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TRAJECTORY ATTRACTORS FOR THE 2D
NAVIER–STOKES SYSTEM AND SOME GENERALIZATIONS
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To the memory of Juliusz Schauder

Introduction

We are dealing with the non-autonomous 2D Navier–Stokes system

(1) ∂tu+ νLu+B(u) = g(x, t), (∇, u) = 0, u|∂Ω = 0,

x ∈ Ω b R2, t ≥ 0, u = u(x, t) = (u1, u2) ≡ u(t), g = g(x, t) = (g1, g2) ≡
g(t). Here Lu = −P∆u is the Stokes operator, ν > 0, B(u) = P

∑2
i=1 ui∂xiu;

P is the orthogonal projector onto the space of divergence-free vector fields (see
Section 1).

Consider the autonomous case: g(x, t) ≡ g(x), g ∈ H, to begin with. Suppose
for t = 0 we are given the initial condition

(2) u|t=0 = u0, u0 ∈ H.

The problem (1), (2) has a unique solution u(t), t ≥ 0, which can be represented
in the form u(t) = S(t)u0. The family of mappings {S(t) | t ≥ 0} forms a
semigroup: S(t1)S(t2) = S(t1 + t2) for t1, t2 ≥ 0, S(0) = Id. A set A ⊂ H is
said to be an attractor of this semigroup (or an attractor of equation (1)) if A
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is compact in H, A is strictly invariant with respect to {S(t)}: S(t)A = A for
t ≥ 0, and A attracts every bounded set B in H:

distH(S(t)B,A) → 0 (t→∞)

(see, for example, [13], [20], [2], and the references cited there).
The non-autonomous equation (1) has been less studied. Let an external

force g0(x, t) ≡ g0(t) in (1) depend on t, t ≥ 0. Assume the function g0 is
translation-compact in Lloc

2 (R+;H) ≡ Lloc
2 (or in Lloc

2,w(R+;H) ≡ Lloc
2,w). This

means that the family of translations {g0(·+h) | h ≥ 0} forms a precompact set
in Lloc

2 (respectively, in Lloc
2,w). It is easy to formulate translation-compactness

criterions (see Section 1). For example, g0 is translation-compact in Lloc
2,w if and

only if the following norm is finite:

(3) ‖g0‖2a = sup
t≥0

∫ t+1

t

|g0(s)|2 ds <∞.

Denote by H+(g0) the hull of the function g0 in the space Lloc
2,w, i.e.

H+(g0) = [{g(·+ h) | h ≥ 0}]Lloc
2,w
,

where [·]X means the closure in a topological space X.
Consider the family of equations (1) with external forces g ∈ H+(g0) ≡ Σ.

Let {Ug(t, τ) | t ≥ τ ≥ 0} be a family of operators (called a process in H) such
that Ug(t, τ)uτ = ug(t), t ≥ τ ≥ 0, where ug is a solution of equation (1) with
the external force g and with the initial condition u|t=τ = uτ ∈ H. Evidently,
Ug(t, τ) : H → H, Ug(t, θ)Ug(θ, τ) = Ug(t, τ), Ug(τ, τ) = Id for t ≥ θ ≥ τ ≥ 0.
Consider the family {Ug(t, τ) | g ∈ H+(g0)} of processes corresponding to the
family of equations (1) with external forces g ∈ H+(g0). (In the autonomous
case, g0(t) ≡ g0, H+(g0) = {g0}, Ug(t, τ) = S(t − τ).) It is known that this
family has a uniform (with respect to g ∈ Σ) attractor AΣ in H. More precisely,
AΣ is compact in H, it attracts every bounded set B in H uniformly with respect
to g ∈ Σ:

sup
g∈Σ

distH(Ug(t, τ)B,AΣ) → 0 (t→∞) ∀τ ≥ 0,

and AΣ is a minimal compact, uniformly attracting set (see [9], [6], and [4]
dealing with a more restrictive case). In [6], [4] the structure and properties of
the uniform attractor for (1) were also studied.

In the present work we introduce and study a trajectory attractor AΣ for
equation (1). We point out at once that a trajectory attractor AΣ is a compact
set in the corresponding trajectory space of equations (1) that consists of their
solutions ug(t), t ≥ 0, considered as functions of t with values in H. In the
previous considerations, the attractor AΣ was a compact subset of points in H.
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Consider as before a fixed external force g0 which is a translation-compact
function in Lloc

2 (or in Lloc
2,w) and let H+(g0) ≡ Σ be the hull of g0 in Lloc

2 .

(The case when g0 is translation-compact in Lloc
2,w is studied in Section 1.) Let

Hr(Qt1,t2), r = (2, 2, 1), be the Nikol’skĭı space in Qt1,t2 = Ω× ]t1, t2[ (see [3]) of
functions ϕ(x, t) = ϕ(t) = (ϕ1, ϕ2) ∈ H, t ∈ ]t1, t2[, with a finite norm

‖ϕ‖2Hr(Qt1,t2 ) =
∫

Qt1,t2

( ∑
|α|≤2

|∂α
x ϕ(x, t)|2 + |∂tϕ(x, t)|2

)
dx dt.

To each external force g ∈ H+(g0) there corresponds a trajectory space K+
g .

The space K+
g is the union of all solutions u(t) = ug(t), t ≥ 0, of equation (1)

in the space Hr,loc(Q+) ≡ Hr,loc, Q+ = Ω×]0,∞[ (i.e. u ∈ Hr(Qt1,t2) for all
]t1, t2[ ⊂ R+). Let K+ =

⋃
g∈H+(g0)

K+
g be the union of all K+

g . The translation
semigroup {T (h) | h ≥ 0} acts on Hr,loc:

T (h)ϕ(t) = ϕ(t+ h), h ≥ 0.

Evidently, T (h)ug(·) = ug(·+ h) = uT (h)g(·) ∈ K+
T (h)g. Therefore,

(4) T (h)K+ ⊆ K+ ∀h ≥ 0

(the inclusion may be strict, see Section 1). It is proved that K+ is closed in
Hr,loc. It is clear that the semigroup {T (h)} is continuous on Hr,loc. Denote by
Hr,a(Q+) ≡ Hr,a the subset of Hr,loc of functions ϕ(t), t ≥ 0, having a finite
norm

‖ϕ‖2Hr,a =
∑
|α|≤2

‖∂α
x ϕ‖2a + ‖∂tϕ‖2a <∞,

where ‖ · ‖a is defined in (3).
A trajectory attractor of the translation semigroup {T (h)} acting on K+ is

a set AΣ ⊆ K+ which is compact in Hr,loc, bounded in Hr,a, invariant with
respect to {T (h)}: T (h)AΣ = AΣ for h ≥ 0, and has the following attraction
property: for every set B ⊂ K+ bounded in Hr,a, and for each [t1, t2] ⊂ R+ the
set T (h)B tends to AΣ in the strong topology of the space Hr(Qt1,t2), i.e.

(5) distHr(Qt1,t2 )(T (h)B,AΣ) → 0 (h→∞).

In Section 2, we construct the trajectory attractor AΣ of the translation
semigroup {T (h)} acting on K+. Section 1 deals with the trajectory attractor AΣ

in the “weak” topology ofHr,loc
w (Q+) under the assumption that g0 is translation-

compact in Lloc
2,w only. In this case T (h)B tends to AΣ in the weak topology of

Hr(Qt1,t2) for all [t1, t2] ⊂ R+. In Section 3, the structure of the trajectory
attractor AΣ is described.
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Trajectory attractors have been constructed for various equations and sys-
tems of PDE for which the corresponding Cauchy problem has non-unique solu-
tion or for which the uniqueness theorem has not been proved yet (see [7]–[10]
and [5]).

In Section 4 we construct a trajectory attractor for the 3D Navier–Stokes
system; the structure and some properties of the trajectory attractor are given
as well. In particular, the trajectory attractor AΣ is stable with respect to small
perturbations of the external force g0(x, t); the trajectory attractor A(N)

Σ of the
Faedo–Galerkin approximation system of order N tends to AΣ as N →∞ in the
corresponding topology. Some other unexpected properties are also exhibited.

1. Trajectory attractor for the 2D N–S system with
translation-compact external force in Lloc

2,w

We consider the Navier–Stokes system in a bounded domain Ω b R2. Ex-
cluding the pressure, the system can be written in the form

(1.1) ∂tu+ νLu+B(u) = g(x, t), (∇, u) = 0, u|∂Ω = 0, x ∈ Ω, t ≥ 0,

where x = (x1, x2), u = u(x, t) = (u1, u2), g = g(x, t) = (g1, g2). L is the Stokes
operator: Lu = −P∆u; B(u) = B(u, u), B(u, v) = P (u,∇)v = P

∑2
i=1 ui∂xi

v,
ν > 0 (see [16], [15], [19], [21]). By H, V, and H2 we denote respectively the
closure in (L2(Ω))2, (H1(Ω))2, and (H2(Ω))2 of the set V0 = {v | v ∈ (C∞0 (Ω))2,
(∇, v) = 0}. P denotes the orthogonal projector in (L2(Ω))2 onto the Hilbert
space H. The scalar products in H and in V are (u, v) =

∫
Ω
(u(x), v(x)) dx

and ((u, v)) = 〈Lu, v〉 =
∫
Ω
(∇u(x),∇v(x)) dx and the norms are respectively

|u| = (u, u)1/2 and ‖u‖ = 〈Lu, u〉1/2. The norm in H2 is ‖ · ‖2.
To describe the external force g(x, s) in (1.1) consider the topological space

Lloc
2,w(R+;H). By definition, the space Lloc

2,w(R+;H) = Lloc
2,w is Lloc

2 (R+;H) = Lloc
2

endowed with the following local weak convergence topology. The sequence {gn}
converges to g as n→∞ in Lloc

2,w whenever
∫ t2

t1
(gn(s)− g(s), v(s)) ds→ 0 (n→

∞) for all [t1, t2] ⊆ R+ and all v ∈ L2(t1, t2;H).
Suppose we are given some fixed external force g0 ∈ Lloc

2 . Assume it is
translation-compact (tr.-c.) in Lloc

2,w, i.e. the set {g0(· + h) | h ∈ R+} is pre-
compact in Lloc

2,w. This condition is valid if and only if

(1.2) ‖g0‖2La
2(R+;H) = ‖g0‖2a = sup

t≥0

∫ t+1

t

|g0(s)|2 ds <∞

(see [6]). Denote by H+(g0) the hull of the function g0 in Lloc
2,w: H+(g0) =

[{g0(·+h) | h ∈ R+}]Lloc
2,w
. Here [ · ]Lloc

2,w
means the closure in Lloc

2,w. It can be shown
that the setH+(g0), which is a topological subspace of Lloc

2,w, is metrizable and the
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corresponding metric space is complete. Moreover, every function g ∈ H+(g0) is
tr.-c. in Lloc

2,w, H+(g) ⊆ H+(g0), and ‖g‖a ≤ ‖g0‖a.
The translation semigroup {T (t) | t ≥ 0} = {T (t)} acts on H+(g0):T (t)g(s)

= g(s + t). Evidently, T (t) is continuous in Lloc
2,w and T (t)H+(g0) ⊆ H+(g0) for

t ≥ 0.
We shall study the family of equations (1.1) with various external forces

g ∈ H+(g0).
Denote by Qt1,t2 the cylinder Ω× [t1, t2], where [t1, t2] ⊂ R+.

Consider the space Hr(Qt1,t2), r = (2, 2, 1) (see [3]), Hr(Qt1,t2) = L2(t1, t2;
H2) ∩ {v | ∂tv ∈ L2(t1, t2;H)}. The norm in Hr(Qt1,t2) is

(1.3) ‖v‖2Hr(Qt1,t2 ) =
∫ t2

t1

(‖v(s)‖22 + |∂tv(s)|2) ds.

Let us recall the existence and uniqueness theorem.

Theorem 1.1. Let g ∈ L2(t1, t2;H) and u0 ∈ V. Then there exists a
unique solution u of equation (1.1) belonging to the space Hr(Qt1,t2) such that
u(t1) = u0. Moreover, u ∈ C([t1, t2];V ).

This theorem is a variant of the classical result (see [14]–[16], [19], [2]). The
proof uses the Faedo–Galerkin approximation method.

We shall study equation (1.1) in the semicylinder Q+ = Ω × R+, where
g ∈ H+(g0).

Consider the space Hr,loc(Q+) = Lloc
2 (R+;H2) ∩ {v | ∂tv ∈ Lloc

2 (R+;H)},
i.e. v ∈ Hr,loc(Q+) if ‖Πt1,t2v‖2Hr(Qt1,t2 ) < ∞ for every [t1, t2] ⊂ R+, where
Πt1,t2 is the restriction operator to the interval [t1, t2]. We introduce two dif-
ferent topological spaces Hr,loc

s (Q+) and Hr,loc
w (Q+) (“strong” and “weak”).

The space Hr,loc
s (Q+) (resp. Hr,loc

w (Q+)) is Hr,loc(Q+) with the following con-
vergence topology. By definition, vn → v (n → ∞) in Hr,loc

s (Q+) (resp. in
Hr,loc

w (Q+)) if Πt1,t2vn → Πt1,t2v (n→∞) strongly in Hr(Qt1,t2) (respectively,
Πt1,t2vn ⇀ Πt1,t2v (n→∞) weakly in Hr(Qt1,t2)) for all [t1, t2] ⊆ R+. It is easy
to prove that the linear topological space Hr,loc

s (Q+) is metrizable, for example,
by means of the Fréchet metric generated by the seminorms ‖Πn,n+1v‖Hr(Qn,n+1),
n = 0, 1, 2, . . . The space Hr,loc

w (Q+) is not metrizable, but it is a Hausdorff and
Fréchet–Urysohn space with a countable topology base.

We shall also use the space Hr,a(Q+), which is a subspace of Hr,loc(Q+). By
definition, v ∈ Hr,a(Q+) if the following norm is finite:

(1.4) ‖v‖2Hr,a(Q+) = ‖v‖2r,a = sup
t≥0

‖Πt,t+1v‖2Hr(Qt,t+1)
.

Evidently, Hr,a(Q+) with the norm (1.4) is a Banach space. We shall not use
the topology generated by the norm (1.4). We need the Banach space Hr,a(Q+)
to define bounded sets in Hr,loc(Q+) only.
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With any external force g ∈ H+(g0) we associate the trajectory space K+
g

that is the union of all solutions u(s), s ≥ 0, of equation (1.1) in the space
Hr,loc(Q+). Notice that |B(v)| ≤ C|v|1/2‖v‖2‖v‖1/2

2 ; therefore any solution u ∈
K+

g satisfies (1.1) in the strong sense of the space Lloc
2 (R+;H). By Theorem

1.1, the trajectory space K+
g is wide enough for each g ∈ H+(g0). Define K+ =

K+
H+(g0)

=
⋃

g∈H+(g0)
K+

g .

Lemma 1.1. If g0 ∈ Lloc
2 (R+;H) satisfies (1.2) then K+ ⊂ Hr,a(Q+).

This lemma will be proved later on.
Consider the translation semigroup {T (t) | t ≥ 0} acting on Hr,loc(Q+) by

the formula
T (t)v(s) = v(s+ t), s ≥ 0, v ∈ Hr,loc(Q+).

Obviously, the family {K+
g | g ∈ H+(g0)} of trajectory spaces corresponding to

equation (1.1) satisfies the embedding

(1.5) T (t)K+
g ⊆ K+

T (t)g, ∀t ≥ 0.

In other words, for each t ≥ 0, the function u(s + t), s ≥ 0, is a solution of
equation (1.1) with a shifted symbol g(s+ t) = T (t)g(s) for any solution u ∈ K+

g

of equation (1.1) with symbol g ∈ H+(g0). Hence, the translation semigroup
{T (t)} takes K+ = K+

H+(g0)
into itself: T (t)K+ ⊆ K+, t ≥ 0.

In this section we study the trajectory attractor AH+(g0) of the translation
semigroup {T (t)} acting on K+ = K+

H+(g0)
. The set AH+(g0) attracts every set

T (t)B as t→∞ in the topology of Θloc
+ = Hr,loc

w (Q+), where B ⊂ K+ and B is
bounded in the Banach space Fa

+ = Hr,a(Q+).

Definition 1.1. Let Σ be a complete metric space and let Θ be a topological
space. Consider a family of sets {Kσ | σ ∈ Σ}, Kσ ⊂ Θ, depending on a
parameter σ ∈ Σ. The family {Kσ | σ ∈ Σ} is said to be (Θ,Σ)-closed if the
graph set

⋃
σ∈ΣKσ ×{σ} is closed in the topological space Θ×Σ with the usual

product topology.

Proposition 1.1. Let Σ be a compact metric space and {Kσ | σ ∈ Σ} be
(Θ,Σ)-closed. Then the set KΣ =

⋃
σ∈ΣKσ is closed in Θ.

Proof. We use the standard reasoning. Let u /∈ KΣ =
⋃

σ∈ΣKσ. Then
(u, σ) /∈

⋃
σ′∈ΣKσ′ × {σ′} for all σ ∈ Σ. The set

⋃
σ′∈ΣKσ′ × {σ′} is closed in

Θ × Σ, so there is a neighbourhood Wσ × Oσ in Θ × Σ such that Wσ × Oσ ∩
(
⋃

σ′∈ΣKσ′ × {σ′}) = ∅, u ∈ Wσ, σ ∈ Oσ, where Wσ and Oσ are open sets
in Θ and Σ respectively. The family {Oσ | σ ∈ Σ} forms an open covering
of Σ. Since Σ is compact, there is a finite subcovering {Oσi | i = 1, . . . , N}. Put
W(u) =

⋂N
i=1Wσi

. Evidently, W(u) ∩ KΣ = ∅. Hence, for every u /∈ KΣ there is
a neighbourhood W(u) with W(u) ∩ KΣ = ∅, i.e. KΣ is closed in Θ. �
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Lemma 1.2. The family {K+
g | g ∈ H+(g0)} of trajectory spaces correspond-

ing to equation (1.1) is (Θloc
+ ,H+(g0))-closed and K+ = K+

H+(g0)
is closed in

Θloc
+ .

Proof. Assume that un ∈ Kgn
, gn ∈ H+(g0), un → u (n→∞) in Θloc

+ and
gn → g (n→∞) in Lloc

2,w. We claim that u ∈ K+
g . Indeed, for each fixed [t1, t2] ⊂

R+ we have un ⇀ u (n→∞) weakly in Hr(Qt1,t2). Thus, ∂tun ⇀ ∂tu (n→∞)
weakly in L2(t1, t2;H) and ∂αun ⇀ ∂αu (n → ∞) weakly in L2(t1, t2;H) for
all α = (α1, α2) with |α| ≤ 2. In particular, by refining, we may assume that
un → u (n → ∞) almost everywhere in Qt1,t2 and B(un) ⇀ B(u) (n → ∞)
weakly in L2(t1, t2;H) (see the compactness theorems in [16], [19]). Therefore,
in the equation

∂tun + νLun +B(un) = gn(x, t),

we may pass to the limit as n→∞ weakly in L2(t1, t2;H) and get

∂tu+ νLu+B(u) = g(x, t),

so that u ∈ K+
g . Finally, it follows from Proposition 1.1 that K+

H+(g0)
is closed

in Θloc
+ since Σ = H+(g0) is a compact metric space. �

Consider the translation semigroup {T (t)} acting on the metric space
H+(g0). Evidently, the semigroup {T (t)} is continuous in H+(g0).

Definition 1.2. A set A is said to be a global attractor of a semigroup
{S(t)} acting on a complete metric space X if (i) A is compact in X and A

attracts every bounded set B: distX(S(t)B,A) → 0 (t→∞); (ii) S(t)A = A for
all t ≥ 0.

For the case X = Σ = H+(g0) we have

Proposition 1.2. The translation semigroup {T (t)} acting on the compact
metric space Σ = H+(g0) has a global attractor A which coincides with the ω-
limit set of Σ:

A = ω(Σ) =
⋂
t≥0

[ ⋃
h≥t

T (h)Σ
]
Σ

, ω(Σ) ⊆ Σ,

where [·]Σ means the closure in Σ. Moreover, T (t)ω(Σ) = ω(Σ) for t ≥ 0.

This statement follows from well-known theorems from the theory of attrac-
tors of semigroups acting in metric spaces (see, for example, [2], [20], [13]).

Consider a more general scheme. Let Σ be a complete metric space. Let also
F be a Banach space. Assume F ⊆ Θ, where Θ is a Hausdorff topological space.
Let a semigroup {T (t)} act on Θ: T (t)Θ ⊆ Θ, t ≥ 0. Suppose we are given a
family of sets {Kσ | σ ∈ Σ}, Kσ ⊆ F . Put KΣ =

⋃
σ∈ΣKσ.
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Definition 1.3. A set P ⊆ Θ is said to be a uniformly (with respect to
σ ∈ Σ) attracting set for the family {Kσ | σ ∈ Σ} in the topology Θ if for every
bounded set B in F and B ⊆ KΣ, the set P attracts T (t)B as t → ∞ in the
topology of Θ, i.e. for every neighbourhood O(P ) of P in Θ there exists t1 ≥ 0
such that T (t)B ⊆ O(P ) for all t ≥ t1.

Definition 1.4. A set AΣ ⊆ Θ is said to be a uniform (with respect to
σ ∈ Σ) attractor of the semigroup {T (t)} on KΣ in the topology Θ if AΣ is
compact in Θ and is a minimal compact uniformly attracting set of {Kσ | σ ∈ Σ},
i.e. AΣ is contained in every compact uniformly attracting set P of {Kσ | σ ∈ Σ}.

Let a semigroup {T (t)} act on Σ: T (t)Σ ⊆ Σ, t ≥ 0.

Definition 1.5. The family {Kσ | σ ∈ Σ} of trajectory spaces is said to be
translation-coordinated (tr.-coord.) if for all σ ∈ Σ and u ∈ Kσ,

T (t)u ∈ KT (t)σ ∀t ≥ 0.

It follows from (1.5) that the family {K+
g | g ∈ H+(g0)} is tr.-coord. with

respect to the translation semigroup {T (t)}.

Proposition 1.3. Let Σ be a compact metric space and suppose that a
continuous semigroup {T (t)} acts on Σ and on Θ: T (t)Σ ⊆ Σ, T (t)Θ ⊆ Θ,
t ≥ 0. Suppose we are given a family of sets {Kσ | σ ∈ Σ}, Kσ ⊆ F . Assume
that the family {Kσ | σ ∈ Σ} is (Θ,Σ)-closed and tr.-coord. Let there exist a
uniformly (with respect to σ ∈ Σ) attracting set P for {Kσ | σ ∈ Σ} in Θ such
that P is compact in Θ and P is bounded in F . Then the semigroup {T (t)} acting
on KΣ =

⋃
σ∈ΣKσ has a uniform (with respect to σ ∈ Σ) attractor AΣ ⊆ KΣ∩P

in the space Θ, and

(1.6) T (t)AΣ = AΣ ∀t ≥ 0.

Moreover,
AΣ = Aω(Σ),

where Aω(Σ) is the uniform (with respect to σ ∈ ω(Σ)) attractor of the family
{Kσ | σ ∈ ω(Σ)}, Aω(Σ) ⊆ Kω(Σ). Here ω(Σ) is the attractor of the semigroup
{T (t)} on Σ, T (t)ω(Σ) = ω(Σ). The set AΣ = Aω(Σ) is compact in Θ and
bounded in F .

The proof of Proposition 1.3 is given in [5] (see also [10]).
In application to the Navier–Stokes system (1.1) in this section, Σ = H+(g0),

F = Fa
+ = Hr,a(Q+), Θ = Θloc

+ = Hr,loc
w (Q+), {T (t)} is the translation semi-

group, and {K+
g | g ∈ H+(g0)} is the family of trajectory spaces of equation

(1.1). In this case a uniform (with respect to σ ∈ Σ) attractor AH+(g0) is called
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a trajectory attractor of the family {K+
g | g ∈ H+(g0)}. In the next section we

shall consider the “strong” space Θ = Θloc
+ = Hr,loc

s (Q+).
Let us formulate the main result of this section.

Theorem 1.2. Let g0 be tr.-c. in Lloc
2,w(R+;H). Then the translation semi-

group {T (t)} acting on K+ = K+
H+(g0)

has a trajectory attractor AH+(g0) in
Θloc

+ = Hr,loc
w (Q+); the set AH+(g0) attracts every set B ⊆ K+, bounded in

Fa
+ = Hr,a(Q+). The set AH+(g0) is bounded in F+, compact in Θloc

+ , and it is
invariant with respect to the translation semigroup: T (t)AH+(g0) = AH+(g0) for
all t ≥ 0. Moreover,

(1.7) AH+(g0) = Aω(H+(g0)),

where Aω(H+(g0)) is the trajectory attractor of the family {Kg | g ∈ ω(H+(g0))},
Aω(H+(g0)) ⊆ Kω(H+(g0)). Every function u ∈ AH+(g0) is tr.-c. in Θloc

+ .

Notice that the topology of the space Hr
w(Qt1,t2) is stronger than the uniform

convergence topology of the space C([t1, t2];H), Hr
w(Qt1,t2) ⊂ C([t1, t2];H). So,

we have

Corollary 1.1. For every set B ⊂ K+ bounded in F+, one has

distC([0,Γ];H)(Π0,ΓT (t)B,Π0,ΓAH+(g0)) → 0 (t→∞) ∀Γ ≥ 0.

Similarly, from the embedding Hr
w(Qt1,t2) ⊂ Cw([t1, t2];V ), we obtain

Corollary 1.2. For every set B ⊂ K+ bounded in F+, and for all v ∈ V,
one has

distC([0,Γ])(Π0,ΓJvT (t)B,Π0,ΓJvAH+(g0)) → 0 (t→∞) ∀Γ ≥ 0,

where Jv is the mapping from Hr
w(Qt1,t2) into C([t1, t2]) given by Jv(u(·)) =

((u(·), v)), ((·, ·)) being the scalar product in V.

To prove Theorem 1.2 we use Proposition 1.3. According to (1.5) and Lemma
1.2 we only have to check that the family {K+

g | g ∈ H+(g0)} of trajectory spaces
corresponding to equation (1.1) has a uniformly (with respect to g ∈ H+(g0))
attracting set P compact in Θloc

+ and bounded in Fa
+. This is the most difficult

part of the proof. We separate the proof of this fact into a few lemmas.

Lemma 1.3. For all u ∈ K+
g , g ∈ H+(g0), the following estimates are valid:

|u(τ + t)|2 ≤ e−λt|u(τ)|2 + C1‖g‖2a, t, τ ≥ 0,(1.8)

‖T (t)u‖2L∞(R+;H) ≤ e−λt|u(0)|2 + C1‖g‖2a,(1.9)
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where λ is the first eigenvalue of the operator νL, C1 = λ−1(1− e−λ)−1;

ν

∫ t+1

t

‖u(s)‖2 ds ≤ |u(t)|2 + C2

∫ t+1

t

|g(s)|2 ds,(1.10)

ν‖T (t)u‖2La
2(R+;V ) ≤ e−λt|u(0)|2 + C3‖g‖2a,(1.11)

where C2 = λ−1, C3 = C1 + C2, t ≥ 0.

Proof. Taking the scalar product in H of (1.1) with u, we get

(1.12)
d

dt
|u(t)|2 + λ|u(t)|2 ≤ d

dt
|u(t)|2 + ν‖u(t)‖2 ≤ λ−1|g(t)|2,

and integrating from τ to τ + t we obtain

|u(τ + t)|2 ≤ e−λt|u(τ)|2 + λ−1e−λ(τ+t)

∫ τ+t

τ

|g(s)|2eλs ds.

Estimating the last expression, we get∫ τ+t

τ

|g(s)|2e−λ(τ+t−s) ds

≤
∫ τ+t

τ+t−1

|g(s)|2e−λ(τ+t−s) ds+
∫ τ+t−1

τ+t−2

|g(s)|2e−λ(τ+t−s) ds+ . . .

≤
∫ τ+t

τ+t−1

|g(s)|2 ds+ e−λ

∫ τ+t−1

τ+t−2

|g(s)|2 ds+ e−2λ

∫ τ+t−2

τ+t−3

|g(s)|2 ds+ . . .

≤ ‖g‖2a(1 + e−λ + e−2λ + . . . ) = ‖g‖2a(1− e−λ)−1.

So, inequality (1.8) is proved. Inequality (1.9) follows directly from (1.8). In the
usual way, one derives (1.10) from (1.12). Combining (1.8) and (1.10), we get
(1.11). �

Lemma 1.4. For all u ∈ K+
g , g ∈ H+(g0),

(1.13) sup
0≤t≤Γ

t‖u(τ + t)‖2 ≤ C1

(
Γ, |u(τ)|2,

∫ τ+Γ

τ

|g(s)|2 ds
)
, Γ, τ ≥ 0,

where C1(η1, η2, η3) is a continuous and increasing function with respect to each
ηi ≥ 0.

The proof is analogous to one given in [2]. We sketch the main points for
convenience of the readers. For brevity, we suppose without loss of generality
that ν = 1 and τ = 0. Multiplying equation (1.1) by tLu we get

(1.14)
1
2
d

dt
(t‖u(t)‖2)− 1

2
‖u(t)‖2+t‖u(t)‖22+t(B(u), Lu) ≤ t|g(t)|2+

1
4
t‖u(t)‖22.
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Recall that (u, Lu) = ‖u‖2 and (Lu,Lu) = ‖u‖22. We also have

(B(u), Lu) ≤ |B(u)| · ‖u‖2,(1.15)

|B(u)| ≤ c

( ∫
Ω

|u|2|∇u|2 dx
)1/2

≤ c‖u‖0,4‖u‖1,4,(1.16)

‖u‖0,4 ≤ c1‖u‖1/2|u|1/2, ‖u‖0,4 ≤ c2‖u‖1/2
2 ‖u‖1/2(1.17)

(see inequalities (1.17) in [15], [21]). It follows from (1.15)–(1.17) that

|B(u)| ≤ c3‖u‖1/2
2 ‖u‖ · |u|1/2,(1.18)

t(B(u), Lu) ≤ tc3‖u‖3/2
2 ‖u‖ · |u|1/2 ≤ t

4
‖u‖22 +

tc4
2
‖u‖4|u|2.(1.19)

Using (1.14) and (1.19) we obtain

(1.20)
d

dt
(t‖u(t)‖2) + t‖u(t)‖22 ≤ ‖u(t)‖2 + 2t|g(t)|2 + tc4‖u(t)‖4|u(t)|2.

Define z(t) = t‖u(t)‖2. Consequently,

z′(t) ≤ b(t) + γ(t)z(t), b(t) = ‖u(t)‖2 + 2t|g(t)|2, γ(t) = c4‖u(t)‖2|u(t)|2.

Applying the Gronwall inequality, we get

z(t) ≤
∫ t

0

b(s) exp
( ∫ t

s

γ(θ) dθ
)
ds ≤

( ∫ t

0

b(s) ds
)

exp
( ∫ t

0

γ(s) ds
)
.

Using (1.12), we have

(1.21) |u(t)|2 +
∫ t

0

‖u(s)‖2 ds ≤ |u(0)|2 + λ−1

∫ t

0

|g(s)|2 ds.

Therefore

t‖u(t)‖2 ≤
( ∫ t

0

(‖u(s)‖2 + 2s|g(s)|2) ds
)

exp
( ∫ t

0

c4‖u(s)‖2|u(s)|2 ds
)

≤
(
|u(0)|2 + (λ−1 + 2t)

∫ t

0

|g(s)|2 ds
)

× exp
(
c4

(
|u(0)|2 + λ−1

∫ t

0

|g(s)|2 ds
)2)

.

Finally,

(1.22) sup
0≤t≤Γ

t‖u(t)‖2 ≤ C1

(
Γ, |u(0)|2,

∫ Γ

0

|g(s)|2ds
)
,

where C1(η1, η2, η3) = (η2 + (λ−1 + 2η1)η3) exp(c4(η2 + λ−1η3)2). �

Inequality (1.13) implies that

(1.23) ‖u(t+ τ + 1)‖2 ≤ C1

(
1, |u(t+ τ)|2,

∫ t+τ+1

t+τ

|g(s)|2 ds
)
.
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Taking sup in (1.23) with respect to τ ≥ 0, we obtain, according to (1.9),

‖T (t+ 1)u‖2L∞(R+;V ) ≤ C1(1, ‖T (t)u‖2L∞(R+;H), ‖T (t)g‖2a)

≤ C2(e−λt|u(0)|2, ‖g‖2a).

Hence we get

Corollary 1.3. For all u ∈ K+
g , g ∈ H+(g0),

‖T (t+ 1)u‖2L∞(R+;V ) ≤ C2(e−λt|u(0)|2, ‖g‖2a), t ≥ 0.

Lemma 1.5. For all u ∈ K+
g , g ∈ H+(g0),

∫ τ+Γ

τ

(s− τ)(‖v(s)‖22 + |∂tv(s)|2) ds ≤ C3

(
Γ, |u(τ)|2,

∫ τ+Γ

τ

|g(s)|2 ds
)
,(1.24)

‖T (t+ 1)u‖2r,a = sup
τ≥t+1

∫ τ+1

τ

(‖u(s)‖22 + |∂tu(s)|2) ds(1.25)

≤ C4(e−λt|u(0)|2, ‖g‖2a),

where τ, t,Γ are positive and arbitrary.

Proof. It is sufficient to prove (1.24) for τ = 0 and ν = 1. It follows from
(1.20)–(1.22) that

(1.26)
∫ Γ

0

s‖u(s)‖22 ds

≤
∫ Γ

0

‖u(s)‖2 ds+ 2Γ
∫ Γ

0

|g(s)|2 ds

+ c4( sup
0≤t≤Γ

|u(t)|2)( sup
0≤t≤Γ

t‖u(t)‖2)
∫ Γ

0

‖u(s)‖2 ds

≤ |u(0)|2 + λ−1

∫ Γ

0

|g(s)|2 ds+ 2Γ
∫ Γ

0

|g(s)|2 ds

+ c4

(
|u(0)|2 + λ−1

∫ Γ

0

|g(s)|2 ds
)2

C1

(
Γ, |u(0)|2,

∫ Γ

0

|g(s)|2 ds
)

= C ′3

(
Γ, |u(0)|2,

∫ Γ

0

|g(s)|2 ds
)
.
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Now, equation (1.1) implies directly that

(1.27)
( ∫ Γ

0

s|∂tv(s)|2 ds
)1/2

≤
( ∫ Γ

0

s‖u(s)‖22 ds
)1/2

+
( ∫ Γ

0

s|B(u)|2 ds
)1/2

+
( ∫ Γ

0

s|g(s)|2 ds
)1/2

≤ C ′3

(
Γ, |u(0)|2,

∫ Γ

0

|g(s)|2 ds
)

+ Γ1/2

( ∫ Γ

0

|g(s)|2 ds
)1/2

+ c3

( ∫ Γ

0

s‖u(s)‖2‖u(s)‖2|u(s)| ds
)1/2

.

We have used inequality (1.18). At the same time by (1.22) and (1.26), we get

(1.28)
∫ Γ

0

s‖u(s)‖2‖u(s)‖2|u(s)| ds ≤
∫ Γ

0

s‖u(s)‖4|u(s)|2 ds+
∫ Γ

0

s‖u(s)‖22 ds

≤ ( sup
0≤t≤Γ

|u(t)|2)( sup
0≤t≤Γ

t‖u(t)‖2)
∫ Γ

τ

‖u(s)‖2 ds+ C ′3

(
Γ, |u(0)|2,

∫ Γ

0

|g(s)|2 ds
)

≤
(
|u(0)|2 + λ−1

∫ Γ

0

|g(s)|2 ds
)2

C1

(
Γ, |u(0)|2,

∫ Γ

0

|g(s)|2 ds
)

+ C ′3(·).

Combining (1.27) and (1.28) we obtain

(1.29)
∫ Γ

0

s|∂tv(s)|2 ds ≤ C ′′3

(
Γ, |u(0)|2,

∫ Γ

0

|g(s)|2 ds
)
.

Summing (1.26) and (1.29), we derive (1.24). From (1.24) it follows for Γ = 2
that

(1.30)
∫ t+τ+2

t+τ+1

(‖v(s)‖22 + |∂tv(s)|2) ds ≤ C3

(
2, |u(t+ τ)|2,

∫ t+τ+2

t+τ

|g(s)|2 ds
)
.

Taking sup in (1.30) with respect to τ ≥ 0, we obtain, according to (1.9),

‖T (t+1)u‖2r,a ≤ C3(2, ‖T (t)u‖2L∞(R+;H), 2‖T (t)g‖2a) ≤ C4(e−λt|u(0)|2, ‖g‖2a). �

Lemma 1.1 follows from a more general

Lemma 1.6. For all u ∈ K+
g , g ∈ H+(g0),

(1.31)
∫ τ+Γ

τ

(‖v(s)‖22 + |∂tv(s)|2) ds ≤ C5

(
‖u(τ)‖2,

∫ τ+Γ

τ

|g(s)|2 ds
)

for τ,Γ ≥ 0, and

‖u‖2r,a = sup
τ≥0

∫ τ+1

τ

(‖u(s)‖22 + |∂tu(s)|2) ds ≤ C6(‖u(0)‖2, ‖g‖2a).



230 V. V. Chepyzhov — M. I. Vishik

Proof. Similarly to (1.20) we get

d

dt
(‖u(t)‖2) + ‖u(t)‖22 ≤ 2|g(t)|2 + c4‖u(t)‖4|u(t)|2,

z′1(t) ≤ b1(t) + γ(t)z1(t), z1(t) = ‖u(t)‖2, b1(t) = 2|g(t)|2,

z1(t) ≤
(
z1(0) +

∫ t

0

b1(s) ds
)

exp
( ∫ t

0

γ(s) ds
)
.

So, using (1.21), we obtain, as above, (1.31). Finally, combining (1.31) with
τ ∈ [0, 1] and (1.25) with τ ∈ ]1,∞[ we get

‖u‖2r,a = sup
τ≥0

∫ τ+1

τ

(‖u(s)‖22 + |∂tu(s)|2) ds

≤ max{C5(‖u(0)‖2, ‖g‖2a), C4(|u(0)|2, ‖g‖2a)} = C6(‖u(0)‖2, ‖g‖2a). �

Coming back to the proof of Theorem 1.2, we construct a uniformly attracting
set P in Θloc

+ for the translation semigroup {T (t)} acting on K+ = K+
H+(g0)

. From
(1.25) it follows that

(1.32) ‖T (t+ 1)u‖2r,a ≤ C4(e−λt‖u‖2r,a, ‖g‖2a) ≤ C4(e−λt‖u‖2r,a, ‖g0‖2a)

for u ∈ K+, since ‖g‖a ≤ ‖g0‖a for all g ∈ H+(g0). Consider the set

P0 = {v ∈ Fa
+ | ‖v‖2r,a ≤ C4(1, ‖g0‖2a)}.

Evidently, P0 is the desired attracting set. Indeed, if B ⊆ K+∩Fa
+ is a bounded

set of trajectories then e−λt‖u‖2r,a ≤ 1 for all u ∈ B whenever t ≥ t′ � 1 and
therefore, by (1.32), T (t+1)B ⊆ P0. Hence P0 is even a uniformly absorbing set.
Notice that the set P0 is bounded in Fa

+ and compact in Θloc
+ = Hr,loc

w (Q+). The
latter is true since the topology in Hr,loc

w (Q+) is generated by the weak topology
of the Banach spaces Hr(Qt1,t2) = L2(t1, t2;H2) ∩ {v | ∂tv ∈ L2(t1, t2;H)}.
Recall that un ⇀ u (n → ∞) weakly in Hr(Qt1,t2) whenever ∂tun ⇀ ∂tu (n →
∞) weakly in L2(t1, t2;H) and ∂αun ⇀ ∂αu (n → ∞) weakly in L2(t1, t2;H)
for all α = (α1, α2) with |α| ≤ 2. That is, a bounded set in Hr(Qt1,t2) is weakly
compact in Hr(Qt1,t2).

Remark 1.1. The set P0, being a compact subspace of Hr,loc
w (Q+), is a

metrizable space and the corresponding metric space is compact. This follows
from the fact that a ball of a separable Banach space endowed with the weak
topology of this space is metrizable and compact. The translation semigroup
{T (t)} is continuous on P0 and T (t) takes P0 into itself: T (t)P0 ⊆ P0 for all
t ≥ 0. So Proposition 1.2 is applicable. In particular, the set A = ω(P0) is a
global attractor of the semigroup {T (t)} acting on P0. Moreover, A = AH+(g0)

because P0 is a uniformly absorbing set of the family {K+
g | g ∈ H+(g0)} of

trajectory spaces. This reasoning proves the first part of Theorem 1.2. To prove
property (1.7) we have to use a more subtle reasoning (see [5]).
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2. Trajectory attractor for the 2D N–S system with
translation-compact external force in Lloc

2

Now consider the case when the external force g(x, s) in (1.1) is a tr.-c.
function in Lloc

2 (R+;H). The space Lloc
2 (R+;H) = Lloc

2 is endowed with the
following local strong convergence topology. A sequence {gn} converges to g as
n → ∞ in Lloc

2 whenever
∫ t2

t1
|gn(s) − g(s)|2 ds → 0 (n → ∞) for each [t1, t2] ⊆

R+. The space Lloc
2 is metrizable and complete. A function g ∈ Lloc

2 is tr.-c. in
Lloc

2 whenever the set {g(· + h) | h ∈ R+} is precompact in Lloc
2 . The criterion

of being tr.-c. in Lloc
2 is given in [6]. We recall that a function g ∈ Lloc

2 is tr.-c.
in Lloc

2 if and only if

(i) for every h ≥ 0 the set {
∫ t+h

t
g(·, s) ds | t ∈ R+} is precompact in H;

(ii) there is a function β(s) > 0, s > 0, such that β(s) → 0 + (s→ 0+) and∫ t+1

t

|g(s)− g(s+ l)|2 ds ≤ β(|l|) ∀t ≥ 0.

Remark 2.1. Let us give a simple sufficient condition. A function g ∈ Lloc
2

is tr.-c. in Lloc
2 if

‖Π0,1g(·+ t)‖Hδ(Q0,1) ≤M ∀t ≥ 0

for some δ > 0. Here Hδ(Q0,1) = Hδ(Ω× [t1, t2]) is the Sobolev space of order δ.

Suppose we are given a fixed tr.-c. function g0 in Lloc
2 . Evidently, g0 is tr.-c.

in Lloc
2,w as well. Consider the set {g0(· + h) | h ∈ R+}. Notice that [{g0(· + h) |

h ∈ R+}]Lloc
2,w

≡ [{g0(· + h) | h ∈ R+}]Lloc
2

and the corresponding topological
subspaces of Lloc

2,w and Lloc
2 are homeomorphic. Hence, H+(g0) = [{g0(· + h) |

h ∈ R+}]Ξ does not depend on Ξ = Lloc
2,w or Ξ = Lloc

2 . As usual, the topological
spaceH+(g0) is compact and every function g ∈ H+(g0) is tr.-c. in Lloc

2 ,H+(g) ⊆
H+(g0), and ‖g‖a ≤ ‖g0‖a.

Now consider the “strong” space Hr,loc
s (Q+) introduced in Section 1. Recall

that vn → v (n → ∞) in Hr,loc
s (Q+) if Πt1,t2vn → Πt1,t2v (n → ∞) strongly

in Hr(Qt1,t2) with respect to the norm (1.3) for each [t1, t2] ⊆ R+. The linear
topological space Hr,loc

s (Q+) is metrizable and complete.
To each g ∈ H+(g0) there corresponds the trajectory space K+

g that is the
union of all solutions u(s), s ≥ 0, of equation (1.1) in the space Hr,loc(Q+).
Consider the family {K+

g | g ∈ H+(g0)} and the union K+
H+(g0)

=
⋃

g∈H+(g0)
K+

g .

In this section we study the trajectory attractor AH+(g0) of the translation
semigroup {T (t)} acting on K+ = K+

H+(g0)
in the “strong” topological space

Hr,loc
s (Q+). The set AH+(g0) attracts every set T (t)B as t→∞ in the topology

of Θloc
+ = Hr,loc

s (Q+), where B ⊂ K+ and B is bounded in the Banach space
Fa

+ = Hr,a(Q+).
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Theorem 2.1. Let g0 be tr.-c. in Lloc
2 . Then the trajectory attractor AH+(g0)

in Hr,loc
w (Q+) of the translation semigroup {T (t)} acting on K+ from Theorem

1.2 serves as the trajectory attractor in Hr,loc
s (Q+) of this semigroup. In partic-

ular, for every set B ⊂ K+,

distHr(Q0,Γ)(T (t)B,AH+(g0)) → 0 (t→∞) ∀Γ > 0.

The set AH+(g0) is bounded in F+, and compact in Hr,loc
s (Q+). Every function

u ∈ AH+(g0) is tr.-c. in Hr,loc
s (Q+).

Notice that if the trajectory attractor in Hr,loc
s (Q+) exists then it coin-

cides with the trajectory attractor AH+(g0) in Hr,loc
w (Q+) since the embedding

Hr,loc
s (Q+) ⊆ Hr,loc

w (Q+) is continuous and the trajectory attractor is the mini-
mal attracting set. So to apply Proposition 1.3 we have to produce an attracting
set P1 that is compact in Hr,loc

s (Q+) and bounded in Fa
+ = Hr,a(Q+).

From the continuous embedding Hr
s (Qt1,t2) ⊂ C([t1, t2];V ) and from Theo-

rem 2.1, we deduce

Corollary 2.1. For every set B ⊂ K+ bounded in F+, one has

distC([0,Γ];V )(Π0,ΓT (t)B,Π0,ΓAH+(g0)) → 0 (t→∞) ∀Γ ≥ 0.

Proof of Theorem 2.1. Consider the set P ′0 = P0 ∩ K+, where P0 is the
absorbing set constructed in Section 1. Evidently, P ′0 is uniformly absorbing for
the family {K+

g | g ∈ H+(g0)}. Put

P1 = S(1)P ′0 = {ũg ≡ ug(s+ 1), s ≥ 0 | ug ∈ K+
g ∩ P0, g ∈ H+(g0)}.

The set P1 is uniformly absorbing for the family {K+
g | g ∈ H+(g0)} as well. To

complete the proof of Theorem 2.1 we have to establish the following

Lemma 2.1. The set P1 is compact in Hr,loc
s (Q+).

It is easy to prove the following statement using the diagonal process.

Proposition 2.1. The set B is compact in Hr,loc
s (Q+) if and only if Π0,ΓB

is compact in Hr(Q0,Γ) for every Γ > 0.

Proof of Lemma 2.1. Fix Γ > 0. Let ũn(s) = T (1)un(s) = un(s + 1) be
any sequence from P1, u

n ∈ K+
gn
∩ P0, gn ∈ H+(g0). Without loss of generality,

we may assume that

(2.1)
∫ Γ+1

0

|gn(s)− g(s)|2 ds→ 0 (n→∞)

for some g ∈ H+(g0). Let us show that the sequence {ũn} is precompact in
Hr(Q0,Γ). Since un ∈ P0, we have

(2.2) ‖un(·)‖Hr(Q0,Γ+1) ≤M(Γ + 1) ∀n ∈ N,
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where the positive function M(θ) is non-decreasing. We can represent the func-
tion un(s) as a sum of two functions:

un(s) = un
1 (s) + un

2 (s), s ≥ 0,

where un
1 (s) and un

2 (s) are solutions of the following problems:

∂tu
n
1 (t) + Lun

1 (t) = 0, t ≥ 0,(2.3)

un
1 (0) = un(0), un

1 |∂Ω = 0, ‖un
1 (0)‖ ≤M1;(2.4)

∂tu
n
2 (t) + Lun

2 (t) = −B(un(t)) + gn(t), t ≥ 0,(2.5)

un
2 (0) = 0, un

2 |∂Ω = 0.(2.6)

Accordingly, ũn(s) = ũn
1 (s) + ũn

2 (s).
Since un

1 is a solution of the Stokes problem (2.3), (2.4), we obtain

(2.7)
∫ t+1

0

(‖un
1 (s)‖22 + |∂tu

n
1 (s)|2) ds ≤M2(t+ 1, ‖un

1 (0)‖) = M3(t+ 1)

for 0 ≤ t ≤ Γ. Let ψ(t) be a cut-off function:

ψ(t) ≡ 1, t ≥ 1; ψ(t) ≡ 0, 0 ≤ t ≤ 1/2; ψ ∈ C∞0 (R), ψ(t) ≥ 0.

It follows from (2.3) that

∂t(ψ(t)un
1 (t)) + L(ψ(t)un

1 (t)) = ψ′(t)un
1 (t).

Differentiating this equation in t and setting ∂t(ψ(t)un
1 (t)) = pn, we get

∂tp
n + Lpn = ψ′′(t)un

1 (t) + ψ′(t)∂tu
n
1 (t),

pn(0) = 0, pn|∂Ω = 0.

So,

(2.8)
∫ t+1

0

(|L∂t(ψun
1 )|2 + |∂2

t (ψun
1 )|2) ds

=
∫ t+1

0

(‖pn(s)‖22 + |∂tp
n(s)|2) ds

≤ C

∫ t+1

0

(|un
1 |2 + |∂tu

n
1 |2) ds ≤M4(t+ 1).

Combining (2.8) and (2.7), we obtain

(2.9)
∫ t+1

0

ψ2(s)(‖∂tu
n
1 (s)‖22 + |∂2

t u
n
1 (s)|2) ds ≤M5(t+ 1).

Now we apply the operator L to both sides of equation (2.3) and get

L2un
1 (t) = −∂tLu

n
1 (t), Lun

1 |∂Ω = −∂tu
n
1 |∂Ω = 0.
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Therefore

(2.10)
∫ t+1

0

ψ2(s)|L2un
1 (s)|2 ds =

∫ t+1

0

ψ2(s)|∂t(Lun
1 (s))|2 ds ≤M6(t+ 1).

Finally, by virtue of (2.7), (2.9), and (2.10), we conclude that∫ t+1

1

(‖∂tu
n
1 (s)‖22 + |∂2

t u
n
1 (s)|2 + ‖un

1 (s)‖22 + ‖un
1 (s)‖24) ds ≤M7(t+ 1).

In particular, the sequence {un
1} is compact in Hr(Q1,Γ+1) and {ũn

1} is compact
in Hr(Q0,Γ).

Now we shall prove that the sequence {un
2} is compact in Hr(Q0,Γ+1) as well.

According to (2.5) it is sufficient to prove that the sequence B(un) = B(un, un)
is precompact in L2(0,Γ+1;H). (From (2.1) it follows that the sequence {gn} is
precompact in L2(0,Γ + 1;H).) The sequence {un} is bounded in Hr(Q0,Γ+1),
hence, by refining, we may assume that un ⇀ u (n→∞) weakly in Hr(Q0,Γ+1).
Thus, ∂tun ⇀ ∂tu (n→∞) weakly in L2(0,Γ+1;H) and ∂αun ⇀ ∂αu (n→∞)
weakly in L2(0,Γ + 1;H) for each α = (α1, α2) with |α| ≤ 2. Let us prove that

(2.11) B(un) → B(u) (n→∞) strongly in L2(0,Γ + 1;H).

By the Nikol’skĭı theorem (see [3]),
(2.12)

Hr(Q0,Γ+1) ⊂ H%
q (Q0,Γ+1), r = (r1, r2, r3), % = (%1, %2, %3), q ≥ 2,

whenever

(2.13) %j/rj ≤ 1− (1/2− 1/q)(1/r1 + 1/r2 + 1/r3), j = 1, 2, 3.

Moreover, the embedding (2.12) is compact if the inequalities in (2.13) are strict.
The values r = (r1, r2, r3) = (2, 2, 1), % = (%1, %2, %3) = (1, 1, 0), q ≤ 4 meet

the conditions (2.13), since %j/rj ≤ 1/2 ≤ 1− (1/2− 1/q)2. So we conclude that

(2.14)
∥∥∥∥ ∂v∂xi

∥∥∥∥
Lq(Q0,Γ+1)

≤ Cq‖v‖Hr(Q0,Γ+1), i = 1, 2, 2 ≤ q ≤ 4.

For q < 4 the embedding Hr(Q0,Γ+1) b H
(1,1,0)
q (Q0,Γ+1) is compact. Similarly,

taking % = (%1, %2, %3) = (0, 0, 0), %j/rj = 0 < 1 − (1/2 − 1/q1)2 for all q1 ≥ 2,
we obtain

‖v‖Lq1 (Q0,Γ+1) ≤ C ′q1
‖v‖Hr(Q0,Γ+1)

and the embedding Hr(Q0,Γ+1) b Lq1(Q0,Γ+1) is compact.
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Finally, we get

(2.15) ‖B(un)−B(u)‖L2(0,Γ+1;H)

≡ ‖B(un)−B(u)‖ ≤ ‖B(un − u, un)‖+ ‖B(u, un − u)‖

≤ C

( ∫
Q0,Γ+1

|un − u|2|∇un|2 dx ds
)1/2

+ C

( ∫
Q0,Γ+1

|u|2|∇(un − u)|2 dx ds
)1/2

≤ C1

( ∫
Q0,Γ+1

|∇un|3 dx ds
)1/3( ∫

Q0,Γ+1

|un − u|6 dx ds
)1/6

+ C1

( ∫
Q0,Γ+1

|u|6 dx ds
)1/6( ∫

Q0,Γ+1

|∇(un − u)|3 dx ds
)1/6

.

Since Hr(Q0,Γ+1) b H
(1,1,0)
3 (Q0,Γ+1) and Hr(Q0,Γ+1) b L6(Q0,Γ+1), we get∫

Q0,Γ+1

|∇(un − u)|3 dx ds→ 0,
∫

Q0,Γ+1

|un − u|6 dx ds→ 0 (n→∞)

and, by (2.14) and (2.2), ∫
Q0,Γ+1

|∇un|3 dx ds ≤M ′.

Therefore, the right-hand side of (2.15) tends to zero as n → ∞ and (2.11) is
proved.

Thus, the right-hand sides of (2.5) form a precompact set in L2(0,Γ + 1;H)
and, hence, the set {un

2} of solutions is precompact in Hr(Q0,Γ+1). Consequently,
{ũn

2} is precompact in Hr(Q0,Γ). The sum {ũn} of two precompact sequences
{ũn

1} and {ũn
2} is precompact in Hr(Q0,Γ). Lemma 2.1 is proved. �

3. On the structure of trajectory attractors

In this section we shall describe the structure of the trajectory attractors
from Theorems 1.2 and 2.1 in terms of complete trajectories of equation (1.1),
i.e. when solutions u(s), s ∈ R, are determined on the whole time axis R.

Let the function g0(x, s) satisfy (1.2) and let H+(g0) be the hull of g0 in
Lloc

2,w(R+;H). As usual, H+(g0) is a complete metric space and the translation
semigroup {T (t)} acts on H+(g0), T (t)H+(g0) ⊆ H+(g0), T (t) is continuous for
all t ≥ 0. Consider the attractor ω(H+(g0)) of the semigroup {T (t)} on H+(g0),

(3.1) T (t)ω(H+(g0)) = ω(H+(g0)) ∀t ≥ 0

(see Proposition 1.2).
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Similarly to Lloc
2 (R+;H) and La

2(R+;H) we consider the spaces Lloc
2 (R;H)

and La
2(R;H) of functions on the whole axis. The space La

2(R;H) has the norm

‖ζ‖2La
2(R;H) = sup

t∈R

∫ t+1

t

|ζ(s)|2 ds <∞.

Consider an external force g ∈ ω(H+(g0)). The invariance property (3.1)
implies that there is a function g1 ∈ ω(H+(g0)) such that T (1)g1 = g. Consider
the function ζ(s), s ≥ −1, ζ(s) = g1(s + 1). Obviously, ζ(s) ≡ g(s) for s ≥ 0,
hence, ζ is a prolongation of g on the semiaxis [−1,∞[. Next, there is g2 ∈
ω(H+(g0)) such that T (1)g2 = g1, T (2)g2 = g. Put ζ(s) = g2(s+ 2) for s ≥ −2.
Evidently, the function ζ is well defined, since g2(s+ 2) = g1(s+ 1) for s ≥ −1.
Continuing this process, we define ζ(s) = gn(s + n) for s ∈ [−n,∞[, where
gn ∈ ω(H+(g0)) and n ∈ N. We have defined a function ζ(s), s ∈ R, which is
a prolongation of the initial external force g(s), s ∈ R+. Moreover, ζ has the
following property: Π+ζt ∈ ω(H+(g0)) for all t ∈ R, where ζt(s) = ζ(t + s).
Here Π+ = Π0,∞ is the restriction operator to the semiaxis R+. Evidently, ζ ∈
La

2(R;H) and ‖ζ‖2La
2(R;H) ≤ ‖g0‖2La

2(R+;H).

Definition 3.1. (i) A function ζ ∈ La
2(R;H) is said to be a complete exter-

nal force in ω(H+(g0)) if Π+ζt(·) = Π+ζ(t + ·) ∈ ω(H+(g0)), for all t ∈ R. Let
Z(g0) be the set of all complete external forces in H+(g0).

As shown above, for every symbol g ∈ ω(H+(g0)) there exists at least one
complete external force ζ which is the prolongation of g for negative s. Notice
at once that, in general, this prolongation need not be unique.

By analogy to Section 1, for the cylinder Q = Ω×R we introduce the space
Hr,loc(Q) = Lloc

2 (R;H2) ∩ {v | ∂tv ∈ Lloc
2 (R;H)}, i.e. v ∈ Hr,loc(Q) if

‖Πt1,t2v‖2Hr(Qt1,t2 ) <∞ ∀[t1, t2] ⊆ R.

We shall use the topological spaces Hr,loc
s (Q), Hr,loc

w (Q), and the Banach space
Hr,a(Q) with the norm

‖v‖2Hr,a(Q) = ‖v‖2r,a = sup
t∈R

‖Πt,t+1v‖2Hr(Qt,t+1)
.

Suppose we are given some complete external force ζ(s), s ∈ R, in ω(H+(g0)).
Consider the equation

(3.2) ∂tu+ νLu+B(u) = ζ(x, t), (∇, u) = 0, u|∂Ω = 0, x ∈ Ω, t ∈ R.

Definition 3.2. The kernel Kζ of equation (3.2) with the complete external
force ζ ∈ Z(g0) is the set of all solutions u(s), s ∈ R, of equation (3.2) that are
in the space Hr,a(Q).

The following theorem specifies the structure of the trajectory attractor from
Theorems 1.2 and 2.1.
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Theorem 3.1. (i) Let g0 be tr.-c. in Lloc
2,w(R+;H). Then the trajectory

attractor AH+(g0) in Hr,loc
w (Q+) of the translation semigroup {T (t)} acting on

K+ = K+
H+(g0)

can be represented in the form

(3.3) AH+(g0) = Aω(H+(g0)) = Π+

( ⋃
ζ∈Z(g0)

Kζ

)
= Π+KZ(g0).

The set KZ(g0) is compact in Hr,loc
w (Q) and bounded in Hr,a(Q). For all ζ ∈ Z(g0)

the kernel Kζ is non-empty and every function u ∈ Kζ is tr.-c. in Hr,loc
w (Q).

(ii) Let g0 be tr.-c. in Lloc
2 (R+;H). Then the set KZ(g0) is compact in

Hr,loc
s (Q) and every function u ∈ Kζ for ζ ∈ Z(g0) is tr.-c. in Hr,loc

s (Q).

The proof of Theorem 3.1 is given in [5] and it uses the invariance property
(1.6) of the trajectory attractor AH+(g0): T (t)AH+(g0) = AH+(g0) for t ≥ 0.

Remark 3.1. It was mentioned above that, in general, the prolongation ζ of
an external force g ∈ ω(H+(g0)) for s < 0 need not be unique. Let us describe an
important case when it is unique. Let g0 be a tr.-c. function in La

2(R+;H), i.e.
the set {g0(·+ h) | h ∈ R+} is precompact in the Banach space La

2(R+;H) with
the uniform norm (1.2) and, hence, the hull H+(g0) is compact in La

2(R+;H).
It can be proved that there exists a unique function g̃0(s), s ∈ R, such that g̃0 is
tr.-c. in La

2(R;H) and∫ t+1

t

|g0(s)− g̃0(s)|2 ds→ 0 (t→∞).

Therefore, ω(H+(g0)) = H+(g̃0). Tr.-c. functions in La
2(R;H) are also called al-

most periodic functions in the Stepanov sense. These functions have all the main
properties of usual almost periodic functions (in the Bohr or Bochner–Amerio
sense, see [1]). In particular, the translation semigroup {T (t)} is invertible on
H+(g̃0) and H+(g̃0) = Π+H(g̃0), where H(g̃0) = [{g̃0(· + h) | h ∈ R}]La

2(R;H) is
the hull of the almost periodic function g̃0. Finally, in (3.3), Z(g0) = H(g̃0) and
every external force g ∈ ω(H+(g0)) has a unique prolongation for s < 0 as an
almost periodic function.

To conclude the section we describe the uniform (with respect to g ∈ H+(g0))
attractor AH+(g0) for the family {Ug(t, τ) | t ≥ τ ≥ 0}, g ∈ H+(g0), of processes
corresponding to equation (1.1). By Theorem 1.1, for every g ∈ H+(g0), one
defines a process {Ug(t, τ) | t ≥ τ ≥ 0} acting on V : Ug(t, τ)uτ = ug(t), where
ug is a solution of (1.1) with the initial condition u|t=τ = uτ , τ ≥ 0. Now consider
the set Z(g0). In a similar way, to each ζ ∈ Z(g0) there corresponds a complete
process {Uζ(t, τ) | t ≥ τ, τ ∈ R}, Uζ(t, τ)uτ (t) = uζ(t), where uζ(t) is a solution
of (3.2) with the initial condition u|t=τ = uτ , τ ∈ R. Consider the kernel Kζ

corresponding to ζ.
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We denote by Kζ(t) the kernel section at time t ∈ R: Kζ(t) = {u(t) | u(·) ∈
Kζ} ⊂ V. It is clear that

Uζ(t, τ)Kζ(τ) = Kζ(t) ∀t ≥ τ, τ ∈ R.

Using Theorem 3.1, Corollary 2.1, and Corollary 1.2 we get

Corollary 3.1. (i) If g0 is tr.-c. in Lloc
2 (R+;H) then the set

(3.4) AH+(g0) =
⋃

ζ∈Z(g0)

Kζ(0)

is the uniform (with respect to g ∈ H+(g0)) attractor AH+(g0) in V of the family
of processes {Ug(t, τ) | t ≥ τ ≥ 0}, g ∈ H+(g0), and the set AH+(g0) is compact
in V.

(ii) If g0 is tr.-c. in Lloc
2,w(R+;H) then the set AH+(g0) defined in (3.4) serves

as the uniform (with respect to g ∈ H+(g0)) attractor in Vw (with the weak
topology of V ) and it is bounded in V. In particular, AH+(g0) is the uniform
attractor in H1−δ, AH+(g0) b H1−δ, 0 < δ ≤ 1.

4. Trajectory attractors for the 3D N–S system

In this section we shall construct a trajectory attractor for the non-auto-
nomous Navier–Stokes system in a 3D domain Ω b R3. The structure of the
trajectory attractor will be described and some properties of the attractor will be
given. Only a brief general scheme will be sketched, without proofs and detailed
explanations. This part will be expounded in more detail in another publication
(see also [7], [10], [18]).

Consider the 3D Navier–Stokes system in the semicylinder Q+ = Ω× R+:

(4.1)
∂tu+ νLu+B(u) = g(x, t), (∇, u) = 0,

u|∂Ω = 0, x ∈ Ω b R3, t ≥ 0,

where x = (x1, x2, x3), u = u(x, t) = (u1, u2, u3), g = g(x, t) = (g1, g2, g3). L is
the 3D Stokes operator: Lu = −P∆u; B(u) = B(u, u), B(u, v) = P (u,∇)v =
P

∑3
i=1 ui∂xi

v. The spaces H and V are determined similar to the 2D case.
Suppose g ∈ Lloc

2 (R+;H).
Let there be given an initial external force g0 ∈ Lloc

2 (R+;H) in (4.1). Assume
that g0 is tr.-c. in Lloc

2,w(R+;H) ≡ Lloc
2,w, i.e.

(4.2) ‖g0‖2La
2(R+;H) = ‖g0‖2a = sup

t∈R+

∫ t+1

t

|g0(s)|2 ds <∞.

Let Σ = H+(g0) ≡ [{g0(·+ t) | t ≥ 0}]Lloc
2,w(R+;H) be the hull of the function g0 in

the space Lloc
2,w(R+;H). It can be proved that H+(g0) is a complete metric space.

The translation semigroup {T (t)} is continuous on H+(g0) and T (t)H+(g0) ⊆
H+(g0) for all t ≥ 0; moreover, ‖g‖2a ≤ ‖g0‖2a for every g ∈ H+(g0).
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To study the trajectory attractor of equation (4.1) we consider the family of
those equations with various external forces g ∈ H+(g0).

To describe a trajectory space K+
g of equation (4.1) with the external force

g we shall consider weak solutions of equation (4.1) in the space Lloc
2 (R+;V ) ∩

Lloc
∞ (R+;H). If u ∈ Lloc

2 (R+;V ) ∩ Lloc
∞ (R+;H) then equation (4.1) makes sense

in the distribution space D′(R+;V ′), where V ′ is the dual space of V. This is the
usual way to define weak solutions of equation (4.1) (see [16]).

Definition 4.1. The trajectory space K+
g is the union of all weak solutions

u ∈ Lloc
2 (R+;V ) ∩ Lloc

∞ (R+;H) of equation (4.1) with the external force g that
satisfy the inequality

(4.3)
1
2
d

dt
|u(t)|2 + ν‖u(t)‖2 ≤ (g(t), u(t)), t ∈ R+.

This inequality should be read as follows: for each ψ ∈ C∞0 (]0,∞[), ψ ≥ 0,

(4.4) − 1
2

∫ ∞

0

|u(s)|2ψ′(s) ds+ν
∫ ∞

0

‖u(s)‖2ψ(s) ds ≤
∫ ∞

0

(g(s), u(s))ψ(s) ds.

Let us formulate the existence theorem:

Theorem 4.1. Let g ∈ Lloc
2 (R+;H) and u0 ∈ H. Then there exists a weak

solution u of equation (4.1) belonging to the space Lloc
2 (R+;V )∩Lloc

∞ (R+;H) such
that u(0) = u0 and u satisfies inequality (4.4).

The existence theorem is a classical result (see [14]–[16], [19]). The proof
uses the Faedo–Galerkin approximation method. To get (4.4) one has to pass to
the limit in the corresponding a priori equality involving the sequence {um} of
Faedo–Galerkin approximations.

Remark 4.1. For the 3D case, the uniqueness problem is still open. Also,
it is not known whether every weak solution of (4.1) satisfies inequality (4.3).

It can be shown that every weak solution u ∈ Lloc
2 (R+;V ) ∩ Lloc

∞ (R+;H) of
equation (4.1) satisfies

∂
1/4−ε
t u ∈ Lloc

2 (R+;H) ∀ε, 0 < ε < 1/4,

(see [16]), and ∂tu ∈ Lloc
4/3(R+;V ′) (see [20]). Consider the following space:

F loc
+ = Lloc

2 (R+;V ) ∩ Lloc
∞ (R+;H)

∩ {v | ∂1/4−ε
t v ∈ Lloc

2 (R+;V ′)} ∩ {v | ∂tv ∈ Lloc
4/3(R+;V ′)},

where ε is fixed, 0 < ε < 1/4. The space F loc
+ is endowed with the following

“weak” convergence topology.
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Definition 4.2. A sequence {vn} ⊂ F loc
+ converges (in a weak sense) to

v ∈ F loc
+ as n → ∞ if vn → v (n → ∞) weakly in L2(t1, t2;V ), ∗-weakly

in L∞(t1, t2;H), ∂1/4−ε
t vn → ∂

1/4−ε
t v (n → ∞) weakly in L2(t1, t2;H), and

∂tvn → ∂tv (n→∞) weakly in L4/3(t1, t2;V ′) for all [t1, t2] ⊂ R+.

The space F loc
+ with the above weak topology is denoted by Θloc

+ . We shall
also use the space

Fa
+ = La

2(R+;V ) ∩ La
∞(R+;H)

∩ {v | ∂1/4−ε
t v ∈ La

2(R+;V ′)} ∩ {v | ∂tv ∈ La
4/3(R+;V ′)},

which is a subspace of F loc
+ . If X is a Banach space then La

p(R+;X) means the
subspace of Lloc

p (R+;X) having the finite norm

‖v‖p
La

p(R+;X) = sup
t≥0

∫ t+1

t

‖v(s)‖p
X ds.

Similarly, the space La
p(R;X) has the norm

‖v‖p
La

p(R;X) = sup
t∈R

∫ t+1

t

‖v(s)‖p
X ds.

Lemma 4.1. (i) K+
g ⊂ Fa

+ for all g ∈ H+(g0).
(ii) For every u ∈ K+

g ,

(4.5) ‖T (t)u(·)‖Fa
+
≤ C‖u(·)‖2L∞(0,1;H) exp(−λt) +R0 ∀t ≥ 0,

where λ is the first eigenvalue of the operator νL; C depends on λ, and R0

depends on λ and ‖g0‖2La
2(R+;H).

Put
K+

Σ =
⋃

g∈H+(g0)

K+
g , Σ = H+(g0).

The translation semigroup {T (t) | t ≥ 0} acts on K+
Σ :

T (t)u(s) = u(t+ s), s ≥ 0.

Evidently
T (t)u ∈ K+

T (t)g ∀u ∈ K+
g , t ≥ 0,

so the family {K+
g | g ∈ H+(g0)} is translation-coordinated. Therefore

T (t)K+
Σ ⊆ K+

Σ ∀t ≥ 0.

It is clear that every mapping T (t) is continuous in Θloc
+ .

It follows from (4.5) that the ball B0 = {‖v‖Fa
+
≤ 2R0} serves as a uniformly

absorbing set of the translation semigroup {T (t)} acting on K+
Σ . The set B0 is

bounded in Fa
+ and it is compact in Θloc

+ .
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Lemma 4.2. The family {K+
g | g ∈ Σ} is (Θloc

+ ,H+(g0))-closed and K+
Σ is

closed in Θloc
+ .

In this way, by Lemmas 4.1 and 4.2, Proposition 1.2 is applicable.
Let ω(H+(g0)) denote the global attractor of the semigroup {T (t)} on

H+(g0). Here

ω(H+(g0)) =
⋂
τ≥0

[ ⋃
t≥τ

T (t)H+(g0)
]

Lloc
2,w

is the ω-limit set of H+(g0).
Let Z(g0) be the set of all complete external forces in H+(g0), i.e. the set

of all functions ζ ∈ Lloc
2 (R;H) such that ζt ∈ ω(H+(g0)) for all t ∈ R, where

ζt(s) = Π+ζ(s + t), s ≥ 0. Evidently, for every g ∈ ω(H+(g0)) there is at least
one ζ ∈ Z(g0) such that ζ(s) is a prolongation of g(s) for negative s. To each
complete external force ζ ∈ Z(g0) there corresponds the kernel Kζ of equation
(4.1). The kernel Kζ consists of all weak solutions u(s), s ∈ R, of the equation

∂tu+ νLu+B(u) = ζ(x, t), t ∈ R,

that satisfy inequality (4.4) and that are in the space

Fa = La
2(R;V ) ∩ La

∞(R;H)

∩ {v | ∂1/4−ε
t v ∈ La

2(R;V ′)} ∩ {v | ∂tv ∈ La
4/3(R;V ′)}.

Let us formulate the main

Theorem 4.2. Let g0 be tr.-c. in Lloc
2,w(R+;H). Then the translation semi-

group {T (t)} acting on K+
Σ (Σ = H+(g0)) has a trajectory attractor AΣ =

AH+(g0) in Θloc
+ . The set AH+(g0) is bounded in Fa

+ and compact in Θloc
+ . More-

over,

AH+(g0) = Aω(H+(g0)) = Π+

( ⋃
ζ∈Z(g0)

Kζ

)
= Π+KZ(g0).

The kernel Kζ is non-empty for all ζ ∈ Z(g0); the set KZ(g0) is bounded in Fa

and compact in Θloc.

The detailed proof of Lemmas 4.1, 4.2, and Theorem 4.2 is given in [5].
Notice that the following embedding is continuous: Θloc

+ ⊂ Lloc
2 (R+;H1−δ),

0 < δ ≤ 1, so we get

Corollary 4.1. For every set B ⊂ K+ bounded in Fa
+,

distL2(0,Γ;H1−δ)(Π0,ΓT (t)B,Π0,ΓKZ(g0)) → 0 (t→∞),

where Γ is fixed and arbitrary.

In conclusion, we shall formulate some properties of trajectory attractors of
the Navier–Stokes system.
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(I) Let g0(x, s) = g1(x, s)+a(x, s) in (4.1), where g1 and a are tr.-c. functions
in Lloc

2,w(R+;H). Assume that T (t)a→ 0 (t→∞) in Lloc
2,w(R+;H), i.e.

(4.6)
∫ 1

0

(a(s+ t), ψ(s))ds→ 0 (t→∞)

for all ψ ∈ L2(0, 1;H). Then the trajectory attractors corresponding to Σ =
H+(g1 + a) and to Σ1 = H+(g1) coincide:

(4.7) AH+(g1+a) = AH+(g1).

In particular, if g1 ≡ 0 then AH+(a) = AH+(0) = {0}.
For example, the function a(x, s) = ϕ(x) sin(s2) satisfies (4.6) for all ϕ ∈ H.

Thus a more and more rapidly oscillating additional term a(s) does not affect
the trajectory attractor. The equality (4.7) is valid for 3D just as for 2D N–S
systems.

(II) Let g0(x, s) = g0ε(x, s) = g1(x, s) + εg2(x, s) in (4.1), where the gi are
tr.-c. functions in Lloc

2,w(R+;H) and |ε| ≤ 1. Put A(ε) = AH+(g0ε). Then A(ε) is
lower semicontinuous with respect to ε. More precisely, it can be proved that the
ball B0 = {‖v‖Fa

+
≤ R1}, which is a topological subspace of Θloc

+ , is metrizable,
and in this metric

(4.8) distΘloc
+

(A(ε),A(0)) → 0 (t→∞).

The radius R1 is large enough to provide the inclusionA(ε) ⊆ B1 for all ε, |ε| ≤ 1.
For the 2D N–S system (1.1) the property (4.8) is also valid with distΘloc

+
being

replaced by distHr,loc or by distHr,loc
w

depending on the tr.-c. class the external
force belongs to.

(III) Let A(N)
H+(PN g0)

≡ A(N) be the trajectory attractor of the Faedo–Galer-
kin approximation system of order N for equation (4.1), where PN is the pro-
jection onto the finite-dimensional subspace of H spanned by the first N eigen-
functions of the Stokes operator. Then

distΘloc
+

(A(N),AH+(g0)) → 0 (t→∞).

In other words, for each neighbourhood O(AH+(g0)) of AH+(g0) in Θloc
+ there is

N1 such that A(N) ⊆ O(AH+(g0)) for all N ≥ N1.
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