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REGULARITY FOR VISCOSITY SOLUTIONS OF
FULLY NONLINEAR EQUATIONS F (D2u) = 0

Xavier Cabré — Luis A. Caffarelli

Dedicated to Louis Nirenberg

1. Introduction

In this paper we study Hölder regularity for the first and second derivatives
of continuous viscosity solutions of fully nonlinear equations of the form

(1.1) F (D2u) = 0.

It is well known that viscosity solutions of (1.1) are C1,α for some 0 < α < 1,
and in the case that the functional F is convex, they are C2,α. In this paper
we use the Krylov–Safonov Harnack inequality, Jensen’s approximate solutions
and some basic lemmas of real analysis to give new and simpler proofs of these
results.

In (1.1), u is a real function defined in a bounded domain Ω of Rn and D2u

denotes the Hessian of u. F is a real-valued function defined on the space S of
real n×n symmetric matrices. We assume that F is a uniformly elliptic operator ,
that is, for any M ∈ S and any nonnegative definite symmetric matrix N ,

(1.2) λ‖N‖ ≤ F (M +N)− F (M) ≤ Λ‖N‖,

where λ ≤ Λ are two positive constants, which are called ellipticity constants,
and ‖N‖ denotes the maximum eigenvalue of N .
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Note that (1.2) implies that F is increasing and Lipschitz in M ∈ S. We
do not assume any further regularity on F , and hence we include important
examples of equations such as Bellman’s equations in optimal control theory
(see [19], [20]) and Isaacs’ equations in differential games (see [21]).

A continuous function u in Ω is said to be a viscosity subsolution (respectively,
viscosity supersolution) of (1.1) in Ω when the following condition holds: for any
x0 ∈ Ω and ϕ ∈ C2(Ω) such that u− ϕ has a local maximum at x0, we have

(1.3) F (D2ϕ(x0)) ≥ 0

(respectively, if u−ϕ has a local minimum at x0 then F (D2ϕ(x0)) ≤ 0). We say
that u is a viscosity solution of (1.1) when it is both a viscosity subsolution and
supersolution.

It is easy to verify that a C2(Ω) function u is a viscosity solution of (1.1)
if and only if it is a classical solution. The concept of viscosity solution was
introduced by Crandall and Lions [4] and Evans [5], [6]. Its idea is to put the
derivatives on a test function via the maximum principle. It is very useful when
proving existence of solutions by Perron’s method.

Let us denote by Ck,α the space of k-times differentiable functions with kth
derivatives Hölder continuous with exponent α ∈ (0, 1) (Lipschitz continuous if
α = 1). We say that a constant is universal if it depends only on n, λ and Λ. By
a ball we always mean an open ball.

The following theorem states the C1,α regularity of viscosity solutions of (1.1)
for some universal α ∈ (0, 1); it already appears in [25].

Theorem 1.1. Let u be a viscosity solution of F (D2u) = 0 in the unit ball
B1. Then u ∈ C1,α(B1/2) and

(1.4) ‖u‖C1,α(B1/2)
≤ C(‖u‖L∞(B1) + |F (0)|),

where 0 < α < 1 and C are universal constants.

Further regularity can be obtained in the case of concave or convex func-
tionals. We say that F is concave if it is a concave function on the space S
of symmetric matrices. Note that if F is concave then G(M) = −F (−M) is
convex and still uniformly elliptic. Bellman’s equations are examples of concave
functionals.

Evans [7] and Krylov [15], [16] independently discovered that classical solu-
tions u of concave equations (1.1) satisfy an interior C2,α a priori estimate in
terms of ‖u‖L∞ . In fact, viscosity solutions of concave equations (1.1) are C2,α.

Theorem 1.2. Let F be concave and u be a viscosity solution of F (D2u) =
0 in B1. Then u ∈ C2,α(B1/2) and
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(1.5) ‖u‖C2,α(B1/2)
≤ C(‖u‖L∞(B1) + |F (0)|),

where 0 < α < 1 and C are universal constants.

In this paper we give new proofs of Theorems 1.1 and 1.2. The main tools
that we use are the following. First, the Krylov–Safonov Harnack inequality
[17], [18] and related estimates for solutions of second order elliptic equations in
nondivergence form with bounded measurable coefficients; that is, equations of
the form

(1.6) aij(x)∂iju(x) = f(x);

we use summation convention over repeated indices.
The other important tool is Jensen’s approximate solutions of equation (1.1),

first introduced in [13] and further studied in [11], [14]. They were used in these
articles to prove uniqueness of viscosity solution for the Dirichlet problem

(1.7)

{
F (D2u) = 0 in Ω,

u = g on ∂Ω.

To prove Theorem 1.1 we also use a basic lemma of real analysis about Hölder
continuity of functions, Lemma 3.1 below.

In the case of concave equations, estimate (1.5)—proved for classical solutions
of certain functionals of the form F (D2u, x)—was used in [7] to apply the method
of continuity and prove existence of classical solution for the Dirichlet problem
(1.7). This existence result and the uniqueness of continuous viscosity solution
for (1.7) in [11] imply Theorem 1.2.

In this paper we present a new and more direct proof of Theorem 1.2. We
do not need to use the method of continuity. We first prove C1,1 regularity of
viscosity solutions of concave equations (1.1). We then adapt the proof of the
Evans–Krylov C2,α estimate for C2 functions to C1,1 functions.

Remark 1.3. It is not known if Theorem 1.2 and estimate (1.5) are true
when F is neither concave nor convex. In this case it is not even known if
viscosity solutions of (1.1) are C1,1. The only results in this direction need to
assume that D2F is small depending on the ellipticity Λ/λ (see [12]), or consider
equations µu− F (D2u) = 0 with µ large enough depending on the size of D2F

(see [9]).

We conclude this introductory section with some references to related work.
Solutions of concave equations F (D2u) = 0 also satisfy a C2,α a priori estimate
up to the boundary depending only on ellipticity and the regularity of the bound-
ary value. This estimate was independently discovered by Krylov [15], [16] and
Caffarelli, Nirenberg and Spruck [3] (see also [2] and [10]).
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Viscosity solutions of fully nonlinear equations of the form

(1.8) F (D2u, x) = f(x)

(that is, equations with variable coefficients) are Hölder continuous for some
universal 0 < α < 1. This is a consequence of the Krylov–Safonov Harnack
inequality (see Section 2).

The perturbation theory introduced in [1] for equations of the form F (D2u)
= 0, together with Theorems 1.1 and 1.2 above, gives regularity for viscosity
solutions of F (D2u, x) = f(x). [1] contains C1,α (for all F ) and C2,α and W 2,p

(for concave F ) interior a priori estimates for solutions of F (D2u, x) = f(x)
under appropriate regularity assumptions on the dependence of F and f on
x. Related results, also for equations of the form F (D2u,Du, u, x) = 0, were
obtained by different means by Safonov [22], [23] and Trudinger [24], [25].

The plan of the paper is as follows. In Section 2 we state the auxiliary
results that we use. Theorem 1.1 is proved in Section 3. Theorem 1.2 is proved
in Sections 4 and 5. In Section 4 we prove the Evans–Krylov C2,α estimate
for classical solutions. Section 5 contains a new proof of the C1,1 regularity of
viscosity solutions of concave equations.

2. Preliminaries

In this section we define the class S of “all weak solutions to all elliptic equa-
tions” with given ellipticity constants. For this, we introduce Pucci’s extremal
operators. The idea is to substitute any particular equation by certain inequal-
ities given by the ellipticity constants. We follow the terminology of [2], which
contains detailed proofs of all the results in this section.

Let 0 < λ ≤ Λ. For M ∈ S, we define Pucci’s extremal operators by

M−(M,λ,Λ) = λ
∑
ei>0

ei + Λ
∑
ei<0

ei,

M+(M,λ,Λ) = Λ
∑
ei>0

ei + λ
∑
ei<0

ei,

where ei = ei(M) are the eigenvalues of M .
Let now A be a symmetric matrix with eigenvalues in [λ,Λ], that is λ|ξ|2 ≤

Aijξiξj ≤ Λ|ξ|2 for any ξ ∈ Rn. In this case we will write that A ∈ Aλ,Λ. Define
a linear functional LA on S by

LAM = AijMij = Trace(AM), M ∈ S.

It is easy to see that

M−(M,λ,Λ) = inf
A∈Aλ,Λ

LAM, M+(M,λ,Λ) = sup
A∈Aλ,Λ

LAM.
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It follows thatM− andM+ are uniformly elliptic with ellipticity constants λ, nΛ
(as defined in Section 1 above), M− is concave and M+ is convex. In particular,
Theorem 1.2 applies to M−.

Given a continuous function f in Ω, we consider the equation

(2.1) F (D2u) = f(x).

The definition of viscosity subsolution (respectively, supersolution) of (2.1) is
the same as the one given in Section 1 for equation (1.1), with condition (1.3)
replaced by F (D2ϕ(x0)) ≥ f(x0) (respectively, F (D2ϕ(x0)) ≤ f(x0)). If u is a
viscosity subsolution (respectively, supersolution, solution) of (2.1), we say that
F (D2u) ≥ f(x) (respectively, ≤, =) in the viscosity sense.

We can now define the class S corresponding to solutions of elliptic equations
with right hand side f . We first define S(λ,Λ, f) to be the space of continuous
functions u in Ω such that

M+(D2u, λ,Λ) ≥ f(x)

in the viscosity sense in Ω. Similarly, S(λ,Λ, f) denotes the space of continuous
functions u in Ω such that

M−(D2u, λ,Λ) ≤ f(x)

in the viscosity sense in Ω. We also define

S(λ,Λ, f) = S(λ,Λ, f) ∩ S(λ,Λ, f).

We will denote S, S, S(λ,Λ, 0) by S, S, S(λ,Λ), or simply S, S, S. We call them
the spaces of subsolutions, supersolutions and solutions, respectively.

Given F as in Section 1, it is easy to check that

(2.2) F (M +N) ≤ F (M) + Λ‖N+‖ − λ‖N−‖ ∀M,N ∈ S,

where ‖N+‖ is the maximum of the positive parts of the eigenvalues of N , and
‖N−‖ = ‖(−N)+‖. This easily yields

Proposition 2.1. Let u be a viscosity subsolution (respectively, supersolu-
tion, solution) in Ω of

F (D2u) = f(x).

Then u ∈ S(λ/n,Λ, f − F (0)) (respectively, S(λ/n,Λ, f − F (0)), S(λ/n,Λ, f −
F (0))).

It is easy to check from the definition of viscosity subsolution that functions
in S = S(λ,Λ, 0) satisfy the maximum principle. That is, if u ∈ S in Ω and u ≤ 0
on ∂Ω then u ≤ 0 in Ω. A more general maximum principle, the Aleksandrov
estimate, also holds for the class S(λ,Λ, f). The Aleksandrov estimate and the
Krylov–Safonov Harnack inequality were adapted to viscosity solutions in [1]
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(see also Chapters 3 and 4 in [2]). The following is the Krylov–Safonov Harnack
inequality and related estimates.

Theorem 2.2. Let f be a continuous and bounded function in B1.
(1) Let u ∈ S(λ,Λ, f) in B1 satisfy u ≥ 0 in B1. Then

‖u‖Lp0 (B1/4) ≤ C( inf
B1/2

u+ ‖f‖Ln(B1)),

where p0 > 0 and C are universal constants.
(2) Let u ∈ S(λ,Λ, f) in B1. Then, for any p > 0,

sup
B1/2

u ≤ C(p)(‖u+‖Lp(B3/4) + ‖f‖Ln(B1)),

where C(p) depends only on n, λ,Λ and p.
(3) Let u ∈ S(λ,Λ, f) in B1 satisfy u ≥ 0 in B1. Then

sup
B1/2

u ≤ C( inf
B1/2

u+ ‖f‖Ln(B1)),

where C is a universal constant.
(4) Let u ∈ S(λ,Λ, f) in B1. Then u ∈ Cα(B1/2) and

‖u‖Cα(B1/2)
≤ C(‖u‖L∞(B1) + ‖f‖Ln(B1)),

where 0 < α < 1 and C > 0 are universal constants.

(1) is called the weak Harnack inequality for nonnegative supersolutions. (2)
is called (following [10]) the local maximum principle for subsolutions. (3) is
the Harnack inequality ; it follows from (1) and (2). Finally, (4) is an easy
consequence of (3).

The following two theorems are proved using Jensen’s approximate solutions
(see Chapter 5 of [2] for the proofs). Note that only the second one requires the
concavity of F .

Theorem 2.3. Let u be a viscosity subsolution of F (D2w) = 0 in Ω and v

be a viscosity supersolution of F (D2w) = 0 in Ω. Then u− v ∈ S(λ/n,Λ) in Ω.

Theorem 2.4. Let F be concave and let u and v be viscosity subsolutions of
F (D2w) = 0 in Ω. Let µ ∈ [0, 1]. Then µu+ (1− µ)v is a viscosity subsolution
of F (D2w) = 0 in Ω.

Corollary 2.5. Let F be concave and suppose that u is a viscosity solution
of F (D2u) = 0 in B1. Let e ∈ Rn with |e| = 1 and 0 < h < 1/2. Then

(2.3) ∆2
heu(x) :=

1
h2

[u(x+ he) + u(x− he)− 2u(x)] ∈ S(λ/n,Λ) in B1/2.

Moreover, if u ∈ C2(B1) then

(2.4) uee := ∂2u/∂e2 ∈ S(λ/n,Λ) in B1.
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To see (2.3), we write

1
2
[u(x+ he) + u(x− he)− 2u(x)] =

1
2
[u(x+ he) + u(x− he)]− u(x),

which is, by Theorem 2.4, the difference of a viscosity subsolution and superso-
lution of F (D2w) = 0. (2.3) then follows from Theorem 2.3.

(2.4) follows from (2.3) and the fact that viscosity subsolutions, and hence
the classes S, are closed under uniform limits in compact sets.

Remark 2.6. We point out some facts about the previous results when deal-
ing with smooth solutions u and smooth functionals F . The uniform ellipticity,
condition (1.2), implies

(2.5) λ|ξ|2 ≤ Fij(M)ξiξj ≤ Λ|ξ|2 ∀ξ ∈ Rn ∀M ∈ S,

where Fij denotes the partial derivative of F with respect to the ijth entry of M .
Let u be smooth and satisfy F (D2u) ≥ f in Ω. We then have

(2.6) f(x)− F (0) ≤ [F (tD2u(x))]1t=0 =
( ∫ 1

0

Fij(tD2u(x)) dt
)
∂iju(x).

Defining aij(x) =
∫ 1

0
Fij(tD2u(x)) dt and using (2.5), we see that u is a sub-

solution of a linear equation of the type (1.6). Proposition 2.1 (in this special
smooth case) now follows easily.

Using the same idea as in (2.6), it is easy to prove Theorem 2.3 for
smooth (sub, super) solutions. Note that Theorem 2.4 is obvious for C2 subso-
lutions. The reader can also check (2.4) for smooth solutions by differentiating
F (D2u) = 0 twice.

The following result is the Aleksandrov–Buselman–Feller theorem (see The-
orem 1 in Section 6.4 of [8]). It is used in the proof of Theorems 2.3 and 2.4
above. We will also need it in Section 5.

Theorem 2.7. Let u be a convex function in a ball Bd. Then for almost
every point x0 ∈ Bd there is a polynomial P of degree at most 2 such that

(2.7) u(x) = P (x) + o(|x− x0|2) as x→ x0;

i.e., |u(x)−P (x)| |x− x0|−2 → 0 as x→ x0. In this case, we define D2u(x0) to
be D2P .

Using the definition of viscosity solution it is easy to check the following.

Remark 2.8. Let u be a viscosity solution of (1.1) in Ω. Assume that (2.7)
holds at x0 ∈ Ω. Then, if we define D2u(x0) = D2P , we have F (D2u(x0)) = 0.

The following remarks imply that we may assume F (0) = 0 and ‖u‖L∞(B1)

= 1 in order to prove Theorems 1.1 and 1.2.
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Remark 2.9. Using the ellipticity condition for F , it is easy to see that
there exists one t ∈ R such that F (tI) = 0 and |t| ≤ |F (0)|/λ; here I denotes
the identity matrix. Define, for x ∈ Rn, the polynomial P (x) = (t/2)|x|2. Then

F (D2u) = F (D2(u− P ) + tI) =: G(D2(u− P )).

We now have G(0) = F (tI) = 0 and G is uniformly elliptic.

Remark 2.10. For any t > 0, the functional t−1F (tD2w) is uniformly ellip-
tic with ellipticity constants λ,Λ. Considering w = u/t with t = ‖u‖L∞(B1), we
may assume that ‖u‖L∞(B1) = 1 in order to prove Theorems 1.1 and 1.2.

3. C1,α regularity

Let u be a viscosity solution of F (D2u) = 0 in B1. Let 0 < h < 1/8 and
e ∈ Rn with |e| = 1. Then

(3.1) u(x+ he)− u(x) ∈ S(λ/n,Λ) in B7/8.

This is an immediate consequence of Theorem 2.3 and the fact that v(x) =
u(x+ he) is viscosity solution of F (D2v) = 0 in B7/8.

The Hölder regularity of functions in the class S, (3.1) and the following
lemma (applied repeatedly) will give Theorem 1.1. In [26] this lemma about
Hölder continuity (called Lipschitz continuity there) is already pointed out.

Lemma 3.1. Let 0 < α < 1, 0 < β ≤ 1 and K > 0 be constants. Let
u ∈ L∞([−1, 1]) satisfy ‖u‖L∞([−1,1]) ≤ K. Define, for h ∈ R with 0 < |h| ≤ 1,

vβ,h(x) =
u(x+ h)− u(x)

|h|β
, x ∈ Ih,

where Ih = [−1, 1 − h] if h > 0 and Ih = [−1 − h, 1] if h < 0. Assume that
vβ,h ∈ Cα(Ih) and ‖vβ,h‖Cα(Ih) ≤ K, for any 0 < |h| ≤ 1. We then have:

(1) If α+ β < 1 then u ∈ Cα+β([−1, 1]) and ‖u‖Cα+β([−1,1]) ≤ CK;
(2) If α+ β > 1 then u ∈ C0,1([−1, 1]) and ‖u‖C0,1([−1,1]) ≤ CK,

where the constants C in (1) and (2) depend only on α+ β.

Proof. By symmetry of the problem with respect to the change x → −x,
it is enough to bound |u(x+ ε)− u(x)| for

−1 ≤ x ≤ 0, ε > 0 and x+ ε ≤ 1.

Let i ≥ 0 be the integer such that x+ 2iε ≤ 1 < x+ 2i+1ε, and define τ0 = 2iε.
Then −1 ≤ x < x+ τ0 ≤ 1 and

(3.2) 1/2 ≤ τ0 ≤ 2.
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Define w(τ) = u(x+ τ)− u(x), 0 < τ ≤ τ0. We have

|w(τ)− 2w(τ/2)| = |u(x+ τ)− 2u(x+ τ/2) + u(x)|
= (τ/2)β |vβ,τ/2(x+ τ/2)− vβ,τ/2(x)| ≤ K(τ/2)α+β ,

since ‖vβ,τ/2‖Cα([−1,1−τ/2]) ≤ K by hypothesis. Hence

|w(τ0)− 2w(τ0/2)| ≤ CKτα+β
0 ,

|2w(τ0/2)− 22w(τ0/22)| ≤ CK21−(α+β)τα+β
0 , . . . ,

|2i−1w(τ0/2i−1)− 2iw(τ0/2i)| ≤ CK2(i−1)(1−(α+β))τα+β
0 ,

for some constant C which depends, as all C’s in the rest of this proof, only on
α+ β. Adding all the inequalities, we get

|w(τ0)− 2iw(ε)| = |w(τ0)− 2iw(τ0/2i)| ≤ CKτα+β
0

i−1∑
j=0

2j(1−(α+β)).

Since 2−i = τ−1
0 ε ≤ 2ε, by (3.2), and ‖u‖L∞([−1,1]) ≤ K, we have

|w(ε)| ≤ 2−i|w(τ0)|+ CK2−iτα+β
0

i−1∑
j=0

2j(1−(α+β))

≤ 4Kε+ CKετα+β−1
0

i−1∑
j=0

2j(1−(α+β)).

If α + β < 1, we get |w(ε)| ≤ 4Kε + CKετα+β−1
0 2i(1−(α+β)) = 4Kε +

CKεα+β ≤ CKεα+β . If α+β > 1, we get |w(ε)| ≤ 4Kε+CKετα+β−1
0 ≤ CKε.�

Proof of Theorem 1.1. We assume that F (0) = 0 and ‖u‖L∞(B1) = 1
(see Remarks 2.9 and 2.10). We fix e ∈ Rn with |e| = 1 and 0 < h < 1/8. By
(3.1), we know that for 0 < β ≤ 1,

vβ(x) =
1
hβ

(u(x+ he)− u(x)) ∈ S(λ/n,Λ) in B7/8.

Hence, by Cα interior estimates, Theorem 2.2(4) properly scaled, we have
(here C0,β denotes Cβ if β < 1)

(3.3) ‖vβ‖Cα(Br) ≤ C(r, s)‖vβ‖L∞(B(r+s)/2) ≤ C(r, s)‖u‖C0,β(Bs),

where 0 < r < s ≤ 7/8, 0 < h < (s− r)/2, α is universal and C(r, s) depends on
n, λ, Λ, r and s.

By making α slightly smaller, we can assume that there is a universal integer
i such that iα < 1 and (i+ 1)α > 1. By Proposition 2.1, we have u ∈ S (λ/n,Λ)
in B1. Hence, by Theorem 2.2(4),

‖u‖Cα(B7/8)
≤ C,
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for some universal constant C. We apply (3.3) with β = α and r = r1 < s = 7/8
to get

‖vα‖Cα(Br1 ) ≤ C(r1)‖u‖Cα(B7/8)
≤ C(r1),

where 0 < h < (7/8− r1)/2, and C(r1) depends only on n, λ,Λ and r1.
We can now apply, for any e as above, Lemma 3.1 (rescaled and with β = α)

on segments parallel to e and get

‖u‖C2α(Br2 ) ≤ C(r1, r2) for r2 < r1.

We now use (3.3) and Lemma 3.1 with β = 2α. We get u ∈ C3α(Br4). We can
repeat this process until iα < 1, (i+ 1)α > 1 and finally get, by Lemma 3.1(2),

‖u‖C0,1(B3/4)
≤ C.

We finally apply (3.3) with β = 1 to get

‖v1‖Cα(B1/2)
≤ C‖u‖C0,1(B3/4)

≤ C,

for any e with |e| = 1 and any h > 0 universally small enough. Since v1 is
the difference quotient of u for h and e, we conclude that u ∈ C1,α(B1/2) and
‖u‖C1,α(B1/2)

≤ C. �

4. Evans–Krylov theorem

In this section we prove the C2,α a priori estimate

(4.1) ‖u‖C2,α(B1/2)
≤ C(‖u‖C2(B1)

+ |F (0)|)

for C2 solutions of concave equations F (D2u) = 0, where C and 0 < α < 1 are
universal constants; see also Section 17.4 of [10].

We use Corollary 2.5 and the weak Harnack inequality, Theorem 2.2(1). We
also need the following lemma, which is a consequence of the uniform ellipticity
of F ; it does not require the concavity of F . We denote by ‖N‖ the (L2, L2) norm
of N ∈ S; it is therefore equal to max |ei|, where e1, . . . , en are the eigenvalues
of N . Recall that after (2.2) we defined ‖N+‖ = max e+i and ‖N−‖ = max e−i ,
where e+i = max(ei, 0) and e−i = −min(ei, 0).

Lemma 4.1. If F (M1) = F (M2) = 0 then

c0‖M2 −M1‖ ≤ ‖(M2 −M1)+‖ = sup
e∈Rn, |e|=1

(et(M2 −M1)e)+,

where c0 = λ/(Λ + λ). Here the concavity of F is not needed.
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Proof. Using ‖M2 −M1‖ ≤ ‖(M2 −M1)+‖+ ‖(M2 −M1)−‖ and (2.2) we
have

0 = F (M2) ≤ F (M1) + Λ‖(M2 −M1)+‖ − λ‖(M2 −M1)−‖
= Λ‖(M2 −M1)+‖ − λ‖(M2 −M1)−‖
≤ (Λ + λ)‖(M2 −M1)+‖ − λ‖M2 −M1‖,

which proves the first inequality of the lemma. The second one follows from our
definition of ‖N+‖. �

The following proof is a variation of Evans’ original proof. Estimate (4.1) for
C2 solutions is an easy consequence of the next lemma.

Lemma 4.2. Under the hypothesis of Theorem 1.2 assume that u ∈ C2(B1).
Then there exists a universal constant 0 < δ0 < 1 such that diamD2u(B1) = 2
implies diamD2u(Bδ0) ≤ 1.

Estimate (4.1) follows immediately from Lemma 4.2 and scaling, using Lem-
ma 8.23 in [10]. Note that it is no restriction to assume diamD2u(B1) = 2, again
by Remark 2.10 applied with t = diamD2u(B1)/2.

The following is the main step towards Lemma 4.2.

Lemma 4.3. Under the hypothesis of Theorem 1.2, assume that u ∈ C2(B1),

1 < diamD2u(B1) ≤ 2

and that D2u(B1) is covered by m balls B1, . . . , Bm of radius ε (in the space
S of symmetric matrices) with m ≥ 1 and ε ≤ ε0, where ε0 > 0 is a universal
constant. Then D2u(B1/2) is covered by m− 1 balls among B1, . . . , Bm.

Proof. Take c0 universal as in Lemma 4.1. For i = 1, . . . ,m, we take
xi ∈ B1 such that Bi ⊂ B2ε(Mi), where

Mi = D2u(xi).

Hence, taking ε0 such that 2ε ≤ 2ε0 ≤ c0/16, we find that

Bc0/16(M1), . . . , Bc0/16(Mm)

cover D2u(B1). Since D2u(B1) has diameter at most 2, every Mi belongs
to one closed ball B of radius 2 in S. Let m′ be the maximum number of
points in the ball B such that the distance between any two of them is at least
c0/16. Then m′ depends only on n and c0. Therefore, we can assume that
{Bc0/8(Mi)}m′

i=1 cover D2u(B1), where m′ is universal and m′ ≤ m. It follows
that {(D2u)−1Bc0/8(Mi)}m′

i=1 cover B1 and, therefore, there exists an Mi, say
M1, such that

(4.2) |(D2u)−1(Bc0/8(M1)) ∩B1/4| ≥ η > 0,

where η is universal.
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Recall that diamD2u(B1) > 1 and take 2ε ≤ 2ε0 ≤ 1/4. Since {B2ε(Mi)}m
i=1

cover D2u(B1), it follows that there is an Mi, say M2, such that ‖M2 −M1‖ ≥
1/4. Lemma 4.1 gives the existence of e ∈ Rn with |e| = 1 such that

(4.3) uee(x2) ≥ uee(x1) + c0/4.

Define

K = sup
B1

uee and v = K − uee.

We have 0 ≤ v ∈ S(λ/n,Λ) in B1, by Corollary 2.5. (4.2) and (4.3) imply that
|{v ≥ c0/8} ∩ B1/4| ≥ η. We can apply Theorem 2.2(1) to v and get, for a
universal c1,

(4.4) inf
B1/2

(K − uee) ≥ c1 > 0.

By the definition of K and again since {B2ε(Mi)}m
i=1 cover D2u(B1), there is

j, 1 ≤ j ≤ m, such that

(4.5) K − uee(xj) < 3ε.

If we finally take 5ε ≤ 5ε0 ≤ c1, then (4.4) and (4.5) imply that D2u(B1/2) ∩
B2ε(Mj) = ∅. Hence D2u(B1/2) ∩Bj = ∅ and the lemma follows. �

We can now give the

Proof of Lemma 4.2. Since diamD2u(B1) = 2, we can cover D2u(B1) by
m balls of radius ε0, with ε0 as in Lemma 4.3 and m universal. Lemma 4.3 shows
that D2u(B1/2) is covered by m − 1 balls of radius ε0. Suppose that we have
diamD2u(B1/2) > 1, and define

w(x) = 4u(x/2) for x ∈ B1.

Hence D2w(x) = D2u(x/2), F (D2w) = 0 in B1 and 1 < diamD2w(B1) ≤ 2.
Applying Lemma 4.3 to w, we deduce that D2u(B1/4) = D2w(B1/2) is covered
by m− 2 balls.

Since we cannot run out of balls, it follows that there exists k ≤ m such that
diamD2u(B1/2k) ≤ 1. Hence

diamD2u(B1/2m) ≤ 1;

that proves Lemma 4.2 with δ0 = 1/2m, which is universal. �
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5. C1,1 regularity

In this section we finish the proof of Theorem 1.2. We first show that viscosity
solutions of concave equations (1.1) are C1,1. The following is a sketch of the
proof.

By the concavity of F , we will see that for a linear functional (that we may
assume to be the Laplacian) we have ∆u ≥ 0 in the viscosity sense. It will follow
that the function

u∗h(x) =
1
h2

( ∫
�

Sh(x)

u− u(x)
)

is nonnegative in B1/2, for any 0 < h < 1/2; here Sh(x) = ∂Bh(x) and
∫
�

denotes average. This will let us bound the L1 norm of u∗h uniformly in h. We
will see that the u∗h belong to the class S of subsolutions. Theorem 2.2(2) then
leads to an L∞ bound for u∗h uniform in h. Hence, making h → 0, we will get
∆u ∈ L∞ ⊂ L2. L2 estimates for the Laplacian will give u ∈ W 2,2. This L2

bound for the pure second incremental quotients ∆2
heu will lead to an L∞ bound

for ∆2
heu, again by Theorem 2.2(2) applied to the subsolutions ∆2

heu. We will
therefore get u ∈ C1,1. An adaptation of the proof in Section 4 to C1,1 functions
will finally give C2,α regularity. The details of the proof go as follows.

Proof of Theorem 1.2. We assume that F (0) = 0 and ‖u‖L∞(B1) = 1
(see Remarks 2.9 and 2.10). We need to prove that ‖u‖C2,α(B1/2)

≤ C; here and
in the rest of this proof, C denotes a universal constant.

Recall that F is a concave function on the space S of symmetric matrices;
it follows from the Hahn–Banach theorem that there is a supporting hyperplane
(by above) to the graph of F at 0 ∈ S. That is, there is a linear functional L on
the space of symmetric matrices such that

L(0) = 0 and L(M) ≥ F (M)

for any M ∈ S. Therefore, L is of the form

L(M) = aijmij = Trace(AM),

for some A = [aij ] ∈ S. We claim that all the eigenvalues of A belong to [λ,Λ].
To see this, let ξ ∈ Rn and let ξξt denote the matrix with entries ξiξj . We have

aijξiξj = L(ξξt) ≥ F (ξξt) ≥ F (0) + λ‖ξξt‖ = λ|ξ|2 and

aijξiξj = −L(−ξξt) ≤ −F (−ξξt) ≤ −F (0) + Λ‖ξξt‖ = Λ|ξ|2.

Hence, we can make a linear change of space variables such that in the new
variables we have L(M) = Trace(M), i.e. L(D2ϕ) = ∆ϕ (see Lemma 6.1 of
[10]). Using the fact that the eigenvalues of A are in [λ,Λ], we see that ‖u‖C2,α

(computed in the old variables) is smaller than a universal constant times the
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same norm computed in the new variables. Therefore we may (and do) assume
that L(D2ϕ) = ∆ϕ for any ϕ ∈ C2.

Since F (D2u) = 0 in the viscosity sense (we can still assume in B1, after
rescaling) and ∆ϕ = L(D2ϕ) ≥ F (D2ϕ) for any ϕ ∈ C2, we immediately see
that u also satisfies ∆u ≥ 0 in the viscosity sense in B1. From this, we get

(5.1) u(x0) ≤
∫
�

Sh(x0)

u

for any x0 ∈ B1/2 and 0 < h < 1/2. To see (5.1), one considers the harmonic
function w in Bh(x0) equal to u on Sh(x0); the definition of viscosity subsolution
implies that

u(x0) ≤ w(x0) =
∫
�

Sh(x0)

u.

We therefore conclude that the function

u∗h(x) =
1
h2

( ∫
�

Sh(x)

u− u(x)
)

is continuous and nonnegative in B1/2, for any 0 < h < 1/2. Note that u∗h is an
approximation of ∆u/(2n), in the following sense. Using Taylor’s (or Green’s)
formula, we see that if ϕ ∈ C∞ then ϕ∗h converges as h → 0 uniformly in
compact sets to ∆ϕ/(2n); moreover, for a constant C(n) depending only on n,
‖ϕ∗h‖L∞(B1) ≤ C(n)‖D2ϕ‖L∞(B2).

Using the fact that u∗h ≥ 0, we now bound the L1 norm of u∗h as follows.
Let ϕ ≥ 0 be a C∞ function with compact support in B1/2 and ϕ ≡ 1 on B1/3.
Then, since ‖u‖L∞(B1) = 1,∫

B1/3

|u∗h| =
∫

B1/3

u∗h ≤
∫

B1/2

u∗hϕ =
∫

B1

uϕ∗h ≤ C(n)‖D2ϕ‖L∞ ≤ C(n).

The following step is to prove that

u∗h ∈ S(λ/n,Λ) in B1/2.

By Theorem 2.4 any convex combination λ1u1+. . .+λkuk (i.e. λi ≥ 0,
∑
λi = 1)

of viscosity subsolutions of F (D2u) = 0 is also a viscosity subsolution. It follows
that ∫

�
Sh(x)

u =
∫
�

Sh(0)

u(x+ y) dy

is a viscosity subsolution of F (D2u) = 0 in B1/2, since u( · + y) is subsolution
for any y ∈ Sh(0) and the class of viscosity subsolutions of F (D2u) = 0 is closed
under uniform limits.

Therefore,

h2u∗h(x) =
∫
�

Sh(x)

u− u(x)
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is the difference of a viscosity subsolution and a viscosity supersolution of F (D2u)
= 0. Theorem 2.3 shows that h2u∗h, and hence u∗h, belong to S(λ/n,Λ) in B1/2.

We now apply Theorem 2.2(2) (rescaled) with p = 1 to u∗h. We have 0 ≤
u∗h ∈ S(λ/n,Λ) and ‖u∗h‖L1(B1/3) ≤ C(n). It follows that

(5.2) ‖u∗h‖L∞(B1/4) ≤ C,

for a universal constant C (independent of h).
Let ψ be any C∞ function with compact support in B1/4. Since 2nψ∗h → ∆ψ

as h→ 0 uniformly in B1/4, we have∫
B1/4

u∆ψ = 2n lim
h→0

∫
B1/4

uψ∗h = 2n lim
h→0

∫
B1/4

u∗hψ,

and hence, using (5.2), ∣∣∣∣ ∫
B1/4

u∆ψ
∣∣∣∣ ≤ C‖ψ‖L1(B1/4).

Therefore ∆u (in the distributional sense) belongs to L∞(B1/4) and ‖∆u‖L∞(B1/4)

≤ C. In particular, ‖∆u‖L2(B1/4) ≤ C and hence, by L2 regularity theory,
u ∈W 2,2(B1/5) and

(5.3) ‖D2u‖L2(B1/5) ≤ C.

By Corollary 2.5 we know that the pure second order incremental quotients
of u, ∆2

heu(x), belong to S(λ/n,Λ) in B1/2; here e is any vector with |e| = 1.
(5.3) implies that ‖∆2

heu‖L2(B1/10) ≤ C, for a universal constant C independent
of h ∈ (0, 1/10). Theorem 2.2(2) used with p = 2 gives

(5.4) sup
B1/11

∆2
heu ≤ C, ∀ 0 < h < 1/10, ∀ |e| = 1.

It follows that v(x) = u(x) − (C/2)|x|2 is a concave function in B1/11. The
Aleksandrov–Buselman–Feller theorem, Theorem 2.7, implies that v, and there-
fore u, have second order tangent polynomials of degree 2 at every point in a set
A with |B1/11 \A| = 0. (5.4) implies that

(5.5) uee(x) ≤ C ∀x ∈ A, ∀ |e| = 1.

Recall that we already know that uee is an L2 function in B1/11. Remark 2.8
gives that F (D2u(x)) = 0 for any x ∈ A; we can therefore use Lemma 4.1 with
M1 = 0 to get

‖D2u(x)‖ ≤ C sup
|e|=1

uee(x)+ ∀x ∈ A.

This, combined with (5.5) and |B1/11 \ A| = 0, implies that D2u ∈ L∞(B1/11)
and ‖D2u‖L∞(B1/11) ≤ C.
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We have thus proved that u ∈W 2,∞(B1/11) = C1,1(B1/11) and

(5.6) ‖u‖C1,1(B1/11)
≤ C;

moreover,

F (D2u(x)) = 0 and uee(x) = lim
h→0

∆2
heu(x), ∀x ∈ A, ∀|e| = 1,

for a set A with |B1/11 \A| = 0.
We finally show that the proof of Lemma 4.3 may be adapted to this situation

(that is, when u ∈ C1,1 instead of u ∈ C2) and thus obtain u ∈ C2,α(B1/12) and
‖u‖C2,α(B1/12)

≤ C‖D2u‖L∞(B1/11) ≤ C, for a universal α ∈ (0, 1). A covering
argument gives ‖u‖C2,α(B1/2)

≤ C.
The proof of Lemma 4.3 proceeds in the same way; now B1 is replaced

by B1/11 and sup, inf and diam (of second derivatives of u) are understood
as essential supremum, essential infimum and essential diameter, respectively.
D2u(B1/11) being covered by B1, . . . , Bm is now understood as D2u(x) ∈ B1 ∪
. . . ∪Bm for a.e. x ∈ B1/11.

We can take the points xi in A. The only delicate point is to obtain (4.4)
(recall that we still do not know that uee is continuous). We proceed as follows.
We define K = supB1/11

uee. Thus supB1/12
∆2

heu ≤ K for h small enough, since
we can write

∆2
heu(x0) =

∫ 1

−1

uee(x0 + the)(1− |t|) dt.

Therefore 0 ≤ vh := K −∆2
heu ∈ C(B1/12) and vh ∈ S(λ/n,Λ). Theorem 2.2(1)

rescaled gives

‖K −∆2
heu‖Lp0 (B1/13) ≤ C(K −∆2

heu(x)) ∀x ∈ B1/13

for a universal p0 > 0. Taking lim infh→0 and using Fatou’s lemma, we get

(5.7) ‖K − uee‖Lp0 (B1/13) ≤ C(K − uee(x)) ∀x ∈ B1/13 ∩A.

We now use the fact that |{v := K − uee ≥ c0/8} ∩B1/13| ≥ η (in (4.2), B1/4 is
now replaced by B1/13) to obtain

‖K − uee‖Lp0 (B1/13) ≥
c0
8
η1/p0 .

This and (5.7) give infB1/13(K − uee) ≥ c1 > 0 for a universal c1.
We finally proceed as in the proof of Lemma 4.3 to conclude that D2u(x) /∈

B2ε(Mj) for almost every x ∈ B1/13, for some index j. �
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