A NOTE ON THE RESONANCE SET FOR A SEMILINEAR ELLIPTIC EQUATION AND AN APPLICATION TO JUMPING NONLINEARITIES

A. M. Micheletti - A. Pistoia

Dedicated to Louis Nirenberg on the occasion of his 70th birthday

Introduction

The research of the number of solutions for elliptic boundary problems with jumping nonlinearities is closely linked with the properties of the resonance set, that is,

$$
\Sigma=\left\{(\alpha, \beta) \in \mathbb{R}^{2} \mid \Delta u+\alpha u^{+}-\beta u^{-}=0 \text { has a nontrivial solution in } H_{0}^{1}(\Omega)\right\}
$$

where Ω is a bounded smooth domain, $u^{+}=\max (u, 0)$ and $u^{-}=-\min (u, 0)$. The study of Σ turns out to be difficult except when Ω is an interval in \mathbb{R}. Therefore it is interesting to have some information about the resonance set, as precise as possible.

In [GK] the authors showed that if λ_{k} is a simple eigenvalue of $-\Delta$ then $\Sigma \cap] \lambda_{k-1}, \lambda_{k+1}\left[{ }^{2}\right.$ coincides with two continuous curves through the point $\left(\lambda_{k}, \lambda_{k}\right)$. In [DeFG] the authors characterized a curve γ through the point $\left(\lambda_{2}, \lambda_{2}\right)$ which belongs to Σ such that $\Sigma \cap\left\{(\alpha, \beta) \in \mathbb{R}^{2} \mid \lambda_{1}<\beta<\gamma(\alpha), \alpha>\lambda_{1}\right\}=\emptyset$. Finally, in [MMP] and [M] the following result was shown: if $k \geq 2$ is such that $\lambda_{k}<\lambda_{k+1}$ then there exist two continuous curves $\left(\alpha, \varphi_{k+1}(\alpha)\right)$, through $\left(\lambda_{k+1}, \lambda_{k+1}\right)$, and $\left(\alpha, \psi_{k}(\alpha)\right)$, through $\left(\lambda_{k}, \lambda_{k}\right)$, which respectively lie in the sets $\left.\Sigma \cap\right] \lambda_{k},+\infty\left[{ }^{2}\right.$ and

[^0]$\Sigma \cap]-\infty, \lambda_{k+1}\left[{ }^{2}\right.$, with the property
\[

$$
\begin{aligned}
\Sigma \cap\left(\left\{(\alpha, \beta) \in \mathbb{R}^{2} \mid \alpha>\right.\right. & \left.\lambda_{k}, \lambda_{k}<\beta<\varphi_{k+1}(\alpha)\right\} \\
& \left.\cup\left\{(\alpha, \beta) \in \mathbb{R}^{2} \mid \alpha<\lambda_{k+1}, \psi_{k}(\alpha)<\beta<\lambda_{k+1}\right\}\right)=\emptyset
\end{aligned}
$$
\]

Our goal in this paper is to show that also the sets

$$
\left\{\left(\alpha, \lambda_{k}\right) \mid \lambda_{k} \leq \alpha<\bar{\alpha}\right\} \quad \text { with } \varphi_{k+1}(\bar{\alpha})=\lambda_{k}
$$

and

$$
\left\{\left(\alpha, \lambda_{k+1}\right) \mid \underline{\alpha}<\alpha \leq \lambda_{k+1}\right\} \quad \text { with } \psi_{k}(\underline{\alpha})=\lambda_{k+1}
$$

do not intersect Σ. In order to prove that, we need to use a characterization of the curves φ_{k+1} and ψ_{k} different from both the one given in $[\mathrm{M}]$ and the one given in [MMP]. Finally, in $\S 1$ we obtain our main result (see (1.33)).

Theorem. Let $k \geq 2$ with $\lambda_{k}<\lambda_{k+1}$. There exists an open connected set \mathcal{S}_{k} such that

$$
\begin{aligned}
\mathcal{S}_{k} \supset & \left\{(\alpha, \beta) \in \mathbb{R}^{2} \mid \lambda_{k} \leq \alpha<\bar{\alpha}, \lambda_{k} \leq \beta<\varphi_{k+1}(\alpha)\right\} \\
& \cup\left\{(\alpha, \beta) \in \mathbb{R}^{2} \mid \underline{\alpha}<\alpha \leq \lambda_{k+1}, \psi_{k}(\alpha)<\beta \leq \lambda_{k+1}\right\}
\end{aligned}
$$

(where $\underline{\alpha}$ is the unique solution of $\psi_{k}(\underline{\alpha})=\lambda_{k+1}$ and $\bar{\alpha}$ is the unique solution of $\varphi_{k+1}(\bar{\alpha})=\lambda_{k}$) with the property $\mathcal{S}_{k} \cap \Sigma=\emptyset$ (see Fig. 1).

Figure 1

Moreover, in $\S 2$ we use the above statement to prove (see Theorem (2.1)) the existence of three solutions of a jumping problem in the region $\mathcal{S}_{k} \cap\{(\alpha, \beta) \in$ $\mathbb{R}^{2} \mid \alpha>\lambda_{k+1}$ or $\left.\alpha<\lambda_{k}\right\}$.

1. The statement

We recall some basic definitions and set up some terminology.
(1.1) Definition. Let $\left(\lambda_{n}\right)_{n \geq 1}$ be the sequence of eigenvalues of the problem $\Delta u+\lambda u=0, u \in H_{0}^{1}(\Omega)$. We recall that $0<\lambda_{1}<\lambda_{2} \leq \ldots \leq \lambda_{i} \leq \ldots$ and $\lim _{n} \lambda_{n}=+\infty$. Let e_{n} be an eigenfunction corresponding to λ_{n}, with $\left\|e_{n}\right\|_{L^{2}(\Omega)}=1$. We can choose e_{1} such that $e_{1}>0$ in Ω. Moreover, set $\mathrm{H}_{i}=\operatorname{span}\left(e_{1}, \ldots, e_{i}\right)$ and $\mathrm{H}_{i}^{\perp}=\left\{w \in H_{0}^{1}(\Omega) \mid(u, w)=0 \forall u \in \mathrm{H}_{i}\right\}$.
(1.2) Definition. If $(\alpha, \beta) \in \mathbb{R}^{2}$, define the functional $Q_{\alpha, \beta}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ by

$$
Q_{\alpha, \beta}(u)=\int_{\Omega}\left(|\nabla u|^{2}-\alpha\left(u^{+}\right)^{2}-\beta\left(u^{-}\right)^{2}\right) .
$$

(1.3) Definition. If $i \geq 1$, define

$$
\mathcal{M}_{i}(\alpha, \beta)=\left\{u \in H_{0}^{1}(\Omega) \mid Q_{\alpha, \beta}^{\prime}(u)(v)=0 \forall v \in \mathrm{H}_{i}\right\}
$$

(1.4) Remark. It is well known that if $\alpha>\lambda_{i}$ and $\beta>\lambda_{i}$ then $\mathcal{M}_{i}(\alpha, \beta)$ is the graph of a positive homogeneous and Lipschitz continuous map $\gamma_{i}(\alpha, \beta)$: $\mathrm{H}_{i}^{\perp} \rightarrow \mathrm{H}_{i}$, which is characterized by the property
$\forall w \in \mathrm{H}_{i}^{\perp} \exists_{1} \gamma_{i}(\alpha, \beta)(w) \in \mathrm{H}_{i}$ such that $Q_{\alpha, \beta}\left(\gamma_{i}(\alpha, \beta)(w)+w\right)=\max _{v \in \mathrm{H}_{i}} Q_{\alpha, \beta}(v+w)$.
First of all we extend the above statement to the case when either $\alpha=\lambda_{i}$ or $\beta=\lambda_{i}$.
(1.5) Proposition. Let $i \geq 2$. If either $\alpha>\lambda_{i}$ and $\beta=\lambda_{i}$ or $\alpha=\lambda_{i}$ and $\beta>\lambda_{i}$, then $\mathcal{M}_{i}(\alpha, \beta)$ is the graph of a positive homogeneous and continuous map $\gamma_{i}(\alpha, \beta): \mathrm{H}_{i}^{\perp} \rightarrow \mathrm{H}_{i}$.

Proof. To fix ideas, we assume $\alpha>\lambda_{i}$ and $\beta=\lambda_{i}$.
Step 1. $\forall w \in \mathrm{H}_{i}^{\perp} \exists \bar{v} \in \mathrm{H}_{i}$ such that $Q_{\alpha, \lambda_{i}}(\bar{v}+w)=\max _{v \in \mathrm{H}_{i}} Q_{\alpha, \lambda_{i}}(v+w)$.
It is enough to observe that for fixed $w \in \mathrm{H}_{i}^{\perp}$,

$$
\begin{equation*}
\lim _{\substack{v \in \mathrm{H}_{i} \\\|v\| \rightarrow+\infty}} Q_{\alpha, \lambda_{i}}(v+w)=-\infty \tag{1.6}
\end{equation*}
$$

Let $\left(v_{n}\right)_{n \in \mathbb{N}}$ in H_{i} be such that $\lim _{n}\left\|v_{n}\right\|=+\infty$. We can assume that, up to a subsequence, $\lim _{n} v_{n} /\left\|v_{n}\right\|=v$ strongly in $H_{0}^{1}(\Omega)$. In particular, $v \in \mathrm{H}_{i}$ and
$\|v\|=1$. Therefore we get

$$
\lim _{n} \frac{Q_{\alpha, \lambda_{i}}\left(v_{n}+w\right)}{\left\|v_{n}\right\|^{2}}=1-\alpha \int_{\Omega}\left(v^{+}\right)^{2}-\lambda_{i} \int_{\Omega}\left(v^{-}\right)^{2}=Q_{\alpha, \lambda_{i}}(v) .
$$

We obtain (1.6) by using the following property:

$$
\begin{equation*}
\max _{\substack{v \in \mathrm{H}_{i} \\\|v\|=1}} Q_{\alpha, \lambda_{i}}(v)<0 \tag{1.7}
\end{equation*}
$$

Let us prove (1.7). First of all, since $v \in \mathrm{H}_{i}$, we have $\int_{\Omega}|\nabla v|^{2} \leq \lambda_{i} \int_{\Omega} v^{2}$ and so $Q_{\alpha, \lambda_{i}}(v) \leq\left(\lambda_{i}-\alpha\right) \int_{\Omega}\left(v^{+}\right)^{2} \leq 0$, because $\alpha>\lambda_{i}$. Secondly, arguing by contradiction, if $Q_{\alpha, \lambda_{i}}(v)=0$ then $v^{+}=0$; so $0=Q_{\alpha, \lambda_{i}}(v)=\int_{\Omega}|\nabla v|^{2}-\lambda_{i} \int_{\Omega} v^{2}$. This implies $v \in \operatorname{Ker}\left(\Delta-\lambda_{i} I\right)$; so v changes sign in Ω, because $i \geq 2$. Finally, since $v^{+}=0$, we have $v=0$, which contradicts the fact that $\|v\|=1$.

STEP 2. $\forall w \in \mathrm{H}_{i}^{\perp} \exists_{1} \bar{v} \in \mathrm{H}_{i}$ such that $Q_{\alpha, \lambda_{i}}^{\prime}(\bar{v}+w)(v)=0 \forall v \in \mathrm{H}_{i}$.
Arguing by contradiction, suppose that there exist $v_{1} \in \mathrm{H}_{i}$ and $v_{2} \in \mathrm{H}_{i}$ such that $v_{1} \neq v_{2}$ and $Q_{\alpha, \lambda_{i}}^{\prime}\left(v_{1}+w\right)(v)=0$ and $Q_{\alpha, \lambda_{i}}^{\prime}\left(v_{2}+w\right)(v)=0$ for all $v \in \mathrm{H}_{i}$. In particular, if $v=v_{1}-v_{2}$ we obtain

$$
\int_{\Omega} \nabla v_{1} \nabla\left(v_{1}-v_{2}\right)-\alpha\left(w+v_{1}\right)^{+}\left(v_{1}-v_{2}\right)+\lambda_{i}\left(w+v_{1}\right)^{-}\left(v_{1}-v_{2}\right)=0
$$

and

$$
\int_{\Omega} \nabla v_{2} \nabla\left(v_{1}-v_{2}\right)-\alpha\left(w+v_{2}\right)^{+}\left(v_{1}-v_{2}\right)+\lambda_{i}\left(w+v_{2}\right)^{-}\left(v_{1}-v_{2}\right)=0
$$

Therefore

$$
\begin{align*}
& \int_{\Omega}\left|\nabla\left(v_{1}-v_{2}\right)\right|^{2} \tag{1.8}\\
& =\int_{\Omega}\left\{\alpha\left[\left(w+v_{1}\right)^{+}-\left(w+v_{2}\right)^{+}\right]-\lambda_{i}\left[\left(w+v_{1}\right)^{-}-\left(w+v_{2}\right)^{-}\right]\right\}\left(v_{1}-v_{2}\right)
\end{align*}
$$

First of all, observe that
(1.9) $\quad \lambda_{i}(t-s)^{2} \leq\left(\alpha\left(t^{+}-s^{+}\right)-\lambda_{i}\left(t^{-}-s^{-}\right)\right)(t-s) \leq \alpha(t-s)^{2} \quad \forall t, s \in \mathbb{R}$.

By (1.9) and (1.8) we get $\lambda_{i} \int_{\Omega}\left(v_{1}-v_{2}\right)^{2} \leq\left\|v_{1}-v_{2}\right\|^{2} \leq \alpha \int_{\Omega}\left(v_{1}-v_{2}\right)^{2}$. However, since $v_{1}-v_{2} \in \mathrm{H}_{i}$, we also have

$$
\begin{equation*}
\left\|v_{1}-v_{2}\right\|^{2}=\lambda_{i} \int_{\Omega}\left(v_{1}-v_{2}\right)^{2} \tag{1.10}
\end{equation*}
$$

In particular, we deduce $v_{1}-v_{2} \in \operatorname{Ker}\left(\Delta-\lambda_{i} I\right) \backslash\{0\}$ and so, since $i \geq 2$, we get

$$
\begin{equation*}
\operatorname{meas}\left\{x \in \Omega \mid v_{1}(x)=v_{2}(x)\right\}=0 \tag{1.11}
\end{equation*}
$$

On the other hand, if we consider again the expression (1.8), by using (1.10), we deduce
$0=\int_{\Omega}\left\{\alpha\left[\left(w+v_{1}\right)^{+}-\left(w+v_{2}\right)^{+}\right]-\lambda_{i}\left[\left(w+v_{1}\right)^{-}-\left(w+v_{2}\right)^{-}\right]\right\}\left(v_{1}-v_{2}\right)-\lambda_{i}\left(v_{1}-v_{2}\right)^{2} ;$ by taking into account that the integrand is positive in Ω in view of (1.9), we also get

$$
\begin{align*}
\left\{\alpha\left[\left(w+v_{1}\right)^{+}-\left(w+v_{2}\right)^{+}\right]-\lambda_{i}\left[\left(w+v_{1}\right)^{-}\right.\right. & \left.\left.-\left(w+v_{2}\right)^{-}\right]\right\}\left(v_{1}-v_{2}\right) \tag{1.12}\\
& =\lambda_{i}\left(v_{1}-v_{2}\right)^{2} \quad \text { a.e. in } \Omega .
\end{align*}
$$

Finally, by (1.12) and (1.11) we deduce that $\left(w+v_{1}\right)(x) \leq 0$ and $\left(w+v_{2}\right)(x)$ ≤ 0 a.e. in Ω. In fact, if $\left(w+v_{1}\right)(x)>0$ and $\left(w+v_{2}\right)(x)>0$ on a set of positive measure, then by (1.12) we get $\left(\alpha-\lambda_{i}\right)\left(v_{1}(x)-v_{2}(x)\right)^{2}=0$ and so $v_{1}(x)=v_{2}(x)$ on such a set, which is absurd; on the other hand, if $\left(w+v_{1}\right)(x)>0$ and $\left(w+v_{2}\right)(x) \leq 0$ on a set of positive measure, then by (1.12) we get again $\left(\alpha-\lambda_{i}\right)\left(w(x)+v_{1}(x)\right)\left(v_{1}(x)-v_{2}(x)\right)=0$ and so $v_{1}(x)=v_{2}(x)$ (similarly if $\left(w+v_{1}\right)(x) \leq 0$ and $\left.\left(w+v_{2}\right)(x)>0\right)$.

We will get a final contradiction by showing that the functions $w+v_{1} \neq 0$ and $w+v_{2} \neq 0$ have to change sign in Ω. In fact, since $Q_{\alpha, \lambda_{i}}^{\prime}\left(v_{1}+w\right)(v)=0$ for all $v \in \mathrm{H}_{i}$, we have $\Delta\left(v_{1}+w\right)+\alpha\left(v_{1}+w\right)^{+}-\lambda_{i}\left(v_{1}+w\right)^{-} \in \mathrm{H}_{i}^{\perp}$. If $\left(v_{1}+w\right)^{+}=0$ then either $v_{1}+w \in \operatorname{Ker}\left(\Delta-\lambda_{i} I\right)$ or $v_{1}+w \in \mathrm{H}_{i}^{\perp}$; so it follows that $v_{1}+w=0$ a.e. in Ω, which is absurd. On the other hand, if $\left(v_{1}+w\right)^{-}=0$ then $v_{1}+w \in \mathrm{H}_{i}^{\perp}$, and so we have again a contradiction.

Step 3. The function $\gamma_{i}\left(\alpha, \lambda_{i}\right): \mathrm{H}_{i}^{\perp} \rightarrow \mathrm{H}_{i}$ defined by

$$
\begin{equation*}
Q_{\alpha, \lambda_{i}}\left(\gamma_{i}\left(\alpha, \lambda_{i}\right)(w)+w\right)=\max _{v \in \mathrm{H}_{i}} Q_{\alpha, \lambda_{i}}(v+w) \tag{1.13}
\end{equation*}
$$

is positive homogeneous and continuous from H_{i}^{\perp} equipped with the weak topology.
It is easy to verify that $\gamma_{i}\left(\alpha, \lambda_{i}\right)$ is positive homogeneous, that is, $\gamma_{i}\left(\alpha, \lambda_{i}\right)(t w)$ $=t \gamma_{i}\left(\alpha, \lambda_{i}\right)(w)$ for all $w \in \mathrm{H}_{i}^{\perp}$ and for all $t \geq 0$.

Let us prove the continuity of $\gamma_{i}\left(\alpha, \lambda_{i}\right)$. Let $\left(w_{n}\right)_{n \in \mathbb{N}}$ and w in H_{i}^{\perp} be such that $\lim _{n} w_{n}=w$ weakly in H_{i}^{\perp}. If $v_{n}=\gamma_{i}\left(\alpha, \lambda_{i}\right)\left(w_{n}\right)$ by (1.13) we get

$$
\begin{equation*}
v_{n}-\mathrm{P}_{\mathrm{H}_{i}} i^{*}\left(\alpha\left(v_{n}+w_{n}\right)^{+}-\lambda_{i}\left(v_{n}+w_{n}\right)^{-}\right)=0, \tag{1.14}
\end{equation*}
$$

where $\mathrm{P}_{\mathrm{H}_{i}}: H_{0}^{1}(\Omega) \rightarrow \mathrm{H}_{i}$ denotes the orthogonal projection and i^{*} is the adjoint operator of the Sobolev imbedding $i: H_{0}^{1}(\Omega) \rightarrow L^{2}(\Omega)$.

First of all we observe that the sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$ is bounded. In fact, arguing by contradiction, we can assume that, up to a subsequence, $\lim _{n} v_{n} /\left\|v_{n}\right\|=v$ strongly in $H_{0}^{1}(\Omega)$. In particular, $v \in \mathrm{H}_{i}$ and $\|v\|=1$. As a result, if we multiply (1.14) by $v_{n} /\left\|v_{n}\right\|^{2}$ and pass to the limit, we get $0=1-\alpha \int_{\Omega}\left(v^{+}\right)^{2}-\lambda_{i} \int_{\Omega}\left(v^{-}\right)^{2}=$ $Q_{\alpha, \lambda_{i}}(v)$, which is absurd in virtue of (1.7).

Therefore, we can assume that $\lim _{n} v_{n}=v$ strongly in $H_{0}^{1}(\Omega)$; finally, by (1.14) we obtain $v-\mathrm{P}_{\mathrm{H}_{i}} i^{*}\left(\alpha(v+w)^{+}-\lambda_{i}(v+w)^{-}\right)=0$, and then $v=\gamma_{i}\left(\alpha, \lambda_{i}\right)(w)$, by uniqueness (see Step 2).
(1.15) Definition. Let $i \geq 2$. If $\alpha \geq \lambda_{i}$ and $\beta \geq \lambda_{i}$ with $(\alpha, \beta) \neq\left(\lambda_{i}, \lambda_{i}\right)$, set

$$
m_{i}(\alpha, \beta)=\inf _{\substack{w \in \mathrm{H}_{i}^{\perp} \\\|w\|=1}} Q_{\alpha, \beta}\left(\gamma_{i}(\alpha, \beta)(w)+w\right)
$$

(1.16) REmARK. We point out that if $m_{i}(\alpha, \beta)>0$ then $(\alpha, \beta) \notin \Sigma$. In fact, if $(\alpha, \beta) \in \Sigma$ then there exists $u \in H_{0}^{1}(\Omega), u \neq 0$, such that $\Delta u+\alpha u^{+}-\beta u^{-}=0$. Therefore $u \in \mathcal{M}_{i}(\alpha, \beta)$ and $Q_{\alpha, \beta}(u)=0$. It follows that $m_{i}(\alpha, \beta) \leq 0$.

At this stage, by the properties of m_{i}, we will find a region in the (α, β) plane where $m_{i}(\alpha, \beta)>0$ and give a characterization of the number $\bar{\alpha}=\sup \left\{\alpha>\lambda_{i} \mid\right.$ $\left.\left(\alpha, \lambda_{i}\right) \notin \Sigma\right\}$.
(1.17) Lemma. Let $i \geq 2$ be such that $\lambda_{i}<\lambda_{i+1}$. If $\alpha \geq \lambda_{i}$ and $\beta \geq \lambda_{i}$ with $(\alpha, \beta) \neq\left(\lambda_{i}, \lambda_{i}\right)$, then the function m_{i} has the following properties:
(a) $m_{i}(\alpha, \beta)=m_{i}(\beta, \alpha)$;
(b) m_{i} is continuous with respect to (α, β);
(c) m_{i} is strictly decreasing with respect to both α and β;
(d) $m_{i}\left(\lambda_{i+1}, \lambda_{i+1}\right)=0$;
(e) $\alpha>\lambda_{i+1}, \beta>\lambda_{i+1} \Rightarrow m_{i}(\alpha, \beta)<0$;
(f) $\alpha<\lambda_{i+1}, \beta<\lambda_{i+1} \Rightarrow m_{i}(\alpha, \beta)>0$;
(g) $\alpha \geq \lambda_{i} \Rightarrow \lim _{\beta \rightarrow+\infty} m_{i}(\alpha, \beta)=-\infty$.

Proof. (a) This is an immediate consequence of the property $\gamma_{i}(\alpha, \beta)(-w)$ $=-\gamma_{i}(\beta, \alpha)(w)$ for all $w \in \mathrm{H}_{i}^{\perp}$.
(b) Let $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ and $\left(\beta_{n}\right)_{n \in \mathbb{N}}$ be such that $\lim _{n} \alpha_{n}=\alpha>\lambda_{i}, \lim _{n} \beta_{n}=\beta \geq$ λ_{i} and $\alpha \geq \beta$. We show that $\lim _{n} m_{i}\left(\alpha_{n}, \beta_{n}\right)=m_{i}(\alpha, \beta)$.

By the definition of m_{i}, for $\varepsilon>0$ there exists $\left(w_{n}\right)_{n \in \mathbb{N}}$ in H_{i}^{\perp} with $\left\|w_{n}\right\|=1$ such that $\lim _{n} w_{n}=w$ weakly in H_{i}^{\perp} and

$$
\begin{equation*}
m_{i}\left(\alpha_{n}, \beta_{n}\right) \leq Q_{\alpha_{n}, \beta_{n}}\left(\gamma_{i}\left(\alpha_{n}, \beta_{n}\right)\left(w_{n}\right)+w_{n}\right) \leq m_{i}\left(\alpha_{n}, \beta_{n}\right)+\varepsilon \tag{1.18}
\end{equation*}
$$

Set $\gamma_{i}\left(\alpha_{n}, \beta_{n}\right)\left(w_{n}\right)=v_{n}$. We also recall that

$$
\begin{equation*}
v_{n}-\mathrm{P}_{\mathrm{H}_{i}} i^{*}\left(\alpha_{n}\left(v_{n}+w_{n}\right)^{+}-\beta_{n}\left(v_{n}+w_{n}\right)^{-}\right)=0 \tag{1.19}
\end{equation*}
$$

where $\mathrm{P}_{\mathrm{H}_{i}}: H_{0}^{1}(\Omega) \rightarrow \mathrm{H}_{i}$ denotes the orthogonal projection and i^{*} is the adjoint operator of the Sobolev imbedding $i: H_{0}^{1}(\Omega) \rightarrow L^{2}(\Omega)$.

Observe that the sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$ is bounded. In fact, arguing by contradiction, we can assume that, up to a subsequence, $\lim _{n} v_{n} /\left\|v_{n}\right\|=v$ strongly in $H_{0}^{1}(\Omega)$. In particular, $v \in \mathrm{H}_{i}$ and $\|v\|=1$. As a result, if we divide (1.19) by $\left\|v_{n}\right\|$
and pass to the limit, we get $v-\mathrm{P}_{\mathrm{H}_{i}} i^{*}\left(\alpha(v+w)^{+}-\lambda_{i}(v+w)^{-}\right)=0$, which implies $Q_{\alpha, \beta}(v)=0$. On the other hand, since $\beta \leq \lambda_{i}$, we have $Q_{\alpha, \beta}(v) \leq Q_{\alpha, \lambda_{i}}(v)<0$, by (1.7). Thus a contradiction arises.

That is why we can assume that, up to a subsequence, $\lim _{n} v_{n}=v$ strongly in $H_{0}^{1}(\Omega)$; finally, by passing to the limit in (1.19) we obtain

$$
v-\mathrm{P}_{\mathrm{H}_{i}} i^{*}\left(\alpha(v+w)^{+}-\lambda_{i}(v+w)^{-}\right)=0
$$

and then $v=\gamma_{i}\left(\alpha, \lambda_{i}\right)(w)$ by uniqueness (see Step 2 in the proof of Proposition (1.5)).

Moreover, by (1.18), ε being arbitrary, we obtain

$$
\lim _{n} m_{i}\left(\alpha_{n}, \beta_{n}\right)=1+\int_{\Omega}|\nabla v|^{2}-\alpha \int_{\Omega}\left((v+w)^{+}\right)^{2}-\beta \int_{\Omega}\left((v+w)^{-}\right)^{2} .
$$

Now we claim that

$$
\begin{equation*}
\lim _{n} m_{i}\left(\alpha_{n}, \beta_{n}\right) \leq m_{i}(\alpha, \beta) \tag{1.20}
\end{equation*}
$$

In fact, by the second inequality of (1.18) and by the definition (1.15), it follows that for all $\bar{w} \in \mathrm{H}_{i}^{\perp}$ with $\|\bar{w}\|=1$,

$$
Q_{\alpha_{n}, \beta_{n}}\left(v_{n}+w_{n}\right) \leq Q_{\alpha_{n}, \beta_{n}}\left(\gamma_{i}\left(\alpha_{n}, \beta_{n}\right)(\bar{w})+\bar{w}\right)+\varepsilon
$$

and, by passing to the limit,

$$
1+\int_{\Omega}|\nabla v|^{2}-\alpha \int_{\Omega}\left((v+w)^{+}\right)^{2}-\beta \int_{\Omega}\left((v+w)^{-}\right)^{2} \leq Q_{\alpha, \beta}\left(\gamma_{i}(\alpha, \beta)(\bar{w})+\bar{w}\right)+\varepsilon ;
$$

so (1.20) follows.
Finally, we show that,

$$
\begin{equation*}
\lim _{n} m_{i}\left(\alpha_{n}, \beta_{n}\right) \geq m_{i}(\alpha, \beta) \tag{1.21}
\end{equation*}
$$

First, if $w=0$ then also $v=0$; so $\lim _{n} m_{i}\left(\alpha_{n}, \beta_{n}\right)=1$. On the other hand, for all $\bar{w} \in \mathrm{H}_{i}^{\perp}$ with $\|\bar{w}\|=1$,

$$
\begin{aligned}
m_{i}(\alpha, \beta) \leq & Q_{\alpha, \beta}\left(\gamma_{i}(\alpha, \beta)(\bar{w})+\bar{w}\right) \\
= & 1+\int_{\Omega}\left|\nabla \gamma_{i}(\alpha, \beta)(\bar{w})\right|^{2}-\alpha \int_{\Omega}\left(\left(\gamma_{i}(\alpha, \beta)(\bar{w})+\bar{w}\right)^{+}\right)^{2} \\
& -\beta \int_{\Omega}\left(\left(\gamma_{i}(\alpha, \beta)(\bar{w})+\bar{w}\right)^{-}\right)^{2} \leq 1
\end{aligned}
$$

since $\alpha \geq \beta \geq \lambda_{i}$ and $\gamma_{i}(\alpha, \beta)(\bar{w}) \in \mathrm{H}_{i}$. Therefore (1.21) follows.

Next, if $w \neq 0$ then we put $w^{*}=w /\|w\|$ and so

$$
\begin{aligned}
m_{i}(\alpha, \beta) \leq & Q_{\alpha, \beta}\left(\gamma_{i}(\alpha, \beta)\left(w^{*}\right)+w^{*}\right) \\
= & 1+\frac{1}{\|w\|}\left(\int_{\Omega}\left|\nabla \gamma_{i}(\alpha, \beta)(w)\right|^{2}-\alpha \int_{\Omega}\left(\left(\gamma_{i}(\alpha, \beta)(w)+w\right)^{+}\right)^{2}\right. \\
& \left.-\beta \int_{\Omega}\left(\left(\gamma_{i}(\alpha, \beta)(w)+w\right)^{-}\right)^{2}\right) \\
\leq & 1+\int_{\Omega}\left|\nabla \gamma_{i}(\alpha, \beta)(w)\right|^{2}-\alpha \int_{\Omega}\left(\left(\gamma_{i}(\alpha, \beta)(w)+w\right)^{+}\right)^{2} \\
& -\beta \int_{\Omega}\left(\left(\gamma_{i}(\alpha, \beta)(w)+w\right)^{-}\right)^{2} \\
= & \lim _{n} m_{i}\left(\alpha_{n}, \beta_{n}\right) .
\end{aligned}
$$

Therefore (1.21) also holds in this case.
(c) Let $\alpha>\lambda_{i}$ and $\beta^{\prime}>\beta \geq \lambda_{i}$. We will show that $m_{i}(\alpha, \beta)>m_{i}\left(\alpha, \beta^{\prime}\right)$. By the definition of $\gamma_{i}(\alpha, \beta)$ we get, for any $w \in \mathrm{H}_{i}^{\perp}$,

$$
\begin{aligned}
Q_{\alpha, \beta}\left(\gamma_{i}(\alpha, \beta)(w)+w\right) \geq & Q_{\alpha, \beta}\left(\gamma_{i}\left(\alpha, \beta^{\prime}\right)(w)+w\right) \\
= & Q_{\alpha, \beta^{\prime}}\left(\gamma_{i}\left(\alpha, \beta^{\prime}\right)(w)+w\right) \\
& +\left(\beta-\beta^{\prime}\right) \int_{\Omega}\left(\left(\gamma_{i}\left(\alpha, \beta^{\prime}\right)(w)+w\right)^{-}\right)^{2} \\
\geq & m_{i}\left(\alpha, \beta^{\prime}\right)+\left(\beta-\beta^{\prime}\right) \min _{\substack{w \in \mathrm{H}_{i}^{\perp} \\
\|w\|=1}} \int_{\Omega}\left(\left(\gamma_{i}\left(\alpha, \beta^{\prime}\right)(w)+w\right)^{-}\right)^{2} .
\end{aligned}
$$

As a result we obtain

$$
m_{i}(\alpha, \beta) \geq m_{i}\left(\alpha, \beta^{\prime}\right)+\left(\beta-\beta^{\prime}\right) \min _{\substack{w \in H_{i}^{\perp} \\\|w\|=1}} \int_{\Omega}\left(\left(\gamma_{i}\left(\alpha, \beta^{\prime}\right)(w)+w\right)^{-}\right)^{2} .
$$

In order to get our claim, it is enough to prove that for any $\alpha>\lambda_{i}$ and $\beta \geq \lambda_{i}$, if $u \in \mathcal{M}(\alpha, \beta) \backslash\{0\}$ then $u^{-} \neq 0$. In fact, if $u \in \mathcal{M}(\alpha, \beta) \backslash\{0\}$, then $u=\gamma_{i}(\alpha, \beta)(w)+w$ with $w \in \mathrm{H}_{i}^{\perp}, w \neq 0$. Suppose $u^{-}=0$. If $\gamma_{i}(\alpha, \beta)(w)=0$, then $u=w \in \mathrm{H}_{i}^{\perp}$ and so $u=0$. On the other hand, if $\gamma_{i}(\alpha, \beta)(w) \neq 0$, then by the definition of $\gamma_{i}(\alpha, \beta)$ and by (1.7) we get

$$
0=Q_{\alpha, \beta}^{\prime}(u)\left(\gamma_{i}(\alpha, \beta)(w)\right)=2 Q_{\alpha, \beta}\left(\gamma_{i}(\alpha, \beta)(w)\right) \leq 2 Q_{\alpha, \lambda_{i}}\left(\gamma_{i}(\alpha, \beta)(w)\right)<0
$$

which is absurd.
(d) First, if $w \in \mathrm{H}_{i}^{\perp}$, then $\gamma_{i}\left(\lambda_{i+1}, \lambda_{i+1}\right)(w)=0$; in fact, by the definition of $\gamma_{i}\left(\lambda_{i+1}, \lambda_{i+1}\right)$ we have $\Delta \gamma_{i}\left(\lambda_{i+1}, \lambda_{i+1}\right)(w)-\lambda_{i+1}\left(\gamma_{i}\left(\lambda_{i+1}, \lambda_{i+1}\right)(w)+w\right) \in \mathrm{H}_{i}^{\perp}$, which implies $\gamma_{i}\left(\lambda_{i+1}, \lambda_{i+1}\right)(w)=0$, since $\gamma_{i}\left(\lambda_{i+1}, \lambda_{i+1}\right)(w) \in \mathrm{H}_{i}$. Moreover, for any $w \in \mathrm{H}_{i}^{\perp}$,

$$
Q_{\lambda_{i+1}, \lambda_{i+1}}\left(\gamma_{i}\left(\lambda_{i+1}, \lambda_{i+1}\right)(w)+w\right)=\int_{\Omega}|\nabla w|^{2}-\lambda_{i+1} \int_{\Omega} w^{2} \geq 0
$$

Then if $w \in \operatorname{Ker}\left(\Delta-\lambda_{i+1} I\right)$, we get our claim.
(e) If $w \in \operatorname{Ker}\left(\Delta-\lambda_{i+1} I\right), w \neq 0$, then for any $v \in \mathrm{H}_{i}$,

$$
\begin{aligned}
Q_{\alpha, \beta}(v+w) & =\int_{\Omega}|\nabla(v+w)|^{2}-\alpha \int_{\Omega}\left((v+w)^{+}\right)^{2}-\beta \int_{\Omega}\left((v+w)^{-}\right)^{2} \\
& \leq\left(\lambda_{i+1}-\alpha\right) \int_{\Omega}\left((v+w)^{+}\right)^{2}+\left(\lambda_{i+1}-\beta\right) \int_{\Omega}\left((v+w)^{-}\right)^{2}<0
\end{aligned}
$$

(f) If $w \in \mathrm{H}_{i}^{\perp}, w \neq 0$, then

$$
\begin{aligned}
Q_{\alpha, \beta}(w) & =\int_{\Omega}|\nabla w|^{2}-\alpha \int_{\Omega}\left(w^{+}\right)^{2}-\beta \int_{\Omega}\left(w^{-}\right)^{2} \\
& \geq\left(\lambda_{i+1}-\alpha\right) \int_{\Omega}\left(w^{+}\right)^{2}+\left(\lambda_{i+1}-\beta\right) \int_{\Omega}\left(w^{-}\right)^{2}>0
\end{aligned}
$$

(g) First, observe that there is $w^{*} \in \mathrm{H}_{i}^{\perp}$ with $\left\|w^{*}\right\|=1$ such that $\left(w^{*}+\mathrm{H}_{i}\right) \cap$ $\left\{u \in H_{0}^{1}(\Omega) \mid u \geq 0\right.$ a.e. in $\left.\Omega\right\}=\emptyset$. In fact, if $n \geq 2$ we can choose $w_{0} \in H_{0}^{1}(\Omega)$ with ess inf $w_{0}=-\infty$ and if $n=1$ we can choose $w_{0}(x)=[\operatorname{dist}(x, \partial \Omega)]^{\delta}$ with $1 / 2<\delta<1$; so w^{*} denotes the component of w_{0} on H_{i}^{\perp} normalized in $H_{0}^{1}(\Omega)$.

Therefore it is enough to prove that if $\alpha \geq \lambda_{i}$ then

$$
\lim _{\beta \rightarrow+\infty} Q_{\alpha, \beta}\left(\gamma_{i}(\alpha, \beta)\left(w^{*}\right)+w^{*}\right)=-\infty
$$

Let $\left(\beta_{n}\right)_{n \in \mathbb{N}}$ be such that $\lim _{n} \beta_{n}=+\infty$ and set $v_{n}=\gamma_{i}\left(\alpha, \beta_{n}\right)\left(w^{*}\right)$. We have

$$
\begin{align*}
Q_{\alpha, \beta_{n}}\left(v_{n}+w^{*}\right)= & 1+\left\|v_{n}\right\|^{2}-\alpha \int_{\Omega}\left(\left(v_{n}+w^{*}\right)^{+}\right)^{2} \tag{1.22}\\
& -\beta_{n} \int_{\Omega}\left(\left(v_{n}+w^{*}\right)^{-}\right)^{2}
\end{align*}
$$

Now if $\left(v_{n}\right)_{n \in \mathbb{N}}$ is bounded then, up to a subsequence, $\lim _{n} v_{n}=v \in \mathrm{H}_{i}$ in $H_{0}^{1}(\Omega)$ and $\left(v+w^{*}\right)^{-} \neq 0$, by the property of w^{*}; so $\lim _{n} Q_{\alpha, \beta_{n}}\left(v_{n}+w^{*}\right)=-\infty$.

On the other hand, if $\lim _{n}\left\|v_{n}\right\|=+\infty$, we can suppose $\lim _{n} v_{n} /\left\|v_{n}\right\|=v \in$ H_{i} in $H_{0}^{1}(\Omega),\|v\|=1$. If, by contradiction, $\left(Q_{\alpha, \beta_{n}}\left(v_{n}+w^{*}\right)\right)_{n \in \mathbb{N}}$ is bounded from below, from (1.22) (dividing by $\left\|v_{n}\right\|^{2}$ and passing to the limit) we get $v \geq 0$ a.e. in Ω. Moreover, since

$$
Q_{\alpha, \beta_{n}}\left(v_{n}+w^{*}\right) \leq\left\|v_{n}\right\|^{2}-\alpha \int_{\Omega}\left(\left(v_{n}+w^{*}\right)^{+}\right)^{2}
$$

we also obtain

$$
0 \leq 1-\alpha \int_{\Omega} v^{2} \leq 1-\frac{\alpha}{\lambda_{i}}
$$

Finally, if $\alpha>\lambda_{i}$ a contradiction arises immediately; if $\alpha=\lambda_{i}$ we get $v \in$ $\operatorname{Ker}\left(\Delta-\lambda_{i} I\right) \backslash\{0\}$, which is absurd because $v \geq 0$ a.e. in Ω.

From Lemma (1.17) we deduce immediately the following result.
(1.23) Proposition. Let $i \geq 2$ be such that $\lambda_{i}<\lambda_{i+1}$. There exist a unique $\bar{\alpha}>\lambda_{i+1}$ and a continuous strictly decreasing map $\varphi_{i+1}:\left[\lambda_{i}, \bar{\alpha}\right] \rightarrow\left[\lambda_{i}, \bar{\alpha}\right]$ such that $\varphi_{i+1}\left(\lambda_{i+1}\right)=\lambda_{i+1}, \varphi_{i+1}(\bar{\alpha})=\lambda_{i}$ and $\varphi_{i+1} \circ \varphi_{i+1}=I$, with the property

$$
\lambda_{i} \leq \beta<\varphi_{i+1}(\alpha) \Leftrightarrow m_{i}(\alpha, \beta)>0
$$

(1.24) Remark. By (1.16) and (1.23), the number $\bar{\alpha}=\sup \left\{\alpha>\lambda_{i} \mid\left(\alpha, \lambda_{i}\right)\right.$ $\notin \Sigma\}$ satisfies $\bar{\alpha}>\lambda_{i+1}$ and $\varphi_{i+1}(\bar{\alpha})=\lambda_{i}$. Moreover, $\varphi_{i+1}\left(\lambda_{i}\right)=\bar{\alpha}=\sup \{\beta>$ $\left.\lambda_{i} \mid\left(\lambda_{i}, \beta\right) \notin \Sigma\right\}$.
(1.25) Remark. It is easy to prove that the functions defined in (1.23) coincide with the functions μ_{i+1} introduced in [MMP] and the functions J_{-} introduced in [M].

Now we will give a characterization $\operatorname{of} \inf \left\{\beta<\lambda_{k+1} \mid\left(\lambda_{k+1}, \beta\right) \notin \Sigma\right\}$ for $k \geq 1$. We are not able to proceed as in the previous case, since the set

$$
\mathcal{N}_{k}(\alpha, \beta)=\left\{u \in H_{0}^{1}(\Omega) \mid Q_{\alpha, \beta}^{\prime}(u)(w)=0 \forall w \in \mathrm{H}_{k}^{\perp}\right\}
$$

which is the graph of a suitable map when $\alpha<\lambda_{k+1}$ and $\beta<\lambda_{k+1}$, does not have this property when either $\alpha<\lambda_{k+1}$ and $\beta=\lambda_{k+1}$ or $\alpha=\lambda_{k+1}$ and $\beta<\lambda_{k+1}$. In fact, the following result holds.
(1.26) Remark. If $\beta \leq \lambda_{k+1}$, then there exist infinitely many $\bar{w} \in \mathrm{H}_{k}^{\perp}$ such that

$$
Q_{\lambda_{k+1}, \beta}\left(e_{1}+\bar{w}\right)=\min _{w \in \mathrm{H}_{k}^{\perp}} Q_{\lambda_{k+1}, \beta}\left(e_{1}+w\right)
$$

Indeed, since $w \in \mathrm{H}_{k}^{\perp}$ and $\beta<\lambda_{k+1}$, we have

$$
\begin{aligned}
Q_{\lambda_{k+1}, \beta}\left(e_{1}+w\right)= & Q_{\lambda_{k+1}, \beta}\left(e_{1}\right)+\int_{\Omega}|\nabla w|^{2}-\lambda_{k+1} \int_{\Omega} w^{2} \\
& +\left(\lambda_{k+1}-\beta\right) \int_{\Omega}\left(\left(e_{1}+w\right)^{-}\right)^{2} \\
\geq & Q_{\lambda_{k+1}, \beta}\left(e_{1}\right)
\end{aligned}
$$

Moreover, there exists $\varrho>0$ such that $e_{1}+\varrho e>0$ for all $e \in \operatorname{Ker}\left(\Delta-\lambda_{k+1} I\right)$ with $\|e\|=1$. Hence

$$
Q_{\lambda_{k+1}, \beta}\left(e_{1}+\varrho e\right)=Q_{\lambda_{k+1}, \beta}\left(e_{1}\right)+\varrho^{2}\left(\int_{\Omega}|\nabla e|^{2}-\lambda_{k+1} \int_{\Omega} e^{2}\right)=Q_{\lambda_{k+1}, \beta}\left(e_{1}\right)
$$

The previous remark suggests to proceed in the following different way.
(1.27) Definition. If $k \geq 2$ define

$$
\mathcal{Z}_{k}(\alpha, \beta)=\left\{u \in H_{0}^{1}(\Omega) \mid Q_{\alpha, \beta}^{\prime}(u)(z)=0 \forall z \in \mathrm{H}_{1} \oplus \mathrm{H}_{k}^{\perp}\right\}
$$

(1.27) Remark. It is well known that if $\lambda_{1}<\alpha<\lambda_{k+1}$ and $\lambda_{1}<\beta<\lambda_{k+1}$ then $\mathcal{Z}_{k}(\alpha, \beta)$ is the graph of a positive homogeneous and Lipschitz continuous $\operatorname{map} \zeta_{k}(\alpha, \beta): \mathrm{H}_{k} \cap \mathrm{H}_{1}^{\perp} \rightarrow \mathrm{H}_{1} \oplus \mathrm{H}_{k}^{\perp}$, which is characterized by the property

$$
\begin{aligned}
& \forall v \in \mathrm{H}_{k} \cap \mathrm{H}_{1}^{\perp} \exists_{1} \zeta_{k}(\alpha, \beta)(v) \in \mathrm{H}_{1} \oplus \mathrm{H}_{k}^{\perp} \text { such that } \\
& \qquad Q_{\alpha, \beta}\left(v+\zeta_{k}(\alpha, \beta)(v)\right)=\min _{w \in \mathrm{H}_{\frac{\perp}{k}}} \max _{s \in \mathbb{R}} Q_{\alpha, \beta}\left(s e_{1}+v+w\right) .
\end{aligned}
$$

We extend this to the case when either $\alpha=\lambda_{k+1}$ or $\beta=\lambda_{k+1}$.
(1.29) Proposition. Let $k \geq 2$. If either $\alpha<\lambda_{k+1}$ and $\beta=\lambda_{k+1}$ or $\alpha=$ λ_{k+1} and $\beta<\lambda_{k+1}$, then the set $\mathcal{Z}_{k}(\alpha, \beta)$ is the graph of a positive homogeneous and continuous map $\zeta_{k}(\alpha, \beta): \mathrm{H}_{k} \cap \mathrm{H}_{1}^{\perp} \rightarrow \mathrm{H}_{1} \oplus \mathrm{H}_{k}^{\perp}$.

Proof. The proof is similar to that of Proposition (1.5). We only point out the following properties. For simplicity we consider the case $\alpha=\lambda_{k+1}$ and $\beta<\lambda_{k+1}$.

$$
\begin{array}{ll}
\forall v \in \mathrm{H}_{k} \cap \mathrm{H}_{1}^{\perp}, \forall w \in \mathrm{H}_{k}^{\perp}, & \lim _{|s| \rightarrow+\infty} Q_{\alpha, \beta}\left(s e_{1}+v+w\right)=-\infty \\
\forall v \in \mathrm{H}_{k} \cap \mathrm{H}_{1}^{\perp}, \forall w \in \mathrm{H}_{k}^{\perp}, & s \rightarrow Q_{\alpha, \beta}\left(s e_{1}+v+w\right) \text { is strictly concave, } \\
\forall v \in \mathrm{H}_{k} \cap \mathrm{H}_{1}^{\perp}, \forall s \in \mathbb{R}, & \lim _{\substack{w \in \mathrm{H}_{k}^{\perp}}} Q_{\alpha, \beta}\left(s e_{1}+v+w\right)=+\infty \\
\|w\| \rightarrow+\infty \\
\forall v \in \mathrm{H}_{k} \cap \mathrm{H}_{1}^{\perp}, \forall s \in \mathbb{R}, & w \rightarrow Q_{\alpha, \beta}\left(s e_{1}+v+w\right) \text { is weakly convex. }
\end{array}
$$

As a result, in virtue of [Ro] and [EK], we deduce that

$$
\begin{aligned}
& \forall v \in \mathrm{H}_{k} \cap \mathrm{H}_{1}^{\perp} \exists_{1} \bar{s} \in \mathbb{R} \exists \bar{w} \in \mathrm{H}_{k}^{\perp} \text { such that } \\
& \qquad Q_{\alpha, \beta}\left(\bar{s} e_{1}+v+\bar{w}\right)=\min _{w \in \mathrm{H}_{k}^{\perp}} \max _{s \in \mathbb{R}} Q_{\alpha, \beta}\left(s e_{1}+v+w\right) .
\end{aligned}
$$

Arguing as in the second step of the proof of (1.5), we can show the uniqueness of \bar{w}.

Using a similar argument to the proof of Proposition (1.23), we obtain the following result.
(1.30) Proposition. Let $k \geq 2$ be such that $\lambda_{k}<\lambda_{k+1}$. There exist a unique $\underline{\alpha}<\lambda_{k}$ and a continuous strictly decreasing map $\psi_{k}:\left[\underline{\alpha}, \lambda_{k+1}\right] \rightarrow$ $\left[\underline{\alpha}, \lambda_{k+1}\right]$ such that $\psi_{k}\left(\lambda_{k}\right)=\lambda_{k}, \psi_{k}(\underline{\alpha})=\lambda_{k+1}$ and $\psi_{k} \circ \psi_{k}=I$, with the property

$$
\psi_{k}(\alpha)<\beta \leq \lambda_{k+1} \Leftrightarrow \inf _{\substack{v \in H_{k} \cap \mathrm{H}_{1}^{\perp} \\\|v\|=1}} Q_{\alpha, \beta}\left(v+\zeta_{k}(\alpha, \beta)(v)\right)<0 \quad(\Rightarrow(\alpha, \beta) \notin \Sigma)
$$

(1.31) Remark. As in (1.24), the number $\underline{\alpha}=\inf \left\{\beta<\lambda_{k+1} \mid\left(\lambda_{k+1}, \beta\right)\right.$ $\notin \Sigma\}$ satisfies $\underline{\alpha}<\lambda_{k}$ and $\psi_{k}(\underline{\alpha})=\lambda_{k+1}$. Moreover, $\psi_{k}\left(\lambda_{k+1}\right)=\underline{\alpha}=\inf \{\alpha<$ $\left.\lambda_{k+1} \mid\left(\alpha, \lambda_{k+1}\right) \notin \Sigma\right\}$.
(1.32) Remark. It is easy to prove that the functions defined in (1.30) coincide with the functions ν_{k} introduced in [MMP] and the functions J_{+}introduced in $[\mathrm{M}]$.

Finally, we get our main result.
(1.33) Theorem. Let $k \geq 2$ with $\lambda_{k}<\lambda_{k+1}$. There exists an open connected set \mathcal{S}_{k} such that

$$
\begin{aligned}
\mathcal{S}_{k} \supset & \left\{(\alpha, \beta) \in \mathbb{R}^{2} \mid \lambda_{k} \leq \alpha<\bar{\alpha}, \lambda_{k} \leq \beta<\varphi_{k+1}(\alpha)\right\} \\
& \cup\left\{(\alpha, \beta) \in \mathbb{R}^{2} \mid \underline{\alpha}<\alpha \leq \lambda_{k+1}, \psi_{k}(\alpha)<\beta \leq \lambda_{k+1}\right\},
\end{aligned}
$$

(where $\underline{\alpha}$ is the unique solution of $\psi_{k}(\underline{\alpha})=\lambda_{k+1}($ see (1.30)) and $\bar{\alpha}$ is the unique solution of $\varphi_{k+1}(\bar{\alpha})=\lambda_{k}\left(\right.$ see (1.23))), with the property $\mathcal{S}_{k} \cap \Sigma=\emptyset$.

Proof. It is well known that the resonance set Σ is closed in \mathbb{R}^{2}. Our claim follows by (1.16), (1.23), (1.24) and also (1.30), (1.31).

2. An application

Let $\Omega \subset \mathbb{R}^{N}$ be an open bounded smooth domain and $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a C^{1} function, with $|\partial g(x, s) / \partial s| \leq c\left(1+|u|^{p}\right)$, where $c \in \mathbb{R}$ and $p<4 /(N-2)$, such that
$(g, \alpha, \beta)\left\{\begin{array}{l}|g(x, s)| \leq a(x)+b|s| \text { a.e. in } \Omega, \forall s \in \mathbb{R}, \text { with } a \in L^{2}(\Omega), b \in \mathbb{R} ; \\ \lim _{s \rightarrow+\infty} g(x, s) / s=\alpha \text { and } \lim _{s \rightarrow-\infty} g(x, s) / s=\beta \text { a.e. in } \Omega .\end{array}\right.$
We are interested in the problem

$$
\begin{cases}\Delta u+g(x, u)=t e_{1} & \text { in } \Omega \tag{t}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $t \in \mathbb{R}$ and e_{1} is the positive eigenfunction, normalized in $L^{2}(\Omega)$, associated with the first eigenvalue of $-\Delta$ on $H_{0}^{1}(\Omega)$.
(2.1) Theorem. Let $k \geq 2$ be such that $\lambda_{k}<\lambda_{k+1}$. Assume (g, α, β) with $(\alpha, \beta) \in \mathcal{S}_{k}$ and either $\alpha>\lambda_{k+1}$ or $\alpha<\lambda_{k}$. If the problem $\left(P_{t}\right)$ admits only nondegenerate solutions for t positive and large enough, then $\left(P_{t}\right)$ has at least three solutions for t positive and large enough.

Proof. We consider the following functional $f_{t}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$:

$$
f_{t}(u)=\int_{\Omega}\left(\frac{1}{2}|\nabla u|^{2}-\int_{0}^{u(x)} g(x, \sigma) d \sigma+t e_{1} u\right) d x
$$

whose critical points are (weak) solutions of $\left(P_{t}\right)$.

Let $\lambda_{k}<\lambda_{k+1}=\ldots=\lambda_{k+\nu}<\lambda_{k+\nu+1}$. The assumption $(\alpha, \beta) \in \mathcal{S}_{k}$ and $\alpha>\lambda_{k+1}$ enable us to use the "links and bounds" theorem (see Th. (6.6)) of [MMP]. Therefore the functional f_{t} has two critical points u_{1} and u_{2} such that

$$
\inf _{\Delta} f_{t} \leq f_{t}\left(u_{1}\right) \leq \sup _{\partial B} f_{t}<\inf _{\Sigma} f_{t} \leq f_{t}\left(u_{2}\right) \leq \sup _{B} f_{t},
$$

where
$B=\left\{\left.\frac{t}{\alpha-\lambda_{1}} e_{1}+v \right\rvert\, v \in \mathrm{H}_{k+\nu},\|v\| \leq r\right\}$
and $\quad \partial B=$ the boundary of B in $\mathrm{H}_{k+\nu}$,
$\Delta=\left\{\left.\frac{t}{\alpha-\lambda_{1}} e_{1}+\sigma e+w \right\rvert\, \sigma \geq 0, w \in \mathrm{H}_{k+\nu}^{\perp},\|\sigma e+w\| \leq \varrho\right\}$,
where $e \in \mathrm{H}_{k+\nu}, \quad e \neq 0$,
$\Sigma=$ the boundary of Δ in $\mathrm{H}_{k+\nu}^{\perp} \oplus \operatorname{span}(e)$ and $\varrho>r$.
By assumption u_{1} and u_{2} are nondegenerate, therefore we can evaluate their Leray-Schauder indices:

$$
i\left(\nabla f_{t}, u_{1}\right)=(-1)^{k+\nu-1} \quad \text { and } \quad i\left(\nabla f_{t}, u_{2}\right)=(-1)^{k+\nu}
$$

On the other hand, there exists a path $\theta:[0,1] \rightarrow \mathbb{R}^{2} \backslash \Sigma$ joining (α, β) to the set $\left\{(\lambda, \lambda) \mid \lambda \in \mathbb{R}, \lambda \neq \lambda_{i}\right\}$, because $(\alpha, \beta) \in \mathcal{S}_{k}$. This property ensures (see Th. 6 of [D1]) that for R positive and large enough, $\operatorname{deg}\left(\nabla f, B_{R}(0), 0\right)=(-1)^{k}$. By the additive property of the degree, we get our claim.

In [Ra1] a result of the same type was obtained.
(2.2) Remark. We point out that the assumption $g \in C^{1}(\Omega \times \mathbb{R})$ can be weakened. It is enough to assume that g is a Carathéodory function such that $\left(\nabla f_{t}\right)^{\prime}(u): H_{0}^{1}(\Omega) \rightarrow H_{0}^{1}(\Omega)$ is a continuous and symmetric operator for any critical point u of the functional f_{t}. In such a case u is a nondegenerate solution of $\left(P_{t}\right)$ if $\left(\nabla f_{t}\right)^{\prime}(u)$ is an isomorphism.

References

[C] N. P. Cac, On nontrivial solutions of a Dirichlet problem whose jumping nonlinearity crosses a multiple eigenvalue, J. Differential Equations 80 (1989), 379-404.
[CG] M. Cuesta and J. P. Gossez, A variational approach to nonresonance with respect to the Fučik spectrum, Nonlinear Anal. 19 (1992), 487-500.
[D1] E. N. Dancer, On the Dirichlet problem for weak nonlinear elliptic partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 76 (1977), 283-300.
[D2] \qquad , Generic domain dependence for non-smooth equations and the open set problem for jumping nonlinearities, Topol. Methods Nonlinear. Anal. 1 (1993), 139150.
[DA] M. D'Aujourd'hui, The stability of the resonance set for a problem with jumping non-linearity, Proc. Roy. Soc. Edinburgh Sect. A 107 (1987), 201-212.
[DeFG] D. G. De Figueiredo and J. P. Gossez, On the first curve of the Fučik spectrum of an elliptic operator, preprint.
[EK] J. Ekeland and R. Temam, Convex Analysis and Variational Problems, NorthHolland, Amsterdam, 1976.
[F] S. FUČIK, Boundary value problems with jumping nonlinearities, Časopis Pěst. Mat. 101 (1976), 69-87.
[GK] T. Gallouët et O. Kavian, Résultats d'existence et de non-existence pour certains problèmes demi-linéaires à l'infini, Ann. Fac. Sci. Toulouse 3 (1981), 201-246.
[GM] F. Giannoni and A. M. Micheletti, Some remarks about elliptic problems with jumping nonlinearities, Rend. Mat. 7 (1987), 145-157.
[K] O. Kavian, Quelques remarques sur le spectre demi-linéaire de certains opérateurs auto-adjoints, preprint.
[M] C. A. Magalhães, Semilinear elliptic problem with crossing of multiple eigenvalues, Comm. Partial Differential Equations 15 (1990), 1265-1292.
[MMP] A. Marino, A. M. Micheletti and A. Pistoia, A nonsymmetric asymptotically linear elliptic problem, Topol. Methods Nonlinear Anal. 4 (1994), 289-339.
[Mi] A. M. Micheletti, A remark on the resonance set for a semilinear elliptic equations, Proc. Roy. Soc. Edinburg Sect. A 124 (1994), 803-809.
[Ra1] M. Ramos, A critical point theorem suggested by an elliptic problem with asymmetric nonlinearities, preprint.
[Ra2] , Teoremas de enlace na teoria dos pontos criticos, Textos de Matemàtica, Universidade de Lisboa.
[Ro] R. T. Rockafellar, Monotone operators associated with saddle functions and minimax theorems, Nonlinear Functional Analysis, Part I, Proc. Sympos. Pure Math., vol. 18, Amer Math. Soc., 1970, pp. 241-250.
[Ru] B. Ruf, On nonlinear elliptic problems with jumping nonlinearities, Ann. Mat. Pura Appl. (4) 128 (1981), 133-151.

[^1]
[^0]: 1991 Mathematics Subject Classification. 35J60.
 Research supported by M.P.I. (Research funds 60% and 40%) and C.N.R.

[^1]: A. M. Micheletti and A. Pistoia

 Istituto di Matematiche Applicate "U. Dini"
 Facoltà di Ingegneria
 Via Bonanno 25
 56100 Pisa, ITALY

