
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 7, 1996, 431–436

ON THE HOMOTOPY TYPE OF VMO

Alberto Abbondandolo

Dedicated to Louis Nirenberg on the occasion of his 70th birthday

Let X and Y be two compact smooth manifolds without boundary. Recently
Brezis and Nirenberg [1] have developed a topological degree theory for maps
belonging to the class V MO(X, Y ) (Vanishing Mean Oscillation). This class is
strictly larger than the class of continuous maps.

They have also proved a fact, which is closely related to the possibility of
defining the degree: the connected components of V MO(X, Y ) are the closures
of the connected components of C(X, Y ) (recall that the space of continuous
maps C(X, Y ) is dense in V MO(X, Y )). Therefore there is a bijection between
the 0-homotopy sets π0(C(X, Y )) and π0(V MO(X, Y )).

Here we generalize this fact proving that the inclusion map i : C(X, Y ) ↪→
V MO(X, Y ) is a homotopy equivalence: there exists a continuous map r :
V MO(X, Y ) 7→ C(X, Y ) such that r ◦ i is homotopic to the identity on C(X, Y )
and i ◦ r is homotopic to the identity on V MO(X, Y ).

A well known theorem of Whitney asserts that the inclusions Ck(X, Y ) ↪→
C(X, Y ) are homotopy equivalences for 1 ≤ k ≤ ∞ (see [2]). Therefore we can
add V MO to Whitney’s sequence of inclusions and state that

C∞(X, Y ) ↪→ Ck(X, Y ) ↪→ . . . ↪→ C1(X, Y ) ↪→ C(X, Y ) ↪→ V MO(X, Y )

is a sequence of homotopy equivalences.
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In particular, all the homotopy, homology and cohomology groups of V MO

are isomorphic, via the homomorphisms induced by inclusion, to the homotopy,
homology and cohomology groups of C∞(X, Y ).

1. Basic properties of VMO

In this section the definitions and some useful properties of the spaces BMO

and V MO are summarized. See [1] for full details and proofs.
Let X and Y be compact smooth manifolds without boundary. Put a smooth

Riemannian structure on X: it induces a volume form σ on X. Let r0 be the
injectivity radius of X and let Bε(x) be the geodesic ball in X of radius ε < r0

centered at x. For every u ∈ L1(X, RN ), set

uε(x) =
∫

Bε(x)

− u(y) dσ(y) =
1

|Bε(x)|

∫
Bε(x)

u(y) dσ(y)

where |B| is the σ-volume of B ⊂ X. Then uε is a continuous map.
BMO(X, RN ) is the space of maps u ∈ L1(X, RN ) such that

‖u‖BMO = sup
ε<r0
x∈X

∫
Bε(x)

− |u(y)− uε(x)| dσ(y) < ∞.

‖ · ‖BMO is a seminorm on BMO and it is a norm on the quotient space
BMO(X, RN )/RN , where RN denotes the subspace of constant maps.

BMO(X, RN )/RN is complete under this norm.
There exists a constant C, depending only on the Riemannian structure of

X, such that for every u ∈ BMO(X, RN ),

‖u‖L1 ≤ C‖u‖BMO +
∣∣∣∣ ∫

X

u(y) dσ(y)
∣∣∣∣.

This fact is proved in [1], Lemma A.1. It implies that BMO convergence is
stronger than L1 convergence (modulo constants). Therefore we can define a
complete norm on BMO(X, RN ), which induces on BMO(X, RN )/RN the norm
‖ · ‖BMO, by setting

|||u|||BMO = ‖u‖BMO + ‖u‖L1 .

V MO(X, RN ) is the closure of C(X, RN ) under the ||| · |||BMO norm. Assume
that F is a closed subset of RN and set

V MO(X, F ) =
{
u ∈ V MO(X, RN ) | u(x) ∈ F for σ-a.e. x ∈ X

}
.

Since L1 convergence implies a.e. convergence of a subsequence, V MO(X, F ) is
a closed subset of V MO(X, RN ). Therefore it is a complete metric space, with
the distance induced by the ||| · |||BMO norm.
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Now we assume that the compact manifold Y is smoothly embedded in RN .
The set V MO(X, Y ) and its topology do not depend on the Riemannian struc-
ture of X and on the embedding of Y (see [1], Section I.1).

Reamark 1.1. We point out a difference in notation from Brezis and Niren-
berg’s paper: they consider V MO with only the ‖·‖BMO seminorm and therefore
they identify maps which differ by a constant. When they want to consider V MO

as we do, they denote it by V MO ∩ L1. There is no difference if we deal with
vector valued maps, but the situation changes if we deal with manifold valued
maps. For example our homotopy result cannot be true in general when maps
which differ by a constant are identified, as Remark A.6 of [1] shows.

The inclusion map C(X, Y ) ↪→ V MO(X, Y ) is continuous (see [1], Re-
mark 2), and therefore the uniform topology is stronger than the V MO topology.
Moreover, the continuous maps are dense in V MO(X, Y ) (see [1], Corollary 4)
and therefore V MO(X, Y ) is separable.

For u ∈ BMO(X, RN ) and 0 < a < r0 set

Ma(u) = sup
ε≤a
x∈X

∫
Bε(x)

− |u(y)− uε(x)| dσ(y) ≤ ‖u‖BMO.

Then Ma is a seminorm on BMO(X, RN ), equivalent to ‖ · ‖BMO.
The following proposition summarizes some basic properties of BMO and

V MO:

Proposition 1.1. (a) There is a constant A, depending only on the Rie-
mannian structure of X, such that

‖u− uε‖BMO ≤ AMε(u) ∀ε < r0, ∀u ∈ BMO(X, RN ).

(b) If K is a compact subset of V MO(X, RN ) then

lim
ε→0

Mε(u) = 0 uniformly in u ∈ K.

(c) If F : RN → RM is uniformly continuous, then the map

V MO(X, RN ) 3 u 7→ F ◦ u ∈ V MO(X, RM )

is well defined and it is continuous.

All these properties are proved in [1]: see Lemma A.5 for (a), Lemma 4 for
(b) and the more general Lemma A.8 for (c).

2. The homotopy equivalence

Theorm 2.1. The inclusion map i : C(X, Y ) ↪→ V MO(X, Y ) is a homotopy
equivalence.
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Let U be a tubular neighbourhood of Y in RN . Assume that dist(y, Y ) < r

implies y ∈ U . Let P : U → Y be the projection on the nearest point of Y : we
can assume that P is Lipschitz continuous.

If u ∈ V MO(X, Y ), by Proposition 1.1(b) there exists a positive number
ε(u) < r0 such that Mε(u)(u) < r/2.

The function Mε(u) : V MO(X, Y ) → R is continuous and therefore we can
find a ball in V MO(X, Y ) centered at u of radius δ(u) such that

(2.1) Mε(u)(v) < r ∀v ∈ B(u, δ(u)) ⊂ V MO(X, Y ).

Being a metric space, V MO(X, Y ) is paracompact. Let {Uj | j ∈ J} be a locally
finite refinement of the open covering {B(u, δ(u)) | u ∈ V MO(X, Y )}, where J

is a set of indices. Let {ϕj | j ∈ J} be a partition of unity associated with
{Uj | j ∈ J}:

(i) ϕj : V MO(X, Y ) → [0, 1] is continuous;
(ii) the support of ϕj is a subset of Uj ;
(iii) all but a finite number of the ϕj vanish on some neighbourhood of each

u ∈ V MO(X, Y );
(iv)

∑
j∈J ϕj(u) = 1 for every u ∈ V MO(X, Y ).

Take a family of uj ∈ V MO(X, Y ), j ∈ J , such that Uj ⊂ B(uj , δ(uj)). Define
a function ε : V MO(X, Y ) → ]0,∞[ as

ε(u) =
∑
j∈J

ϕj(u)ε(uj).

Then ε is continuous because it is, locally, the sum of a finite number of contin-
uous functions.

If u ∈ V MO(X, Y ), let j1, . . . , jk be the indices for which ϕji
(u) > 0. We

can assume that ε(uj1) = maxi=1,...,k ε(uji
). Now ε(u) is a convex combination

of numbers which are not greater than ε(uj1), therefore ε(u) ≤ ε(uj1). Since
u ∈ supp ϕj1 ⊂ Uj1 ⊂ B(uj1 , δ(uj1)), by (2.1) we have

(2.2) Mε(u)(u) ≤ Mε(uj1 )(u) < r.

By (2.2), for every (u, t) ∈ V MO×]0, 1]

dist(utε(u)(x), Y ) ≤
∫

Btε(u)(x)

− |utε(u)(x)− u(y)| dσ(y) ≤ Mε(u)(u) < r ∀x ∈ X.

Therefore we can define a map H : V MO(X, Y )× [0, 1] → V MO(X, Y ) as

H(u, t) =

{
P ◦ utε(u) if t > 0,

u if t = 0.

In order to prove continuity properties of H, we need a lemma.
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Lemma 2.2. Assume that un, u ∈ V MO(X, Y ) and that sn, s ∈ ]0, r0[ for
n ∈ N. Then:

(1) if un → u in L1 and sn → s, then un
sn → us uniformly;

(2) if un → u in L1 and sn → 0, then un
sn
→ u in L1;

(3) if ‖un − u‖BMO → 0 and sn → 0, then ‖un
sn
− u‖BMO → 0;

(4) if un ∈ C(X, Y ), un → u uniformly and sn → 0, then un
sn → u

uniformly.

Proof. (1) If Ba is the smallest measure of a geodesic ball of radius a in
X, then

|un
sn

(x)− us(x)|
≤ |un

sn
(x)− usn

(x)|+ |usn
(x)− us(x)|

≤
∫

Bsn (x)

− |un(y)− u(y)| dσ(y)

+
∣∣∣∣ 1
|Bsn(x)|

∫
Bsn (x)

u(y) dσ(y)− 1
|Bs(x)|

∫
Bs(x)

u(y) dσ(y)
∣∣∣∣

≤ 1
Bsn

∫
X

|un(y)− u(y)| dσ(y) +
∣∣∣∣ 1
|Bsn

(x)|
− 1
|Bs(x)|

∣∣∣∣ ∫
X

|u(y)| dσ(y)

+
1

Bs

∫
Bsn (x)4Bs(x)

|u(y)| dσ(y)

where A4B = (A \B)∪ (B \A). Since |Bsn
(x)| → |Bs(x)| uniformly in x ∈ X,

the above inequalities imply assertion (1).
(2) It is a standard fact that usn

→ u in L1. Moreover, there exists a constant
D such that

‖vs‖L1 ≤ D‖v‖L1 ∀v ∈ L1(M, RN ), ∀s ∈ ]0, r0[ .

Therefore the inequalities

‖un
sn
− u‖L1 ≤ ‖un

sn
− usn

‖L1 + ‖usn
− u‖L1 ≤ D‖un − u‖L1 + ‖usn

− u‖L1

imply assertion (2).
(3) By Proposition 1.1(a)

‖un
sn
−u‖BMO ≤ ‖un

sn
−un‖BMO +‖un−u‖BMO ≤ AMsn

(un)+‖un−u‖BMO

and assertion (3) follows from Proposition 1.1(b).
(4) For every x ∈ X,

|un
sn

(x)− u(x)| ≤
∫

Bsn (x)

− |un(y)− u(x)| dσ(y)

≤ ‖un − u‖∞ +
∫

Bsn (x)

− |u(y)− u(x)| dx

and the uniform continuity of u implies assertion (4).
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We are now ready to prove Theorem 2.1. Define r : V MO(X, Y ) → C(X, Y )
as r(u) = H(u, 1).

Since the V MO topology is stronger than the L1 topology, and since ε is
continuous on V MO(X, Y ), by Lemma 2.2(1) the map V MO(X, Y ) 3 u 7→
uε(u) ∈ C(X, U) is continuous. Since composition with the Lipschitz continuous
map P is continuous from C(X, U) to C(X, Y ), r is continuous.

Since the V MO topology is weaker than the uniform topology, but stronger
than the L1 topology, and since ε is continuous on V MO(X, Y ), by Lemma
2.2(1) the map V MO × ]0, 1] 3 (u, t) 7→ utε(u) ∈ V MO(X, RN ) is continuous.
By Proposition 1.1(c), the map H : V MO(X, Y ) × ]0, 1] → V MO(X, Y ) is
continuous.

The continuity of H on V MO(X, Y ) × [0, 1] follows from Lemma 2.2(2)
and (3), from the continuity of ε and from Proposition 1.1(c).

Therefore H : V MO(X, Y ) × [0, 1] → V MO(X, Y ) is a homotopy between
i ◦ r and the identity on V MO(X, Y ).

Let H be the restriction of H to C(X, Y )× [0, 1]; H is a map from C(X, Y )×
[0, 1] to C(X, Y ). Since the uniform topology is stronger than the V MO topol-
ogy, ε is continuous also on C(X, Y ). The continuity of H on C(X, Y ) × ]0, 1]
follows from this fact, from Lemma 2.2(1) and from the fact that composition
with the Lipschitz continuous map P is continuous from C(X, U) to C(X, Y ).

The continuity of H on C(X, Y ) × [0, 1] follows from the above facts and
from Lemma 2.2(4).

Therefore H : C(X, Y ) × [0, 1] → C(X, Y ) is a homotopy between r ◦ i and
the identity on C(X, Y ).
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