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1. Introduction

In this paper we will use a new partial differential equation method to find
a new family of quasiperiodic solutions of fixed frequencies for the forced second
type nondissipative Duffing equation which can be written as

(1) ü + au− bu3 = f(t),

where a > 0, b > 0, and f(t) is assumed to be a quasiperiodic function with given
prescribed rationally independent frequencies ω1, . . . , ωm. The solutions found
will have frequencies proportional to ω1, . . . , ωm. First we solve the equation

(2) ü + β2u− bβ2

a
u3 =

β2

a
f(t),

where a and b are arbitrary positive numbers and β satisfies the condition 0 <

β < 2/I, where I is the maximum length of a segment with direction (ω1, . . . , ωm)
cut out by the boundary of the torus Tm = [−π, π]m.

We derive a nonlinear partial differential equation for the generating function
U(x) of the tentative smooth solutions u(t) for (2):

(3)
m∑

i,j=1

ωiωj
∂2U

∂xi∂xj
+ β2U − bβ2

a
U3 =

β2

a
F (x),
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where f(t) = F (ω1t, . . . , ωmt),−∞ < t < ∞, both F (x) and U(x) are defined on
the torus Tm and are periodic in each variable xi, i = 1, . . . ,m, with period 2π.

Many authors put very restrictive conditions on the frequencies ω1, . . . , ωm,

namely infinitely many Diophantine conditions: for all integers j1, . . . , jm satis-
fying

∑m
µ=1 |jµ| > 0, ∣∣∣∣ m∑

µ=1

jµωµ + j0

∣∣∣∣ ≥ C−1
0

( m∑
µ=1

|jµ|
)−τ

,

where j0 = 0, 1, 2, C0, τ are fixed positive numbers. In this paper, we remove
the Diophantine conditions on these frequencies. In order to do this we need
an additional condition. Suppose f(t) is a quasiperiodic function and F (x) is
the generating function of f(t), i.e. f(t) = F (ω1t, . . . , ωmt). We will assume
f(0) = F (x0), where x0 = (x1

0, . . . , x
m
0 ) can be anywhere on the torus Tm except

on a set of measure zero; thus equation (1) will have a smooth solution u(t) =
U(x1

0+ω1t, . . . , x
m
0 +ωmt) on the trajectory {x0+ωt = (x1

0+ω1t, . . . , x
m
0 +ωmt) :

−∞ < t < ∞} on the torus for almost every x0 ∈ Tm.
In our paper we construct a Hilbert space P1,2(Tm) of functions U defined

on Tm, periodic in each variable with period 2π and such that

‖U‖2 =
∫

T m

(
U2 +

( m∑
i=1

ωi
∂U

∂xi

)2)
< ∞.

We use P 0
1,2(T

m) to denote the closed subspace of P1,2(Tm) which is the
closure of C∞0 (Tm) under the norm ‖ · ‖.

By minimizing the functional F2(U) defined by

F2(U) =
∫

T m

[( ∑m
i=1 ωi

∂U
∂xi

)2 − β2U2

2
+

bβ2

4a
U4 +

β2

a
F (x)U

]
dx

on M , where
M = {U ∈ P 0

1,2(T
m) : U ∈ L4(Tm)},

we get a family of weak solutions U(x) for equation (3).
Here a weak solution of (3) is defined as follows. If U ∈ P 0

1,2(T
m) satisfies∫

T m

[( m∑
i=1

ωi
∂U

∂xi

)( m∑
i=1

ωi
∂V

∂xi

)
+ β2UV − bβ2

a
U3V − bβ2

a
FV

]
dx = 0

for all V ∈ C∞0 (Tm), we call U(x) a weak solution of equation (3) in P 0
1,2(T

m).
In our paper we first prove the following theorem:

Theorem 1. There exists a weak solution for the following partial differen-
tial equation which corresponds to the second type Duffing equation:

(4)
m∑

i,j=1

ωiωj
∂2U

∂xi∂xj
+ β2U − bβ2

a
U3 =

β2

a
F (x)
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in the space P 0
1,2, provided that F ∈ L2(Tm). Here a and b are arbitrary positive

real numbers and β is any number satisfying 0 < β < 2/I, where I is the
maximum length of a segment with direction (ω1, . . . , ωm) bounded by the sides
of the torus.

In the second part of this paper we will prove our main theorem:

Theorem 2. For any a > 0, b > 0, and each β as in Theorem 1, the second
type Duffing equation

ü + β2u− bβ2

a
u3 =

β2

a
f(t)

has a smooth solution u(t) with prescribed rationally independent frequencies
ω1, . . . , ωm on the trajectory {x0+ωt = (x1

0+ω1t, . . . , x
m
0 +ωmt) : −∞ < t < ∞}

on the torus for almost every x0 = (x1
0, . . . , x

m
0 ) ∈ Tm provided F ∈ C1(Tm)

and f(0) = F (x0).

Thus finally we will have

Theorem 3. For any a, b > 0, and each β as in Theorem 1, the general
second type Duffing equation (1) has a family of smooth solutions u(t) with
prescribed rationally independent frequencies

√
a

β ω1, . . . ,
√

a
β ωm on the trajectory

{x0 + ωt = (x1
0 + ω1t, . . . , x

m
0 + ωmt) : −∞ < t < ∞} on the torus for almost

every x0 = (x1
0, . . . , x

m
0 ) ∈ Tm provided F ∈ C1(Tm) and f(0) = F (x0).

Proof. (1) can be solved in two steps. We first solve

ü + β2u− bβ2

a
u3 =

β2

a
f

for all β as in the statement. Then by scaling t into
√

a
β t, we get a solution u of

ü + au− bu3 = f

with frequencies
(√a

β ω1, . . . ,
√

a
β ωm

)
.

Previous work on quasiperiodic solutions of nondissipative Duffing equations
includes the 1965 paper of Moser. He was the first to use the K.A.M. theory to
find quasiperiodic solutions of the forced Duffing equations using Diophantine
restrictions. Thus his solutions are not valid for all parameters a, b. Moser’s
solution is of small amplitude and Moser in fact requires a, b to satisfy certain
conditions.

On the other hand, Moser’s quasiperiodic solutions are not shown to be the
minimizers of any functionals, so they differ substantially from our solutions.
Moser’s solutions can be described for K.A.M. approximations. We will describe
the relationships between the solutions obtained here and his solutions in another
paper.
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2. An analogue of the Poincaré Inequality for the space P 0
1,2

In Section 1 we defined the space P 0
1,2(T

m) as the completion of C∞0 (Tm)
under the norm

‖U‖2P1,2
=

∫
T m

(
U2 +

( m∑
i=1

ωi
∂U

∂xi

)2)
< ∞.

In this section first we prove the following lemma:

Lemma 1 (An analogue of the Poincaré Inequality for P 0
1,2(T

m)). For every
U ∈ P 0

1,2, ∫
T m

( m∑
i=1

ωi
∂U

∂xi

)2

≥ α2

∫
T m

U2,

where α = 2/I, and I is the maximum length of a segment with direction
(ω1, . . . , ωm) bounded by the sides of the torus.

Proof. If we make an orthogonal transformation of the coordinate sys-
tem from {x1, . . . , xm} to {t, y2, . . . , ym} such that the direction of the t axis
is (ω1, . . . , ωm), we can denote each point on the torus as (t, y′), where y′ =
(y2, . . . , ym). Let A be the projection of Tm to the hyperplane t = 0. Then for
each U ∈ P 0

1,2,∫
T m

( m∑
i=1

ωi
∂U

∂xi

)2

dx =
∫

A

∫
ly′

(
dU(t, y′)

dt

)2

dt dy′,

where ly′ denotes the line segment with direction (ω1, . . . , ωm) passing through
y′ ∈ A. (For simplicity we will use l to denote ly′ later on.) We claim that for
almost every y′ ∈ A, U(t, y′) belongs to W 0

1,2(l). In fact, since U ∈ P 0
1,2, there is

a sequence Φn such that {Φn} ⊂ C∞0 (Tm) and

lim
n→∞

∫
T m

[ m∑
i=1

ωi
∂

∂xi
(U − Φn)

]2

dx = 0.

That is,

lim
n→∞

∫
A

∫
l

(
dU

dt
− dΦn

dt

)2

dtdy′ = 0.

Hence
∫

l

(
dU
dt −

dΦn

dt

)2
dt converges to zero in measure on A. Therefore we can

find a subsequence of
{ ∫

l

(
dU
dt −

dΦn

dt

)2
dt

}
, still denoted by

{ ∫
l

(
dU
dt −

dΦn

dt

)2
dt

}
,

which converges to zero almost everywhere on A. That means that for almost
every y′ ∈ A,

lim
n→∞

∫
l

(
dU

dt
− dΦn

dt

)2

dt = 0.

Therefore the claim is true.
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Since for each φ ∈ C∞0 (l) and t ∈ l,

φ2 =
∫ t

t0

φφ̇

2
,

where we suppose φ(t0) = 0, we finally get

‖φ̇‖L2(l) ≥
2
|l|
‖φ‖L2(l).

This inequality holds for every function in W 0
1,2(l), therefore for almost every

y′ ∈ A, ∥∥∥∥dU(t, y′)
dt

∥∥∥∥
L2(l)

≥ 2
|l|
‖U(t, y′)‖L2(l).

If we denote by I the maximum length of the line segments l on the torus which
have the direction (ω1, . . . , ωm), then∥∥∥∥dU(t, y′)

dt

∥∥∥∥
L2(l)

≥ 2
I
‖U(t, y′)‖L2(l).

Squaring and integrating on A, we finally get∫
T m

( m∑
i=1

ωi
∂U

∂xi

)2

≥ 4
I2

∫
T m

U2.

By setting α2 = 4/I2 we have finished the proof of the lemma.

Lemma 2. For 0 < β < α, where α is as in Lemma 1,

‖U‖2 =
∫

T m

( m∑
i=1

ωi
∂U

∂xi

)2

dx− β2

∫
T m

U2 dx

is an equivalent norm in P 0
1,2(T

m).

Proof. First we show that ‖·‖ is a norm in P 0
1,2. In fact, for any U, V ∈ P 0

1,2,

(U, V ) =
∫

T m

( m∑
i=1

ωi
∂U

∂xi

)( m∑
i=1

ωi
∂V

∂xi

)
dx− β2

∫
T m

UV dx

is an inner product in P 0
1,2. It is obvious that the product (·, ·) has the following

properties: (i) symmetry, (ii) linearity in the first variable, (iii) (U,U) > 0 when
U 6= 0. We only need to prove that if (U,U) = 0, then U = 0 a.e. on the torus.
By Lemma 1,

(U,U) =
∫

T m

( m∑
i=1

ωi
∂U

∂xi

)2

dx− β2

∫
T m

U2 dx ≥ (α2 − β2)
∫

T m

U2 dx,

so that (U,U) = 0 will force that U = 0 a.e. on the torus. Therefore ‖U‖2 =
(U,U) is a norm on P 0

1,2.
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It is obvious that

‖U‖2P1,2
=

∫
T m

[
U2 +

( m∑
i=1

ωi
∂U

∂xi

)2]
dx

≥
∫

T m

( m∑
i=1

ωi
∂U

∂xi

)2

dx− β2

∫
T m

U2 dx = ‖U‖2.

On other hand, let r satisfy β2/α2 < r < 1. Then∫
T m

( m∑
i=1

ωi
∂U

∂xi

)2

dx− β2

∫
T m

U2 dx

≥ (1− r)
∫

T m

( m∑
i=1

ωi
∂U

∂xi

)2

dx + r

∫
T m

( m∑
i=1

ωi
∂U

∂xi

)2

dx− β2

∫
T m

U2 dx

≥ (1− r)
∫

T m

( m∑
i=1

ωi
∂U

∂xi

)2

dx + (α2r − β2)
∫

T m

U2 dx.

Therefore
‖U‖2 ≥ min{1− r, α2r − β2}‖U‖2P1,2

.

So we conclude that the norms ‖ · ‖ and ‖ · ‖P1,2 are equivalent.

3. A weak solution

In this section we will get a weak solution of the partial differential equation

(5)
m∑

i,j=1

ωiωj
∂2U

∂xi∂xj
+ β2U − bβ2

a
U3 =

β2

a
F (x).

This equation corresponds to the second Duffing equation

(6) ü + β2u− bβ2

a
u3 =

β2

a
f(t),

where 0 < β < 2/I, I = max{|l| : l is the segment with direction (ω1, . . . , ωm)
and |l| denotes the length of the segment l}. We have u(t) = U(x0 + ωt) =
U(x1

0 + ω1t, . . . , x
m
0 + ωmt), f(t) = F (x0 + ωt) = F (x1

0 + ω1t, . . . , x
m
0 + ωmt) for

almost every x0 = (x1
0, . . . , x

m
0 ) ∈ Tm, also {x0 +ωt = (x1

0 +ω1t, . . . , x
m
0 +ωmt) :

−∞ < t < ∞} is the trajectory on the torus.
We use the minimization method to get a minimum point of F2(U) in M ⊂

P 0
1,2, where

M = {U ∈ P 0
1,2(T

m) : U ∈ L4(Tm)}
and

F2(U) =
∫

T m

[( ∑m
i=1 ωi

∂U
∂xi

)2
β2U2

2
+

bβ2

4a
U4 +

β2

a
FU

]
dx.

Our theorem is the following:
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Theorem 4. There is a point U0 ∈ M ⊂ P 0
1,2 such that

F2(U0) = inf
U∈M

F2(U)

provided F ∈ L2(Tm).

Proof. We divide the proof into 3 steps:

(i) F2(U) is coercive and bounded below.
(ii) The minimizing sequence has a weakly convergent subsequence.
(iii) The weak limit of this subsequence is a minimum point of F2(U) in M .

In the proof we will take the norm of the space as

‖U‖2 =
∫

T m

[( m∑
i=1

ωi
∂U

∂xi

)2

− β2U2

]
dx.

(i) To prove that F2(U) is coercive and bounded below, it is sufficient to
prove that there is a constant c such that

F2(U) ≥ 1
2
‖U‖2 +

bβ2

4a

∫
T m

(
U2 − 1

b

)2

− c.

In fact, since ∫
T m

FU ≤ ‖U‖L2‖F‖L2 ≤
∫

F 2 +
∫

U2

2
it follows that

F2(U) =
∫

T m

[( ∑m
i=1 ωi

∂U
∂xi

)2 − β2U2

2
+

bβ2

a

(
U4

4
+

FU

b

)]
dx

≥ 1
2
‖U‖2 +

bβ2

4a

∫
T m

[
U4 − 2

b
(U2 + F 2)

]
dx

=
1
2
‖U‖2 +

bβ2

4a

∫
T m

(
U2 − 1

b

)2

+ c,

where c = − β2

4ab (2π)m− β2

2a

∫
T m F 2 dx. Thus F2(U) is coercive and bounded from

below.
(ii) Let {Un} be a minimizing sequence in M . Also, we assume F2(Un) ≤ C,

where C is some positive constant. Since F2(U) is coercive and bounded below,
{Un} is uniformly bounded in P1,2 norm, i.e. there is a positive constant K > 0
such that

‖Un‖P1,2 ≤ K.

Therefore if ‖ · ‖ denotes the equivalent norm as before, we have

1
4

∫
T m

U4
n ≤

1
2
‖Un‖2 +

1
4

∫
T m

U4
n dx +

∫
T m

FUn dx + ‖U‖P1,2‖F‖L2

≤ C + K‖F‖L2 .
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If we write B = 4(C + K‖F‖L2), then∫
T m

U4
n dx ≤ B.

Since {Un} is a bounded sequence in P 0
1,2(T

m), {Un} has a weakly con-
vergent subsequence {U ′n} with weak limit U in P 0

1,2(T
m); we still denote this

subsequence as {Un}. (Since the whole space P 0
1,2 is weakly closed, U ∈ P 0

1,2.)
Now we prove that U belongs to L4(Tm).

By the Banach–Saks Theorem,∥∥∥∥∑n
i=1 Ui

n
− U

∥∥∥∥
P1,2

→ 0,

hence ∥∥∥∥∑n
i=1 Ui

n
− U

∥∥∥∥
L2

→ 0.

There is a subsequence of
∑n

i=1 Ui/n that we still denote by
∑n

i=1 Ui/n such
that

∑n
i=1 Ui/n → 0 a.e. on Tm. By Fatou’s Lemma we find that∫

T m

U4 dx ≤ lim
n→∞

∫
T m

(∑n
i=1 Ui

n

)4

dx ≤ lim
n→∞

∑n
i=1

∫
T m U4

i dx

n
≤ B.

Therefore U ∈ L4 and U ∈ M.

(iii) We can rewrite the functional F2(U) as

F2(U) = 1
2‖U‖

2 + F ∗(U),

where ‖U‖ is the equivalent norm in P 0
1,2, and

F ∗(U) =
∫

T m

[
bβ2

4a
U4 +

β2

a
FU

]
dx.

Since F ∗(U) is a convex functional on M which is weakly lower semicontinuous,
the norm ‖ · ‖ is also weakly lower semicontinuous. Therefore

C = inf
M

F2(U) = lim
n→∞

F2(Un) ≥ lim
n→∞

[
1
2‖Un‖2 + F ∗(Un)

]
≥ 1

2 lim
n→∞

‖Un‖2 + lim
n→∞

F ∗(Un) ≥ 1
2‖U‖

2 + F ∗(U) = F2(U).

That means U is a minimum point of F2(U) on M.

Thus we have the following theorem:

Theorem 5. If F ∈ L2(Tm), then the equation

(8)
m∑

i,j=1

ωiωj
∂2U

∂xi∂xj
+ β2U − bβ2

a
U3 =

β2

a
F (x)

has a weak solution U in P 0
1,2 for 0 < β < 2/I, where I is as in Lemma 1.
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Proof. For each Φ ∈ C∞0 (Tm) ⊂ M , we have

dF2

dt
(U + tΦ)

∣∣∣∣
t=0

= 0.

That means that∫
T m

[( m∑
i=1

ωi
∂U

∂xi

)( m∑
i=1

ωi
∂Φ
∂xi

)
+ UΦ− U3Φ− FΦ

]
= 0

for all Φ ∈ C∞0 (Tm). We have finished the proof.

4. The regularity of u(x0 + ωt)

In this section we first prove the smoothness of u(t) on the closed segment
ly′ for almost every y′ ∈ A, and then on the whole trajectory {x0 + ωt : −∞ <

t < ∞} for almost every x0 ∈ Tm. Here A is as in Section 2, i.e. we make an
orthogonal change of variables from {x1, . . . , xm} to {t, y2, . . . , ym}, and we let
A be the projection of the torus Tm to the (m − 1)-dimensional space t = 0.
Now we prove the following lemma:

Lemma 3. For almost every y′ ∈ A, u(t) = U(t, y′) satisfies the equation

(9) ü + β2u− bβ2

a
u3 =

β2

a
f(t)

on the closed interval ly′ , where ly′ denotes the segment with direction (ω1, . . .

. . . , ωm) bounded by the sides of the torus which passes through the point y′ in
A, provided F ∈ C1(Tm).

Proof. Suppose U(x) is the weak solution of Theorem 5 and U(x) satisfies
the equation

(10)
m∑

i,j=1

ωiωj
∂2U

∂xi∂xj
+ β2U − bβ2

a
U3 =

β2

a
F (x)

almost everywhere on the torus. Then for almost every y′ in A equation (10)
holds almost everywhere on ly′ . In fact, if not, (10) cannot hold almost every-
where on Tm. Also from the proof of Lemma 1 we know that for almost every
y′ ∈ A, U(t, y′) ∈ W 0

1,2(ly′). Set

P = {ly′ : y′ ∈ A, U(t, y′) ∈ W 0
1,2(ly′), U(t, y′) satisfies (10) a.e. on ly′}.

Suppose ly′ ∈ P for a fixed y′ ∈ A. Then u(t) = U(t, y′) ∈ W 0
1,2(ly′). Therefore

u(t) ∈ C(ly′), and we can assume that there is a positive constant e such that
|u(t)| ≤ e on ly′ for this fixed y′ ∈ A.
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Since F ∈ C1(Tm) we can assume that |F (x)| ≤ d on the torus for some
constant d > 0. By (10) we see that( ∫

ly′

ü2 dt

)1/2

≤ β2

[ ∫
ly′

(
− u +

b

a
u3 +

1
a
f(t)

)2]1/2

≤ β2

[ ∫
ly′

(
e +

b

a
e3 +

1
a
d

)2]1/2

< ∞.

Therefore u(t) ∈ W2,2(ly′). By the Sobolev theory the space W2,2(ly′) is com-
pactly embedded in C1(ly′), and so u̇ is bounded on ly′ . Thus by the condition
that F ∈ C1(Tm) we find that

∫
ly′

[
−β2u̇ + 3bβ2

a u̇u2 + β2

a ḟ
]2 is bounded since

the integrand is. Therefore the weak derivative d3u/dt3 exists and[ ∫
ly′

(
d3u

dt3

)2]1/2

≤
( ∫

ly′

[
− β2u̇ +

3bβ2

a
u̇u2 +

β2

a
ḟ

]2)1/2

< ∞.

Then u ∈ C2(ly′). We have thus finished the proof of Lemma 3.

Proof of Theorem 2. Let E be the set of all x ∈ Tm such that there
is at least one segment bounded by the sides of the torus that does not belong
to P on {x + ωt : −∞ < t < ∞}, where P is as defined in Lemma 2. If E

is a set of non-zero m-dimensional measure, the projection of E to A will have
non-zero (m − 1)-dimensional measure. Let G denote this projection. There is
one and only one trajectory {y′+ωt : −∞ < t < ∞} passing through each point
y′ ∈ G ⊂ A. Partition Rm into countably many cubes obtained by periodically
translating the cube of length 2π, centered at the origin. Denote these cubes by
{Ti}∞i=1 and let Ai be the image in Ti of A under this periodic translating for
each i. Also let Ei be the set of all points y′ of Ai such that ly′ does not belong
to Pi, where

Pi = {ly′ : y′ ∈ Ai, U(t, y′) ∈ W 0
1,2(ly′), U(t, y′) satisfies (10) a.e. on ly′}.

The projection of
⋃∞

i=1 Ei to A is the set G. By assumption, µ(G) 6= 0, therefore
there is at least one i such that Ei has non-zero (m − 1)-measure. This means
that there is a subset G′ of G with non-zero measure such that if y′ ∈ G′, then
ly′ does not belong to P, which is a contradiction to Lemma 3. We have finished
the proof of Theorem 2.
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