ON A QUASILINEAR PROBLEM AT STRONG RESONANCE

$$
\text { Antonio Ambrosetti }^{1} \text { - David Arcoya }{ }^{2}
$$

Dedicated to Louis Nirenberg on the occasion of his 70th birthday

1. Introduction

This paper deals with a class of nonlinear problems at strong resonance involving the p-Laplace operator. Let Ω be a bounded domain in \mathbb{R}^{N} with smooth boundary $\partial \Omega$ and let $f(x, u)$ be a bounded continuous function. We are concerned with the quasilinear problem at resonance

$$
\left\{\begin{align*}
-\Delta_{p} u & =\lambda_{1}|u|^{p-2} u+f(x, u), & & x \in \Omega, \tag{1}\\
u(x) & =0, & & x \in \partial \Omega,
\end{align*}\right.
$$

where $p>1, \Delta_{p} u \equiv \operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ denotes the p-Laplace operator and $\lambda_{1}>0$ is the "first eigenvalue" of $-\Delta_{p}$ with zero Dirichlet boundary conditions (see [3]).

When $p=2$ problem (1) becomes the semilinear problem

$$
\begin{cases}-\Delta u=\lambda_{1} u+f(x, u), & x \in \Omega \tag{2}\\ u(x)=0, & x \in \partial \Omega\end{cases}
$$

(λ_{1} denotes now the principal eigenvalue of $-\Delta$ with zero Dirichlet boundary conditions) and has been extensively studied in the past years, after the work [11]. For example, if $f(x, s)=b(s)-h(x)$ and $b(s) \rightarrow b^{+}$, resp. b^{-}, as $s \rightarrow \infty$,

1991 Mathematics Subject Classification. 35J50, 35G30.
${ }^{1}$ Supported by M.U.R.S.T. National Project "Problemi non lineari ... " and E.E.C. contract n. ERBCHRXCT940494.
${ }^{2}$ Supported by Scuola Normale of Pisa. The second author would like to thank Scuola Normale for facilities and the kind hospitality.
resp. $-\infty$, a solution of (2) exists whenever h satisfies the Landesman-Lazer condition

$$
b^{-} \int_{\Omega} \phi_{1}(x) d x<\int_{\Omega} h(x) \phi_{1}(x) d x<b^{+} \int_{\Omega} \phi_{1}(x) d x
$$

where $\phi_{1}>0$ denotes the (normalized) eigenfunction associated with λ_{1}.
This result has been extended to the quasilinear case in [7] (see also [4, 9] for some former partial results), proving that the Landesman-Lazer condition suffices for the existence of solutions of (1).

Problem (1), or (2), is said to be at strong resonance when $b^{+}=b^{-}=0$ or, more generally, when $f(x, s) \rightarrow 0$ as $|s| \rightarrow \infty$. Semilinear problems at strong resonance like (2) have also been studied (see for example [5, 6, 8]). On the contrary, nothing is known for quasilinear problems at strong resonance and the purpose of this paper is to study a class of such problems. Roughly, we consider an f such that

$$
f(x, 0)=0 \quad \text { and } \quad \lim _{s \rightarrow \infty} f(x, s)=0, \quad \text { uniformly in } x \in \Omega
$$

and show that (1) has a positive solution provided f changes sign in a suitable way. See Section 2 for precise statements. We also prove a multiplicity result, see Theorem 2.4.

Unlike the previous works on this topic, we employ here a new approach, based on global bifurcation. Using the techniques of [2] (see also [1]) we show that there is a continuum $S \subset \mathbb{R} \times C(\bar{\Omega})$ of positive solutions (λ, u) of

$$
\left\{\begin{align*}
-\Delta_{p} u & =\lambda|u|^{p-2} u+f(x, u), & & x \in \Omega \\
u(x) & =0, & & x \in \partial \Omega
\end{align*}\right.
$$

which branches off from the trivial solution and blows up at infinity as $\lambda \rightarrow \lambda_{1}$. By suitable estimates we prove that S meets the set $\left\{\lambda_{1}\right\} \times C(\bar{\Omega})$, yelding a positive solution of (1).

2. Statement of the results

In the sequel we shall always assume that $f \in C\left(\Omega \times \mathbb{R}^{+}\right)$is such that $f(x, 0)=0$ for all $x \in \Omega$. To simplify the notation, the dependence on x will be hereafter eliminated (all the limits are understood to hold uniformly in x).

We will deal with problem $\left(P_{\lambda}\right)$, which is meant as a nonlinear perturbation of the homogeneous problem

$$
\left\{\begin{align*}
-\Delta_{p} u & =\lambda|u|^{p-2} u, & & x \in \Omega, \tag{3}\\
u & =0, & & x \in \partial \Omega .
\end{align*}\right.
$$

Let us recall that there exists a unique $\lambda=\lambda_{1}$ such that (3) has a positive solution φ_{1} (see [3]). Moreover, λ_{1} has the following variational characterization:

$$
\begin{equation*}
\lambda_{1}=\inf \left\{\int_{\Omega}|\nabla u|^{p} d x: u \in W_{0}^{1, p}(\Omega), \int_{\Omega}|u|^{p} d x=1\right\} \tag{4}
\end{equation*}
$$

The existence of positive solutions of (1) will be established under appropriate sign conditions on the limits

$$
\begin{align*}
& \lim _{s \rightarrow \infty} f(s) s=c \tag{5}\\
& \lim _{s \rightarrow 0^{+}} \frac{f(s)}{s^{p-1}}=\alpha
\end{align*}
$$

We say that f satisfies $\left(f 1^{+}\right)$, respectively $\left(f 1^{-}\right)$, if (5) holds with $c>0$, resp. $c<0$.

Similarly, we say that f satisfies $\left(f 2^{+}\right)$, respectively $\left(f 2^{-}\right)$, if (6) holds where either $\alpha>0$ (resp. $\alpha<0$) or $\alpha=0$ and there is $\delta>0$ such that $f(s)>0$ (respectively $f(s)<0)$ for all $s \in(0, \delta]$.

A first existence result is
Theorem 2.1. Problem (1) has a positive solution provided that f satisfies either $\left(f 1^{-}\right)-\left(f 2^{+}\right)$, or $\left(f 1^{+}\right)-\left(f 2^{-}\right)$.

Instead of $\left(f 1^{-}\right)$we can require that
there exists $s_{0}>0$ such that $f\left(s_{0}\right)+\lambda_{1} s_{0}^{p-1}<0$.
Theorem 2.2. Problem (1) has a positive solution provided that f satisfies $\left(f 2^{+}\right)$and ($f 3$).

By a limiting argument we can also handle the case in which

$$
\begin{equation*}
\lim _{s \rightarrow 0^{+}} \frac{f(s)}{s^{p-1}}=\infty \tag{f4}
\end{equation*}
$$

Theorem 2.3. Problem (1) has a positive solution provided f satisfies ($f 4$) and either $\left(f 1^{-}\right)$or ($f 3$).

In general, problem (1) has no solution if we merely assume $\left(f 1^{+}\right)$and $\left(f 2^{+}\right)$ or $(f 4)$: it suffices to consider the case when $f(s)>0$ for every $s>0$. In contrast, the following multiplicity result can be proved.

Theorem 2.4. Suppose that f satisfies $\left(f 1^{+}\right)$and (f3). Then (1) has at least two positive solutions provided that either $\left(f 2^{+}\right)$or $(f 4)$ holds.

Actually, some of the above results hold in a greater generality (see Remarks 4.1).

The proofs of these theorems are postponed until Section 4, while Section 3 is devoted to some preliminary lemmas concerning problem $\left(P_{\lambda}\right)$.

3. Preliminary lemmas

In this section we deal with problem $\left(P_{\lambda}\right)$. Actually, since we are looking for positive solutions of $\left(P_{\lambda}\right)$, we can consider the problem

$$
\left\{\begin{align*}
-\Delta_{p} u & =g_{\lambda}(u), & & x \in \Omega, \tag{P}\\
u(x) & =0, & & x \in \partial \Omega,
\end{align*}\right.
$$

where

$$
g_{\lambda}(s)= \begin{cases}\lambda s^{p-1}+f(s) & \text { for } s \geq 0 \\ 0 & \text { for } s<0\end{cases}
$$

By the maximum principle [13] it follows that if (λ, u) is a nontrivial solution of $\left(\widetilde{P}_{\lambda}\right)$ then $u>0$; hence (λ, u) is a solution of $\left(P_{\lambda}\right)$. Problem $\left(\widetilde{P}_{\lambda}\right)$ is suited to be handled by the degree-theoretic arguments of [2] and [1]. Precisely, let us consider the Banach space

$$
X=\{u \in C(\bar{\Omega}): u(x)=0 \text { on } \partial \Omega\}
$$

endowed with the norm $\|\cdot\|_{\infty}$ and set

$$
\begin{aligned}
\Sigma & =\operatorname{cl}\left\{(\lambda, u) \in \mathbb{R} \times X \mid u \neq 0 \text { is a solution of }\left(\widetilde{P}_{\lambda}\right)\right\} \\
& =\operatorname{cl}\left\{(\lambda, u) \in \mathbb{R} \times X \mid u>0 \text { is a solution of }\left(P_{\lambda}\right)\right\}
\end{aligned}
$$

where $\operatorname{cl}(A)$ denotes the closure of A. The behaviour of f at $s=0$ and $s=\infty$ allows us to use the bifurcation results of [2] and [1] yielding

Lemma 3.1. (i) If (6) holds then $\lambda_{0}=\lambda_{1}-\alpha$ is a bifurcation point from the trivial solution and the only one. Precisely, there exists an unbounded continuum (i.e. closed connected sets, maximal with respect to the inclusion) $\Sigma_{0} \subset \Sigma$ branching off from $\left(\lambda_{0}, 0\right)$.
(ii) If $\lim _{s \rightarrow \infty} f(s)=0$ then $\lambda_{\infty}=\lambda_{1}$ is a bifurcation point from infinity, and the only one. Precisely, there exists an unbounded continuum $\Sigma_{\infty} \subset \Sigma$ branching off from $\left(\lambda_{1}, \infty\right)$.

Let us recall that λ_{∞} is a bifurcation from infinity if there exist $\left(\lambda_{n}, u_{n}\right) \in \Sigma$ such that $\lambda_{n} \rightarrow \lambda_{\infty}$ and $\left\|u_{n}\right\|_{\infty} \rightarrow \infty$.

We anticipate that in all theorems but Theorem 2.3 we shall show that $\Sigma_{0}=$ Σ_{∞}. For this, some estimates are in order.

Lemma 3.2. Let $\gamma \in \mathbb{R}$ and $\varrho>0$ be such that $f(\varrho)+\gamma \varrho^{p-1}<0$. If $(\lambda, u) \in \Sigma$ and $\|u\|_{\infty}=\varrho$ then $\lambda>\gamma$.

Proof. We argue by contradiction and assume that $\lambda \leq \gamma$. Let $x_{0} \in \Omega$ be such that $u\left(x_{0}\right)=\varrho$. Then there exists $r>0$ such that

$$
-\Delta_{p} u(x)=\lambda u(x)^{p-1}+f(u(x)) \leq \gamma u(x)^{p-1}+f(u(x))<0
$$

for all $x \in B_{r}\left(x_{0}\right) \subset \Omega$. Now, by the strong maximum principle [13], we obtain $u(x)=\varrho$ for all $x \in \overline{B_{r}\left(x_{0}\right)}$. This proves that $\{x \in \Omega: u(x)=\varrho\}$ is open. But it is also closed and hence is all Ω, a contradiction.

From the preceding lemma we infer:
Corollary 3.3. (i) If $\left(f 2^{ \pm}\right)$holds then there exists $\Lambda>0$ such that $\Sigma \subset$ $(-\Lambda, \infty) \times X$.
(ii) If (f3) holds then, for $\lambda \leq \lambda_{1}$, problem $\left(P_{\lambda}\right)$ has no positive solution u such that $\|u\|_{\infty}=s_{0}$.

Proof. (i) Let $\Lambda>0$ be such that $f(s)<\Lambda s^{p-1}$ for all $s>0$. Then Lemma 3.2 applies with $\gamma=-\Lambda$ and all $\varrho>0$. Hence $(\lambda, u) \in \Sigma$ implies that $\lambda>-\Lambda$.
(ii) If (f3) holds then $f\left(s_{0}\right)<-\lambda s_{0}^{p-1}$ for all $\lambda \leq \lambda_{1}$ and Lemma 3.2 implies that $\|u\|_{\infty} \neq s_{0}$ whenever $(\lambda, u) \in \Sigma$ and $\lambda \leq \lambda_{1}$.

Remark 3.4. If ($f 4$) holds, f is bounded and $\lambda<0$, we set

$$
\varrho(\lambda)=\inf \left\{r>0: f(s)<-\lambda s^{p-1} \text { for all } s \geq r\right\} .
$$

Then $\lim _{\lambda \rightarrow-\infty} \varrho(\lambda)=0$ and $f(\varrho)+\lambda \varrho^{p-1}<0$ for all $\varrho \in(\varrho(\lambda), \infty)$. Hence if $(\lambda, u) \in \Sigma$, Lemma 3.2 yields $\|u\|_{\infty}<\varrho(\lambda)$.

Moreover, by (4) we infer
Lemma 3.5. There exists $\Lambda^{*}>0$ such that $\Sigma \subset\left(-\infty, \Lambda^{*}\right) \times X$.
Proof. Let $\Lambda^{*}>0$ be such that $\Lambda^{*} s^{p-1}+f(s)>L s^{p-1}$ for all $s>0$, with $L>\lambda_{1}$. If $(\lambda, u) \in \Sigma$ with $\lambda \geq \Lambda^{*}$ it follows that u is an upper solution of the problem

$$
\left\{\begin{aligned}
-\Delta_{p} u & =L|u|^{p-2} u, & & x \in \Omega \\
u & =0, & & x \in \partial \Omega
\end{aligned}\right.
$$

Then, using $t \varphi_{1}$ as lower solution with $t>0$ sufficient small, we would obtain a positive solution of this problem; i.e. a positive eigenfunction of $-\Delta_{p}$ with associated eigenvalue $L>\lambda_{1}$. But this is not possible [3, Proposition 2].

When Corollary 3.3(i) and Lemma 3.5 apply it follows immediately that $\Sigma_{0}=\Sigma_{\infty}$:

LEMmA 3.6. If $\left(f 2^{ \pm}\right)$holds and $\lim _{s \rightarrow \infty} f(s)=0$ then there is a continuum $S \subset \Sigma$ bifurcating from infinity at $\lambda=\lambda_{1}$ and from zero at $\lambda=\lambda_{0}$. Moreover, $S \subset\left(-\Lambda, \Lambda^{*}\right) \times X$.

The remainder of this section is devoted to the behaviour of S near the bifurcation points. Recall that a bifurcation is said subcritical or supercritical provided S is on the left, respectively on the right, in a deleted neighbourhood of the bifurcation point.

Lemma 3.7. Assume f satisfies $\left(f 2^{+}\right)$(respectively $\left.\left(f 2^{-}\right)\right)$with $\alpha=0$. Then the bifurcation at $\left(\lambda_{0}, 0\right)$ is subcritical (resp. supercritical).

Proof. We deal with the case when $\left(f 2^{+}\right)$holds. The other is proved in a similar way, with obvious changes. Suppose, by contradiction, that there exists a sequence $\left(\lambda_{n}, u_{n}\right) \in S$ such that $\lambda_{n}>\lambda_{1}, \lambda_{n} \rightarrow \lambda_{1},\left\|u_{n}\right\|_{\infty} \rightarrow 0, u_{n} \neq 0$. Without loss of generality, $\left\|u_{n}\right\|_{\infty} \leq \delta$ and hence u_{n} is an upper solution of the problem

$$
\left\{\begin{aligned}
-\Delta_{p} u & =\lambda_{n}|u|^{p-2} u, & & x \in \Omega \\
u & =0, & & x \in \partial \Omega .
\end{aligned}\right.
$$

Arguing as in the proof of Lemma 3.5, we arrive at a contradiction.
Lemma 3.8. If $\left(f 1^{-}\right)$(respectively $\left(f 1^{+}\right)$) holds, then the bifurcation from infinity is supercritical (resp. subcritical).

Proof. Let u_{n} be a positive solution of $\left(P_{\lambda_{n}}\right)$ with $\lambda_{n} \rightarrow \lambda_{1},\left\|u_{n}\right\|_{\infty} \rightarrow \infty$. Dividing $\left(P_{\lambda}\right)$ by $\left\|u_{n}\right\|_{\infty}^{p-1}$, we infer that $v_{n}=u_{n}\left\|u_{n}\right\|_{\infty}^{-1}$ satisfies

$$
-\Delta_{p} v_{n}=\lambda_{n}\left|v_{n}\right|^{p-2} v_{n}+\frac{f\left(u_{n}\right)}{\left\|u_{n}\right\|^{p-1}}
$$

From the regularity theory [12] it follows that, up to a subsequence, $v_{n} \rightarrow v$ in $C^{1}(\bar{\Omega})$ and $v \in X$ has norm 1 and satisfies

$$
-\Delta_{p} v=\lambda_{1}|v|^{p-2} v, \quad x \in \Omega .
$$

As a consequence, $v=\varphi_{1}$, with $\left\|\varphi_{1}\right\|_{\infty}=1$.
Now we consider separately the cases where $\left(f 1^{-}\right)$or $\left(f 1^{+}\right)$hold.
Case (a). From the preceding arguments we infer that $u_{n}(x)=\left\|u_{n}\right\|_{\infty} v_{n}(x)$
$\rightarrow \infty$ for every $x \in \Omega$. Then the Lebesgue theorem and ($f 1^{-}$) imply

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\Omega} f\left(u_{n}(x)\right) u_{n}(x) d x=c \operatorname{meas}(\Omega)<0 \tag{7}
\end{equation*}
$$

From (4) we also deduce

$$
\lambda_{1} \int_{\Omega}\left|u_{n}\right|^{p} d x \leq \int_{\Omega}\left|\nabla u_{n}\right|^{p} d x=\lambda_{n} \int_{\Omega}\left|u_{n}\right|^{p} d x+\int_{\Omega} f\left(u_{n}\right) u_{n} d x .
$$

Then from (7) it follows that $\lambda_{n}>\lambda_{1}$ for large n enough and this means that the bifurcation from infinity is supercritical.

Case (b). Suppose that $\left(f 1^{+}\right)$holds. Since $v_{n} \rightarrow \varphi_{1}$ in $C^{1}(\bar{\Omega})$ we can assume that $\frac{1}{2} \varphi_{1}(x) \leq v_{n}(x) \leq \frac{3}{2} \varphi_{1}(x)$ for every $x \in \Omega$. Let $\left\{t_{n}\right\}$ be a sequence of positive numbers such that

$$
\lim _{n \rightarrow \infty} \frac{t_{n}}{\left\|u_{n}\right\|_{\infty}}=\infty, \quad t_{n} \geq \frac{3}{2}\left\|u_{n}\right\|_{\infty}, \quad \forall n \in \mathbb{N}
$$

Consider the functional I defined on

$$
D(I)=\left\{(u, v): u, v \in W_{0}^{1, p}(\Omega), u, v \geq 0, u v^{-1}, v u^{-1} \in L^{\infty}(\Omega)\right\}
$$

by setting

$$
I(u, v)=\left\langle-\Delta_{p} u, \frac{u^{p}-v^{p}}{u^{p-1}}\right\rangle-\left\langle-\Delta_{p} v, \frac{u^{p}-v^{p}}{v^{p-1}}\right\rangle .
$$

One has

$$
I\left(t_{n} \varphi_{1}, u_{n}\right)=\left(\lambda_{1}-\lambda_{n}\right) \int_{\Omega}\left[t_{n}^{p} \varphi_{1}^{p}-u_{n}^{p}\right] d x-\int_{\Omega} f\left(u_{n}\right) \frac{t_{n}^{p} \varphi_{1}^{p}-u_{n}^{p}}{u_{n}^{p-1}} d x
$$

Moreover, it is known (see [10]) that $I \geq 0$. Hence it follows that

$$
\int_{\Omega} f\left(u_{n}\right) \frac{t_{n}^{p} \varphi_{1}^{p}-u_{n}^{p}}{u_{n}^{p-1}} d x \leq\left(\lambda_{1}-\lambda_{n}\right) \int_{\Omega}\left[t_{n}^{p} \varphi_{1}^{p}-u_{n}^{p}\right] d x .
$$

We claim that the left hand side of this inequality tends to ∞ provided $\left(f 1^{+}\right)$ holds. Indeed, we have

$$
\begin{aligned}
& \int_{\Omega} f\left(u_{n}\right) \frac{t_{n}^{p} \varphi_{1}^{p}-u_{n}^{p}}{u_{n}^{p-1}} d x \\
& \quad=\left(\frac{t_{n}}{\left\|u_{n}\right\|_{\infty}}\right)^{p} \int_{\Omega} f\left(u_{n}\right) u_{n}\left(\frac{\left\|u_{n}\right\|_{\infty} \varphi_{1}}{u_{n}}\right)^{p} d x-\int_{\Omega} f\left(u_{n}\right) u_{n} d x
\end{aligned}
$$

Now, since $\left\|u_{n}\right\|_{\infty} u_{n}(x)^{-1} \varphi_{1}(x)=v_{n}(x)^{-1} \varphi_{1}(x) \leq 2$ for every $x \in \Omega$, we deduce from $\left(f 1^{+}\right)$that

$$
\lim _{n \rightarrow \infty} \int_{\Omega} f\left(u_{n}\right) u_{n}\left(\frac{\left\|u_{n}\right\|_{\infty} \varphi_{1}}{u_{n}}\right)^{p} d x=c \text { meas }(\Omega)>0
$$

which, together with (7), gives

$$
\lim _{n \rightarrow \infty} \int_{\Omega} f\left(u_{n}\right) u_{n} \frac{t_{n}^{p} \varphi_{1}^{p}-u_{n}^{p}}{u_{n}^{p-1}} d x=\infty
$$

proving the claim. Therefore, for n large enough,

$$
0<\left(\lambda_{1}-\lambda_{n}\right) \int_{\Omega}\left[t_{n}^{p} \varphi_{1}^{p}-u_{n}^{p}\right] d x .
$$

Recalling that $t_{n} \varphi_{1}(x) \geq \frac{3}{2}\left\|u_{n}\right\|_{\infty} \varphi_{1}(x) \geq u_{n}(x)$ for every $x \in \Omega$, this implies that $\lambda_{1}>\lambda_{n}$ and thus the bifurcation is subcritical in this case.

4. Proof of Theorems

Proof of Theorem 2.1. First suppose $\left(f 1^{-}\right)$and $\left(f 2^{+}\right)$. Then Lemma 3.6 applies and yields a continuum $S \subset \Sigma$ which connects $\left(\lambda_{1}-\alpha, 0\right)$ and $\left(\lambda_{1}, \infty\right)$. By Lemma 3.8, S emanates from the right of $\left(\lambda_{1}, \infty\right)$ and hence there exists $(\lambda, u) \in S \backslash\{0\}$ with $\lambda>\lambda_{1}$. Moreover, there also exists $(\lambda, u) \in S \backslash\{0\}$ with $\lambda<\lambda_{1}$. If $\alpha>0$ this is immediate because then the bifurcation takes place at $\lambda_{0}=\lambda_{1}-\alpha$; if $\alpha=0$ the claim holds true because the bifurcation is subcritical (see Lemma 3.7).

Since S is connected it follows that there exists $u \neq 0$ such that $\left(\lambda_{1}, u\right) \in S$, yielding a positive solution of (1).

If f satisfies $\left(f 1^{+}\right)$and $\left(f 2^{-}\right)$the proof is similar.
Proof of Theorem 2.2. Consider the unbounded continuum Σ_{0} branching off from $\left(\lambda_{0}, 0\right)$ (see Lemma 3.1(i)). As in the proof of Theorem 2.1 assumption $\left(f 2^{+}\right)$implies that there is $(\lambda, u) \in \Sigma_{0} \backslash\{0\}$ with $\lambda<\lambda_{1}$. Taking into account that Σ_{0} is connected and unbounded and using Corollary 3.3(i), (ii), one infers that Σ_{0} meets the set $\left\{\lambda_{1}\right\} \times X$ and the result follows.

Proof of Theorem 2.3. Let $f_{n} \in C\left(\Omega \times \mathbb{R}^{+}\right)$be a sequence of functions such that $f_{n}(s)=f(s)$ for $s \geq 1$ and satisfying

$$
\lim _{s \rightarrow 0^{+}} \frac{f_{n}(s)}{s^{p-1}}=n
$$

If $\left(f 1^{-}\right)$(respectively $\left.(f 3)\right)$ holds then we can use Theorem 2.1 (respectively Theorem 2.2) to find positive solutions u_{n} of the approximated problems

$$
\left\{\begin{aligned}
-\Delta_{p} u & =\lambda_{1} u^{p-1}+f_{n}(u), & & x \in \Omega, \\
u(x) & =0, & & x \in \partial \Omega .
\end{aligned}\right.
$$

We claim that there are constants $a, b>0$ such that $a \leq\left\|u_{n}\right\|_{\infty} \leq b$. The upper bound follows by repeating the arguments used in the proof of Lemma 3.8 (Case (a)), with λ_{1} instead of λ_{n}. As for the lower bound, we shall closely follow the proof of Lemma 3.8 (Case (b)) and thus we shall be sketchy. Suppose, by contradiction, that $\left\|u_{n}\right\|_{\infty} \rightarrow 0$. From $I\left(\varphi_{1}, u_{n}\right) \geq 0$ it follows by direct calculation that

$$
\int_{\Omega} f\left(u_{n}\right) \frac{\varphi_{1}^{p}-u_{n}^{p}}{u_{n}^{p-1}} d x \leq 0
$$

Since $u_{n} \rightarrow 0$ and $(f 4)$ holds, we find a contradiction, proving the claim. Finally, the uniform bound allows us to pass to the limit yielding a positive solution of (1).

Proof of Theorem 2.4. Consider the continuum S connecting $\left(\lambda_{0}, 0\right)$ and $\left(\lambda_{1}, \infty\right)$. A first positive solution u_{1} of (1), with $\left\|u_{1}\right\|_{\infty}<s_{0}$, can be found using

Theorem 2.3. Since $\left(f 1^{+}\right)$holds, the bifurcation from infinity is now subcritical and hence (1) has a second positive solution u_{2} with $\left\|u_{2}\right\|_{\infty}>s_{0}$.

Remarks 4.1.

1. Minor changes would allow us to substitute the assumption $\lim _{s \rightarrow \infty} f(s)$ $=0$ with the slightly more general $\lim _{s \rightarrow \infty} f(s) s^{1-p}=0$, as well as to permit that c and α depend on x.
2 In Theorem 2.2 we do not require $f(s) \rightarrow 0$ as $s \rightarrow \infty$; it suffices to assume that f is bounded.
3 The results of Section 3 allow us to describe the bifurcation diagram of $\left(P_{\lambda}\right)$. In particular, in the case covered by Theorem 2.3, Remark 3.4 shows that the projection of Σ_{∞} on the λ axis contains $(-\infty, 0)$ and hence $\left(P_{\lambda}\right)$ has positive solutions for all $\lambda<0$. Moreover, along Σ_{∞} one has that $\|u\|_{\infty} \rightarrow 0$ for all $(\lambda, u) \in \Sigma_{\infty}$ with $\lambda \rightarrow-\infty$.

References

[1] A. Ambrosetti, J. Garcia Azorero and I. Peral, Multiplicity results for some nonlinear elliptic equations, J. Funct. Anal. (to appear).
[2] A. Ambrosetti and P. Hess, Positive solutions of asymptotically linear elliptic eigenvalue problems, J. Math. Anal. Appl. 73 (1980), 411-422.
[3] A. Anane, Simplicité et isolation de la première valeur propre du p-Laplacien avec poids, C. R. Acad. Sci. Paris 305 (1987), 725-728.
[4] A. Anane and J. P. Gossez, Strongly nonlinear elliptic problems near resonance: a variational approach, Comm. Partial Differential Equations 15 (1990), 1141-1159.
[5] D. Arcoya and A. Cañada, Critical point theorems and applications to nonlinear boundary value problems, Nonlinear Anal. 14 (1990), 393-411.
[6] D. Arcoya and D. G. Costa, Nontrivial solutions for a strongly resonant problem, Differential Integral Equations 8 (1995), 151-159.
[7] D. Arcoya and L. Orsina, Landesman-Lazer conditions and quasilinear elliptic equations, Nonlinear Anal. (to appear).
[8] P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with strong resonance at infinity, Nonlinear Anal. 7 (1983), 981-1012.
[9] L. Boccardo, P. Drábek and M. Kučera, Landesman-Lazer conditions for strongly nonlinear boundary value problems, Comment. Math. Univ. Carolin. 30 (1989), 411-427.
[10] J. I. Díaz and J. E. SaA, Uniqueness of nonnegative solutions for elliptic nonlinear diffusion equations with a general perturbation term, Proceedings of the VII CEDYA (1985), Santander.
[11] E. M. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic problems at resonance, J. Math. Mech. 19 (1970), 609-623.
[12] P. Tolksdorff, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126-150.
[13] J. L. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191-202.

Manuscript received February 14, 1996

Antonio Ambrosetti
Scuola Normale Superiore
56100 Pisa, ITALY
David Arcoya
Department of Mathematical Analysis
University of Granada
18071 Granada, SPAIN

