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Introduction

The research of the number of solutions for elliptic boundary problems with
jumping nonlinearities is closely linked with the properties of the resonance set,
that is,

Σ = {(α, β) ∈ R
2 | ∆u+ αu+ − βu− = 0 has a nontrivial solution in H1

0 (Ω)},

where Ω is a bounded smooth domain, u+ = max(u, 0) and u− = −min(u, 0).
The study of Σ turns out to be difficult except when Ω is an interval in R.

Therefore it is interesting to have some information about the resonance set, as
precise as possible.

In [GK] the authors showed that if λk is a simple eigenvalue of −∆ then
Σ∩]λk−1, λk+1[2 coincides with two continuous curves through the point (λk, λk).
In [DeFG] the authors characterized a curve γ through the point (λ2, λ2) which
belongs to Σ such that Σ∩{(α, β) ∈ R

2 | λ1 < β < γ(α), α > λ1} = ∅. Finally, in
[MMP] and [M] the following result was shown: if k ≥ 2 is such that λk < λk+1

then there exist two continuous curves (α, ϕk+1(α)), through (λk+1, λk+1), and
(α, ψk(α)), through (λk, λk), which respectively lie in the sets Σ∩ ]λk,+∞[2 and
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Σ ∩ ]−∞, λk+1[2, with the property

Σ ∩ ({(α, β) ∈ R
2 | α > λk, λk < β < ϕk+1(α)}

∪ {(α, β) ∈ R
2 | α < λk+1, ψk(α) < β < λk+1}) = ∅.

Our goal in this paper is to show that also the sets

{(α, λk) | λk ≤ α < α} with ϕk+1(α) = λk

and
{(α, λk+1) | α < α ≤ λk+1} with ψk(α) = λk+1

do not intersect Σ. In order to prove that, we need to use a characterization of
the curves ϕk+1 and ψk different from both the one given in [M] and the one
given in [MMP]. Finally, in §1 we obtain our main result (see (1.33)).

Theorem. Let k ≥ 2 with λk < λk+1. There exists an open connected set
Sk such that

Sk ⊃ {(α, β) ∈ R
2 | λk ≤ α < α, λk ≤ β < ϕk+1(α)}

∪ {(α, β) ∈ R
2 | α < α ≤ λk+1, ψk(α) < β ≤ λk+1}

(where α is the unique solution of ψk(α) = λk+1 and α is the unique solution
of ϕk+1(α) = λk) with the property Sk ∩ Σ = ∅ (see Fig. 1).

Figure 1
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Moreover, in §2 we use the above statement to prove (see Theorem (2.1)) the
existence of three solutions of a jumping problem in the region Sk ∩ {(α, β) ∈
R

2 | α > λk+1 or α < λk}.

1. The statement

We recall some basic definitions and set up some terminology.

(1.1) Definition. Let (λn)n≥1 be the sequence of eigenvalues of the prob-
lem ∆u + λu = 0, u ∈ H1

0 (Ω). We recall that 0 < λ1 < λ2 ≤ . . . ≤ λi ≤ . . .

and limn λn = +∞. Let en be an eigenfunction corresponding to λn, with
‖en‖L2(Ω) = 1. We can choose e1 such that e1 > 0 in Ω. Moreover, set
Hi = span(e1, . . . , ei) and H⊥

i = {w ∈ H1
0 (Ω) | (u,w) = 0 ∀u ∈ Hi}.

(1.2) Definition. If (α, β) ∈ R
2, define the functional Qα,β : H1

0 (Ω) → R

by

Qα,β(u) =
∫

Ω

(|∇u|2 − α(u+)2 − β(u−)2).

(1.3) Definition. If i ≥ 1, define

Mi(α, β) = {u ∈ H1
0 (Ω) | Q′

α,β(u)(v) = 0 ∀v ∈ Hi}.

(1.4) Remark. It is well known that if α > λi and β > λi then Mi(α, β)
is the graph of a positive homogeneous and Lipschitz continuous map γi(α, β) :
H⊥

i → Hi, which is characterized by the property

∀w ∈ H⊥
i ∃1γi(α, β)(w) ∈ Hi such that Qα,β(γi(α, β)(w)+w) = max

v∈Hi

Qα,β(v+w).

First of all we extend the above statement to the case when either α = λi or
β = λi.

(1.5) Proposition. Let i ≥ 2. If either α > λi and β = λi or α = λi and
β > λi, then Mi(α, β) is the graph of a positive homogeneous and continuous
map γi(α, β) : H⊥

i → Hi.

Proof. To fix ideas, we assume α > λi and β = λi.

Step 1. ∀w ∈ H⊥
i ∃v ∈ Hi such that Qα,λi(v +w) = maxv∈Hi Qα,λi(v +w).

It is enough to observe that for fixed w ∈ H⊥
i ,

(1.6) lim
v∈Hi

‖v‖→+∞
Qα,λi(v + w) = −∞.

Let (vn)n∈N in Hi be such that limn ‖vn‖ = +∞. We can assume that, up to
a subsequence, limn vn/‖vn‖ = v strongly in H1

0 (Ω). In particular, v ∈ Hi and
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‖v‖ = 1. Therefore we get

lim
n

Qα,λi(vn + w)
‖vn‖2 = 1 − α

∫
Ω

(v+)2 − λi

∫
Ω

(v−)2 = Qα,λi(v).

We obtain (1.6) by using the following property:

(1.7) max
v∈Hi

‖v‖=1

Qα,λi(v) < 0.

Let us prove (1.7). First of all, since v ∈ Hi, we have
∫
Ω
|∇v|2 ≤ λi

∫
Ω
v2 and

so Qα,λi(v) ≤ (λi − α)
∫
Ω(v+)2 ≤ 0, because α > λi. Secondly, arguing by

contradiction, if Qα,λi(v) = 0 then v+ = 0; so 0 = Qα,λi(v) =
∫
Ω|∇v|2 −λi

∫
Ωv

2.

This implies v ∈ Ker(∆ − λiI); so v changes sign in Ω, because i ≥ 2. Finally,
since v+ = 0, we have v = 0, which contradicts the fact that ‖v‖ = 1.

Step 2. ∀w ∈ H⊥
i ∃1v ∈ Hi such that Q′

α,λi
(v + w)(v) = 0 ∀v ∈ Hi.

Arguing by contradiction, suppose that there exist v1 ∈ Hi and v2 ∈ Hi such
that v1 �= v2 and Q′

α,λi
(v1 + w)(v) = 0 and Q′

α,λi
(v2 + w)(v) = 0 for all v ∈ Hi.

In particular, if v = v1 − v2 we obtain∫
Ω

∇v1∇(v1 − v2) − α(w + v1)+(v1 − v2) + λi(w + v1)−(v1 − v2) = 0

and ∫
Ω

∇v2∇(v1 − v2) − α(w + v2)+(v1 − v2) + λi(w + v2)−(v1 − v2) = 0.

Therefore

(1.8)
∫

Ω

|∇(v1 − v2)|2

=
∫

Ω

{α[(w + v1)+ − (w + v2)+] − λi[(w + v1)− − (w + v2)−]}(v1 − v2).

First of all, observe that

(1.9) λi(t− s)2 ≤ (α(t+ − s+) − λi(t− − s−))(t − s) ≤ α(t− s)2 ∀t, s ∈ R.

By (1.9) and (1.8) we get λi

∫
Ω(v1−v2)2 ≤ ‖v1 − v2‖2 ≤ α

∫
Ω(v1−v2)2. However,

since v1 − v2 ∈ Hi, we also have

(1.10) ‖v1 − v2‖2 = λi

∫
Ω

(v1 − v2)2.

In particular, we deduce v1 − v2 ∈ Ker(∆−λiI) \ {0} and so, since i ≥ 2, we get

(1.11) meas{x ∈ Ω | v1(x) = v2(x)} = 0.
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On the other hand, if we consider again the expression (1.8), by using (1.10),
we deduce

0 =
∫

Ω

{α[(w+v1)+−(w+v2)+]−λi[(w+v1)−−(w+v2)−]}(v1−v2)−λi(v1−v2)2;

by taking into account that the integrand is positive in Ω in view of (1.9), we
also get

(1.12) {α[(w + v1)+ − (w + v2)+] − λi[(w + v1)− − (w + v2)−]}(v1 − v2)

= λi(v1 − v2)2 a.e. in Ω.

Finally, by (1.12) and (1.11) we deduce that (w+ v1)(x) ≤ 0 and (w+ v2)(x)
≤ 0 a.e. in Ω. In fact, if (w+ v1)(x) > 0 and (w+ v2)(x) > 0 on a set of positive
measure, then by (1.12) we get (α−λi)(v1(x)−v2(x))2 = 0 and so v1(x) = v2(x)
on such a set, which is absurd; on the other hand, if (w + v1)(x) > 0 and
(w + v2)(x) ≤ 0 on a set of positive measure, then by (1.12) we get again
(α − λi)(w(x) + v1(x))(v1(x) − v2(x)) = 0 and so v1(x) = v2(x) (similarly if
(w + v1)(x) ≤ 0 and (w + v2)(x) > 0).

We will get a final contradiction by showing that the functions w + v1 �= 0
and w+ v2 �= 0 have to change sign in Ω. In fact, since Q′

α,λi
(v1 +w)(v) = 0 for

all v ∈ Hi, we have ∆(v1 +w)+α(v1 +w)+ −λi(v1 +w)− ∈ H⊥
i . If (v1 +w)+ = 0

then either v1 +w ∈ Ker(∆− λiI) or v1 +w ∈ H⊥
i ; so it follows that v1 +w = 0

a.e. in Ω, which is absurd. On the other hand, if (v1+w)− = 0 then v1+w ∈ H⊥
i ,

and so we have again a contradiction.

Step 3. The function γi(α, λi) : H⊥
i → Hi defined by

(1.13) Qα,λi(γi(α, λi)(w) + w) = max
v∈Hi

Qα,λi(v + w)

is positive homogeneous and continuous from H⊥
i equipped with the weak topology.

It is easy to verify that γi(α, λi) is positive homogeneous, that is, γi(α, λi)(tw)
= tγi(α, λi)(w) for all w ∈ H⊥

i and for all t ≥ 0.
Let us prove the continuity of γi(α, λi). Let (wn)n∈N and w in H⊥

i be such
that limn wn = w weakly in H⊥

i . If vn = γi(α, λi)(wn) by (1.13) we get

(1.14) vn − PHii
∗(α(vn + wn)+ − λi(vn + wn)−) = 0,

where PHi : H1
0 (Ω) → Hi denotes the orthogonal projection and i∗ is the adjoint

operator of the Sobolev imbedding i : H1
0 (Ω) → L2(Ω).

First of all we observe that the sequence (vn)n∈N is bounded. In fact, arguing
by contradiction, we can assume that, up to a subsequence, limn vn/‖vn‖ = v

strongly in H1
0 (Ω). In particular, v ∈ Hi and ‖v‖ = 1. As a result, if we multiply

(1.14) by vn/‖vn‖2 and pass to the limit, we get 0 = 1−α∫
Ω
(v+)2−λi

∫
Ω
(v−)2 =

Qα,λi(v), which is absurd in virtue of (1.7).
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Therefore, we can assume that limn vn = v strongly in H1
0 (Ω); finally, by

(1.14) we obtain v−PHii
∗(α(v+w)+−λi(v+w)−) = 0, and then v = γi(α, λi)(w),

by uniqueness (see Step 2). �

(1.15) Definition. Let i ≥ 2. If α ≥ λi and β ≥ λi with (α, β) �= (λi, λi),
set

mi(α, β) = inf
w∈H⊥

i

‖w‖=1

Qα,β(γi(α, β)(w) + w).

(1.16) Remark. We point out that if mi(α, β) > 0 then (α, β) �∈ Σ. In fact,
if (α, β) ∈ Σ then there exists u ∈ H1

0 (Ω), u �= 0, such that ∆u+αu+−βu− = 0.
Therefore u ∈ Mi(α, β) and Qα,β(u) = 0. It follows that mi(α, β) ≤ 0.

At this stage, by the properties of mi, we will find a region in the (α, β) plane
where mi(α, β) > 0 and give a characterization of the number α = sup{α > λi |
(α, λi) �∈ Σ}.

(1.17) Lemma. Let i ≥ 2 be such that λi < λi+1. If α ≥ λi and β ≥ λi

with (α, β) �= (λi, λi), then the function mi has the following properties:

(a) mi(α, β) = mi(β, α);
(b) mi is continuous with respect to (α, β);
(c) mi is strictly decreasing with respect to both α and β;
(d) mi(λi+1, λi+1) = 0;
(e) α > λi+1, β > λi+1 ⇒ mi(α, β) < 0;
(f) α < λi+1, β < λi+1 ⇒ mi(α, β) > 0;
(g) α ≥ λi ⇒ limβ→+∞mi(α, β) = −∞.

Proof. (a) This is an immediate consequence of the property γi(α, β)(−w)
= −γi(β, α)(w) for all w ∈ H⊥

i .

(b) Let (αn)n∈N and (βn)n∈N be such that limn αn = α > λi, limn βn = β ≥
λi and α ≥ β. We show that limnmi(αn, βn) = mi(α, β).

By the definition of mi, for ε > 0 there exists (wn)n∈N in H⊥
i with ‖wn‖ = 1

such that limn wn = w weakly in H⊥
i and

(1.18) mi(αn, βn) ≤ Qαn,βn(γi(αn, βn)(wn) + wn) ≤ mi(αn, βn) + ε.

Set γi(αn, βn)(wn) = vn. We also recall that

(1.19) vn − PHii
∗(αn(vn + wn)+ − βn(vn + wn)−) = 0,

where PHi : H1
0 (Ω) → Hi denotes the orthogonal projection and i∗ is the adjoint

operator of the Sobolev imbedding i : H1
0 (Ω) → L2(Ω).

Observe that the sequence (vn)n∈N is bounded. In fact, arguing by contra-
diction, we can assume that, up to a subsequence, limn vn/‖vn‖ = v strongly in
H1

0 (Ω). In particular, v ∈ Hi and ‖v‖ = 1. As a result, if we divide (1.19) by ‖vn‖
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and pass to the limit, we get v−PHii
∗(α(v+w)+−λi(v+w)−) = 0, which implies

Qα,β(v) = 0. On the other hand, since β ≤ λi, we have Qα,β(v) ≤ Qα,λi(v) < 0,
by (1.7). Thus a contradiction arises.

That is why we can assume that, up to a subsequence, limn vn = v strongly
in H1

0 (Ω); finally, by passing to the limit in (1.19) we obtain

v − PHii
∗(α(v + w)+ − λi(v + w)−) = 0,

and then v = γi(α, λi)(w) by uniqueness (see Step 2 in the proof of Proposi-
tion (1.5)).

Moreover, by (1.18), ε being arbitrary, we obtain

lim
n
mi(αn, βn) = 1 +

∫
Ω

|∇v|2 − α

∫
Ω

((v + w)+)2 − β

∫
Ω

((v + w)−)2.

Now we claim that

(1.20) lim
n
mi(αn, βn) ≤ mi(α, β).

In fact, by the second inequality of (1.18) and by the definition (1.15), it follows
that for all w ∈ H⊥

i with ‖w‖ = 1,

Qαn,βn(vn + wn) ≤ Qαn,βn(γi(αn, βn)(w) + w) + ε

and, by passing to the limit,

1 +
∫

Ω

|∇v|2 − α

∫
Ω

((v + w)+)2 − β

∫
Ω

((v + w)−)2 ≤ Qα,β(γi(α, β)(w) + w) + ε;

so (1.20) follows.
Finally, we show that,

(1.21) lim
n
mi(αn, βn) ≥ mi(α, β).

First, if w = 0 then also v = 0; so limnmi(αn, βn) = 1. On the other hand, for
all w ∈ H⊥

i with ‖w‖ = 1,

mi(α, β) ≤ Qα,β(γi(α, β)(w) + w)

= 1 +
∫

Ω

|∇γi(α, β)(w)|2 − α

∫
Ω

((γi(α, β)(w) + w)+)2

− β

∫
Ω

((γi(α, β)(w) + w)−)2 ≤ 1,

since α ≥ β ≥ λi and γi(α, β)(w) ∈ Hi. Therefore (1.21) follows.
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Next, if w �= 0 then we put w∗ = w/‖w‖ and so

mi(α, β) ≤ Qα,β(γi(α, β)(w∗) + w∗)

= 1 +
1

‖w‖
(∫

Ω

|∇γi(α, β)(w)|2 − α

∫
Ω

((γi(α, β)(w) + w)+)2

− β

∫
Ω

((γi(α, β)(w) + w)−)2
)

≤ 1 +
∫

Ω

|∇γi(α, β)(w)|2 − α

∫
Ω

((γi(α, β)(w) + w)+)2

− β

∫
Ω

((γi(α, β)(w) + w)−)2

= lim
n
mi(αn, βn).

Therefore (1.21) also holds in this case.
(c) Let α > λi and β′ > β ≥ λi. We will show that mi(α, β) > mi(α, β′). By

the definition of γi(α, β) we get, for any w ∈ H⊥
i ,

Qα,β(γi(α, β)(w) + w) ≥ Qα,β(γi(α, β′)(w) + w)

= Qα,β′(γi(α, β′)(w) + w)

+ (β − β′)
∫

Ω

((γi(α, β′)(w) + w)−)2

≥ mi(α, β′) + (β − β′) min
w∈H⊥

i

‖w‖=1

∫
Ω

((γi(α, β′)(w) + w)−)2.

As a result we obtain

mi(α, β) ≥ mi(α, β′) + (β − β′) min
w∈H⊥

i

‖w‖=1

∫
Ω

((γi(α, β′)(w) + w)−)2.

In order to get our claim, it is enough to prove that for any α > λi and
β ≥ λi, if u ∈ M(α, β) \ {0} then u− �= 0. In fact, if u ∈ M(α, β) \ {0}, then
u = γi(α, β)(w) + w with w ∈ H⊥

i , w �= 0. Suppose u− = 0. If γi(α, β)(w) = 0,
then u = w ∈ H⊥

i and so u = 0. On the other hand, if γi(α, β)(w) �= 0, then by
the definition of γi(α, β) and by (1.7) we get

0 = Q′
α,β(u)(γi(α, β)(w)) = 2Qα,β(γi(α, β)(w)) ≤ 2Qα,λi(γi(α, β)(w)) < 0,

which is absurd.
(d) First, if w ∈ H⊥

i , then γi(λi+1, λi+1)(w) = 0; in fact, by the definition of
γi(λi+1, λi+1) we have ∆γi(λi+1, λi+1)(w) − λi+1(γi(λi+1, λi+1)(w) + w) ∈ H⊥

i ,

which implies γi(λi+1, λi+1)(w) = 0, since γi(λi+1, λi+1)(w) ∈ Hi. Moreover, for
any w ∈ H⊥

i ,

Qλi+1,λi+1(γi(λi+1, λi+1)(w) + w) =
∫

Ω

|∇w|2 − λi+1

∫
Ω

w2 ≥ 0.
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Then if w ∈ Ker(∆ − λi+1I), we get our claim.
(e) If w ∈ Ker(∆ − λi+1I), w �= 0, then for any v ∈ Hi,

Qα,β(v + w) =
∫

Ω

|∇(v + w)|2 − α

∫
Ω

((v + w)+)2 − β

∫
Ω

((v + w)−)2

≤ (λi+1 − α)
∫

Ω

((v + w)+)2 + (λi+1 − β)
∫

Ω

((v + w)−)2 < 0.

(f) If w ∈ H⊥
i , w �= 0, then

Qα,β(w) =
∫

Ω

|∇w|2 − α

∫
Ω

(w+)2 − β

∫
Ω

(w−)2

≥ (λi+1 − α)
∫

Ω

(w+)2 + (λi+1 − β)
∫

Ω

(w−)2 > 0.

(g) First, observe that there is w∗ ∈ H⊥
i with ‖w∗‖ = 1 such that (w∗ +Hi)∩

{u ∈ H1
0 (Ω) | u ≥ 0 a.e. in Ω} = ∅. In fact, if n ≥ 2 we can choose w0 ∈ H1

0 (Ω)
with ess inf w0 = −∞ and if n = 1 we can choose w0(x) = [dist(x, ∂Ω)]δ with
1/2 < δ < 1; so w∗ denotes the component of w0 on H⊥

i normalized in H1
0 (Ω).

Therefore it is enough to prove that if α ≥ λi then

lim
β→+∞

Qα,β(γi(α, β)(w∗) + w∗) = −∞.

Let (βn)n∈N be such that limn βn = +∞ and set vn = γi(α, βn)(w∗). We have

Qα,βn(vn + w∗) = 1 + ‖vn‖2 − α

∫
Ω

((vn + w∗)+)2(1.22)

− βn

∫
Ω

((vn + w∗)−)2.

Now if (vn)n∈N is bounded then, up to a subsequence, limn vn = v ∈ Hi in H1
0 (Ω)

and (v + w∗)− �= 0, by the property of w∗; so limnQα,βn(vn + w∗) = −∞.

On the other hand, if limn ‖vn‖ = +∞, we can suppose limn vn/‖vn‖ = v ∈
Hi in H1

0 (Ω), ‖v‖ = 1. If, by contradiction, (Qα,βn(vn +w∗))n∈N is bounded from
below, from (1.22) (dividing by ‖vn‖2 and passing to the limit) we get v ≥ 0 a.e.
in Ω. Moreover, since

Qα,βn(vn + w∗) ≤ ‖vn‖2 − α

∫
Ω

((vn + w∗)+)2

we also obtain

0 ≤ 1 − α

∫
Ω

v2 ≤ 1 − α

λi
.

Finally, if α > λi a contradiction arises immediately; if α = λi we get v ∈
Ker(∆ − λiI) \ {0}, which is absurd because v ≥ 0 a.e. in Ω. �

From Lemma (1.17) we deduce immediately the following result.
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(1.23) Proposition. Let i ≥ 2 be such that λi < λi+1. There exist a unique
α > λi+1 and a continuous strictly decreasing map ϕi+1 : [λi, α] → [λi, α] such
that ϕi+1(λi+1) = λi+1, ϕi+1(α) = λi and ϕi+1 ◦ ϕi+1 = I, with the property

λi ≤ β < ϕi+1(α) ⇔ mi(α, β) > 0.

(1.24) Remark. By (1.16) and (1.23), the number α = sup{α > λi | (α, λi)
�∈ Σ} satisfies α > λi+1 and ϕi+1(α) = λi. Moreover, ϕi+1(λi) = α = sup{β >
λi | (λi, β) �∈ Σ}.

(1.25) Remark. It is easy to prove that the functions defined in (1.23)
coincide with the functions µi+1 introduced in [MMP] and the functions J−
introduced in [M].

Now we will give a characterization of inf{β < λk+1 | (λk+1, β) �∈ Σ} for
k ≥ 1. We are not able to proceed as in the previous case, since the set

Nk(α, β) = {u ∈ H1
0 (Ω) | Q′

α,β(u)(w) = 0 ∀w ∈ H⊥
k },

which is the graph of a suitable map when α < λk+1 and β < λk+1, does not have
this property when either α < λk+1 and β = λk+1 or α = λk+1 and β < λk+1.

In fact, the following result holds.

(1.26) Remark. If β ≤ λk+1, then there exist infinitely many w ∈ H⊥
k such

that

Qλk+1,β(e1 + w) = min
w∈H⊥

k

Qλk+1,β(e1 + w).

Indeed, since w ∈ H⊥
k and β < λk+1, we have

Qλk+1,β(e1 + w) = Qλk+1,β(e1) +
∫

Ω

|∇w|2 − λk+1

∫
Ω

w2

+ (λk+1 − β)
∫

Ω

((e1 + w)−)2

≥ Qλk+1,β(e1).

Moreover, there exists 
 > 0 such that e1 + 
e > 0 for all e ∈ Ker(∆ − λk+1I)
with ‖e‖ = 1. Hence

Qλk+1,β(e1 + 
e) = Qλk+1,β(e1) + 
2

(∫
Ω

|∇e|2 − λk+1

∫
Ω

e2
)

= Qλk+1,β(e1).

The previous remark suggests to proceed in the following different way.

(1.27) Definition. If k ≥ 2 define

Zk(α, β) = {u ∈ H1
0 (Ω) | Q′

α,β(u)(z) = 0 ∀z ∈ H1 ⊕ H⊥
k }.
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(1.27) Remark. It is well known that if λ1 < α < λk+1 and λ1 < β < λk+1

then Zk(α, β) is the graph of a positive homogeneous and Lipschitz continuous
map ζk(α, β) : Hk ∩ H⊥

1 → H1 ⊕ H⊥
k , which is characterized by the property

∀v ∈ Hk ∩ H⊥
1 ∃1ζk(α, β)(v) ∈ H1 ⊕ H⊥

k such that

Qα,β(v + ζk(α, β)(v)) = min
w∈H⊥

k

max
s∈R

Qα,β(se1 + v + w).

We extend this to the case when either α = λk+1 or β = λk+1.

(1.29) Proposition. Let k ≥ 2. If either α < λk+1 and β = λk+1 or α =
λk+1 and β < λk+1, then the set Zk(α, β) is the graph of a positive homogeneous
and continuous map ζk(α, β) : Hk ∩ H⊥

1 → H1 ⊕ H⊥
k .

Proof. The proof is similar to that of Proposition (1.5). We only point
out the following properties. For simplicity we consider the case α = λk+1 and
β < λk+1.

∀v ∈ Hk ∩ H⊥
1 , ∀w ∈ H⊥

k , lim
|s|→+∞

Qα,β(se1 + v + w) = −∞,

∀v ∈ Hk ∩ H⊥
1 , ∀w ∈ H⊥

k , s→ Qα,β(se1 + v + w) is strictly concave,

∀v ∈ Hk ∩ H⊥
1 , ∀s ∈ R, lim

w∈H⊥
k

‖w‖→+∞

Qα,β(se1 + v + w) = +∞,

∀v ∈ Hk ∩ H⊥
1 , ∀s ∈ R, w → Qα,β(se1 + v + w) is weakly convex.

As a result, in virtue of [Ro] and [EK], we deduce that

∀v ∈ Hk ∩ H⊥
1 ∃1s ∈ R ∃w ∈ H⊥

k such that

Qα,β(se1 + v + w) = min
w∈H⊥

k

max
s∈R

Qα,β(se1 + v + w).

Arguing as in the second step of the proof of (1.5), we can show the uniqueness
of w. �

Using a similar argument to the proof of Proposition (1.23), we obtain the
following result.

(1.30) Proposition. Let k ≥ 2 be such that λk < λk+1. There exist a
unique α < λk and a continuous strictly decreasing map ψk : [α, λk+1] →
[α, λk+1] such that ψk(λk) = λk, ψk(α) = λk+1 and ψk ◦ ψk = I, with the
property

ψk(α) < β ≤ λk+1 ⇔ inf
v∈Hk∩H⊥

1
‖v‖=1

Qα,β(v + ζk(α, β)(v)) < 0 (⇒ (α, β) �∈ Σ).

(1.31) Remark. As in (1.24), the number α = inf{β < λk+1 | (λk+1, β)
�∈ Σ} satisfies α < λk and ψk(α) = λk+1. Moreover, ψk(λk+1) = α = inf{α <

λk+1 | (α, λk+1) �∈ Σ}.
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(1.32) Remark. It is easy to prove that the functions defined in (1.30) coin-
cide with the functions νk introduced in [MMP] and the functions J+ introduced
in [M].

Finally, we get our main result.

(1.33) Theorem. Let k ≥ 2 with λk < λk+1. There exists an open connected
set Sk such that

Sk ⊃ {(α, β) ∈ R
2 | λk ≤ α < α, λk ≤ β < ϕk+1(α)}

∪ {(α, β) ∈ R
2 | α < α ≤ λk+1, ψk(α) < β ≤ λk+1},

(where α is the unique solution of ψk(α) = λk+1 (see (1.30)) and α is the unique
solution of ϕk+1(α) = λk (see (1.23))), with the property Sk ∩ Σ = ∅.

Proof. It is well known that the resonance set Σ is closed in R
2. Our claim

follows by (1.16), (1.23), (1.24) and also (1.30), (1.31). �

2. An application

Let Ω ⊂ R
N be an open bounded smooth domain and g : Ω × R → R be a

C1 function, with |∂g(x, s)/∂s| ≤ c(1 + |u|p), where c ∈ R and p < 4/(N − 2),
such that

(g, α, β)

{ |g(x, s)| ≤ a(x) + b|s| a.e. in Ω, ∀s ∈ R, with a ∈ L2(Ω), b ∈ R;

lims→+∞ g(x, s)/s = α and lims→−∞ g(x, s)/s = β a.e. in Ω.

We are interested in the problem

(Pt)

{
∆u+ g(x, u) = te1 in Ω,

u = 0 on ∂Ω,

where t ∈ R and e1 is the positive eigenfunction, normalized in L2(Ω), associated
with the first eigenvalue of −∆ on H1

0 (Ω).

(2.1) Theorem. Let k ≥ 2 be such that λk < λk+1. Assume (g, α, β) with
(α, β) ∈ Sk and either α > λk+1 or α < λk. If the problem (Pt) admits only
nondegenerate solutions for t positive and large enough, then (Pt) has at least
three solutions for t positive and large enough.

Proof. We consider the following functional ft : H1
0 (Ω) → R:

ft(u) =
∫

Ω

(
1
2
|∇u|2 −

∫ u(x)

0

g(x, σ) dσ + te1u

)
dx,

whose critical points are (weak) solutions of (Pt).
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Let λk < λk+1 = . . . = λk+ν < λk+ν+1. The assumption (α, β) ∈ Sk and
α > λk+1 enable us to use the “links and bounds” theorem (see Th. (6.6)) of
[MMP]. Therefore the functional ft has two critical points u1 and u2 such that

inf
∆
ft ≤ ft(u1) ≤ sup

∂B
ft < inf

Σ
ft ≤ ft(u2) ≤ sup

B
ft,

where

B =
{

t

α− λ1
e1 + v

∣∣∣∣ v ∈ Hk+ν , ‖v‖ ≤ r

}
and ∂B = the boundary of B in Hk+ν ,

∆ =
{

t

α− λ1
e1 + σe+ w

∣∣∣∣ σ ≥ 0, w ∈ H⊥
k+ν , ‖σe+ w‖ ≤ 


}
,

where e ∈ Hk+ν , e �= 0,

Σ = the boundary of ∆ in H⊥
k+ν ⊕ span(e) and 
 > r.

By assumption u1 and u2 are nondegenerate, therefore we can evaluate their
Leray–Schauder indices:

i(∇ft, u1) = (−1)k+ν−1 and i(∇ft, u2) = (−1)k+ν .

On the other hand, there exists a path θ : [0, 1] → R
2 \ Σ joining (α, β) to the

set {(λ, λ) | λ ∈ R, λ �= λi}, because (α, β) ∈ Sk. This property ensures (see
Th. 6 of [D1]) that for R positive and large enough, deg(∇f,BR(0), 0) = (−1)k.

By the additive property of the degree, we get our claim. �

In [Ra1] a result of the same type was obtained.

(2.2) Remark. We point out that the assumption g ∈ C1(Ω × R) can be
weakened. It is enough to assume that g is a Carathéodory function such that
(∇ft)′(u) : H1

0 (Ω) → H1
0 (Ω) is a continuous and symmetric operator for any

critical point u of the functional ft. In such a case u is a nondegenerate solution
of (Pt) if (∇ft)′(u) is an isomorphism.
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problèmes demi-linéaires à l’infini, Ann. Fac. Sci. Toulouse 3 (1981), 201–246.

[GM] F. Giannoni and A. M. Micheletti, Some remarks about elliptic problems with
jumping nonlinearities, Rend. Mat. 7 (1987), 145–157.

[K] O. Kavian, Quelques remarques sur le spectre demi-linéaire de certains opérateurs
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