AN ELLIPTIC PROBLEM WITH POINTWISE CONSTRAINT ON THE LAPLACIAN

Riccardo Molle - Donato Passaseo

Introduction

This paper deals with a class of variational inequalities, coming from variational problems with unilateral constraints. The presence of the constraint modifies the structure of the corresponding functional and increases the topological complexity of its sublevels, giving rise to some phenomena which are typical of nonlinear elliptic equations.

Let Ω be a bounded domain of \mathbb{R}^{n}, λ a real parameter, ψ and h two functions in $H_{0}^{1,2}(\Omega)$ and in $L^{2}(\Omega)$ respectively.

Set $K_{\psi}=\left\{u \in H_{0}^{1,2}(\Omega) \mid \Delta u \leq \Delta \psi\right.$ (in weak sense) $\}$ (K_{ψ} is a convex cone with vertex at ψ) and consider the problem

$$
P_{\psi}(h)\left\{\begin{array}{l}
u \in K_{\psi}, \\
\int_{\Omega}[D u D(v-u)-\lambda u(v-u)+h(v-u)] d x \geq 0 \quad \forall v \in K_{\psi} .
\end{array}\right.
$$

The solutions can be obtained as lower critical points (see Definition 1.4) of the functional

$$
f_{h}(u)=\frac{1}{2} \int_{\Omega}\left(|D u|^{2}-\lambda u^{2}\right) d x+\int_{\Omega} h u d x
$$

constrained on the convex cone K_{ψ}.
The aim of this paper is to study the solvability of problem $P_{\psi}(h)$ for a generic pair (ψ, h) : we describe the set of pairs (ψ, h) for which $P_{\psi}(h)$ has

[^0]solutions; for these pairs we analyse the structure of the set of solutions and evaluate the number of solutions under suitable assumptions on the position of the parameter λ with respect to the eigenvalues λ_{i} of the Laplace operator $-\Delta$ in $H_{0}^{1,2}(\Omega)$.

The results we obtain (see, for example, Theorem 4.8) exhibit a "folding type behaviour": the set of pairs (ψ, h) such that $P_{\psi}(h)$ has solution is a convex cone and, if $\lambda_{1}<\lambda<\lambda_{2}$ (λ_{1} and λ_{2} being the first and second eigenvalues of $-\Delta$), then $P_{\psi}(h)$ has at least one solution for (ψ, h) on the boundary of this cone, at least two distinct solutions if (ψ, h) lies in its interior (while the functional f_{h} without the constraint K_{ψ} has a unique critical point for every $h \in L^{2}(\Omega)$).

This behaviour makes evident an interesting analogy with a well known result stated by Ambrosetti and Prodi in [2], concerning problems with "jumping" nonlinearity like

$$
\begin{equation*}
\Delta u+g(u)=h \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\lim _{t \rightarrow-\infty} g(t) / t<\lambda_{1}<\lim _{t \rightarrow \infty} g(t) / t<\lambda_{2} \tag{2}
\end{equation*}
$$

Notice that, despite the evident analogy of these results, there is a deep difference between our methods and those used in [2], the latter being based on the analysis of singularities that could not be applied in our problem.

Comparing the sublevels of the corresponding functionals, one could see that, roughly speaking, the presence of the constraint K_{ψ} in problem $P_{\psi}(h)$ has the same role played in [2] by the condition

$$
\lim _{t \rightarrow-\infty} g(t) / t<\lambda_{1} .
$$

In [14, 17-19, 21-23] an analogous jumping behaviour was shown for some problems with constraints like

$$
\begin{equation*}
\widetilde{K}_{\varphi}=\left\{u \in H_{0}^{1,2}(\Omega) \mid u \geq \varphi \text { a.e. in } \Omega\right\} \quad\left(\varphi \in L^{2}(\Omega)\right) \tag{3}
\end{equation*}
$$

in place of K_{ψ}.
Several papers have been devoted to variational inequalities (see [11, 12, etc.]); they involve unilateral pointwise constraints on the function (like \widetilde{K}_{φ}), or on the laplacian (like K_{ψ}) or also on the gradient: for example, a constraint like

$$
\begin{equation*}
\bar{K}_{\gamma}=\left\{u \in H_{0}^{1,2}(\Omega)| | D u \mid \leq \gamma \text { in } \Omega\right\} \tag{4}
\end{equation*}
$$

arises in the problem of the elastic-plastic torsion of a bar (see [5, 10]).
Usually, constraints on the function or on the gradient (like \widetilde{K}_{φ} or \bar{K}_{γ}) have been used in second order variational inequalities, while constraints on the laplacian (like K_{ψ}) have been considered in some fourth order variational inequalities (for example for the biharmonic operator: see [6]). However, for the second order variational inequalities we are considering in this paper, the jumping
behaviour arises only when we use constraints like \widetilde{K}_{φ} or K_{ψ}; no analogous folding type result occurs if in problem $P_{\psi}(h)$ the convex cone K_{ψ} is replaced by a convex set like \bar{K}_{γ} or $\left\{u \in H_{0}^{1,2}(\Omega) \mid(D u, \bar{x}) \leq \gamma\right.$ in $\left.\Omega\right\}$, with $\bar{x} \in \mathbb{R}^{n}$.

An important tool is the use of supersolutions in order to analyse the properties of the pair (ψ, h) for which $P_{\psi}(h)$ has solution or to describe the structure of the set of solutions of $P_{\psi}(h)$ (for example the existence of a minimal solution).

In [14, 17-19], where constraints like \widetilde{K}_{φ} involve only the function, the classical notion of supersolution for the operator $\Delta+\lambda I-h$ has been sufficient (u is said to be a supersolution if $\Delta u+\lambda u-h \leq 0$ in weak sense, see [1, 3, etc.]).

In this paper a new notion of supersolution (see Definition 2.1) turns out to be appropriate and useful to handle constraints on the laplacian like K_{ψ}. It is natural to call them supersolutions with respect to the operator $I+\Delta^{-1}(\lambda I-h)$, since (see Proposition 2.2) u is a supersolution if $u+\Delta^{-1}(\lambda u-h) \geq 0$ (the operator Δ^{-1} is considered in $\left.H_{0}^{1,2}(\Omega)\right)$.

Notice that, unlike [1] (where monotone iterations are used), we use the supersolutions as "upper fictitious obstacles" (see Lemma 2.3); this property allows us to prove that there exists a minimal solution, that the set of pairs (ψ, h) for which $P_{\psi}(h)$ has solution is a closed convex cone, etc.

In a different situation, the use of supersolutions as fictitious obstacles to analyse the structure of the set of solutions has been introduced, for example, in [13, 14, 17-20].

This paper is organized as follows: in Section 1 we introduce the problem and characterize its solutions as lower critical points of the functional f_{h} constrained on the convex cone K_{ψ}; moreover, we prove the equivalence of problem $P_{\psi}(h)$ to another variational inequality, which makes evident the pointwise properties of solutions; in Section 2 we introduce the supersolutions and state their main properties, which are used in Section 3 to analyse the solvability of $P_{\psi}(h)$ for a generic pair (ψ, h) and to describe the properties of the set of solutions; in Section 4 we obtain the alternatives exhibiting the jumping behaviour for $\lambda_{1}<\lambda<\lambda_{2}$; in Section 5 they are extended to the case $\lambda=\lambda_{2}$, while Section 6 is devoted to the case $\lambda=\lambda_{1}$.

1. The problem, the variational setting and preliminary remarks

Let Ω be a bounded domain of \mathbb{R}^{n}, λ a real number, ψ and h two functions that we assume, for simplicity, in $H_{0}^{1,2}(\Omega)$ and $L^{2}(\Omega)$ respectively. We consider the following problem:

Definition 1.1. Let

$$
K_{\psi}=\left\{u \in H_{0}^{1,2}(\Omega) \mid \int_{\Omega} D u D w d x \geq \int_{\Omega} D \psi D w d x \forall w \in C_{0}^{\infty}(\Omega), w \geq 0\right\}
$$

we say that u is a solution of problem $P_{\psi}(h)$ if

$$
\left\{\begin{array}{l}
u \in K_{\psi} \\
\int_{\Omega}[D u D(v-u)-\lambda u(v-u)+h(v-u)] d x \geq 0 \quad \forall v \in K_{\psi}
\end{array}\right.
$$

Remark. Notice that, if we can apply the Gauss-Green formula, the inequality of problem $P_{\psi}(h)$ becomes

$$
\int_{\Omega}\left[u+\Delta^{-1}(\lambda u-h)\right] \Delta(v-u) d x \leq 0 \quad \forall v \in K_{\psi}
$$

whose pointwise meaning would be

$$
\begin{cases}u+\Delta^{-1}(\lambda u-h)=0 & \text { a.e. where } \Delta u<\Delta \psi \\ u+\Delta^{-1}(\lambda u-h) \geq 0 & \text { a.e. where } \Delta u=\Delta \psi\end{cases}
$$

or, equivalently

$$
\left\{\begin{array}{l}
u \geq-\Delta^{-1}(\lambda u-h) \quad \text { a.e. in } \Omega \\
u>-\Delta^{-1}(\lambda u-h) \Rightarrow \Delta u=\Delta \psi .
\end{array}\right.
$$

This remark is made precise in the following lemma.
Lemma 1.2. Assume $\psi \in H_{0}^{1,2}(\Omega), k \in L^{2}(\Omega)$ and set

$$
\bar{K}=\left\{u \in H_{0}^{1,2}(\Omega): u \geq \Delta^{-1} k \text { a.e. in } \Omega\right\} .
$$

Then a function $u \in H_{0}^{1,2}(\Omega)$ solves the problem

$$
\left\{\begin{array}{l}
u \in K_{\psi}, \tag{5}\\
\int_{\Omega} D u D(v-u) d x+\int_{\Omega} k(v-u) d x \geq 0 \quad \forall v \in K_{\psi}
\end{array}\right.
$$

if and only if it is a solution of the variational inequality
(6) $\left\{\begin{array}{l}u \in \bar{K}, \\ \int_{\Omega} D u D(w-u) d x-\int_{\Omega} D \psi D(w-u) d x \geq 0 \quad \forall w \in \bar{K} .\end{array}\right.$

Proof. Suppose that $u \in K_{\psi}$ solves problem (5). If, for every $\delta \in C_{0}^{\infty}(\Omega)$, $\delta \geq 0$ in Ω, we take $v=u-\Delta^{-1} \delta$, then $v \in K_{\psi}$ and the inequality (5) implies

$$
\int_{\Omega}\left(u-\Delta^{-1} k\right) \delta d x \geq 0
$$

Therefore $u \in \bar{K}$. Now, if w is in \bar{K}, then
(7) $\quad \int_{\Omega} D u D(w-u) d x-\int_{\Omega} D \psi D(w-u) d x$

$$
=\int_{\Omega}(D u-D \psi) D(w-u) d x \geq \int_{\Omega}(D u-D \psi) D\left(\Delta^{-1} k-u\right) d x
$$

where the last inequality is true because $\Delta u \leq \Delta \psi$ (in weak sense) and $w \geq$ $\Delta^{-1} k$. The last integral in (7) is equal to

$$
\int_{\Omega} D u D(\psi-u) d x+\int_{\Omega} k(\psi-u) d x
$$

which is nonnegative by assumption (notice that $\psi \in K_{\psi}$).
Conversely, let $u \in \bar{K}$ be a solution of problem (6). If, for every $\alpha \in C_{0}^{\infty}(\Omega)$, $\alpha \geq 0$ in Ω, we take $w=u+\alpha$, then $w \in \bar{K}$ and inequality (6) implies

$$
\int_{\Omega}(D u-D \psi) D \alpha d x \geq 0
$$

Therefore $u \in K_{\psi}$. Now, if v is in K_{ψ}, then

$$
\begin{align*}
& \int_{\Omega} D u D(v-u) d x+\int_{\Omega} k(v-u) d x \tag{8}\\
& \quad=\int_{\Omega} D\left(u-\Delta^{-1} k\right) D(v-u) d x \geq \int_{\Omega} D\left(u-\Delta^{-1} k\right) D(\psi-u) d x
\end{align*}
$$

where the last inequality is true because $u \geq \Delta^{-1} k$ and $\Delta(\psi-u) \geq \Delta(v-u)$ (in weak sense). The last integral in (8) is equal to

$$
\int_{\Omega} D u D\left(\Delta^{-1} k-u\right) d x-\int_{\Omega} D \psi D\left(\Delta^{-1} k-u\right) d x
$$

which is nonnegative by assumption because $\Delta^{-1} k \in \bar{K}$.
Notations. Let $\lambda_{1}<\lambda_{2}<\ldots$ be the eigenvalues of the operator $-\Delta$ in $H_{0}^{1,2}(\Omega)$ and e_{1} the positive eigenfunction corresponding to the first eigenvalue and such that $\int_{\Omega} e_{1}^{2} d x=1$. Moreover, let X_{1} and X_{2} be the vector spaces spanned by the eigenfunctions corresponding to λ_{1} and λ_{2} respectively and set $X_{3}=\left(X_{1} \oplus X_{2}\right)^{\perp}$. Finally, let Π_{1}, Π_{2} and Π_{3} be the projections on the spaces X_{1}, X_{2} and X_{3} respectively.

Definition 1.3. Let X be a set and $V \subseteq X$. We define the indicator function of the set V as the function $I_{V}: X \rightarrow \mathbb{R} \cup\{\infty\}$ such that

$$
I_{V}(u)= \begin{cases}0 & \text { if } u \in V \\ \infty & \text { if } u \in X \backslash V\end{cases}
$$

Let $h \in L^{2}(\Omega)$ and $\psi \in H_{0}^{1,2}(\Omega)$; we denote by $f_{h, \psi}: L^{2}(\Omega) \rightarrow \mathbb{R} \cup\{\infty\}$ the functional $f_{h, \psi}=f_{h}+I_{K_{\psi}}$, where

$$
f_{h}(u)= \begin{cases}\frac{1}{2} \int_{\Omega}\left(|D u|^{2}-\lambda u^{2}\right) d x+\int_{\Omega} h u d x & \text { if } u \in H_{0}^{1,2}(\Omega) \\ \infty & \text { if } u \in L^{2}(\Omega) \backslash H_{0}^{1,2}(\Omega)\end{cases}
$$

and $I_{K_{\psi}}$ is the indicator function of the set K_{ψ}.

Let $f_{h}^{\prime}(u)$ be the differential of f_{h} in u, that is,

$$
f_{h}^{\prime}(u)[w]=\int_{\Omega}[D u D w-\lambda u w+h w] d x \quad \forall u, w \in H_{0}^{1,2}(\Omega)
$$

Let H be a Hilbert space with inner product (\cdot, \cdot) and norm $\|\cdot\|$. Let $W \subset H$ and consider $f: W \rightarrow \mathbb{R} \cup\{\infty\}$. We define the domain of f to be the set

$$
\mathcal{D}(f)=\{u \in W \mid f(u)<\infty\}
$$

Definition 1.4 (see $[4,8,9]$). Let $u \in \mathcal{D}(f)$. We define the subdifferential of f at u to be the set $\partial^{-} f(u)$ consisting of all α in H such that

$$
\liminf _{v \rightarrow u} \frac{f(v)-f(u)-(\alpha, v-u)}{\|v-u\|} \geq 0
$$

If $\partial^{-} f(u) \neq \emptyset$, then we define the subgradient of f at u, denoted by $\operatorname{grad}^{-} f(u)$, to be the element of $\partial^{-} f(u)$ having minimal norm (it is easy to check that $\partial^{-} f(u)$ is a closed and convex subset of H).

Lastly, we say that u is a lower critical point for f if $0 \in \partial^{-} f(u)$, that is, if $\operatorname{grad}^{-} f(u)=0$.

Remark 1.5. The functional $f_{h, \psi}$ is lower semicontinuous in the metric of $L^{2}(\Omega)$ and its domain is $D\left(f_{h, \psi}\right)=K_{\psi}$.

Furthermore, it is easy to verify that

$$
f_{h}(v)=f_{h}(u)+f_{h}^{\prime}(u)[v-u]+\frac{1}{2}\|v-u\|_{H_{0}^{1,2}}^{2}-\frac{\lambda}{2}\|v-u\|_{L^{2}}^{2} \quad \forall u, v \in H_{0}^{1,2}(\Omega) .
$$

Hence $\alpha \in \partial^{-} f_{h, \psi}(u)$ if and only if

$$
f_{h}^{\prime}(u)[v-u] \geq(\alpha, v-u) \quad \forall v \in K_{\psi}
$$

and

$$
\begin{aligned}
f_{h}(v) \geq f_{h}(u)+(\alpha, v-u)+\frac{1}{2}\|v-u\|_{H_{0}^{1,2}}^{2}- & \frac{\lambda}{2}\|v-u\|_{L^{2}}^{2} \\
\forall u, v & \in H_{0}^{1,2}(\Omega), \forall \alpha \in \partial^{-} f(u) .
\end{aligned}
$$

We get immediately the following result:
Proposition 1.6. The function u is a solution of problem $P_{\psi}(h)$ if and only if u is a lower critical point for $f_{h, \psi}$.

REMARK 1.7. If $\lambda<\lambda_{1}$, then there exists a unique solution to problem $P_{\psi}(h)$ for every $h \in L^{2}(\Omega)$ and $\psi \in H_{0}^{1,2}(\Omega)$.

In fact, the functional $f_{h, \psi}$ introduced in Definition 1.3 is coercive and strictly convex if $\lambda<\lambda_{1}$; thus it has only one lower critical point: its unique minimum point.

2. Supersolutions as fictitious obstacles

In this section we introduce the notion of supersolution for our problem. Then (see Lemma 2.3) we point out a useful and simple connection with the solutions of problem $P_{\psi}(h)$.

In the next sections the results obtained here will be used to get information about the set of data for which there exist solutions and about their multiplicity.

Definition 2.1. We say that a function $u \in H_{0}^{1,2}(\Omega)$ is a supersolution for the operator $I+\Delta^{-1}(\lambda I-h)$ if

$$
\int_{\Omega}(D u D w-\lambda u w+h w) d x \geq 0 \quad \forall w \in K_{0}
$$

Remark. It is evident that every solution of problem $P_{\psi}(h)$ is a supersolution for the operator $I+\Delta^{-1}(\lambda I-h)$.

Let us point out that this definition of supersolution is rather different from the usual one (used, for example, in $[18,19]$) because it makes use of test functions w such that $\Delta w \leq 0$ in weak sense, instead of the more general functions w such that $w \geq 0$. The next proposition suggests why we use the name "supersolutions for $I+\Delta^{-1}(\lambda I-h)$ " for the ones introduced in Definition 2.1, while it is natural to call the other ones "supersolutions for the operator $\Delta+\lambda I-h$ ".

Proposition 2.2. The function u is a supersolution for the operator $I+$ $\Delta^{-1}(\lambda I-h)$ (in the sense of Definition 2.1) if and only if $u+\Delta^{-1}(\lambda u-h) \geq 0$ a.e. in Ω.

Proof. If u is a supersolution, then Definition 2.1 (with $w=-\Delta^{-1} \varphi$) implies

$$
\int_{\Omega}\left[u+\Delta^{-1}(\lambda u-h)\right] \varphi \geq 0 \quad \forall \varphi \in L^{2}(\Omega) \text { such that } \varphi \geq 0
$$

so $u+\Delta^{-1}(\lambda u-h) \geq 0$ a.e. in Ω.
Conversely, if $u+\Delta^{-1}(\lambda u-h) \geq 0$, then multiplying by Δw for $w \in C_{0}^{\infty}(\Omega)$ such that $\Delta w \leq 0$, we get

$$
\int_{\Omega}\left[u+\Delta^{-1}(\lambda u-h)\right] \Delta w d x \leq 0
$$

which implies

$$
\int_{\Omega}(D u D w-\lambda u w+h w) d x \geq 0
$$

Hence it suffices to remark that the last inequality can be extended to all $w \in K_{0}$ by density arguments.

Lemma 2.3 and Proposition 2.4 below exhibit an important property of supersolutions: a constraint like $\left\{u \in L^{2}(\Omega) \mid u \leq \bar{u}\right\}$ is in a certain sense a fictitious obstacle if \bar{u} is a supersolution for $I+\Delta^{-1}(\lambda I-h)$ according to Definition 2.1.

Lemma 2.3. Let $\bar{u} \in K_{\psi}$ be a supersolution for the operator $I+\Delta^{-1}(\lambda I-h)$ with $\lambda \geq 0$; set $K=\left\{u \in K_{\psi} \mid u \leq \bar{u}\right\}$ and assume that w is a lower critical point for $f_{h}+I_{K}$. Then w is a solution of problem $P_{\psi}(h)$.

Proof. Let us remark, first of all, that $\bar{u} \geq-\Delta^{-1}(\lambda \bar{u}-h)$ a.e., because \bar{u} is a supersolution. Moreover, $\lambda w-h \leq \lambda \bar{u}-h$, because $w \in K$ and $\lambda \geq 0$, so we obtain

$$
\begin{equation*}
-\Delta^{-1}(\lambda w-h) \leq-\Delta^{-1}(\lambda \bar{u}-h) \leq \bar{u} \tag{9}
\end{equation*}
$$

The function w satisfies

$$
\int_{\Omega}[D w D(v-w)-\lambda w(v-w)+h(v-w)] d x \geq 0 \quad \forall v \in K
$$

therefore, if we put

$$
\widetilde{f}(u)=\frac{1}{2} \int_{\Omega}|D u|^{2} d x+\int_{\Omega}[h-\lambda w] u d x
$$

then w is a lower critical point for $\tilde{f}+I_{K}$. The functional \tilde{f} is strictly convex, lower semicontinuous and coercive; so there exists only one minimum point for \tilde{f} on K_{ψ}; let us call it \widetilde{w}.

The function \widetilde{w} satisfies

$$
\begin{equation*}
\int_{\Omega} D \widetilde{w} D(v-\widetilde{w}) d x-\int_{\Omega}(\lambda w-h)(v-\widetilde{w}) d x \geq 0 \quad \forall v \in K_{\psi} \tag{10}
\end{equation*}
$$

The functional $\tilde{f}+I_{K}$ admits only one lower critical point (its unique minimum point), because it is strictly convex; so, if we show that $\widetilde{w} \leq \bar{u}$, then we have $\widetilde{w}=w$ and (10) gives us the desired conclusion.

Applying Lemma 1.2 with $k=h-\lambda w$, we see that \widetilde{w} is a lower critical point for the functional

$$
F(u)=\frac{1}{2} \int_{\Omega}|D u|^{2} d x-\int_{\Omega} D \psi D u d x
$$

constrained on the set

$$
\bar{K}=\left\{u \in H_{0}^{1,2}(\Omega) \mid u \geq \Delta^{-1}(h-\lambda w) \text { a.e. in } \Omega\right\}
$$

The function \bar{u} is in \bar{K} by (9) and it satisfies $\Delta \bar{u} \leq \Delta \psi$ (in weak sense) by assumption; thus it is a supersolution for the operator F^{\prime} (in the usual sense: see, for example, $[18,19])$.

Therefore, as stated in [18], the functional $F+I_{\bar{K}}$ has a lower critical point, which we call w^{\prime}; furthermore, this point satisfies $w^{\prime} \leq \bar{u}$; but $F+I_{\bar{K}}$ has only
one critical point, because it is strictly convex, so $\widetilde{w}=w^{\prime}$. This implies that $\widetilde{w} \leq \bar{u}$ and so $\widetilde{w}=w$, which completes the proof.

Proposition 2.4. Let $\bar{u} \in K_{\psi}$ be a supersolution for the operator $I+$ $\Delta^{-1}(\lambda I-h)$; then problem $P_{\psi}(h)$ has a solution w such that $w \leq \bar{u}$ a.e.

For the proof it is sufficient to apply the previous lemma, with w a minimum point of the functional $f_{h}+I_{K}$ (notice that $K \neq \emptyset$ because $\bar{u} \in K$ and moreover $f_{h}+I_{K}$ has a minimum because K is bounded in $L^{2}(\Omega)$ and so the sublevels of $f_{h}+I_{K}$ are bounded in $\left.H_{0}^{1,2}(\Omega)\right)$.

Lemma 2.5. Let $\lambda \geq 0$; if u_{1} and u_{2} are supersolutions for the operator $I+\Delta^{-1}(\lambda I-h)$, then so is $u_{1} \wedge u_{2}$.

Proof. It suffices to remark that

$$
\begin{array}{ll}
u_{1} \geq-\Delta^{-1}\left(\lambda u_{1}-h\right) \geq-\Delta^{-1}\left(\lambda\left(u_{1} \wedge u_{2}\right)-h\right) & \text { a.e. in } \Omega, \\
u_{2} \geq-\Delta^{-1}\left(\lambda u_{2}-h\right) \geq-\Delta^{-1}\left(\lambda\left(u_{1} \wedge u_{2}\right)-h\right) & \text { a.e. in } \Omega,
\end{array}
$$

because u_{1} and u_{2} are supersolutions and $\lambda \geq 0$. Therefore

$$
u_{1} \wedge u_{2} \geq \Delta^{-1}\left(\lambda\left(u_{1} \wedge u_{2}\right)-h\right) \quad \text { a.e. in } \Omega
$$

that is, $u_{1} \wedge u_{2}$ is a supersolution, by Proposition 2.2.
ThEOREM 2.6. If u_{1} and u_{2} are solutions of problem $P_{\psi}(h)$, then there exists a solution u such that $u \leq u_{1} \wedge u_{2}$.

Proof. The functions u_{1} and u_{2} are supersolutions for the operator $I+$ $\Delta^{-1}(\lambda I-h)$, because they are solutions of problem $P_{\psi}(h)$ and so, by Lemma 2.5, also the function $u_{1} \wedge u_{2}$ is a supersolution.

By Proposition 2.4, it suffices that $u_{1} \wedge u_{2} \in K_{\psi}$, which is stated in the next proposition (that we prove for sake of completeness).

Proposition 2.7. Let u_{1} and u_{2} be in K_{ψ}; then also $u_{1} \wedge u_{2} \in K_{\psi}$.
Proof. Set $\bar{u}=u_{1} \wedge u_{2}, \pi(v)=v \wedge u_{1}$ and let $F: H_{0}^{1,2}(\Omega) \rightarrow \mathbb{R}$ be defined by

$$
F(u)=\frac{1}{2} \int_{\Omega}|D u|^{2} d x-\int_{\Omega} D \psi D u d x .
$$

Then

$$
F(u) \geq F(v)+F^{\prime}(v)[u-v] \quad \forall u, v \in H_{0}^{1,2}
$$

because the functional F is convex.
So, if $w \in C_{0}^{\infty}(\Omega)$, we have

$$
\begin{aligned}
& F(\bar{u}+w) \geq F(\pi(\bar{u}+w))+F^{\prime}(\pi(\bar{u}+w))[\bar{u}+w-\pi(\bar{u}+w)], \\
& F(\pi(\bar{u}+w)) \geq F(\bar{u})+F^{\prime}(\bar{u})[\pi(\bar{u}+w)-\bar{u}] .
\end{aligned}
$$

Now, if $w \geq 0$, it follows that

$$
F^{\prime}(\pi(\bar{u}+w))[\bar{u}+w-\pi(\bar{u}+w)]=F^{\prime}\left(u_{1}\right)[\bar{u}+w-\pi(\bar{u}+w)]
$$

because $\pi(\bar{u}+w)=u_{1}$ where $\bar{u}+w-\pi(\bar{u}+w) \neq 0$.
So, since $u_{1} \in K_{\psi}$ and $\bar{u}+w-\pi(\bar{u}+w) \geq 0$, it follows that

$$
\begin{equation*}
F^{\prime}(\pi(\bar{u}+w))[\bar{u}+w-\pi(\bar{u}+w)] \geq 0 \tag{11}
\end{equation*}
$$

Analogously

$$
\begin{equation*}
F^{\prime}(\bar{u})[\pi(\bar{u}+w)-\bar{u}]=F^{\prime}\left(u_{2}\right)[\pi(\bar{u}+w)-\bar{u}] \geq 0 \tag{12}
\end{equation*}
$$

Finally, the inequalities (11) and (12) imply that $F(\bar{u}+w) \geq F(\bar{u})$, which yields $F^{\prime}(\bar{u})[w] \geq 0$, and this is the desired conclusion.

Lastly, will need the following results about supersolutions, whose proofs are straightforward.

Proposition 2.8. Let h^{\prime} and $h^{\prime \prime}$ be in $L^{2}(\Omega)$; if u^{\prime} and $u^{\prime \prime}$ are supersolutions for the operators $I+\Delta^{-1}\left(\lambda I-h^{\prime}\right)$ and $I+\Delta^{-1}\left(\lambda I-h^{\prime \prime}\right)$, respectively, then $u^{\prime}+u^{\prime \prime}$ is a supersolution for the operator $I+\Delta^{-1}\left[\lambda I-\left(h^{\prime}+h^{\prime \prime}\right)\right]$. In particular, the assertion is true if u^{\prime} and $u^{\prime \prime}$ are solutions for problems $P_{\psi^{\prime}}\left(h^{\prime}\right)$ and $P_{\psi^{\prime \prime}}\left(h^{\prime \prime}\right)$, respectively, for some obstacles ψ^{\prime} and $\psi^{\prime \prime}$ in $H_{0}^{1,2}(\Omega)$.

Proposition 2.9. If u is a supersolution for the operator $I+\Delta^{-1}(\lambda I-h)($ in particular, if u is a solution for some problem $P_{\psi}(h)$), then u is a supersolution for the operator $I+\Delta^{-1}\left(\lambda I-h^{\prime}\right)$ for every h^{\prime} in $L^{2}(\Omega)$ such that $h^{\prime} \geq h$.

3. Some properties of the set of solutions

Let us define

$$
R=\left\{(\psi, h) \mid \psi \in H_{0}^{1,2}(\Omega), h \in L^{2}(\Omega), P_{\psi}(h) \text { has solution }\right\}
$$

In this section we use supersolutions to study some properties of the set of solutions for problem $P_{\psi}(h)$ and to describe the set R.

Theorem 3.1. Let $h \in L^{2}(\Omega)$ and $\psi \in H_{0}^{1,2}(\Omega)$; if there exists a solution for $P_{\psi}(h)$, then there is a solution for problem $P_{\psi^{\prime}}\left(h^{\prime}\right)$ for every pair $\left(\psi^{\prime}, h^{\prime}\right)$ with $h^{\prime} \in L^{2}(\Omega)$ and $\psi^{\prime} \in H_{0}^{1,2}(\Omega)$ such that $\Delta \psi^{\prime} \geq \Delta \psi$ in weak sense and $h^{\prime} \geq h$.

This follows easily from Propositions 2.4 and 2.9.
Theorem 3.2. The set R is a convex cone whose vertex is the origin.
Proof. It is clear that if u is a solution for $P_{\psi}(h)$ then αu solves $P_{\alpha \psi}(\alpha h)$ for every $\alpha \geq 0$. Moreover, if $P_{\psi^{\prime}}\left(h^{\prime}\right)$ and $P_{\psi^{\prime \prime}}\left(h^{\prime \prime}\right)$ have a solution, say u^{\prime} and $u^{\prime \prime}$ respectively, it follows from Propositions 2.8 and 2.4 that $P_{\psi^{\prime}+\psi^{\prime \prime}}\left(h^{\prime}+h^{\prime \prime}\right)$
also has a solution; in fact, $u^{\prime}+u^{\prime \prime} \in K_{\psi^{\prime}+\psi^{\prime \prime}}$ and it is a supersolution for the operator $I+\Delta^{-1}\left[\lambda I-\left(h^{\prime}+h^{\prime \prime}\right)\right]$. This completes the proof.

Before enunciating some closure properties of R, let us state the following results.

Lemma 3.3. Let u be in K_{ψ}; then

$$
\begin{equation*}
\int_{\Omega}\left[\left(\lambda_{1}-\lambda\right) u+(h-\alpha)\right] e_{1} d x \geq 0 \quad \forall \alpha \in \partial^{-} f_{h, \psi}(u) . \tag{13}
\end{equation*}
$$

Proof. We have (see Remark 1.5)

$$
\begin{equation*}
\int_{\Omega} \alpha(v-u) d x \leq f_{h}^{\prime}(u)[v-u] \quad \forall v \in K_{\psi} \tag{14}
\end{equation*}
$$

so, if we put $v=u+e_{1}$ in (14) (notice that $v=u+e_{1}$ is in K_{ψ}), we obtain inequality (13).

Lemma 3.4. Let $\lambda \neq \lambda_{1}$ and assume that, for every $m \in \mathbb{N}, \psi_{m}, \psi \in$ $H_{0}^{1,2}(\Omega), h_{m}, h \in L^{2}(\Omega)$. Suppose also that $\Delta \psi_{m} \geq \Delta \psi$ in weak sense and that $\psi_{m} \rightarrow \psi$ in $H_{0}^{1,2}(\Omega)$ and $h_{m} \rightarrow h$ in $L^{2}(\Omega)$ as $m \rightarrow \infty$; furthermore, suppose that problem $P_{\psi_{m}}\left(h_{m}\right)$ has a solution u_{m}. Then:
(a) the sequence $\left(u_{m}\right)_{m}$ is bounded in $H_{0}^{1,2}(\Omega)$;
(b) if $\left(u_{m}\right)_{m}$ (or a subsequence) converges to u in $L^{2}(\Omega)$ and weakly in $H_{0}^{1,2}(\Omega)$, then u solves problem $P_{\psi}(h)$;
(c) there exists a solution to problem $P_{\psi}(h)$.

Proof. In this proof we are using the notations introduced in the first section.

If $\lambda<\lambda_{1}$, the assertion follows from $f_{h_{m}, \psi_{m}}\left(u_{n}\right) \leq f_{h_{m}, \psi_{m}}(\bar{u}) \leq$ const, for $\bar{u} \in K_{\psi}$ fixed, because the solution u_{m} is the minimum point for the functional $f_{h_{m}}$ on $K_{\psi_{m}}$ and $K_{\psi} \subseteq K_{\psi_{m}}$ for all m.

If $\lambda>\lambda_{1}$, we have

$$
\begin{aligned}
f_{h_{m}, \psi_{m}}(v) \geq f_{h_{m}, \psi_{m}}(u)+\langle\alpha, v-u\rangle+\frac{1}{2}\|v-u\|_{H_{0}^{1,2}}^{2}-\frac{\lambda}{2}\|v-u\|_{L^{2}}^{2} \\
\forall u, v \in K_{\psi_{m}}, \forall \alpha \in \partial^{-} f_{h_{m}, \psi_{m}} ;
\end{aligned}
$$

in particular, for $u=u_{m}$ and $v=\psi$ (notice that $\psi \in K_{\psi} \subseteq K_{\psi_{m}}$), we get

$$
\begin{align*}
f_{h_{m}}(\psi) \geq & f_{h_{m}}\left(u_{m}\right)-\frac{\lambda}{2}\left\|\psi-u_{m}\right\|_{L^{2}}^{2} \tag{15}\\
= & \frac{1}{2} \int_{\Omega}\left|D u_{m}\right|^{2} d x-\frac{\lambda}{2} \int_{\Omega} u_{m}^{2} d x \\
& +\int_{\Omega} h_{m} u_{m} d x-\frac{\lambda}{2}\left\|\psi-u_{m}\right\|_{L^{2}}^{2}
\end{align*}
$$

Let us prove that the sequence $\left(u_{m}\right)_{m}$ is bounded in $L^{2}(\Omega)$. If we suppose, by contradiction, that this is not the case, then up to taking a subsequence, we have $\lim _{m \rightarrow \infty}\left\|u_{m}\right\|_{L^{2}}=\infty$. If we put $z_{m}=u_{m} /\left\|u_{m}\right\|_{L^{2}}$, from (15) we deduce that $\left(z_{m}\right)_{m}$ is bounded in $H_{0}^{1,2}(\Omega)$; so a subsequence of it converges in $L^{2}(\Omega)$ and a.e. in Ω, to a function $z \in H_{0}^{1,2}(\Omega)$; then it follows that $\|z\|_{L^{2}}=1$; moreover, $z \geq 0$ in Ω, because $u_{m} \geq \psi_{m}$ a.e. in Ω, and $\psi_{m} \rightarrow \psi$ in $H_{0}^{1,2}(\Omega)$.

By Lemma 3.3 we have

$$
\frac{1}{\left\|u_{m}\right\|_{L^{2}}} \int_{\Omega}\left[\left(\lambda_{1}-\lambda\right) u_{m}+h\right] e_{1} d x \geq 0
$$

from which, as $m \rightarrow \infty$, we obtain $\left(\lambda_{1}-\lambda\right) \int_{\Omega} z e_{1} d x \geq 0$, which is impossible because $\lambda>\lambda_{1}, z \geq 0$ and $\|z\|_{L^{2}}=1$. So the sequence $\left(u_{m}\right)_{m}$ has to be bounded in $L^{2}(\Omega)$ and then, from (15), it follows that it is also bounded in $H_{0}^{1,2}(\Omega)$. So (a) is proved.

Let us prove (b): since $K_{\psi} \subseteq K_{\psi_{m}}$ for all $m \in \mathbb{N}$, we have

$$
f_{h_{m}}(v) \geq f_{h_{m}}\left(u_{m}\right)-\frac{\lambda}{2}\left\|v-u_{m}\right\|_{L^{2}}^{2} \quad \forall v \in K_{\psi} \forall m \in \mathbb{N}
$$

so, letting $m \rightarrow \infty$, we get

$$
f_{h}(v) \geq f_{h}(u)-\frac{\lambda}{2}\|v-u\|_{L^{2}}^{2} \quad \forall v \in K_{\psi}
$$

which gives (b).
The third conclusion follows from (a) and (b).
Lemma 3.4 allows us to prove the following closure property of the set R.
Theorem 3.5. Let $\lambda \neq \lambda_{1}$ and assume that, for every $m \in \mathbb{N}, \psi_{m} \in$ $H_{0}^{1,2}(\Omega) \cap H^{2,2}(\Omega), h_{m} \in L^{2}(\Omega), \psi_{m} \rightarrow \psi$ in $H^{2,2}(\Omega), h_{m} \rightarrow h$ in $L^{2}(\Omega)$ and $\left(\psi_{m}, h_{m}\right) \in R$ (i.e. $P_{\psi_{m}}\left(h_{m}\right)$ has solution). Then problem $P_{\psi}(h)$ has solution (i.e. $(\psi, h) \in R$).

Proof. If $\lambda<\lambda_{1}$, then the assertion is trivial because of Remark 1.7. If $\lambda>\lambda_{1}$, let $\left(\psi_{m}\right)_{m}$ and $\left(h_{m}\right)_{m}$ be two sequences converging to ψ and to h in $H^{2,2}(\Omega)$ and in $L^{2}(\Omega)$ respectively, such that, for every $m \in \mathbb{N}, P_{\psi_{m}}\left(h_{m}\right)$ has a solution. If we define $\varphi_{n}=\Delta^{-1}\left(\Delta \psi \vee \Delta \psi_{m}\right)$, also problem $P_{\varphi_{m}}\left(h_{m}\right)$ has a solution: indeed, if \bar{u}_{m} is a solution for $P_{\psi_{m}}\left(h_{m}\right)$, then \bar{u}_{m} is a supersolution for $I+\Delta^{-1}\left(\lambda I-h_{m}\right)$. Furthermore, $\Delta \bar{u}_{m} \leq \Delta \psi_{m}$ implies that $\Delta \bar{u}_{m} \leq \Delta \varphi_{m}$ (in weak sense), that is, $\bar{u}_{m} \in K_{\varphi_{m}}$. So we can apply Proposition 2.4 in order to get a solution for $P_{\varphi_{m}}\left(h_{m}\right)$. If we observe that $\varphi_{m} \rightarrow \psi$ in $H_{0}^{1,2}(\Omega)$, applying the previous lemma to the sequence $\left(\varphi_{m}, h_{m}\right)_{m}$, we have the desired conclusion.

Remark. Notice that Theorem 3.5 does not hold for $\lambda=\lambda_{1}$. In fact, if, for example, $\left(\psi_{m}\right)_{m}$, with $\Delta \psi_{m} \in C_{0}^{\infty}(\Omega)$ for all $m \in \mathbb{N}$, is a sequence converging in $H^{2,2}(\Omega)$ to a function $\psi \in H_{0}^{1,2}(\Omega)$ such that $\sup _{\Omega} \psi / e_{1}=\infty$, then problem
$P_{\psi_{m}}(0)$ has solution for every $m \in \mathbb{N}$, but $P_{\psi}(0)$ has no solution because, when $\lambda=\lambda_{1}$ and $h=0$, the solutions of problem $P_{\psi}(h)$ solve the equation $\Delta u+\lambda_{1} u$ $=0$, as we shall prove in Section 6 (see Theorem 6.1 and the related example).

Now we recall a proposition from [8] which is useful to prove the next result about the existence of a minimal solution.

Proposition 3.6. Let H be a Hilbert space and $f: H \rightarrow \mathbb{R} \cup\{\infty\}$ a lower semicontinuous function. Suppose there exists $\lambda \in \mathbb{R}$ such that

$$
f(v) \geq f(u)+\langle\alpha, v-u\rangle-\frac{\lambda}{2}\|v-u\|^{2} \quad \forall \alpha \in \partial^{-} f(u) \forall u, v \in \mathcal{D}(f)
$$

Let $\left(u_{m}\right)_{m}$ and $\left(\alpha_{m}\right)_{m}$ be two sequences such that $u_{m} \in \mathcal{D}(f), \alpha_{m} \in \partial^{-} f\left(u_{m}\right)$ for every $m \in \mathbb{N}, \lim _{m \rightarrow \infty} u_{m}=u$, and $\alpha_{m} \rightharpoonup \alpha$ weakly in H. Then $u \in \mathcal{D}(f)$, $\lim _{m \rightarrow \infty} f\left(u_{m}\right)=f(u)$ and $\alpha \in \partial^{-} f(u)$.

Proposition 3.7. If problem $P_{\psi}(h)$ has solution, then there exists a minimal solution \bar{u} (that is, $\bar{u} \leq u$ a.e. in Ω for every solution u for $\left.P_{\psi}(h)\right)$.

Proof. Let $\left(u_{m}\right)_{m}$ be a sequence of solutions such that

$$
\lim _{m \rightarrow \infty} \int_{\Omega} u_{m} d x=\inf \left\{\int_{\Omega} u d x \mid u \text { solution of } P_{\psi}(h)\right\}
$$

(notice that this infimum is finite because there exists a solution).
If we fix $v \in K_{\psi}$, we get

$$
\begin{align*}
f_{h}(v) \geq & f_{h}\left(u_{m}\right)-\frac{\lambda}{2}\left\|v-u_{m}\right\|_{L^{2}}^{2} \tag{16}\\
= & \frac{1}{2} \int_{\Omega}\left|D u_{m}\right|^{2} d x-\frac{\lambda}{2} \int_{\Omega} u_{m}^{2} d x \\
& +\int_{\Omega} h u_{m} d x-\frac{\lambda}{2}\left\|v-u_{m}\right\|_{L^{2}}^{2} .
\end{align*}
$$

We say that $\sup _{m \in \mathbb{N}}\left\|u_{m}\right\|_{L^{2}}<\infty$. If this is not so, then up to taking a subsequence, we can assume $\lim _{m \rightarrow \infty}\left\|u_{m}\right\|_{L^{2}}=\infty$; let us consider $z_{m}=u_{m} /\left\|u_{m}\right\|_{L^{2}}$; from (16) we deduce that $\sup _{m \in \mathbb{N}}\left\|z_{m}\right\|_{H_{0}^{1,2}}<\infty$ and consequently $\left(z_{m}\right)_{m}$ (or a subsequence) converges in $L^{2}(\Omega)$ and a.e. in Ω to a function z with $\|z\|_{L^{2}}=1$ and $z \geq 0$, because $u_{m} \geq \psi$. Hence $\lim _{m \rightarrow \infty} \int_{\Omega} z_{m} d x=\int_{\Omega} z d x>0$. But this is impossible: in fact, $\lim _{m \rightarrow \infty} \int_{\Omega} z_{m} d x=\lim _{m \rightarrow \infty}\left(1 /\left\|u_{m}\right\|_{L^{2}}\right) \int_{\Omega} u_{m} d x \leq 0$ because $\lim _{m \rightarrow \infty} \int_{\Omega} u_{m} d x<\infty$ and $\lim _{m \rightarrow \infty}\left\|u_{m}\right\|_{L^{2}}=\infty$.

So $\left(u_{m}\right)_{m}$ must be bounded in $L^{2}(\Omega)$ and, from (16), it follows that it is also bounded in $H_{0}^{1,2}(\Omega)$; therefore, up to taking a subsequence, it converges in $L^{2}(\Omega)$ and weakly in $H_{0}^{1,2}(\Omega)$ to a function \bar{u} that, by Proposition 3.6, is a solution for $P_{\psi}(h)$. Let us remark that

$$
\begin{equation*}
\int_{\Omega} \bar{u} d x=\min \left\{\int_{\Omega} u d x \mid u \text { solution of } P_{\psi}(h)\right\} . \tag{17}
\end{equation*}
$$

Hence we deduce that \bar{u} is the minimal solution. In fact, if there exists a solution u such that $\bar{u} \wedge u \neq \bar{u}$, then there exists another solution $w \leq \bar{u} \wedge u$, by Theorem 2.6. Therefore $\int_{\Omega} w d x<\int_{\Omega} \bar{u} d x$, contrary to (17).

4. Alternative theorems when $\lambda_{1}<\lambda<\lambda_{2}$

In order to study the solvability of problem $P_{\psi}(h)$ and evaluate the number of solutions (see Theorems 4.7 and 4.8), we use in this section too the functionals f_{h} and $f_{h, \psi}$ and the other notations introduced in the first section.

Definition 4.1. Let $h \in L^{2}(\Omega), \psi \in H_{0}^{1,2}(\Omega), \lambda \in \mathbb{R}, \lambda<\lambda_{2}$; let $S_{h, \psi}$: $\mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$ be the function defined by

$$
S_{h, \psi}(t)=\min \left\{f_{h, \psi}+I_{P_{t}}\right\}
$$

where $P_{t}=\left\{u \in L^{2}(\Omega) \mid \int_{\Omega} u e_{1} d x=t\right\}$ and $I_{P_{t}}$ is its indicator function.
Let us remark that, if $\lambda<\lambda_{2}$, such a minimum exists and, if it is finite, it is achieved at a unique point because in this case $f_{h, \psi}$ is strictly convex, lower semicontinuous and coercive on every hyperplane P_{t}.

The next lemma says that, if $\lambda<\lambda_{2}$, then searching the solutions of problem $P_{\psi}(h)$ is equivalent to looking for the lower critical points of $S_{h, \psi}$.

LEMMA 4.2. Let $\lambda<\lambda_{2}$ and u be a minimum point for $f_{h, \psi}+I_{P_{\bar{t}}}$, where $\bar{t}=\int_{\Omega} u e_{1} d x$. Then $k \in \partial^{-} S_{h, \psi}(\bar{t})$ if and only if $k e_{1} \in \partial^{-} f_{h, \psi}(u)$. In particular, if $k=0$, then \bar{t} is a lower critical point for $S_{h, \psi}$ if and only if the minimum point for $f_{h, \psi}+I_{P_{\bar{t}}}$ is a lower critical point for $f_{h, \psi}$.

Proof. Assume that $k \in \partial^{-} S_{h, \psi}(\bar{t})$. We have to estimate

$$
L=\liminf _{v \rightarrow u} \frac{f_{h}(v)-f_{h}(u)-\left(k e_{1}, v-u\right)}{\|v-u\|_{L^{2}}}
$$

Observe that, if $\int_{\Omega} v e_{1} d x=\int_{\Omega} u e_{1} d x$, then $f_{h}(v) \geq f_{h}(u)$, by definition of u. Hence, if

$$
M=\liminf _{\substack{v \rightarrow u \\ \int_{\Omega} v e_{1} d x \neq \bar{t}}} \frac{f_{h}(v)-S_{h, \psi}(\bar{t})-k\left(\int_{\Omega} v e_{1} d x-\bar{t}\right)}{\left|\int v e_{1} d x-\bar{t}\right|} \geq 0
$$

then $L \geq 0$, because

$$
0<\frac{\left|\int v e_{1} d x-\bar{t}\right|}{\|v-u\|_{L^{2}}} \leq 1
$$

By definition $f_{h}(v) \geq S_{h, \psi}\left(\int_{\Omega} v e_{1} d x\right)$; furthermore, $v \rightarrow u$ in $L^{2}(\Omega)$ implies $\int_{\Omega} v e_{1} d x \rightarrow \int_{\Omega} u e_{1} d x$, so

$$
M \geq \liminf _{t \rightarrow \bar{t}} \frac{S_{h, \psi}(t)-S_{h, \psi}(\bar{t})-k(t-\bar{t})}{|t-\bar{t}|} \geq 0
$$

by assumption.

Conversely, let us remark, first of all, that $f_{h}=f_{h} \circ \Pi_{1}+f_{h} \circ \Pi_{2}+f_{h} \circ \Pi_{3}$, where $f_{h} \circ \Pi_{2}$ and $f_{h} \circ \Pi_{3}$ are convex. Therefore we have

$$
f_{h, \psi}(v) \geq f_{h, \psi}(u)+f_{h}^{\prime}(u)[v-u]+\frac{1}{2}\left(\lambda_{1}-\lambda\right)\left(\int_{\Omega}(v-u) e_{1} d x\right)^{2} .
$$

By assumption $k e_{1} \in \partial^{-} f_{h, \psi}(u)$ and so

$$
f_{h, \psi}(v) \geq f_{h, \psi}(u)+\int_{\Omega} k e_{1}(v-u) d x+\frac{1}{2}\left(\lambda_{1}-\lambda\right)\left(\int_{\Omega}(v-u) e_{1} d x\right)^{2}
$$

if we set $t=\int_{\Omega} v e_{1} d x$ and $\bar{t}=\int_{\Omega} u e_{1} d x$, by simple arguments it follows that

$$
S_{h, \psi}(t) \geq S_{h, \psi}(\bar{t})+k(t-\bar{t})+\frac{1}{2}\left(\lambda_{1}-\lambda\right)(t-\bar{t})^{2},
$$

which implies $k \in \partial^{-} S_{h, \psi}(\bar{t})$.
Definition 4.3. If $\lambda<\lambda_{2}$, let $\sigma_{h, \psi}: \mathbb{R} \rightarrow \mathbb{R} \cup\{\infty\}$ be defined by

$$
\sigma_{h, \psi}(t)=\min \left\{f_{h} \circ\left(\Pi_{2}+\Pi_{3}\right)+I_{K_{\psi}}+I_{P_{t}}\right\}
$$

with the usual notations.
The following lemma states a simple property of $\sigma_{h, \psi}$, which can be easily proved.

Lemma 4.4. Let $S_{h, \psi}$ and $\sigma_{h, \psi}$ be the functions defined above. Then

$$
S_{h, \psi}(t)=\sigma_{h, \psi}(t)-\left(\lambda-\lambda_{1}\right) \frac{t^{2}}{2}+t \int_{\Omega} h e_{1} d x
$$

Lemma 4.5. The projection $\left(\Pi_{2}+\Pi_{3}\right)\left(K_{\psi}\right)$ is dense in $\left(X_{2} \oplus X_{3}\right) \cap H_{0}^{1,2}(\Omega)$ with respect to the $H_{0}^{1,2}(\Omega)$ norm.

Proof. Consider $u \in K_{\psi}$; we have

$$
\left(\Pi_{2}+\Pi_{3}\right)\left(K_{\psi}\right) \supseteq\left(\Pi_{2}+\Pi_{3}\right)\left(K_{u}\right)=\left(\Pi_{2}+\Pi_{3}\right)(u)+\left(\Pi_{2}+\Pi_{3}\right)\left(K_{0}\right) .
$$

The projection $\left(\Pi_{2}+\Pi_{3}\right)\left(K_{0}\right)$ includes $\left(\Pi_{2}+\Pi_{3}\right)\left(C_{0}^{\infty}(\Omega)\right)$. In fact, if $w \in C_{0}^{\infty}(\Omega)$, then there exists $\tau \in \mathbb{R}$ such that $\Delta\left(w+\tau e_{1}\right)=\Delta w+\tau \Delta e_{1} \leq 0$, because $\Delta e_{1}=-\lambda_{1} e_{1}<0$ in Ω. So $w+\tau e_{1} \in K_{0}$ and $\left(\Pi_{2}+\Pi_{3}\right)\left(w+\tau e_{1}\right)=\left(\Pi_{2}+\Pi_{3}\right)(w) \in$ $\left(\Pi_{2}+\Pi_{3}\right)\left(K_{0}\right)$. The projection $\left(\Pi_{2}+\Pi_{3}\right)\left(C_{0}^{\infty}(\Omega)\right)$ is dense in $\left(X_{2} \oplus X_{3}\right) \cap H_{0}^{1,2}(\Omega)$, and so the lemma follows.

Lemma 4.6. Let $\lambda<\lambda_{2}$. Then the function $\sigma_{h, \psi}$ has the following properties:
(a) $\mathcal{D} \sigma_{h, \psi}=\left[\int_{\Omega} \psi e_{1} d x, \infty\right)$;
(b) $\sigma_{h, \psi}$ is bounded from below, nonincreasing, convex and lower semicontinuous;
(c) $\lim _{t \rightarrow \infty} \sigma_{h, \psi}(t)=\min f_{h} \circ\left(\Pi_{2}+\Pi_{3}\right)$;
(d) $\sigma_{h, \psi+\mu e_{1}}(t+\mu)=\sigma_{h, \psi}(t)$ for all $\mu \in \mathbb{R}$.

Proof. (a) If $u \in K_{\psi}$, then $u \geq \psi$ and so $\int_{\Omega} u e_{1} d x \geq \int_{\Omega} \psi e_{1} d x$ because $e_{1}>0$ on Ω. Furthermore, for every $t \geq 0, \psi+t e_{1} \in K_{\psi}$.
(b) $\sigma_{h, \psi}$ is bounded from below because $\min f_{h} \circ\left(\Pi_{2}+\Pi_{3}\right)>-\infty$ if $\lambda<\lambda_{2}$. It is nonincreasing because, since $\Delta e_{1}<0$, we have

$$
\left(\Pi_{2}+\Pi_{3}\right)\left(K_{\psi} \cap P_{t_{1}}\right) \subset\left(\Pi_{2}+\Pi_{3}\right)\left(K_{\psi} \cap P_{t_{2}}\right) \quad \text { if } t_{1}<t_{2} .
$$

$\sigma_{h, \psi}$ is convex because $f_{h} \circ\left(\Pi_{2}+\Pi_{3}\right)$ is convex.
$\sigma_{h, \psi}$ is continuous in the interior of the interval $\left[\int_{\Omega} \psi e_{1} d x, \infty\right)$, which is its domain, because it is convex; in order to prove also in the extremum the lower semicontinuity, it suffices to remark that $f_{h} \circ\left(\Pi_{2}+\Pi_{3}\right)$ is lower semicontinuous in the $L_{2}(\Omega)$ norm and, furthermore, that its sublevels are bounded in $H_{0}^{1,2}(\Omega)$ on every set like

$$
\left\{u \in L^{2}(\Omega) \mid t_{1} \leq \int_{\Omega} u e_{1} d x \leq t_{2}\right\}, \quad t_{1}, t_{2} \in \mathbb{R}
$$

because

$$
f_{h} \circ\left(\Pi_{2}+\Pi_{3}\right)(u) \geq \frac{\lambda_{2}-\lambda}{2} \int_{\Omega}\left|D\left(\Pi_{2}+\Pi_{3}\right)(u)\right|^{2} d x-\int_{\Omega} h\left(\Pi_{2}+\Pi_{3}\right)(u) d x
$$

(c) Let \bar{u} be the minimum point for f_{h} on $\left(X_{2} \oplus X_{3}\right) \cap H_{0}^{1,2}(\Omega)$. By the previous lemma there exists a sequence $\left(w_{n}\right)_{n}$ in K_{ψ} such that $\left(\Pi_{2}+\Pi_{3}\right) w_{n} \rightarrow \bar{u}$, which implies

$$
\lim _{n \rightarrow \infty} f_{h} \circ\left(\Pi_{2}+\Pi_{3}\right)\left(w_{n}\right)=\min f_{h} \circ\left(\Pi_{2}+\Pi_{3}\right) .
$$

Then we have

$$
\begin{aligned}
\min f_{h} \circ\left(\Pi_{2}+\Pi_{3}\right) & \leq \liminf _{t \rightarrow \infty} \sigma_{h, \psi}(t) \leq \lim _{n \rightarrow \infty} \sigma_{h, \psi}\left(\int_{\Omega} w_{n} e_{1} d x\right) \\
& \leq \min f_{h} \circ\left(\Pi_{2}+\Pi_{3}\right)
\end{aligned}
$$

which proves the statement.
(d) This follows because $f_{h} \circ\left(\Pi_{2}+\Pi_{3}\right)$ is invariant under translations along the e_{1} axis.

Theorem 4.7. Let $\psi \in H_{0}^{1,2}(\Omega)$ and $h \in L^{2}(\Omega)$; assume $\lambda_{1}<\lambda<\lambda_{2}$. If we write $\psi=\psi_{0}+\tau e_{1}$, with $\psi_{0} \in X_{2} \oplus X_{3}$, then there exists $\bar{\tau} \in \mathbb{R}(\bar{\tau}$ depending on ψ_{0} and h) such that:
(a) if $\tau>\bar{\tau}$, then problem $P_{\psi}(h)$ has no solution;
(b) if $\tau=\bar{\tau}$, then problem $P_{\psi}(h)$ has at least one solution;
(c) if $\tau<\bar{\tau}$, then problem $P_{\psi}(h)$ has at least two solutions.

Proof. By Lemma 4.2 it is sufficient to find $t \in \mathbb{R}$ such that $0 \in \partial^{-} S_{h, \psi}(t)$, that is, by Lemma $4.4, t \in \mathbb{R}$ such that

$$
\begin{equation*}
\left(\lambda-\lambda_{1}\right) t-\int_{\Omega} h e_{1} d x \in \partial \sigma_{h, \psi}(t) \tag{18}
\end{equation*}
$$

By the properties of $\sigma_{h, \psi}, \partial \sigma_{h, \psi}$ is an increasing maximal monotone operator (see [4]); furthermore, according to Lemma 4.6(a),

$$
\partial \sigma_{h, \psi}(t)=\emptyset \quad \text { if } \quad t<\int_{\Omega} \psi e_{1} d x=\tau
$$

moreover, $\lim _{t \rightarrow \infty} \partial \sigma_{h, \psi}(t)=0$ because $\sigma_{h, \psi}$ is convex, nonincreasing and bounded from below.

From Lemma 4.6(d) it follows that

$$
\partial \sigma_{h, \psi}(t)=\partial \sigma_{h, \psi_{0}+\tau e_{1}}(t)=\partial \sigma_{h, \psi_{0}}(t-\tau) ;
$$

hence (18) is equivalent to

$$
\left(\lambda-\lambda_{1}\right) \tau-\int_{\Omega} h e_{1} d x \in \partial \sigma_{h, \psi_{0}}(t-\tau)-\left(\lambda-\lambda_{1}\right)(t-\tau)
$$

that is, to

$$
\begin{equation*}
\left(\lambda-\lambda_{1}\right) \tau \in \partial \sigma_{h, \psi_{0}}(t-\tau)-\left(\lambda-\lambda_{1}\right)(t-\tau)+\int_{\Omega} h e_{1} d x \tag{19}
\end{equation*}
$$

Since

$$
\lim _{t \rightarrow \infty}\left(\partial \sigma_{h, \psi_{0}}(t-\tau)-\left(\lambda-\lambda_{1}\right)(t-\tau)+\int_{\Omega} h e_{1} d x\right)=-\infty
$$

we have

$$
M=\max \left\{\alpha-\left(\lambda-\lambda_{1}\right) t+\int_{\Omega} h e_{1} d x \mid t \in \mathbb{R}, \alpha \in \partial \sigma_{h, \psi_{0}}(t)\right\} \in \mathbb{R}
$$

Such a maximum depends only on ψ_{0} and h, and $M \leq \int_{\Omega} h e_{1} d x$ because $\partial \sigma_{h, \psi_{0}}(t-\tau) \subseteq(-\infty, 0]$ if $t \geq \tau$ and $\partial \sigma_{\psi_{0}}(t-\tau)=\emptyset$ if $t<\tau$.

Now, if we set $\bar{\tau}=M /\left(\lambda-\lambda_{1}\right)$, then the theorem follows from the equation (19) and from the shape of $\partial \sigma_{h, \psi_{0}}$.

Theorem 4.8. Let $\psi \in H_{0}^{1,2}(\Omega)$ and $h \in L^{2}(\Omega)$; assume $\lambda_{1}<\lambda<\lambda_{2}$. If we write $h=h_{0}+\tau e_{1}$, with $h_{0} \in X_{2} \oplus X_{3}$, then there exists $\bar{\tau} \in \mathbb{R}(\bar{\tau}$ depending on h_{0} and ψ) such that:
(a) if $\tau<\bar{\tau}$, then problem $P_{\psi}(h)$ has no solution;
(b) if $\tau=\bar{\tau}$, then problem $P_{\psi}(h)$ has at least one solution;
(c) if $\tau>\bar{\tau}$, then problem $P_{\psi}(h)$ has at least two solutions.

Proof. To prove this theorem we proceed as for the previous one, starting from (18); in this case

$$
\begin{equation*}
-\tau \in \partial \sigma_{h, \psi}(t)-\left(\lambda-\lambda_{1}\right) t \tag{20}
\end{equation*}
$$

The right hand side term does not depend on τ because σ depends only upon $\left(\Pi_{2}+\Pi_{3}\right)(h)=h_{0}$; so, if we set

$$
\bar{\tau}=-\max \left\{\alpha-\left(\lambda-\lambda_{1}\right) t \mid t \in \mathbb{R}, \alpha \in \partial \sigma_{h, \psi}(t)\right\}
$$

we obtain the desired conclusion.

5. The case $\lambda=\lambda_{2}$

In this section we want to extend to the case $\lambda=\lambda_{2}$ the results obtained in the preceding sections when $\lambda_{1}<\lambda<\lambda_{2}$.

In particular, we show that Theorems 4.7 and 4.8 still hold for $\lambda=\lambda_{2}$.
However, let us point out that for $\lambda=\lambda_{2}$ the functional f_{h} is not coercive on the hyperplanes P_{t} (see notations introduced in the previous sections) and so an essential role in order to apply the previous methods is played by the following lemma.

Lemma 5.1. Let $\lambda=\lambda_{2}$; if $t \in \mathbb{R}$ and the set $P_{t}=\left\{u \in L^{2}(\Omega) \mid \int_{\Omega} u e_{1} d x\right.$ $=t\}$ meets K_{ψ}, then the minimum of the functional f_{h} on $P_{t} \cap K_{\psi}$ exists.

Proof. It is sufficient to show that the sublevels of $f_{h}+I_{K_{\psi}}+I_{P_{t}}$ are bounded in $H_{0}^{1,2}(\Omega)$.

If we write

$$
f_{h}=f_{h} \circ \Pi_{1}+f_{h} \circ \Pi_{2}+f_{h} \circ \Pi_{3}
$$

we observe that $f_{h} \circ \Pi_{1}$ is constant on the hyperplanes P_{t} and that, if $\lambda=\lambda_{2}$, there exist positive constants c_{1}, c_{2} and c_{3}, depending on h, such that for every $u \in H_{0}^{1,2}(\Omega)$ we have

$$
f_{h} \circ \Pi_{3}(u) \geq-c_{1}+c_{2}\left\|\Pi_{3} u\right\|_{H_{0}^{1,2}}^{2}, \quad f_{h} \circ \Pi_{2}(u) \geq-c_{3}\left\|\Pi_{2} u\right\| .
$$

It follows that on the sublevels of $f_{h}+I_{P_{t}}$ we have

$$
\begin{equation*}
\left\|\Pi_{2} u\right\| \geq-c_{4}+c_{5}\left\|\Pi_{3} u\right\|_{H_{0}^{1,2}}^{2} \tag{21}
\end{equation*}
$$

where c_{4} and c_{5} are suitable positive constants.
It remains to prove that $\left\|\Pi_{2} u\right\|$ is bounded in the sublevels of $f_{h}+I_{K_{\psi}}+I_{P_{t}}$. If this is not so, then there exists a subsequence $\left(u_{n}\right)_{n}$ in a sublevel such that $\lim _{n \rightarrow \infty}\left\|\Pi_{2} u\right\|=\infty$; it follows from (21) that

$$
\lim _{n \rightarrow \infty}\left\|\Pi_{3} u_{n}\right\|_{H_{0}^{1,2}} /\left\|\Pi_{2} u_{n}\right\|=0
$$

If we fix $u_{0} \in K_{\psi} \cap P_{t}$ (a convex set) we have

$$
u_{0}+\frac{k}{\left\|\Pi_{2} u_{n}\right\|}\left(\Pi_{1} u_{n}+\Pi_{2} u_{n}+\Pi_{3} u_{n}-u_{0}\right) \in K_{\psi} \cap P_{t} \quad \text { for } 0 \leq k \leq\left\|\Pi_{2} u_{n}\right\|
$$

Hence, letting $n \rightarrow \infty$, we get (up to taking a subsequence), for every $k \geq 0$, $u_{0}+k v \in K_{\psi} \cap P_{t}$ for a function $v \in X_{2}$ such that $\|v\|=1$; this is impossible, because v is negative on a set of nonzero measure; this completes the proof.

The previous lemma allows us to define the functions $S_{h, \psi}$ and $\sigma_{h, \psi}$ (see Section 4) also when $\lambda=\lambda_{2}$; moreover, Lemma 4.2 can be stated also in the case $\lambda=\lambda_{2}$ with an analogous proof and so we can again look for lower critical points of the function $S_{h, \psi}$ in order to obtain solutions of problem $P_{\psi}(h)$.

It is clear that also for $\lambda=\lambda_{2}$ the functions $S_{h, \psi}$ and $\sigma_{h, \psi}$ have the same properties that we have seen in the previous section. In particular, Lemma 4.6 also holds for $\lambda=\lambda_{2}$, with the only difference that, since in this case $\inf _{P_{t}} f_{h} \circ\left(\Pi_{2}+\Pi_{3}\right)=-\infty$ if $\Pi_{2} h \neq 0$, we have $\lim _{t \rightarrow \infty} \sigma_{h, \psi}(t)=-\infty$. But the properties of $\sigma_{h, \psi}$ allow us to state Theorems 4.7 and 4.8 also in the case $\lambda=\lambda_{2}$. Their proofs are similar to the case $\lambda_{1}<\lambda<\lambda_{2}$; but, since for $\lambda=\lambda_{2}$ the functional $f_{h} \circ\left(\Pi_{2}+\Pi_{3}\right)$ is not strictly convex, it could happen that, for a lower critical point t for $S_{h, \psi}$, the functional $f_{h, \psi}+I_{P_{t}}$ could have more than one minimum point. So the set of solutions of $P_{\psi}(h)$ has a different structure, which will be described in Proposition 5.3; its proof needs the following lemma.

Lemma 5.2. Suppose $\lambda=\lambda_{2}$; if u and v solve problem $P_{\psi}(h)$ and we have $\int_{\Omega}(v-u) e_{1} d x=0$, then $v-u \in X_{2}$ and we have $\int_{\Omega} h(v-u) d x=0$.

Proof. First remark that u and v minimize $f_{h, \psi}$ on P_{t}, with $t=\int_{\Omega} u e_{1} d x=$ $\int_{\Omega} v e_{1} d x$, because they are solutions of problem $P_{\psi}(h)$ and $f_{h, \psi}+I_{P_{t}}$ is convex.

Consider the function $D:[0,1] \rightarrow \mathbb{R}$ defined by

$$
D(s)=f_{h, \psi}(u+s(v-u))
$$

(notice that $u+s(v-u) \in P_{t} \cap K_{\psi}$ for every $s \in[0,1]$). We have

$$
D^{\prime \prime}(s)=\int_{\Omega}|D(v-u)|^{2} d x-\lambda_{2} \int_{\Omega}(v-u)^{2} d x \geq 0
$$

because $\Pi_{1}(v-u)=0$. But, since u and v minimize $f_{h, \psi}+I_{P_{t}}$, we must have $D^{\prime \prime}(s)=0$, that is, $v-u \in X_{2}$. This implies

$$
D^{\prime}(s)=\int_{\Omega} h(v-u) d x
$$

which must be equal to zero because $D(0)=D(1)=S_{h, \psi}(t)$.

Proposition 5.3. Under the same assumptions of Theorem 4.7 (or, equivalently, of Theorem 4.8), with $\lambda=\lambda_{2}$, the set S of solutions of problem $P_{\psi}(h)$, if it is not empty, is the union of a point u_{0} and of a family $\left(S_{i}\right)_{i \in I}$ of pairwise disjoint convex sets: $S=\left\{u_{0}\right\} \cup \bigcup_{i \in I} S_{i}$; furthermore:
(a) $u_{0} \leq u_{i}$ for all $u_{i} \in S_{i}, i \in I$;
(b) $u_{i} \in S_{i} \Rightarrow S_{i}=\left\{u_{i}+v \mid v \in X_{2}, u_{i}+v \in K_{\psi}, \int_{\Omega} h v d x=0\right\}$ for all $i \in I$.

Proof. Since $P_{\psi}(h)$ has solution, $S_{h, \psi}$ has lower critical points (by Lemma 4.2). Moreover, since $P_{\psi}(h)$ has a minimal solution u_{0} (see Proposition 3.7), $t_{0}=\int_{\Omega} u_{0} e_{1} d x$ is the minimum lower critical point of $S_{h, \psi}$ (because $e_{1}>0$). Let t_{0} and $\left(t_{i}\right)_{i \in I}$ be the lower critical points of $S_{h, \psi}$ and set

$$
S_{i}=\left\{u \in P_{t_{i}} \cap K_{\psi} \mid u \text { is a minimum point for } f_{h, \psi}+I_{P_{t_{i}}}\right\} .
$$

We claim that $S_{0}=\left\{u_{0}\right\}$. Suppose, contrary to our claim, that there exists $\widetilde{u} \neq u_{0}, \widetilde{u} \in S_{0}$; then, by Theorem 2.6, there exists a solution $u \leq u_{0} \wedge \widetilde{u}$ and moreover, by Lemma 4.2, $\tau=\int_{\Omega} u e_{1} d x$ is a lower critical point for $S_{h, \psi}$. By the previous lemma, $\widetilde{u}-u_{0} \in X_{2}$, and so it cannot have constant sign. Therefore

$$
\tau=\int_{\Omega} u e_{1} \leq \int_{\Omega}\left(u_{0} \wedge \widetilde{u}\right) e_{1}<\int_{\Omega} u_{0} e_{1}=t_{0},
$$

which is a contradiction since t_{0} is the minimum lower critical point of $S_{h, \psi}$.
(b) follows easily from the previous lemma.

Now let us show in a simple example the situation of the previous proposition.
Example. Let $\lambda=\lambda_{2}, h=0$ and $\psi=-e_{1}$. Then one can easily verify that the minimal solution is $u_{0}=\psi=-e_{1}$ (because $u_{0}+\lambda_{2} \Delta^{-1} u_{0}>0$ in Ω) and the set S of solutions of problem $P_{-e_{1}}(0)$ is $S=\left\{u_{0}\right\} \cup S_{1}$ where

$$
S_{1}=\left\{u \in X_{2} \left\lvert\, u \geq-\frac{\lambda_{1}}{\lambda_{2}} e_{1}\right.\right\}
$$

For the proof it suffices to remark that

$$
S_{h, \psi}(t)= \begin{cases}\left(\lambda_{1}-\lambda_{2}\right) t^{2} / 2 & \text { if } t \geq-1 \\ \infty & \text { if } t<-1\end{cases}
$$

and so $t_{0}=-1$ and $t_{1}=0$ are the unique lower critical points of $S_{h, \psi}$.
6. The case $\lambda=\lambda_{1}$

If $\lambda=\lambda_{1}$, the solvability of problem $P_{\psi}(h)$ is described by the following theorem.

Theorem 6.1. Assume $\lambda=\lambda_{1}$; then the solutions of problem $P_{\psi}(h)$ are the minimum points of the functional $f_{h, \psi}$; furthermore:
(a) if $\int_{\Omega} h e_{1} d x<0$, then there is no solution for $P_{\psi}(h)$;
(b) if $\int_{\Omega} h e_{1} d x=0$, then u is a solution of $P_{\psi}(h)$ if and only if $u \in$ K_{ψ} and $\Delta u+\lambda_{1} u=h$, that is, the solution set of problem $P_{\psi}(h)$ is $K_{\psi} \cap\left(\Delta+\lambda_{1}\right)^{-1} h$ and so, if it is not empty, it is a half-line parallel to e_{1};
(c) if $\int_{\Omega} h e_{1} d x>0$, then there is a unique solution for $P_{\psi}(h)$.

Remark. Let us observe that, while in case (b) the existence of a solution depends upon the obstacle ψ, in cases (a) and (c) it is independent of it.

Example. Let $h=0$ and assume $\sup _{\Omega} \psi / e_{1}=\infty$. Then there is no solution to $P_{\psi}(h)$: indeed, by Theorem 6.1(b), a solution would be an eigenfunction for the first eigenvalue (which cannot belong to K_{ψ} under our assumption).

Proof of Theorem 6.1. If $\lambda=\lambda_{1}$, the functional $f_{h, \psi}$ is convex and then the solutions of $P_{\psi}(h)$, the lower critical points of $f_{h, \psi}$, are its minimum points.
(a) It is sufficient to take the function $v=u+e_{1}$ as a test function and to remark that $f_{h}^{\prime}(u)\left[e_{1}\right]<0$ for every $u \in H_{0}^{1,2}(\Omega)$.
(b) Let u be a solution for $P_{\psi}(h)$; for every $\gamma \in C_{0}^{\infty}(\Omega)$ let $t>0$ be small enough so that it is $\Delta\left(e_{1}+t \gamma\right)<0$ (observe that $\Delta e_{1}<0$). If we set $v=$ $u+t \gamma+e_{1}$, we obtain $t f_{h}^{\prime}(u)[\gamma] \geq 0$ and the assertion follows.
(c) Let us prove that the minimum of $f_{h, \psi}$ exists: we remark that

$$
\begin{gathered}
f_{h}=f_{h} \circ\left(\Pi_{2}+\Pi_{3}\right)+f_{h} \circ \Pi_{1} \\
f_{h} \circ \Pi_{1}(u)=\left(\int_{\Omega} h e_{1} d x\right)\left(\int_{\Omega} u e_{1} d x\right) \quad \forall u \in H_{0}^{1,2}(\Omega)
\end{gathered}
$$

it results, for suitable positive constants c_{1} and c_{2}, that

$$
f_{h} \circ\left(\Pi_{2}+\Pi_{3}\right)(u) \geq-c_{1}+c_{2}\left\|\left(\Pi_{2}+\Pi_{3}\right) u\right\|_{H_{0}^{1,2}} \quad \forall u \in H_{0}^{1,2}(\Omega)
$$

moreover, we have, obviously, $\int_{\Omega} u e_{1} d x \geq \int_{\Omega} \psi e_{1} d x$ for every $u \in K_{\psi}$; it follows that the sublevels of $f_{h, \psi}$ are bounded in $H_{0}^{1,2}(\Omega)$ and so there exists at least one minimum point, because $f_{h, \psi}$ is lower semicontinuous in $L^{2}(\Omega)$.

Let us prove that there exists a unique minimum point (note that $f_{h, \psi}$ is not strictly convex): let u and v be two minimum points, and define

$$
N(t)=f_{h, \psi}(u+t(v-u))
$$

then $N:[0,1] \rightarrow \mathbb{R}$ because $u, v \in K_{\psi}$ and K_{ψ} is convex.
We have

$$
N^{\prime \prime}(t)=\int_{\Omega}|D(v-u)|^{2} d x-\lambda_{1} \int_{\Omega}(v-u)^{2} d x
$$

which implies $\left(\Pi_{2}+\Pi_{3}\right)(v-u)=0$ because the function N cannot be strictly convex (u and v are minimum points); furthermore, $\left(\Pi_{2}+\Pi_{3}\right) u=\left(\Pi_{2}+\Pi_{3}\right) v$ implies

$$
N^{\prime}(t)=\int_{\Omega} h(v-u) d x=\int_{\Omega} h e_{1} d x \int_{\Omega}(v-u) e_{1} d x
$$

which must be zero because $N(0)=N(1)=\min f_{h, \psi}$. Therefore also $\Pi_{1} v=\Pi_{1} u$ and so u and v coincide.

Notice that Theorem 6.1(b) implies that, if $\lambda=\lambda_{1}$ and $\int_{\Omega} h e_{1} d x=0$, and if the minimum of $f_{h, \psi}$ exists, then $\min f_{h, \psi}=\min f_{h}$.

Let us point out that, however, in this case, $\inf f_{h, \psi}=\min f_{h}$ (even if $f_{h, \psi}$ has no minimum).

In fact, one can infer from Lemma 4.5 that

$$
\inf \left[f_{h} \circ\left(\Pi_{2}+\Pi_{3}\right)+I_{K_{\psi}}\right]=\inf f_{h} \circ\left(\Pi_{2}+\Pi_{3}\right)
$$

and so, in order to get $\inf f_{h, \psi}=\min f_{h}$, it suffices to remark that $f_{h}=f_{h} \circ$ $\left(\Pi_{2}+\Pi_{3}\right)$ if $\lambda=\lambda_{1}$ and $\int_{\Omega} h e_{1} d x=0$.

References

[1] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519-543.
[2] A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl. 93 (1972), 231-246.
[3] H. Berestycki and P. L. Lions, Some applications of the method of super and subsolutions, Bifurcation and Nonlinear Eigenvalue Problems, Lecture Notes in Math., vol. 782, Springer-Verlag, 1980, pp. 16-41.
[4] H. Brezis, Opérateurs maximaux monotones et semigroupes des contractions dans les espaces de Hilbert, North-Holland Math. Stud., vol. 5, Notas de Mat., vol. 50, NorthHolland, Amsterdam, 1973.
[5] H. Brezis et G. Stampacchia, Sur la régularité de la solution d'inéquations elliptiques, Bull. Soc. Math. France 96 (1968), 153-180.
[6] , Remarks on some fourth order variational inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci (4) 4 (1977), 363-371.
[7] G. Čobanov e D. Scolozzi, Equazioni di Von Karman rispetto ad un ostacolo. Esistenza e molteplicità di soluzioni, Dip. Mat. Pisa, 2.56 (556) (1990).
[8] G. Čobanov, A. Marino and D. Scolozzi, Multiplicity of eigenvalues for the Laplace operator with respect to an obstacle, and non-tangency conditions, Nonlinear Anal. 15 (1990), 199-215.
[9] E. De Giorgi, A. Marino e M. Tosques, Problemi di evoluzione in spazi metrici e curve di massima pendenza, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 68 (1980), 180-187.
[10] M. Degiovanni, A. Marino and C. Saccon, A pointwise gradient constraint for the Laplace operator. Eigenvalues and bifurcation, Nonlinear Analysis. A tribute in honour of G. Prodi, Quad. Scuola Norm. Sup. Pisa, 1991, pp. 189-203.
[11] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Pure Appl. Math., vol. 88, Academic Press, New York, 1980.
[12] J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20 (1967), 493-519.
[13] A. Marino, M. Degiovanni, F. Giannoni, D. Passaseo and C. Saccon, The calculus of variations and some semilinear variational inequalities of elliptic and parabolic type, Partial Differential Equations and the Calculus of Variations. Essays in Honour of E. De Giorgi (F. Colombini, A. Marino, L. Modica and S. Spagnolo, eds.), Birkhäuser, 1989, pp. 787-822.
[14] A. Marino and D. Passaseo, A jumping behaviour induced by an obstacle, Progress in Variational Methods in Hamiltonian Systems and Elliptic Equations (M. Girardi, M. Matzeu and F. Pacella, eds.), Pitman, 1992, pp. 127-143.
[15] A. Marino e D. Scolozzi, Punti inferiormente stazionari ed equazioni di evoluzione con vincoli unilaterali non convessi, Rend. Sem. Mat. Fis. Milano 52 (1982), 393-414.
[16] \qquad , Geodetiche con ostacolo, Boll. Un. Mat. Ital. B 2 (1983), 1-31.
[17] D. Passaseo, Molteplicità di soluzioni per disequazioni variazionali, Tesi di Dottorato, Pisa, 1988.
[18] , Molteplicità di soluzioni per certe disequazioni variazionali di tipo ellittico, Boll. Un. Mat. Ital. B 7 (1989), 639-667.
[19] , Molteplicità di soluzioni per disequazioni variazionali non lineari di tipo ellittico, Rend. Accad. Naz. Sci. XL Mem. Mat. 15 (1991), 19-56.
[20] M. Struwe, Variational Methods-Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, 1990.
[21] A. Szulkin, On a class of variational inequalities involving gradient operators, J. Math. Anal. Appl. 100 (1984), 486-499.
\qquad , On the solvability of a class of semilinear variational inequalities, Rend. Mat. 4 (1984), 121-137.
[23] , Positive solutions of variational inequalities: a degree-theoretic approach, J. Differential Equations 57 (1985), 90-111.

Riccardo Molle and Donato Passaseo
Dipartimento di Matematica
Università di Pisa
Via Buonarroti, 2
56100 Pisa, ITALY
E-mail address: molle@gauss.dm.unipi.it

[^0]: 1991 Mathematics Subject Classification. 35J20, 35R45, 45J10.
 Work supported by M.U.R.S.T. research funds.

