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0. Introduction

This paper is devoted to the study of the existence of periodic solutions for
a class of control problems described by a semilinear parabolic equation. Re-
lated optimization problems are also considered. Periodic control problems and
optimal periodic control problems for evolution equations described both by or-
dinary differential equations and by parabolic equations arise in many different
situations. Examples are found in the theory of chemical processes [7], biomed-
ical models [13], competing species ([6], and the extensive references therein),
thermostat problems [3], [5], [18] and [20] (and the references therein). Sev-
eral authors have also treated the existence of periodic solutions of differential
inclusions in Banach spaces. These differential inclusions can model periodic
control problems. In fact, under suitable assumptions, a large class of control
problems can be reduced to the problem of finding solutions of a differential
inclusion. We mention here the following papers: [8], [9], [10], [15], [16] and the
references therein. The variety of techniques used in the quoted papers is quite
large. Referring only to those papers dealing with parabolic equations, we recall
that in [6] the properties of the Poincaré map and the theory of ordered spaces
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are employed, in [3], [5], [18] the theory of linear parabolic equations together
with suitable (different) models of the hysteresis process, while in [20] topological
transversality methods are used to show the existence of periodic solutions.

The approach in Banach spaces employed in [8], [9] and [10] is based mainly
on the theory of multivalued condensing operators with convex values and the
related fixed point theory. In these papers the linear part of the equation
is invertible. Finally, in [15] and [16] the selection properties of nonempty,
closed, nonconvex valued operators and the viability theory in infinite-dimen-
sional spaces are used respectively.

The control system we consider in this paper represents a possible model for
a class of semilinear parabolic equations with distributed parameters. The paper
is organized as follows. In Section 1, Theorem 1 provides sufficient conditions
to guarantee the existence of periodic solutions corresponding to any control
function from a certain given class V of admissible controls. In order to prove
Theorem 1 we use a completely different approach from those considered in the
cited papers. Namely, since the linear part of the considered parabolic equation
is at resonance, we use the Lyapunov–Schmidt method to split our equation into
two equations: one in an infinite-dimensional space and the other in a finite-
dimensional space. Then, under suitable assumptions on the nonlinear part, we
apply to this system the Leray–Schauder topological degree theory to obtain the
existence of a periodic solution for any control function v ∈ V. Furthermore, a
nice topological property of the resulting solution set is obtained.

In Section 2, we associate three different cost functionals to the considered
control problem. Under different assumptions which depend on the specific cost
functional we consider, we prove the existence of a solution of the corresponding
optimization problem. That is, among all the pairs (u, v) where u is a periodic
solution corresponding to the control v ∈ V, we prove the existence of a minimum
of the cost functional. In [14] an approach similar to that outlined in this paper
has been used to treat periodic optimization problems for a class of control
systems described by a nonlinear system of ordinary differential equations in
finite-dimensional spaces.

1. Existence of periodic solutions

We consider the nonlinear boundary value control problem described by the
following semilinear parabolic equation:

(1)


∂
∂tu(x, t) +Mu(x, t) = f(x, t, u(x, t), v(x, t)), (x, t) ∈ Ω× (0, 1),

Dαu(x, t) = 0, (x, t) ∈ ∂Ω× (0, 1), for all α with |α| ≤ l − 1,

u(x, 0) = u(x, 1), x ∈ Ω,
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where Ω is a bounded domain of Rn with smooth boundary ∂Ω (e.g. of class
C2l), and M is a formally selfadjoint strongly elliptic operator of order 2l, l ≥ 1,
with smooth coefficients in Ω. That is,

Mu(x, t) =
∑
|α|≤l
|β|≤l

(−1)|α|Dα[Aα,βD
βu(x, t)],

where α = (α1, . . . , αn) is an n-tuple of nonnegative integers (a multi-index),
|α| = α1 + . . . + αn (the length of the multi-index) and Dα = Dα1

1 . . . Dαn
n .

Furthermore, for any multi-indices α, β the function Aα,β : Ω → R is smooth,
Aα,β = Aβ,α, and there exists c > 0 such that∑

|β|=|α|=l

Aα,β(x)ξαξβ ≥ c|ξ|2l,

for any x ∈ Ω and any ξ ∈ Rn.

The control function v = v(x, t) belongs to the control space V = L∞(Ω ×
(0, 1), V ), where V ⊂ Rm is a given connected, compact set.

The nonlinear term f : Ω× (0, 1)×R× V → R satisfies the following condi-
tions:

(f1) the map (x, t) → f(x, t, p, q) is measurable for any (p, q) ∈ R× V ;
(f2) the map (p, q) → f(x, t, p, q) is continuous for almost all (a.a.) (x, t) ∈

Ω× (0, 1);
(f3) |f(x, t, p, q)| ≤ a(x, t) + b|p| for a.a. (x, t) ∈ Ω × (0, 1), for any (p, q) ∈

R× V, where a ∈ L2(Ω× (0, 1),R+), b > 0.

The function t→ f(x, t, p, q) is extended from (0, 1) to R by 1-periodicity.
Consider now the multivalued function F : Ω× (0, 1)× R ( R defined by

F (x, t, p) = {f(x, t, p, q) : q ∈ V } = f(x, t, p, V )

for a.a. (x, t) ∈ Ω×(0, 1) and for any p ∈ R. We have the following result (see [1]).

Proposition 1. The multivalued map (x, t, p) ( F (x, t, p) has compact
convex values; it is measurable with respect to (x, t) and upper semicontinuous
with respect to p.

Let X = L2(Ω× (0, 1),R), and consider the multivalued Nemytskĭı operator
F : X ( X generated by F, that is,

F(u) = {z ∈ X : z(x, t) ∈ F (x, t, u(x, t)) for a.a. (x, t) ∈ Ω× (0, 1)}.

We have the following result (see [11]).

Proposition 2. The multivalued map F : X ( X has closed convex values;
it maps bounded sets into bounded sets and its composition with a linear compact
map K : X → X is upper semicontinuous. Moreover, F(u) = {Fv(u) : v ∈ V}
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for any u ∈ X, where Fv(u)(x, t) = f(t, x, u(x, t), v(x, t)) for a.a. (x, t) ∈ Ω ×
(0, 1).

The operator M together with the homogeneous Dirichlet boundary con-
ditions induces a selfadjoint differential operator M : L2(Ω,R) ⊃ D(M) →
L2(Ω,R), where

D(M) = W 2l
2 (Ω,R) ∩W l

2,0(Ω,R) and Mu = Mu for u ∈ D(M).

It is well known (see e.g. [17], [21]) that if M is a strongly elliptic operator then
there exist two constants c0 > 0 and λ0 ≥ 0 such that for each u ∈ D(M) the
following G̊arding inequality holds:

〈Mu, u〉 ≥ c0‖u‖2W l
2
− λ0‖u‖2L2 .

Here 〈·, ·〉 denotes the scalar product in L2(Ω,R). Furthermore, the smallest
eigenvalue µ1 of M is given by

µ1 = inf
‖u‖L2=1

〈Mu, u〉.

Let L be the differential operator formally defined by

Lu =
∂u

∂t
+Mu, where u(x, 0) = u(x, 1) for any x ∈ Ω.

Observe that the results in (e.g.) [21] coupled with an eigenfunction expansion
show that L admits a compact right inverse H : X → X on N(M)⊥, the space
perpendicular to the kernel of M, N(M), in X. We recall that we assume that
N(M) 6= {0} and so µ1 ≤ 0.

Therefore, for any v ∈ V, the nonlinear boundary value control problem (1)
can be rewritten as follows:

(2)

{
u1 = HQFv(u0 + u1),

0 = (I −Q)Fv(u0 + u1),

where u = u0 + u1 ∈ N(M) ⊕ N(M)⊥ = X and Q is the projection of X onto
N(M)⊥ parallel to N(M).

By [11, Corollaire 5.4], for any v ∈ V the operator HQFv : X → X is
continuous and compact. The same holds for the operator (I −Q)Fv : X → X

with finite-dimensional range. Denote by S ⊂ X the set of all possible solutions
of (2) corresponding to the controls v ∈ V.

Proposition 3. If S is bounded in X then it is compact in X.

Proof. Let {un} ⊂ S with corresponding {vn} ⊂ V. Then for any n ∈ N
we have

u1,n = HQFvn
(u0,n + u1,n), 0 = (I −Q)Fvn

(u0,n + u1,n),
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where un = u0,n + u1,n. Let zn = Fvn
(un), and observe that {zn} ⊂

⋃
n F(un).

Consequently, by the boundedness of {un} and Proposition 2 the sequence {zn} is
bounded inX. Thus, by passing to a subsequence if necessary, we see that zn ⇀ z

weakly inX, and un → u a.e. in Ω×(0, 1). Therefore, from the inclusion zn(x, t) ∈
f(x, t, un(x, t), V ) and the convexity of f(x, t, p, V ), which is an interval, we get
by taking the limit as n→∞,

z(x, t) ∈ f(x, t, u(x, t), V )

for a.a. (x, t) ∈ Ω× (0, 1). By [19] there exists v ∈ V such that

z(x, t) = f(x, t, u(x, t), v(x, t))

for a.a. (x, t) ∈ Ω× (0, 1). On the other hand, the linear operators HQ and I−Q
are compact and so weakly continuous, hence

lim
n→∞

HQzn = HQz and lim
n→∞

(I −Q)zn = (I −Q)z

with z = Fv(u) and u1 = HQz, i.e. u ∈ S. �

Assume the following condition.

(f4) There exist constants C > 1 and µ∗1 < µ1 such that

f(x, t, p, q)p ≤ µ∗1p
2

for a.a. (x, t) ∈ Ω× (0, 1), any p ∈ R with |p| > C and any q ∈ V.

We are now in a position to prove the main result of this section.

Theorem 1. Assume (f1)–(f4). For any v ∈ V the nonlinear boundary value
control problem (1) has a 1-periodic solution.

Proof. The proof is divided in two steps. In the first step we prove that
the set S is bounded in X, say by a constant r > 0. In the second one we show
that

deg(I −HQFv, (I −Q)Fv, Br, 0) 6= 0

for any v ∈ V. Here deg denotes the Leray–Schauder topological degree and Br

denotes the ball in X centered at zero with radius r.

First Step. It is convenient to reduce the nonlinear boundary value con-
trol problem (1) to the periodic control problem represented by the ordinary
differential equation

(3)

{
u̇(t) +Mu(t) = f̂(t, u(t), v(t)) for a.a. t ∈ (0, 1),

u(0) = u(1),

in the Banach space U = {u ∈ L2((0, 1),W l
2,0(Ω,R)) : u̇ ∈ L2((0, 1),

(W l
2,0(Ω,R))∗)}, where v ∈ L∞((0, 1), L∞(Ω, V )) and f̂ : (0, 1) ×W l

2,0(Ω,R) ×
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L∞(Ω, V ) → L2(Ω,R) is defined by

f̂(t, u, v)(·) = f(·, t, u(·), v(·)).

Assume that u ∈ U is a solution to (3) for some control function v. Then

(4) 〈u̇(t), u(t)〉W l
2,0

+ 〈Mu(t), u(t)〉 = 〈f̂(t, u(t), v(t)), u(t)〉.

Here 〈·, ·〉W l
2,0
, denotes the scalar product in W l

2,0(Ω,R), and 〈·, ·〉 denotes the
one in L2(Ω,R) and in the sequel ‖ · ‖ will denote the norm in the latter space.
Equality (4) can be rewritten as follows:

(5)
1
2
d

dt
‖u(t)‖2 + 〈Mu(t), u(t)〉 = 〈f̂(t, u(t), v(t)), u(t)〉.

Using (f3) we get

1
2
d

dt
‖u(t)‖2 + 〈Mu(t), u(t)〉 ≤ ‖a(t)‖ · ‖u(t)‖+ b‖u(t)‖2.

Dividing by ‖u(t)‖2 + 1 and integrating on the interval [τ, t], where τ ∈ R and
t ∈ [τ, τ + 1], we obtain

1
2
[log(‖u(t)‖2 + 1)− log(‖u(τ)‖2 + 1)] ≤ C1(u),

where

C1(u) = −µ∗1 +
∫ t

τ

[
‖a(s)‖ · ‖u(s)‖
1 + ‖u(s)‖2

+ b

]
ds.

By the 1-periodicity of u we obtain

(6) log sup
t∈[0,1]

(‖u(t)‖2 + 1) ≤ log inf
t∈[0,1]

(‖u(t)‖2 + 1) + 2C1(u).

Suppose that there exists a sequence {un} of solutions to (3) with corresponding
{vn} such that supt∈[0,1] ‖un(t)‖ → ∞ as n→∞. Then (6) implies that

inf
t∈[0,1]

‖un(t)‖ → ∞

as n → ∞, since {C1(un)} is a bounded sequence in R. Furthermore, for n
sufficiently large, from (5) dividing by ‖un(t)‖2 and integrating on (0, 1) we
obtain

(7) 0 =
∫ 1

0

[
〈Mun(t), un(t)〉

‖un(t)‖2
− 〈f̂(t, un(t), vn(t)), un(t)〉

‖un(t)‖2

]
dt.

We want to show that under our assumptions we have

lim inf
n→∞

∫ 1

0

[
〈Mun(t), un(t)〉

‖un(t)‖2
− 〈f̂(t, un(t), vn(t)), un(t)〉

‖un(t)‖2

]
dt > 0,
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contradicting (7). For this, consider

lim inf
n→∞

∫ 1

0

[
〈Mun(t), un(t)〉

‖un(t)‖2
− 〈f̂(t, un(t), vn(t)), un(t)〉

‖un(t)‖2

]
dt

≥
∫ 1

0

[
lim inf
n→∞

〈Mun(t), un(t)〉
‖un(t)‖2

− lim sup
n→∞

〈f̂(t, un(t), vn(t)), un(t)〉
‖un(t)‖2

]
dt

≥
∫ 1

0

[
µ1 − lim sup

n→∞

〈f̂(t, un(t), vn(t)), un(t)〉
‖un(t)‖2

]
dt.

It is now sufficient to prove that

(8) lim sup
n→∞

〈f̂(t, un(t), vn(t)), un(t)〉
‖un(t)‖2

< µ1.

For n sufficiently large and for fixed t ∈ (0, 1), consider

〈f̂(t, un(t), vn(t)), un(t)〉 =
∫

Ω

f(x, t, un(x, t), vn(x, t))un(x, t) dx.

Let C represent the constant of (f4) and define Ωn = {x ∈ Ω : |un(x, t)| ≤ C}
and Ω′n = {x ∈ Ω : |un(x, t)| > C}. By (f4) we have∫

Ω

f(x, t, un(x, t), vn(x, t))un(x, t) dx =
∫

Ωn

f(x, t, un(x, t), vn(x, t))un(x, t) dx

+
∫

Ω′
n

f(x, t, un(x, t), vn(x, t))un(x, t) dx

≤ C

∫
Ω

a(x, t)dx+ C2bmeas(Ω)

+ µ∗1

∫
Ω′

n

u2
n(x, t) dx

≤ K(t, a, b, C,Ω) + µ∗1

∫
Ω′

n

u2
n(x, t) dx

and we obtain

(9)
〈f̂(t, un(t), vn(t)), un(t)〉

‖un(t)‖2
<
K(t, a, b, C,Ω)
‖un(t)‖2

+ µ∗1

since ∫
Ω′

n
u2

n(x, t) dx

‖un(t)‖2
≤ 1.

Taking the lim sup in (9) we obtain (8). Therefore there exists a constant r > 0
such that supt∈[0,1] ‖u(t)‖ < r for any solution u = u(t), t ∈ (0, 1), of (3)
corresponding to some control v ∈ V. Hence the set S is bounded in X by the
constant r.
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Second Step. First of all observe that the above proof also shows that any
solution of the periodic control problem

(10)

{
u̇(t) +Mu(t) = λf̂(t, u(t), v(t)) + (1− λ)µu(t), t ∈ (0, 1),

u(0) = u(1),

where µ < µ1 ≤ 0 and λ ∈ [0, 1], is bounded by a constant, which we denote
again by r > 0, independent of λ and v.

In other words, the homotopy (10) is admissible. Now, for λ = 0 we have{
u̇(t) +Mu(t)− µu(t) = 0 for a.a. t ∈ (0, 1),

u(0) = u(1).

Or equivalently, {
u1 − µHQ(u0 + u1) = 0,

(I −Q)(u0 + u1) = 0.

Since µ < µ1 ≤ 0, the linear operator

Φ = (I − µHQ, (I −Q)) : X ⊃ Br → X

is a one-to-one map of Br onto Φ(Br) with 0 ∈ Φ(Br), and thus

|deg(Φ, Br, 0)| = 1

(see [12, Theorem 4.3.14]; cf. also [12, Theorem 4.3.11]), and in conclusion for
λ = 1 we have

|deg(I −HQFv, (I −Q)Fv, Br, 0)| = 1

for any v ∈ V. This concludes the proof. �

2. Optimization problems

In this section we consider the solvability of different optimization problems
for the nonlinear boundary value control problem (1). Specifically, together with
(1) we consider the following possible cost functionals:

1. J1 : X → R is defined by

J1(u) =
∫ 1

0

∫
Ω

f1(x, t, u(x, t)) dx dt+
∫

Ω

u2(x, 0) dx,

where f1 : Ω× (0, 1)× R → R satisfies the following conditions:

(1a) the function (x, t, p) → f1(x, t, p) is measurable;
(1b) the function p → f1(x, t, p) is lower semicontinuous for a.a. (x, t) ∈

Ω× (0, 1);
(1c) there exist φ1 ∈ L1(Ω×(0, 1),R) and ψ1 ∈ L1(Ω,R+) such that φ1(x, t)−

ψ1(x)|p| ≤ f1(x, t, p) for a.a. (x, t, p) ∈ Ω× (0, 1)× R;
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2. J2 : V → R is defined by

J2(v) =
∫ 1

0

∫
Ω

f2(x, t, v(x, t)) dx dt,

where f2 : Ω× (0, 1)× R → R satisfies the following conditions:

(2a) the function (x, t, q) → f2(x, t, q) is measurable;
(2b) the function q → f2(x, t, q) is lower semicontinuous and convex for a.a.

(x, t) ∈ Ω× (0, 1);
(2c) there exist φ2 ∈ L1(Ω×(0, 1),R) and ψ2 ∈ L1(Ω,R+) such that φ2(x, t)−

ψ2(x)|q| ≤ f2(x, t, q) for a.a. (x, t, q) ∈ Ω× (0, 1)× Rm,

(2d) the set V ⊂ Rm where the controls take their values is convex and
compact.

3. J3 : X × V → R is defined by

J3(u, v) =
∫ 1

0

∫
Ω

f3(x, t, u(x, t), v(x, t)) dx dt+
∫

Ω

u2(x, 0) dx,

where f3 : Ω× (0, 1)× R× Rm → R satisfies the following conditions:

(3a) the function (x, t, p, q) → f3(x, t, p, q) is measurable;
(3b) the function (p, q) → f3(x, t, p, q) is continuous;
(3c) |f3(x, t, p, q)| ≤ a3(x, t) + b3|p| for a.a. (x, t) ∈ Ω × (0, 1) and for any

(p, q) ∈ R× V, where a3 ∈ L2(Ω× (0, 1),R+), b3 > 0.

We proceed now to solve the proposed optimization problems.

1. Consider the optimization problem

(11)

{
J1(u) → inf = m1

with u solution of (1).

The following result holds.

Theorem 2. Under the assumptions of Theorem 1 and (1a)–(1c) the opti-
mization problem (11) has a solution.

Proof. Define f̂1 : (0, 1)× L2(Ω,R) → R as follows:

f̂1(t, u) =
∫

Ω

f1(x, t, u(x)) dx.

The function (t, u) → f̂1(t, u) is measurable and by [2] the function u→ f̂1(t, u)
is lower semicontinuous. Therefore, the cost functional

J1(u) =
∫ 1

0

f̂1(t, u(t)) dt+
∫

Ω

u2(x, 0) dx

is lower semicontinuous in X. Hence it attains its minimum on the solution set
S ⊂ X which is bounded and thus compact by Proposition 3. �
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2. Consider the problem

(12)

{
J2(v) → inf = m2

with v ∈ V.

We can prove the following.

Theorem 3. Under the assumptions of Theorem 1 and (2a)–(2d) the opti-
mization problem (12) has a solution.

Proof. Define f̂2 : (0, 1)× L∞(Ω, V ) → R as follows:

f̂2(t, v) =
∫

Ω

f2(x, t, v(x)) dx.

The function (t, v) → f̂2(t, v) is measurable and by [2] the function v → f̂2(t, v)
is lower semicontinuous. Clearly v → f̂2(t, v) is convex since f2 is. Consider now
a minimizing sequence {vn} ⊂ V. By passing to a subsequence if necessary, we
see that vn ⇀ v0 weakly in X. On the other hand, the control set V is convex
and closed in X, since V is (see [4], p. 117), thus it is weakly closed in X and so
v0 ∈ V. The cost functional

J2(v) =
∫ 1

0

f̂2(t, v(t)) dt

is sequentially weakly lower semicontinuous in V, since it is lower semicontinuous
and convex in the variable v. Therefore

m2 = lim inf
n→∞

J2(vn) ≥ J2(v0). �

3. Finally, consider the following problem:

(13)


J3(u, v) → inf = m3

where u is a solution of (1)

with corresponding controls v.

We have the following.

Theorem 4. Under the assumptions of Theorem 1 and (3a)–(3c) the opti-
mization problem (13) has a solution.

Proof. For any v ∈ V, let Gv : X → X be the Nemytskĭı operator generated
by the function f3, that is,

Gv(u)(x, t) = f3(x, t, u(x, t), v(x, t))

for a.a. (x, t) ∈ Ω×(0, 1). By our assumptions on f3, this operator is well defined
and continuous. Consider the linear operator K : X → L2((0, 1),R) defined by

w(t) = (Ky)(t) =
∫ t

0

( ∫
Ω

y(x, s) dx
)
ds, y ∈ X.
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Clearly the operator K is continuous and compact and so is the composition
KGv : X → X0 for any v ∈ V.

Let {(un, vn)} be a minimizing sequence, where {un} ⊂ S and {vn} ⊂ V are
corresponding controls. Define a sequence {wn} ⊂ L2((0, 1),R) as follows:

wn = KGvn(un) + cn,

where cn =
∫
Ω
u2

n(x, 0) dx is considered as a constant function with respect to
time. Therefore the pair (un, wn) ∈ S × L2((0, 1),R) satisfies the system

(14)

u1,n = HQFvn(u0,n + u1,n),

0 = (I −Q)Fvn(u0,n + u1,n),

wn = KGvn(u0,n + u1,n) + cn,

for any n ∈ N, or equivalently, zn = Tvn
(un), where zn = (un, wn) and Tvn

:
X → X × L2((0, 1),R) is defined by

Tvn(un) = (HQFvn(un), u0,n + (I −Q)Fvn(un),KGvn(un) + cn).

Obviously, Tvn
is continuous and compact for any vn ∈ V. Taking into ac-

count the convexity of the vector field (x, t, p) → (f(x, t, p, V ), f3(x, t, p, V )),
the boundedness of {un} ⊂ S and {vn} ⊂ V, we can use the arguments of the
proof of Proposition 3 to show the existence of a solution z∗ = (u∗, w∗) of (14)
corresponding to a control v∗ ∈ V. Therefore

u∗1 = HQFv∗(u∗),

0 = (I −Q)Fv∗(u∗),

w∗ = KGv∗(u∗) +
( ∫

Ω

u∗2(x, 0) dx
)
,

and so u∗ ∈ S with corresponding v∗ ∈ V and w∗(1) = J3(u∗, v∗) = m3. �
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