AN ANALYTIC COMPUTATION OF $k o_{4 \nu-1}\left(B Q_{8}\right)$

Boris Botvinnik - Peter Gilkey

Dedicated to Louis Nirenberg

The connective K-theory groups $k o_{*}(B \pi)$ of a group π appear in many contexts; for example, they are the building blocks for equivariant spin bordism at the prime 2. They also play an important role in the Gromov-Lawson-Rosenberg conjecture which was the starting point of our original investigation [5].

The second author first studied the eta invariant, which is an analytic invariant, whilst a graduate student under the direction of L. Nirenberg so this is perhaps a fitting subject for this volume. In this paper, we will use the eta invariant to determine the additive structure of $k o_{4 \nu-1}\left(B Q_{8}\right)$, where

$$
Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}
$$

is the quaternion group of order 8 . We refer to D. Bayen and R. Bruner [2] for an independent topological computation of these groups.

Theorem 1.
(a) $k o_{8 \mu+3}\left(B Q_{8}\right) \cong\left(\mathbb{Z} / 2^{3+4 \mu}\right) \oplus\left(\mathbb{Z} / 2^{2 \mu}\right) \oplus\left(\mathbb{Z} / 2^{2 \mu+2}\right) \oplus\left(\mathbb{Z} / 2^{2 \mu+2}\right)$.
(b) $k o_{8 \mu+7}\left(B Q_{8}\right) \cong\left(\mathbb{Z} / 2^{6+4 \mu}\right) \oplus\left(\mathbb{Z} / 2^{2 \mu}\right) \oplus\left(\mathbb{Z} / 2^{2 \mu+2}\right) \oplus\left(\mathbb{Z} / 2^{2 \mu+2}\right)$.

Remark. In fact, we not only determine the additive structure of these groups, our method can also be used to find explicit geometrical generators.

[^0]Remark. The eta invariant is trivial on $k o_{m}\left(B Q_{8}\right)$ for $m \not \equiv 3(\bmod 4)$ and gives no information in these dimensions. We refer to [2] for the calculation of $k o_{m}\left(B Q_{8}\right)$ for these values of m; there are no extension problems to be solved in these dimensions in contrast to the case $m \equiv 3(\bmod 4)$.

We begin by reviewing some of the facts we shall need concerning the eta invariant and connective K-theory. Let D be an operator of Dirac type on a compact Riemannian manifold M. Let

$$
\eta(D)(z):=\sum_{\lambda \neq 0} \operatorname{sign}(\lambda) \cdot \operatorname{dim}(\operatorname{ker}(D-\lambda I)) \cdot|\lambda|^{-z}
$$

be the eta function of Atiyah, Patodi, and Singer [1]. This converges absolutely for $\operatorname{Re}(z)>0$ and has a meromorphic extension to \mathbb{C} which is regular at $z=0$. The eta invariant is a measure of the spectral asymmetry of D defined by

$$
\eta(D):=\left.\frac{1}{2}\{\eta(D)(z)+\operatorname{dim}(\operatorname{ker}(D))\}\right|_{z=0} \in \mathbb{R} .
$$

We refer to $[1,9]$ for the proof of the following result.
Lemma 2. Let D_{t} be a smooth 1-parameter family of operators of Dirac type on a compact manifold M. The reduction of $\eta\left(D_{t}\right)$ to \mathbb{R} / \mathbb{Z} is smooth and the derivative $\dot{\eta}\left(D_{t}\right)$ is given by integrating a local formula over M. If $\operatorname{ker}\left(D_{t}\right)$ is trivial, then $\eta\left(D_{t}\right)$ is smooth as a real-valued invariant.

Remark. In general, $\eta\left(D_{t}\right)$ is not smooth in t; discontinuities occur when the eigenvalues cross or touch the origin; reduction $\bmod \mathbb{Z}$ eliminates these discontinuities.

Let π be a finite group. Let (M, g, s, σ) denote a closed manifold of dimension m with a Riemannian metric g, a spin structure s, and a π structure σ. If m is odd, let D_{ϱ} be the Dirac operator on M with coefficients in the flat bundle determined by a representation ϱ of π. Define

$$
\eta(M)(\varrho)=\eta(M, g, s, \sigma)(\varrho):=\eta\left(D_{\varrho}\right) \in \mathbb{R}
$$

Let $R_{0}(\pi)$ be the augmentation ideal of all virtual representations of virtual dimension 0 in the group representation ring $R(\pi)$. It is clear that $\eta(\cdot)(\varrho)$ is additive in ϱ and hence extends to $R(\pi)$ and $R_{0}(\pi)$.

Let $\operatorname{MSpin}_{m}(B \pi)$ be the set of bordism classes of triples (M, s, σ), where M is a closed manifold of dimension m, where s is a spin structure on M, and where σ is a π structure on M.

Theorem 3. Let $\varrho \in R_{0}(\pi)$ and let m be odd. Then the homomorphism

$$
\eta(\varrho): \operatorname{MSpin}_{m}(B \pi) \rightarrow \mathbb{R} / \mathbb{Z}
$$

which maps a class represented by (M, s, σ) in dimension m to $\eta(M, g, s, \sigma)(\varrho)$ is well defined. Furthermore, if ϱ is of real type and $m \equiv 3(\bmod 8)$ or if ϱ is of quaternion type and $m \equiv 7(\bmod 8)$, we can replace the range of $\eta(\varrho)$ by $\mathbb{R} / 2 \mathbb{Z}$.

Proof. We use the index theorem of Atiyah, Patodi, and Singer [1]. Let M be the boundary of a spin manifold N and suppose the π structure on M extends over N. To prove the first assertion, we must show $\eta(\varrho) \in \mathbb{Z}$. We extend the metric on M to a metric on N which is product near the boundary. Let P_{ϱ} be the operator of the spin complex over N with coefficients in the flat bundle V_{ϱ} determined by the virtual representation ϱ. We take suitable non-local boundary conditions for P_{ϱ} and apply the index theorem to see

$$
\operatorname{index}\left(P_{\varrho}\right)=\int_{N} \widehat{A} \cdot \operatorname{ch}\left(V_{\varrho}\right)-\eta(\varrho),
$$

where \widehat{A} is the differential form on N whose representative in de Rham cohomology gives the \widehat{A}-genus. Since V_{ϱ} is a flat bundle of virtual dimension zero, $\operatorname{ch}\left(V_{\varrho}\right)=0$ and we see $\eta(\varrho) \in \mathbb{Z}$ as desired. If $m \equiv 3(\bmod 8)$, then the spin bundle on N admits a natural quaternion structure; if $m \equiv 7(\bmod 8)$, then the spin bundle on N admits a natural real structure. Thus if ϱ is real if $m \equiv 3$ $(\bmod 8)$ or quaternion if $m \equiv 7(\bmod 8)$, then the spin bundle with coefficients in ϱ on N has a natural quaternion structure and the eigenspaces of P_{ϱ} admit natural quaternion structures. Consequently, index $\left(P_{\varrho}\right)$ is divisible by 2 in these cases.

Remark. Invariants similar to those defined in Theorem 3 completely detect the K-theory of spherical space forms and the reduced equivariant unitary bordism of spherical space form groups; see $[7,8]$.

There is a geometric way to think of the connective K-theory groups $k o_{n}(B \pi)$ localized at the prime 2. Let $T_{m}(B \pi)$ be the subgroup of $\operatorname{MSpin}_{m}(B \pi)$ represented by pairs (E, α), where $\alpha: E \rightarrow B$ is a fiber bundle with fibre $\mathbb{H P}^{2}$, the quaternionic projective plane, and structure group the group of isometries of $\mathbb{H P}^{2}$. Stolz [11] showed the map

$$
\operatorname{MSpin}_{m}(B \pi) / T_{m}(B \pi) \rightarrow k o_{m}(B \pi)
$$

is an isomorphism when localized at the prime 2 . We use the following theorem to extend the eta invariant to a map in K-theory.

Theorem 4. Let π be a finite group, let $\varrho \in R_{0}(\pi)$, and let m be odd. Then the homomorphism

$$
\eta^{k o}(\varrho):\left(k o_{m}(B \pi)\right)_{(2)} \rightarrow(\mathbb{R} / \mathbb{Z})_{(2)}
$$

which maps a class represented by (M, s, σ) in dimension m to $\eta(M, g, s, \sigma)(\varrho)$ is well defined when localized at the prime 2. Furthermore, if @ is of real type and
$m \equiv 3(\bmod 8)$ or if ϱ is of quaternion type and $m \equiv 7(\bmod 8)$, we can replace the range of $\eta(\varrho)$ by $(\mathbb{R} / 2 \mathbb{Z})_{(2)}$.

Proof. Let $\alpha: E \rightarrow B$ be a geometrical fiber bundle with fiber $\mathbb{H}^{2}{ }^{2}$. We must show $\eta(E)(\varrho)=0$. Since $\mathbb{H}^{P}{ }^{2}$ is simply connected, the π structure on the total space E arises from a π structure on the base B. Let g^{F} be the standard Riemannian metric of positive scalar curvature on the fiber $F=\mathbb{H}^{2}$ and let g^{B} be any Riemannian metric on the base B. Let F_{x} be the fiber of E over a point $x \in B$. There exists a metric g^{E} on the total space E so that the induced metric on each F_{x} is g^{F}, so that each F_{x} is totally geodesic, and so that the projection α is a Riemannian submersion [3, 9.59]. Let \mathcal{V} and \mathcal{H} be the vertical and horizontal distributions of the submersion. Define the canonical variation g_{t}^{E} of the metric by imposing the conditions

$$
\left.g_{t}^{E}\right|_{\mathcal{V}}=t g^{F},\left.\quad g_{t}^{E}\right|_{\mathcal{H}}=\alpha^{*}\left(g^{B}\right), \quad g_{t}^{E}(\mathcal{V}, \mathcal{H})=0
$$

Let τ^{F} and τ_{t}^{E} be the scalar curvature of the metrics on F and on E. Then

$$
\tau_{t}^{E}=t^{-1} \tau^{F}+O(1)
$$

see [3, 9.70]. In particular, $\tau_{t}^{E} \rightarrow \infty$ as $t \rightarrow 0$.
Let $\varrho \in R_{0}(\pi)$. We will show that there exists $t_{0}(\varrho)$ so that if $0<t<t_{0}(\varrho)$,

$$
\begin{equation*}
\eta\left(g_{t}^{E}\right)(\varrho)=0 \quad \text { in } \mathbb{R} \tag{*}
\end{equation*}
$$

Let δ be the right regular representation of π and let 1 be the trivial representation of π. Let $\chi:=|\pi| \cdot 1-\delta$. Then

$$
\operatorname{Tr}(\chi(1))=0 \quad \text { and } \quad \operatorname{Tr}(\chi)(\lambda)=|\pi| \quad \text { for } \lambda \neq 1
$$

Thus if $\varrho \in R_{0}(\pi)$, then $|\pi| \varrho=\chi \varrho$. Since \mathbb{R} is without torsion, we may replace ϱ by $\chi \varrho$ in proving equation $(*)$.

Let $\varrho=\mu_{1}-\mu_{2}$, where the μ_{i} are actual representations of π of the same dimension. Let ζ_{i}^{B} be the corresponding flat bundles over the base B. Since these bundles admit flat connections and have the same dimension, the rational Chern classes of the difference $\zeta_{1}^{B}-\zeta_{2}^{B}$ vanish. Thus this virtual bundle is rationally trivial. Again, by replacing ϱ by a suitable integer multiple, we may assume $\zeta_{1}^{B} \cong \zeta_{2}^{B} \cong \zeta^{B}$.

Let ∇_{i}^{B} be the flat connections on ζ^{B} defined by the flat structures μ_{i}. Define a smooth 1-parameter family of connections with curvatures Ω_{ε}^{B} by defining

$$
\nabla_{\varepsilon}^{B}:=\varepsilon \nabla_{1}^{B}+(1-\varepsilon) \nabla_{2}^{B} .
$$

Pull back these structures to define the corresponding structures over E. Since α is a Riemannian submersion for any t, the norm of the curvature tensor Ω_{ε}^{E} can be uniformly bounded with respect to the metric g_{t}^{E} for all $(\varepsilon, t) \in[0,1] \times \mathbb{R}$.

Let $D_{\varepsilon, t}$ be the Dirac operator with coefficients in E defined by the metric g_{t}^{E} and connection ∇_{ε}^{E}. We use the generalized Lichnerowicz formula to express the square of $D_{\varepsilon, t}$ in the form

$$
\left(D_{\varepsilon, t}\right)^{2}=\nabla_{\varepsilon, t}^{*} \nabla_{\varepsilon, t}+\tau_{t}^{E} / 4+\Psi\left(\Omega_{\varepsilon}^{E}\right)
$$

the error term $\Psi(\cdot)$ depends only on the Clifford module structure of the base B. Thus the pointwise operator norm of $\Psi(\cdot)$ is uniformly bounded in (ε, t). Since $\tau_{t}^{E} \rightarrow \infty$ as $t \rightarrow 0, \tau_{t}^{E} / 4+\Psi\left(\Omega_{\varepsilon}^{E}\right)$ is positive for t sufficiently small. Thus there are no twisted harmonic spinors.

Let $D_{\varepsilon, t, \chi}$ denote $D_{\varepsilon, t}$ with coefficients in the flat virtual bundle defined by χ. The same argument as that given above shows $\operatorname{ker}\left(D_{\varepsilon, t, \chi}\right)$ is trivial for all (ε, t). Thus by Theorem $2, \eta\left(D_{\varepsilon, t, \chi}\right)$ is a smooth real-valued function of (ε, t). Furthermore, the derivative with respect to ε or t of the eta invariant is given by a local formula. Since χ has virtual dimension 0 , the local formula vanishes and $\eta\left(D_{\varepsilon, t, \chi}\right)$ is independent of (ε, t). This shows that

$$
|\pi| \eta\left(g_{t}\right)(\varrho)=\eta\left(D_{\varepsilon, t, \chi}\right)-\eta\left(D_{\varepsilon, t, \chi}\right)=0
$$

Remark. The adiabatic limit theorem of Bismut and Cheeger [4, (0.5)] can also be used to establish this result. However, the proof we have just given of Theorem 4 generalizes to the case of spin^{c} and pin^{c} structures, where the associated complex line bundle is flat.

Remark. We will show in Lemma 6 that $k o_{4 \nu-1}\left(B Q_{8}\right)$ is a finite 2-group. Thus it is not necessary to localize at the prime 2 and $\eta(\varrho)$ defines a homomorphism from $k o_{4 \nu-1}\left(B Q_{8}\right)$ to \mathbb{R} / \mathbb{Z} or to $\mathbb{R} / 2 \mathbb{Z}$.

Spherical space forms play a crucial role in our analysis. Let $\tau: \pi \rightarrow S U(2 \nu)$ be a fixed point free representation of π to the special unitary group. Let M be the quotient manifold $S^{4 \nu-1} / \tau(\pi) ; M$ inherits a natural metric of constant sectional curvature +1 and is called a spherical space form. The isomorphism $\pi_{1}(M) \cong \pi$ defines a natural π structure on M. Let $T(M) \oplus 1$ be the stable tangent bundle of M. We identify $T(M) \oplus 1$ with the flat bundle over M defined by τ to define a natural $S U(2 \nu)$ structure on $T(M) \oplus 1$. We use the lift of the special unitary group to the spinor group discussed by Hitchin [10] to give $T(M) \oplus 1$ and $T(M)$ natural spin structures. Donnelly [6] has generalized the Atiyah-Patodi-Singer theorem to the equivariant setting; the following theorem follows from his results.

Theorem 5. Let $\varrho \in R_{0}(\pi)$ and let $\tau: \pi \rightarrow S U(2 \nu)$ be a fixed point free representation. Let $M=S^{4 \nu-1} / \tau(\pi)$ with the structures defined above. Then

$$
\eta(M)(\varrho)=|\pi|^{-1} \sum_{\lambda \in \pi, \lambda \neq 1} \operatorname{Tr}(\varrho(\lambda)) \operatorname{det}(I-\tau(\lambda))^{-1}
$$

We specialize henceforth to the group $\pi=Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$. Let

$$
H_{i}:=\langle i\rangle, \quad H_{j}:=\langle j\rangle, \quad \text { and } \quad H_{k}:=\langle k\rangle
$$

be the 3 cyclic subgroups of Q_{8} which have order 4 . The group Q_{8} has 4 inequivalent real linear representations defined by

$$
\begin{array}{llll}
\varrho_{0}(\pm 1)=1, & \varrho_{0}(\pm i)=1, & \varrho_{0}(\pm j)=1, & \varrho_{0}(\pm k)=1 \\
\varrho_{i}(\pm 1)=1, & \varrho_{i}(\pm i)=1, & \varrho_{i}(\pm j)=-1, & \varrho_{i}(\pm k)=-1 \\
\varrho_{j}(\pm 1)=1, & \varrho_{j}(\pm i)=-1, & \varrho_{j}(\pm j)=1, & \varrho_{j}(\pm k)=-1 \\
\varrho_{k}(\pm 1)=1, & \varrho_{k}(\pm i)=-1, & \varrho_{k}(\pm j)=-1, & \varrho_{k}(\pm k)=1
\end{array}
$$

Let τ be the inclusion of Q_{8} into $S U(2)$ which we identify with the set of unit quaternions; τ is of quaternion type. The representations $\varrho_{0}, \varrho_{i}, \varrho_{j}, \varrho_{k}$, and τ are the irreducible representations of Q_{8} up to unitary equivalence. Let

$$
\tau_{\nu}:=\tau \oplus \ldots \oplus \tau
$$

be the diagonal embedding of Q_{8} into $S U(2 \nu) ; \tau_{\nu}$ is fixed point free. Let

$$
\begin{aligned}
& M_{Q}^{4 \nu-1}:=S^{4 \nu-1} / \tau_{\nu}\left(Q_{8}\right), \quad M_{i}^{4 \nu-1}:=S^{4 \nu-1} / \tau_{\nu}\left(H_{i}\right), \\
& M_{j}^{4 \nu-1}:=S^{4 \nu-1} / \tau_{\nu}\left(H_{j}\right), \quad M_{k}^{4 \nu-1}:=S^{4 \nu-1} / \tau\left(H_{k}\right), \\
& \vec{\eta}(\cdot):=\left(\eta(\cdot)(2-\tau), \eta(\cdot)\left(\varrho_{0}-\varrho_{i}\right), \eta(\cdot)\left(\varrho_{0}-\varrho_{j}\right), \eta(\cdot)\left(\varrho_{0}-\varrho_{k}\right)\right), \\
& \mathcal{A}_{4 \nu-1}:=\operatorname{span}_{\mathbb{Z}}\left\{\vec{\eta}\left(M_{Q}^{4 \nu-1}\right), \vec{\eta}\left(M_{i}^{4 \nu-1}\right), \vec{\eta}\left(M_{j}^{4 \nu-1}\right), \vec{\eta}\left(M_{k}^{4 \nu-1}\right)\right\}, \\
& \mathcal{A}_{8 \mu+3} \subset(\mathbb{R} / \mathbb{Z}) \oplus(\mathbb{R} / 2 \mathbb{Z})^{3}, \quad \text { and } \quad \mathcal{A}_{8 \mu+7} \subset(\mathbb{R} / 2 \mathbb{Z}) \oplus(\mathbb{R} / \mathbb{Z})^{3} .
\end{aligned}
$$

Lemma 6.
(a) $\vec{\eta}\left(M_{Q}^{4 \nu-1}\right)=\left(2^{-1-2 \nu}\left(1+3 \cdot 2^{\nu}\right), 2^{-\nu}, 2^{-\nu}, 2^{-\nu}\right)$.
(b) $\vec{\eta}\left(M_{i}^{4 \nu-1}\right)=\left(2^{-2 \nu}\left(1+2^{\nu}\right), 0,2^{-\nu}, 2^{-\nu}\right)$.
(c) $\vec{\eta}\left(M_{j}^{4 \nu-1}\right)=\left(2^{-2 \nu}\left(1+2^{\nu}\right), 2^{-\nu}, 0,2^{-\nu}\right)$.
(d) $\vec{\eta}\left(M_{k}^{4 \nu-1}\right)=\left(2^{-2 \nu}\left(1+2^{\nu}\right), 2^{-\nu}, 2^{-\nu}, 0\right)$.
(e) $\mathcal{A}_{8 \mu+3} \cong\left(\mathbb{Z} / 2^{3+4 \mu}\right) \oplus\left(\mathbb{Z} / 2^{2 \mu}\right) \oplus\left(\mathbb{Z} / 2^{2 \mu+2}\right) \oplus\left(\mathbb{Z} / 2^{2 \mu+2}\right)$.
(f) $\mathcal{A}_{8 \mu+7} \cong\left(\mathbb{Z} / 2^{6+4 \mu}\right) \oplus\left(\mathbb{Z} / 2^{2 \mu}\right) \oplus\left(\mathbb{Z} / 2^{2 \mu+2}\right) \oplus\left(\mathbb{Z} / 2^{2 \mu+2}\right)$.
(g) $k o_{4 \nu-1}\left(B Q_{8}\right)$ is a finite 2-group and $\left|k o_{4 \nu-1}\left(B Q_{8}\right)\right| \leq\left|\mathcal{A}_{4 \nu-1}\right|$.

Proof. Let $a, b \in\{ \pm i, \pm j, \pm k\}$. Set $\varepsilon_{a, b}=0$ if $a=b$ and $\varepsilon_{a, b}=1$ if $a \neq b$. We prove the first 4 assertions of the lemma by computing:

$$
\begin{aligned}
& \operatorname{det}\left(\left(I_{2 \nu}-\tau_{\nu}\right)(-1)\right)=2^{2 \nu}, \quad \operatorname{det}\left(\left(I_{2 \nu}-\tau_{\nu}\right)(\pm a)\right)=2^{\nu}, \\
& \operatorname{Tr}((2-\tau)(-1))=4, \quad \operatorname{Tr}((2-\tau)(\pm a))=2, \\
& \operatorname{Tr}\left(\left(\varrho_{0}-\varrho_{a}\right)(-1)\right)=0, \quad \operatorname{Tr}\left(\left(\varrho_{0}-\varrho_{a}\right)(\pm b)\right)=2 \varepsilon_{a, b}, \\
& \vec{\eta}\left(M_{Q}^{4 \nu-1}\right)(2-\tau)=2^{-3}\left\{\operatorname{Tr}((2-\tau)(-1)) \cdot 2^{-2 \nu}+6 \operatorname{Tr}((2-\tau)(j)) \cdot 2^{-\nu}\right\}, \\
& \vec{\eta}\left(M_{Q}^{4 \nu-1}\right)\left(\varrho_{0}-\varrho_{a}\right)=2^{-3}\left\{4 \operatorname{Tr}\left(\left(\varrho_{0}-\varrho_{j}\right)(i)\right) \cdot 2^{-\nu}\right\}, \\
& \vec{\eta}\left(M_{a}^{4 \nu-1}\right)(2-\tau)=2^{-2}\left\{\operatorname{Tr}((2-\tau)(-1)) \cdot 2^{-2 \nu}+2 \operatorname{Tr}((2-\tau)(j)) \cdot 2^{-\nu}\right\}, \\
& \vec{\eta}\left(M_{a}^{4 \nu-1}\right)\left(\varrho_{0}-\varrho_{b}\right)=2^{-2}\left\{2 \operatorname{Tr}\left(\left(\varrho_{0}-\varrho_{b}\right)(a)\right) 2^{-\nu}\right\}=2^{-\nu} \varepsilon_{a, b} .
\end{aligned}
$$

We use Gaussian elimination on the eta matrix to prove the next 2 assertions of the lemma. Let A_{i} denote suitably chosen integers. We subtract the second row from the third and fourth rows to obtain the matrix

$$
\left(\begin{array}{cccc}
2^{-1-2 \nu}\left(1+3 \cdot 2^{\nu}\right) & 2^{-\nu} & 2^{-\nu} & 2^{-\nu} \\
2^{-2 \nu}\left(1+2^{\nu}\right) & 0 & 2^{-\nu} & 2^{-\nu} \\
0 & 2^{-\nu} & -2^{-\nu} & 0 \\
0 & 2^{-\nu} & 0 & -2^{-\nu}
\end{array}\right)
$$

We add the third and fourth rows to the first and second rows to obtain the matrix

$$
\left(\begin{array}{cccc}
2^{-1-2 \nu}\left(1+3 \cdot 2^{\nu}\right) & 3 \cdot 2^{-\nu} & 0 & 0 \\
2^{-2 \nu}\left(1+2^{\nu}\right) & 2^{1-\nu} & 0 & 0 \\
0 & 2^{-\nu} & -2^{-\nu} & 0 \\
0 & 2^{-\nu} & 0 & -2^{-\nu}
\end{array}\right)
$$

We add the third and fourth columns to the second column to obtain the matrix

$$
\left(\begin{array}{cccc}
2^{-1-2 \nu}\left(1+3 \cdot 2^{\nu}\right) & 3 \cdot 2^{-\nu} & 0 & 0 \\
2^{-2 \nu}\left(1+2^{\nu}\right) & 2^{1-\nu} & 0 & 0 \\
0 & 0 & -2^{-\nu} & 0 \\
0 & 0 & 0 & -2^{-\nu}
\end{array}\right)
$$

We multiply the first column by $-3\left(1-3 \cdot 2^{\nu}\right) 2^{\nu+1}$ and add it to the second column; since 2 divides $2^{\nu+1}$, this is permissible even if the first column is defined $\bmod \mathbb{Z}$ and the second column is defined $\bmod 2 \mathbb{Z}$. This yields the matrix

$$
\left(\begin{array}{cccc}
2^{-1-2 \nu}\left(1+3 \cdot 2^{\nu}\right) & 2 A_{1} & 0 & 0 \\
2^{-2 \nu}\left(1+2^{\nu}\right) & (1-3) 2^{1-\nu}+2 B_{1} & 0 & 0 \\
0 & 0 & -2^{-\nu} & 0 \\
0 & 0 & 0 & -2^{-\nu}
\end{array}\right)
$$

We subtract an appropriate multiple of the first row from the second row to put the eta matrix in the form $\operatorname{diag}\left(A_{3} 2^{-1-2 \nu}, A_{4} 2^{2-\nu},-2^{-\nu},-2^{-\nu}\right)$ for A_{3} and A_{4} odd. If $m=8 \mu+3$, then $\nu=2 \mu+1$. The first column is defined $\bmod \mathbb{Z}$, the remaining columns are defined $\bmod 2 \mathbb{Z}$, and assertion (e) follows. If $m=8 \mu+7$, then $\nu=2 \mu+2$. The first column is defined $\bmod 2 \mathbb{Z}$, the remaining columns are defined $\bmod \mathbb{Z}$, and assertion (f) follows.

We use the Atiyah-Hirzebruch spectral sequence to obtain an upper bound for the order of the groups $k o_{4 \nu-1}\left(B \mathbb{Z}_{n}\right)$ in order to prove the final assertion of the lemma. The E^{2} term in the spectral sequence for $k o_{m}\left(B Q_{8}\right)$ is given by

$$
E_{p, q}^{2}:=\bigoplus_{p+q=m} H_{p}\left(B Q_{8} ; k o_{q}\right)
$$

Consequently, we may estimate

$$
\left|k o_{4 \nu-1}\left(B \mathbb{Z}_{n}\right)\right| \leq\left|\bigoplus_{p+q=4 \nu-1} H_{p}\left(B Q_{8} ; k o_{q}\right)\right|
$$

We recall $H_{\nu}\left(B Q_{8} ; \mathbb{Z}\right)$ is periodic with period 4 for $\nu>0$ and $k o_{\nu}$ is periodic with period 8 for all ν. Let $2 \mathbb{Z}_{2}=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. Recall that

ν	0	1	2	3	4	5	6	7	8
$H_{\nu}\left(B Q_{8} ; \mathbb{Z}\right)$	\mathbb{Z}	$2 \mathbb{Z}_{2}$	0	\mathbb{Z}_{8}	0	$2 \mathbb{Z}_{2}$	0	\mathbb{Z}_{8}	0
$b o_{\nu}$	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	0	\mathbb{Z}	0	0	0	\mathbb{Z}

We complete the proof of the lemma by checking that

$$
\left|\bigoplus_{p+q=4 \nu-1} H_{p}\left(B Q_{8} ; k o_{q}\right)\right|=\left|\mathcal{A}_{4 \nu-1}\right| .
$$

Proof of Theorem 1. Since $\vec{\eta}$ extends to $k o_{4 \nu-1}\left(B Q_{8}\right)$, since range $(\vec{\eta})$ contains $\mathcal{A}_{4 \nu-1}$ and since $\left|k o_{4 \nu-1}\left(B Q_{8}\right)\right| \leq\left|\mathcal{A}_{4 \nu-1}\right|, \vec{\eta}^{k o}$ is an isomorphism in these dimensions.

REmARK. We have shown as a byproduct that the eta invariant completely detects $k o_{4 \nu-1}\left(B Q_{8}\right)$. The corresponding assertion holds true for the higher quaternion spherical space form groups despite the fact that we do not know the explicit additive structure; we refer to [5, Corollary 2.13 for details].

References

[1] M. F. Atiyah, V. K. Patodi and I. M. Singer, Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69.
[2] D. Bayen and R. Bruner, The real connective K-homology of $B G$ for groups G with Q_{8} as Sylow 2-subgroup, Trans. Amer. Math. Soc. (to appear).
[3] A. L. Besse, Einstein Manifolds, Ergeb. Math. Grenzgeb. (3), vol. 10, Springer-Verlag, Berlin, 1987.
[4] J. Bismut and J. Cheeger, η invariants and their adiabatic limits, J. Amer. Math. Soc. 2 (1989), 33-70.
[5] B. Botvinnik, P. Gilkey, and S. Stolz, The Gromov-Lawson-Rosenberg conjecture for groups with periodic cohomology, IHES preprint IHES-M-94-62.
[6] H. Donnelly, Eta invariants for G spaces, Indiana Univ. Math. J. 27 (1978), 889-918.
[7] P. Gilkey, The eta invariant and the K theory of odd dimensional spherical space forms, Invent. Math. 76 (1984), 421-453.
[8] P. Gilkey, The eta invariant and the equivariant unitary bordism of spherical space form groups, Compositio Math. 65 (1988), 35-50.
[9] , Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, 2nd ed., Stud. Adv. Math., CRC Press, Boca Raton, Fla., 1995.
[10] N. Hitchin, Harmonic spinors, Adv. in Math. 14 (1974), 1-55.
[11] S. Stolz, Splitting certain MSpin module spectra, Topology 33 (1994), 159-180.
P. Gilkey and B. Botvinnik

Mathematics Department
University of Oregon
Eugene, OR 97403, USA
E-mail addresses: botvinn@math.uoregon.edu gilkey@math.uoregon.edu

[^0]: 1991 Mathematics Subject Classification. Primary 19L41, 58G12; Secondary 55R35, 58G25, 53A50, 55N22.

 Key words and phrases. Eta invariant, connective K-theory.
 Research of the second author partially supported by the NSF (USA) and IHES (France).

