(\mathbb{R}_{+} ; H_{1-\delta}\right)$, $0<\delta \leq 1$, so we get

Corollary 4.1. For every set $B \subset \mathcal{K}^{+}$bounded in \mathcal{F}_{+}^{a},

$$
\operatorname{dist}_{L_{2}\left(0, \Gamma ; H_{1-\delta}\right)}\left(\Pi_{0, \Gamma} T(t) B, \Pi_{0, \Gamma} \mathcal{K}_{Z\left(g_{0}\right)}\right) \rightarrow 0 \quad(t \rightarrow \infty)
$$

where Γ is fixed and arbitrary.
In conclusion, we shall formulate some properties of trajectory attractors of the Navier-Stokes system.
(I) Let $g_{0}(x, s)=g_{1}(x, s)+a(x, s)$ in (4.1), where g_{1} and a are tr.-c. functions in $L_{2, w}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$. Assume that $T(t) a \rightarrow 0(t \rightarrow \infty)$ in $L_{2, w}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$, i.e.

$$
\begin{equation*}
\int_{0}^{1}(a(s+t), \psi(s)) d s \rightarrow 0 \quad(t \rightarrow \infty) \tag{4.6}
\end{equation*}
$$

for all $\psi \in L_{2}(0,1 ; H)$. Then the trajectory attractors corresponding to $\Sigma=$ $\mathcal{H}_{+}\left(g_{1}+a\right)$ and to $\Sigma_{1}=\mathcal{H}_{+}\left(g_{1}\right)$ coincide:

$$
\begin{equation*}
\mathcal{A}_{\mathcal{H}_{+}\left(g_{1}+a\right)}=\mathcal{A}_{\mathcal{H}_{+}\left(g_{1}\right)} . \tag{4.7}
\end{equation*}
$$

In particular, if $g_{1} \equiv 0$ then $\mathcal{A}_{\mathcal{H}_{+}(a)}=\mathcal{A}_{\mathcal{H}_{+}(0)}=\{0\}$.
For example, the function $a(x, s)=\varphi(x) \sin \left(s^{2}\right)$ satisfies (4.6) for all $\varphi \in H$. Thus a more and more rapidly oscillating additional term $a(s)$ does not affect the trajectory attractor. The equality (4.7) is valid for 3 D just as for $2 \mathrm{D} \mathrm{N}-\mathrm{S}$ systems.
(II) Let $g_{0}(x, s)=g_{0 \varepsilon}(x, s)=g_{1}(x, s)+\varepsilon g_{2}(x, s)$ in (4.1), where the g_{i} are tr.-c. functions in $L_{2, w}^{\text {loc }}\left(\mathbb{R}_{+} ; H\right)$ and $|\varepsilon| \leq 1$. Put $\mathcal{A}(\varepsilon)=\mathcal{A}_{\mathcal{H}_{+}\left(g_{0 \varepsilon}\right)}$. Then $\mathcal{A}(\varepsilon)$ is lower semicontinuous with respect to ε. More precisely, it can be proved that the ball $B_{0}=\left\{\|v\|_{\mathcal{F}_{+}^{\text {a }}} \leq R_{1}\right\}$, which is a topological subspace of $\Theta_{+}^{\text {loc }}$, is metrizable, and in this metric

$$
\begin{equation*}
\operatorname{dist}_{\Theta_{+}^{\text {loc }}}(\mathcal{A}(\varepsilon), \mathcal{A}(0)) \rightarrow 0 \quad(t \rightarrow \infty) \tag{4.8}
\end{equation*}
$$

The radius R_{1} is large enough to provide the inclusion $\mathcal{A}(\varepsilon) \subseteq B_{1}$ for all $\varepsilon,|\varepsilon| \leq 1$. For the $2 \mathrm{D} \mathrm{N}-\mathrm{S}$ system (1.1) the property (4.8) is also valid with dist $_{\Theta_{+}^{\text {loc }}}$ being replaced by $\operatorname{dist}_{H^{\text {r,loc }}}$ or by $\operatorname{dist}_{H_{w}^{\text {r,loc }}}$ depending on the tr.-c. class the external force belongs to.
(III) Let $\mathcal{A}_{\mathcal{H}_{+}\left(P_{N} g_{0}\right)}^{(N)} \equiv \mathcal{A}^{(N)}$ be the trajectory attractor of the Faedo-Galerkin approximation system of order N for equation (4.1), where P_{N} is the projection onto the finite-dimensional subspace of H spanned by the first N eigenfunctions of the Stokes operator. Then

$$
\operatorname{dist}_{\Theta_{+}^{\text {loc }}}\left(\mathcal{A}^{(N)}, \mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}\right) \rightarrow 0 \quad(t \rightarrow \infty)
$$

In other words, for each neighbourhood $\mathcal{O}\left(\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}\right)$ of $\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}$ in $\Theta_{+}^{\text {loc }}$ there is N_{1} such that $\mathcal{A}^{(N)} \subseteq \mathcal{O}\left(\mathcal{A}_{\mathcal{H}_{+}\left(g_{0}\right)}\right)$ for all $N \geq N_{1}$.

References

[1] L. Amerio and G. Prouse, Abstract Almost Periodic Functions and Functional Equations, Van Nostrand, New York, 1971.
[2] A. V. Babin and M. I. Vishik, Attractors of Evolution Equations, North-Holland, 1992; transl. from the Russian edition, Nauka, Moscow, 1989.
[3] O. V. Besov, V. P. Il'in and S. M. Nikol'skĭ̆, Integral Representations of Functions and Embedding Theorems, Nauka, Moscow, 1975. (Russian)
[4] V. V. Chepyzhov and M. I. Vishik, Attractors of nonautonomous dynamical systems and their dimension, J. Math. Pures Appl. 73 (1994), 279-333.
[5] , Evolution equations and their trajectory attractors, J. Math. Pures Appl. (to appear).
[6] , Non-autonomous evolutionary equations with translation-compact symbols and their attractors, C. R. Acad. Sci. Paris Sér. I 321 (1995), 153-158.
[7] , Attractors of a non-autonomous 3D Navier-Stokes system, Uspekhi Mat. Nauk 50 (1995), no. 4, 151. (Russian)
[8] _, Attractors of non-autonomous evolutionary equations of mathematical physics with translation-compact symbols, Uspekhi Mat. Nauk 50 (1995), no. 4, 146-147. (Russian)
[9] , Attractors of non-autonomous evolution equations with translation-compact symbols, Oper. Theory Adv. Appl., vol. 78, Birkhäuser-Verlag, 1995, pp. 49-60.
[10] , Trajectory attractors for evolution equations, C. R. Acad. Sci. Paris Sér. I 321 (1995), 1309-1314.
[11] C. M. Dafermos, Semi-flows associated with compact and almost uniform processes, Math. Systems Theory 8 (1974), 142-149.
[12] \qquad , Almost periodic processes and almost periodic solutions of evolution equations, Dynamical Systems (Proc. Internat. Sympos., Univ. of Florida), Academic Press, New York, 1977, pp. 43-57.
[13] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surveys Monographs, vol. 25, Amer. Math. Soc., Providence, R.I., 1988.
[14] E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr. 4 (1951), 213-231.
[15] O. A. Ladyzhenskaya, Mathematical Problems in the Dynamics of a Viscous Incompressible fluid, Nauka, Moscow, 1970. (Russian)
[16] J.-L. Lions, Quelques méthodes de résolutions des problèmes aux limites non-linéaires, Dunod and Gauthier-Villars, Paris, 1969.
[17] G. R. Sell, Nonautonomous differential equations and topological dynamics. I, II, Trans. Amer. Math. Soc. 127 (1967), 241-262, 263-283.
[18] G. R. Sell, Global attractors for 3D Navier-Stokes equations, preprint, Univ. of Minnesota, 1995.
[19] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, 1979.
[20] , Infinite Dimensional Dynamical Systems in Mechanics and Physics, SpringerVerlag, 1988.
[21] M. I. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics, Kluwer Acad. Publ., 1987.

Vladimir V. Chepyzhov and Mark I. Vishik Institute for Information Transmission Problems Russian Academy of Sciences
Ermolovoy 19, Moscow 101447, GSP-4, RUSSIA
E-mail address: chep@ippi.ac.msk.su

