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1. Introduction

Let Ω ⊂ RN (N ≥ 2) be a bounded domain with a C2 boundary ∂Ω, and

(1) Au =
N∑

i,j=1

∂

∂xj

(
aij

∂u

∂xi

)
+

N∑
j=1

aj
∂u

∂xj
+ a0u,

where
∑N

i,j=1 aij(x)ξiξj > 0 for all x ∈ Ω and ξ ∈ RN \ {0}. We assume that
aij , aj ∈ C1(Ω), aij = aji in Ω for 1 ≤ i, j ≤ N and a0 ∈ L∞(Ω). It follows
from the Krein–Rutman theorem (see, for example, [9], p. 265) and the Bony
maximal principle (see [2], Lemma 1) that the eigenvalue problem

(2) Au + λu = 0 in Ω, u|∂Ω = 0,

has a real eigenvalue λ1 of minimal modulus which is simple, and a corresponding
eigenfunction φ ∈ C1(Ω) such that φ > 0 in Ω and the outward normal derivative
∂φ/∂ν is negative on ∂Ω. Moreover, λ1 is also a simple eigenvalue of the adjoint
eigenvalue problem

(3) A∗u + λu = 0 in Ω, u|∂Ω = 0,

with a corresponding eigenfunction φ∗ ∈ C1(Ω) such that φ∗ > 0 in Ω and
∂φ∗/∂ν < 0 on ∂Ω, where A∗ denotes the adjoint operator of A. It follows from
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the Lp regularity of the linear Dirichlet problem that φ, φ∗ ∈ W 2,p(Ω)∩H1
0 (Ω) for

all p ≥ 2. If the operator A is selfadjoint so that the coefficients aj (1 ≤ j ≤ N)
in (1) vanish in Ω, then λ1 is known as the first eigenvalue of (2) and in this case
φ = φ∗.

In this paper we consider the Dirichlet problem

(4) Au + λ1u + g(x, u) = h in Ω, u|∂Ω = 0,

where h ∈ Lp(Ω) (p > N) is given and g : Ω×R → R is a Carathéodory function,
that is, g(x, u) is continuous in u ∈ R for almost all x ∈ Ω and is measurable
in x ∈ Ω for all u ∈ R. The solvability of the problem (4) has been extensively
studied if the nonlinear term g is assumed to have linear growth in u. Let

κ+(x) = lim sup
u→∞

g(x, u)/u, κ−(x) = lim sup
u→−∞

g(x, u)/u

be nonnegative functions in L∞(Ω), κ(x) = max{κ+(x), κ−(x)}. Existence
theorems for a solution to (4) are proved in [1, 3, 6] if A is selfadjoint and
κ(x) ≤ λ2 − λ1 for almost all x ∈ Ω, with the strict inequality holding on a
subset of Ω of positive measure, where λ2 denotes the second eigenvalue of (2).
When A is nonselfadjoint, further results along these lines are obtained in which
the norm in L∞(Ω) of one of κ+ and κ− can be arbitrary, provided that of the
other is sufficiently small (see [6], Theorem 5, and also [3], Theorem 4). The
purpose of this paper is to give solvability conditions for (4) when g is allowed
to grow superlinear in u in one of the directions ∞ and −∞, and is bounded in
Lp(Ω) (p > N) in the other. More precisely, we assume that p > N and

(H) There exist a > 0 and b ∈ Lp(Ω) such that b ≥ 0 in Ω and for almost
all x ∈ Ω and u ∈ R,

(5) −b(x) ≤ g(x, u) ≤ a|u|p/(p−1) + b(x).

Based on degree-theoretic arguments (see, for example, [4]) and the Borsuk odd
mapping theorem, and similarly to an idea of [7], we obtain solvability results for
(4) under assumptions either with or without a Landesman–Lazer condition (see
(7) below) originated in [8]. The results, which remain valid when g is replaced
by −g in (5), complement those cited above. For the case N = 1, we refer to [5]
for more general results.

In what follows we shall make use of the real Banach spaces Lp(Ω), C1(Ω)
with the norms denoted by ‖u‖Lp , ‖u‖C1 , respectively, and of the Sobolev spaces
W 2,p(Ω),H1

0 (Ω). We note the continuous imbedding C1(Ω) → Lp(Ω) for p ≥ 1
and the compact imbedding W 2,p(Ω) → C1(Ω) for p > N . For a linear operator
L, we denote by D(L), N(L) and R(L) the domain, the null space and the range
of L, respectively.
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2. Existence theorems

The main result is the following Theorem 1 which is an existence theorem
for a solution to (4) under the Landesman–Lazer condition. By modifying the
proof of Theorem 1, in Theorems 2 and 3 we obtain solvability conditions for (4)
when the Landesman–Lazer condition is not satisfied.

Theorem 1. Let p > N , and g : Ω× R → R be a Carathéodory function
satisfying the condition (H). If there exists c ∈ L1(Ω) such that for almost all
x ∈ Ω and u ≤ 0,

(6) g(x, u) ≤ c(x),

then the problem (4) has a solution u ∈ W 2,p(Ω) ∩ H1
0 (Ω) for any h ∈ Lp(Ω)

such that

(7)
∫

g−φ∗ <

∫
hφ∗ <

∫
g+φ∗,

where g+(x) = lim infu→∞ g(x, u) and g−(x) = lim supu→−∞ g(x, u).

Proof. We divide the proof into four steps.
Step 1 . We set L = A+λ1 and consider L as a closed linear operator with the

domain D(L) = W 2,p(Ω)∩H1
0 (Ω) which is dense in Lp(Ω) and range R(L) closed

in Lp(Ω). Let φ, φ∗ ∈ W 2,p(Ω) ∩ H1
0 (Ω) be the eigenfuctions corresponding to

the eigenvalue λ1 of the eigenvalue problems (2), (3), respectively, as described
in §1. We assume

∫
φ2 =

∫
(φ∗)2 = 1, define P , Q : Lp(Ω) → Lp(Ω) by

Pu =
( ∫

uφ

)
φ, Qu =

( ∫
uφ∗

)
φ∗,

and define

(8) jQu =
( ∫

uφ∗
)

φ.

Obviously N(L) = R(P ). It follows from the Lp theory of the linear Dirichlet
problem that R(L) = N(Q). Moreover, the restriction of L to D(L) ∩ N(P )
is one-one onto R(L) and so has an inverse L−1 : R(L) → W 2,p(Ω) which is
a bounded linear operator. Hence by the compact imbedding of W 2,p(Ω) into
C1(Ω), L−1(I − Q) : Lp(Ω) → C1(Ω) is a compact linear operator, where I

denotes the identity operator.
Let f : R → R be the continuous function defined by

f(u) =


u if |u| ≤ 1,

1 if u > 1,

−1 if u < −1.
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For 0 ≤ t ≤ 1 we define for u ∈ C1(Ω),

(Ftu)(x) = th(x)− tg(x, u(x))− (1− t)f(u(x))

and
Ttu = Pu + (jQ + L−1(I −Q))Ftu,

where jQ is defined in (8). Since the map [0, 1]× C1(Ω) → Lp(Ω), (t, u) → Ftu

is continuous and maps bounded sets to bounded sets, the map [0, 1]×C1(Ω) →
C1(Ω), (t, u) → Ttu is compact. We consider the operator equations

(9) u = Ttu

for 0 ≤ t ≤ 1. By identifying Lp(Ω) with the direct sum R(Q)⊕N(Q) it follows
that (9) are equivalent to the Dirichlet problems

(10)
Au + λ1u + (1− t)f(u) + tg(x, u) = th in Ω,

u|∂Ω = 0,

for 0 ≤ t ≤ 1, which becomes the original problem (4) when t = 1.
We suppose for the moment that solutions to (9) for some 0 ≤ t ≤ 1 are

bounded in C1(Ω), and use this to complete the proof of the theorem. Now
for some R > 0 large enough the Leray–Schauder degree deg(I − Tt, BR(0), 0)
is defined for 0 ≤ t ≤ 1 and does not depend on t, where BR(0) = {u ∈
C1(Ω) : ‖u‖C1 < R}. Obviously the map T0 : C1(Ω) → C1(Ω) is odd and so
by the Borsuk odd mapping theorem (see, for example, [4], Chap. 2), deg(I −
T0, BR(0), 0) is odd. Hence deg(I − T1, BR(0), 0) is odd, which implies that the
problem (4) has a solution in BR(0).

Step 2 . We show that if {vn} is a sequence in W 2,p(Ω) ∩ H1
0 (Ω) such that

{vn} is bounded in C1(Ω) and {Lvn} is bounded in Lp(Ω), then {vn} has a
subsequence convergent in C1(Ω). Indeed, by the compactness of the map L−1 :
R(L) → C1(Ω), {(I−P )vn} has a subsequence convergent in C1(Ω). Since R(P )
is one-dimensional, {Pvn} has a subsequence convergent in C1(Ω). Putting these
together we obtain a subsequence of {vn} convergent in C1(Ω).

Step 3 . We shall prove some more preliminary results needed in the next
step. We note first that there exist Carathéodory functions g1, g2 : Ω× R → R
such that g = g1 + g2 and 0 ≤ g1(x, u) ≤ a|u|p/(p−1), |g2(x, u)| ≤ b(x) for almost
all x ∈ Ω and u ∈ R. This may be done by defining

g1(x, u) = min{g(x, u) + b(x), a|u|p/(p−1)}

and g2 = g − g1.
Next we note by the properties of φ∗ stated in §1 that there exists a constant

c1 ≥ 0 such that

(11) |u(x)| ≤ c1‖u‖C1φ∗(x)

for x ∈ Ω is valid for all u ∈ C1(Ω) with u|∂Ω = 0.
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Now let u be a possible solution to (10) for some 0 ≤ t ≤ 1. Then u satisfies
(11) for x ∈ Ω. By taking the inner product in L2(Ω) of (10) with φ∗, we have

(12) (1− t)
∫

f(u)φ∗ + t

∫
g(x, u)φ∗ = t

∫
hφ∗

and so

t

∫
|g1(x, u)|φ∗ ≤

∫
|g2(x, u)|φ∗ +

∫
φ∗ +

∫
|h|φ∗

≤
∫

[b(x) + 1 + |h|]φ∗.

Thus by (11),

tp
∫
|g1(x, u)|p ≤ ap−1 t

∫
|u|p|g1(x, u)| ≤ c2‖u‖p

C1 t

∫
|g1(x, u)|φ∗

and hence
‖tg1(x, u)‖Lp ≤ c3‖u‖C1

for some constants c2, c3 ≥ 0 independent of u. Consequently, there exists a
constant c0 ≥ 0 such that

(13) ‖Ftu‖Lp ≤ c0(1 + ‖u‖C1)

for all possible solutions u to (10) for some 0 ≤ t ≤ 1.
Step 4 . It remains to show that solutions to (10) for some 0 ≤ t < 1 have

an a priori bound in C1(Ω). If this were not the case, then there would exist
sequences {un} in W 2,p(Ω) ∩ H1

0 (Ω) and {tn} in [0, 1) such that un satisfies
(10) when t = tn and ‖un‖C1 ≥ n for all n ≥ 1. Let vn = un/‖un‖C1 . Then
‖vn‖C1 = 1 and

(14) Lvn = (Ftnun)/‖un‖C1 .

By (13) the right hand side of (14) is bounded in Lp(Ω). It follows from Step 2
and the reflexivity of Lp(Ω) that {vn} has a subsequence convergent in C1(Ω)
and the sequence {g(x, un)/‖un‖C1} has a subsequence weakly convergent in
Lp(Ω). Without loss of generality we may assume that there exist v ∈ C1(Ω),
m ∈ Lp(Ω) and t0 ∈ [0, 1] such that vn → v in C1(Ω), {g(x, un)/‖un‖C1} → m(x)
weakly in Lp(Ω) and tn → t0. Since L is also weakly closed, it follows that
v ∈ W 2,p(Ω) ∩H1

0 (Ω) and

(15) Lv + t0 m = 0 in Ω, v|∂Ω = 0.

If t0 6= 0, we deduce using (5) that m(x) ≥ 0 for almost all x ∈ Ω (see [3],
Lemma 4). Then by (15),

∫
m(x)φ∗ = 0 and so m(x) = 0 for almost all x ∈ Ω.

Hence v ∈ N(L) \ {0} which is obvious when t0 = 0. Consequently, there is
an alternative: either v > 0 in Ω and ∂v/∂ν < 0 on ∂Ω, or v < 0 in Ω and
∂v/∂ν > 0 on ∂Ω. If the first alternative holds, then un > 0 in Ω for n large
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enough and limn→∞ un(x) = ∞ for x ∈ Ω. Writing (12) with u = un and t = tn
as

(16) (1− tn)
∫

f(un)φ∗ + tn

∫
g(x, un)φ∗ = tn

∫
hφ∗,

we have the following two cases to consider. In the case t0 = 0, by (5)

(1− tn)
∫

f(un)φ∗ − tn

∫
bφ∗ ≤ tn

∫
hφ∗

and so by the Lebesgue theorem we would have
∫

φ∗ ≤ 0, which is absurd. In
the case t0 > 0, applying the Fatou lemma to the left hand side of (16) we would
have

(1− t0)
∫

φ∗ + t0

∫
g+φ∗ ≤ t0

∫
hφ∗,

which contradicts the second inequality in (7). If the other alternative holds,
then un < 0 in Ω for n large enough and limn→∞ un(x) = −∞ for x ∈ Ω. Again
we have the following two cases to consider. In the case t0 = 0, by (6) for n large
enough

(1− tn)
∫

f(un)φ∗ + tn

∫
cφ∗ ≥ tn

∫
hφ∗

and so by the Lebesgue theorem we would have −
∫

φ∗ ≥ 0, which is absurd. In
the case t0 > 0, applying the Fatou lemma to the left hand side of (16) we would
have

−(1− t0)
∫

φ∗ + t0

∫
g−φ∗ ≥ t0

∫
hφ∗,

which contradicts the first inequality in (7).
This completes the proof of Theorem 1.

An interesting case in which (7) is not satisfied is when g+(x) = g−(x) = 0
for almost all x ∈ Ω and

∫
hφ∗ = 0. By modifying the proof of Theorem 1,

we obtain the following Theorem 2 which gives existence for a solution to (4)
without assuming a Landesman–Lazer condition.

Theorem 2. Let p > N , and g : Ω × R → R be a Carathéodory function
satisfying the condition (H). If for almost all x ∈ Ω and u ∈ R,

(17) ug(x, u) ≥ 0,

then the problem (4) has a solution u ∈ W 2,p(Ω) ∩ H1
0 (Ω) for any h ∈ Lp(Ω)

such that
∫

hφ∗ = 0.

Proof. In proving Theorem 1 the condition (7) is used only in the final
part of Step 4 to produce contradictions. Thus it suffices to substitute this part
of the proof using (17) instead of (7). We suppose that the alternative for the
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sequence {un} is established as in Step 4 of the proof of Theorem 1. Now (16)
becomes

(18) (1− tn)
∫

f(un)φ∗ + tn

∫
g(x, un)φ∗ = 0.

If the first alternative holds, then un > 0 in Ω for n large enough. Since∫
f(un)φ∗ > 0, it follows that tn 6= 0. Then 0 < tn < 1 and so by (18) we

would have
∫

g(x, un)φ∗ < 0, which contradicts (17). Likewise the other alter-
native leads to a contradiction. This completes the proof of Theorem 2.

We observe that the condition (7) is formed by two inequalities which are
used separately in the proof of Theorem 1. To serve the same purpose as (7) in a
parallel manner, the condition (17) can be written in the form of two inequalities,
namely g(x, u) ≥ 0 for u ≥ 0 and g(x, u) ≤ 0 for u ≤ 0 for almost all x ∈ Ω,
which can be used separately in the proof of Theorem 2. Thus one in (7) may
be combined with one in (17) to produce new solvability conditions. We obtain
the following Theorem 3 by one of the combinations.

Theorem 3. Let p > N , and g : Ω × R → R be a Carathéodory function
satisfying the condition (H). If for almost all x ∈ Ω and u ≤ 0,

g(x, u) ≤ 0,

then the problem (4) has a solution u ∈ W 2,p(Ω) ∩ H1
0 (Ω) for any h ∈ Lp(Ω)

such that
0 =

∫
hφ∗ <

∫
g+φ∗.

Finally, we note that by modifying the arguments in Step 4 of the proof of
Theorem 1, we may obtain a generalization to the main result of [7], without
assuming, say, that the nonlinear term g keeps one sign on Ω× R.
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