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1. Introduction

Let S be a commutative semigroup with identity, and let H be a real Hilbert
space with inner product 〈 · , · 〉 and norm ‖ · ‖.

We also denote by Z, Z+, R and R+ the sets of all integers, nonnegative inte-
gers, real numbers and nonnegative real numbers, respectively. Let C be a subset
of H. Then a mapping T : C → C is called nonexpansive if ‖Tx−Ty‖ ≤ ‖x−y‖
for all x, y ∈ C. The first nonlinear ergodic theorem for nonexpansive mappings
(in a Hilbert space) was established by Baillon [1]: Let C be a nonempty closed
convex subset of H and let T be a nonexpansive mapping of C into itself. If T

has a fixed point, then the Cesàro means (1/n)
∑n−1

k=0 T kx converge weakly as
n →∞ to a fixed point y of T. In this case, put y = Px for each x ∈ C. Then P

is a nonexpansive retraction of C onto the set Fix(T ) of fixed points of T such
that PTn = TnP = P for all n ∈ Z+, and Px ∈ clco{Tnx : n ∈ Z+} for each
x ∈ C, where clco A is the closure of the convex hull of A. In [33, 34], Takahashi
proved the existence of such an ergodic retraction for an amenable semigroup of
nonexpansive mappings in a Hilbert space. And also Rodé [30] found a sequence
of means on the semigroup, generalizing the Cesàro means on the positive inte-
gers, such that the corresponding sequence of mappings converges to an ergodic
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retraction onto the set of common fixed points. Recently Takahashi [36] proved a
nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings
without convexity in a Hilbert space; see also [17]. On the other hand, Bruck [10,
11] and Miyadera and Kobayasi [22] introduced the notion of an almost orbit of
a nonexpansive semigroup on C and studied the weak and strong convergence
theorems of such an almost orbit. Then Rouhani [31, 32] introduced the notions
of almost nonexpansive sequences and curves in a Hilbert space, and proved weak
and strong convergence theorems for such sequences and curves.

This paper is organized as follows: In Section 2, we give some definitions and
elementary results. In Section 3, we introduce the notion of an almost nonexpan-
sive curve over a commutative semigroup S which generalizes the notions given
in [31, 32] and give some examples of such curves. We also define the generalized
fixed point sets F (u) and Fµ(u), where u is an almost nonexpansive curve and µ

is an invariant mean. Then, using the metric projection P onto Fµ(u), we prove
(Theorem 3.8) that {Pu(s) : s ∈ S} converges strongly to u(µ), where u(µ) is
the asymptotic center of u for µ. We also know that u(µ) is an element of H

such that for any y ∈ H, 〈u(µ), y〉 = µt〈u(t), y〉. This result is an extension of
Baillon [1], Baillon and Brezis [3], Moroşanu [24] and Rouhani [31]. In Section 4,
we prove nonlinear ergodic theorems for almost nonexpansive curves over com-
mutative semigroups. First we prove (Theorem 4.5) that for an asymptotically
invariant net {µα : α ∈ A} of means which generalizes a sequence of Cesàro
means, u(r∗sµα) converges weakly to u(µ). Further for a strongly regular net
{µα : α ∈ A}, we prove (Theorem 4.7) that u(r∗sµα) converges weakly to u(µ)
uniformly in s ∈ S. These results generalize the results of Rodé [30], Takahashi
[36] and Rouhani [31]. In Section 5, we find necessary and sufficient conditions
for an almost nonexpansive curve to be weakly convergent.

2. Preliminaries

Let S be a commutative semigroup with identity and let l∞(S) be the Banach
space of all bounded real-valued functions on S with supremum norm. Then
for each s ∈ S and f ∈ l∞(S), we can define an element rsf in l∞(S) by
(rsf)(t) = f(t + s) for all t ∈ S. Let X be a subspace of l∞(S) containing the
constant functions on S. Then an element µ of X∗, where X∗ is the dual space
of X, is called a mean on X if ‖µ‖ = µ(1) = 1. As is known, µ is a mean on X

if and only if

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s)

for each f ∈ X. A real-valued function µ on X is called a submean on X if the
following conditions are satisfied:
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(i) µ(f + g) ≤ µ(f) + µ(g) for every f, g ∈ X;
(ii) µ(αf) = αµ(f) for every f ∈ X and α ≥ 0;
(iii) for f, g ∈ X, f ≤ g implies µ(f) ≤ µ(g);
(iv) µ(c) = c for every constant function c.

Clearly every mean on X is a submean. The notion of a submean was first
introduced by Mizoguchi and Takahashi in [23]; see also [19].

Let X be a subspace of l∞(S) containing the constant functions on S which
is invariant under rs, s ∈ S. A submean (or mean) µ on X is invariant if
µ(rsf) = µ(f) for all s ∈ S and f ∈ X. In the case when S is commutative,
we know that there exists an invariant mean µ on l∞(S); see Day [12]. For an
invariant mean µ on l∞(S), the restriction of µ to X is an invariant mean on X.
Sometimes, the value of a submean (or mean) µ at f ∈ X will also be denoted
by µ(f) or µs(f(s)). A commutative semigroup S is a directed system when the
binary relation is defined by s ≤ t if and only if {s} ∪ (S + s) ⊃ {t} ∪ (S + t).

Throughout this paper, we denote by C a nonempty subset of a real Hilbert
space H, by S a commutative semigroup with identity, and by X a subspace of
l∞(S) containing the constant functions on S which is invariant under rs, s ∈ S.
Furthermore, an order “≤” on S is defined as above. We also denote by Cb(S)
and Mb((R+)n) all bounded continuous functions on a semitopological semigroup
S and all bounded Lebesgue measurable functions on (R+)n, respectively. And
also we write xn ⇀ x (or w-lim xn = x) to indicate that the sequence {xn} of

vectors converges weakly to x; similarly xn → x and xn
w∗

→ x (or w∗-lim xn = x)
will symbolize strong convergence and w∗-convergence, respectively. We also
denote by cl A and co A the closure of A and the convex hull of A, respectively.

The following definition which was introduced by Takahashi [33] (see also
Day [13]) is crucial in the nonlinear ergodic theory for abstract semigroups. Let
u be a bounded function from S to H such that 〈u( · ), y〉 ∈ X for every y ∈ H,
and let µ be an element of X∗. Then the function g from H into R given by

g(y) = µs〈u(s), y〉 for every y ∈ H

is linear and continuous. So by the Riesz theorem, there exists an element u(µ)
in H such that 〈u(µ), y〉 = µs〈u(s), y〉 for all y ∈ H. Let u be a bounded function
from S to C such that for any x ∈ C, ‖u( · )− x‖2 ∈ X. Then as in [14, 15, 20],
for a submean µ on X, we define the µ-asymptotic center µ-AC(u, C) of u in C

as follows:

µ-AC(u, C) = {x ∈ C : µs‖u(s)− x‖2 = inf
y∈C

µs‖u(s)− y‖2}.

Remark 2.1. Let u be a bounded function from S to C such that for any
x ∈ C, ‖u( · ) − x‖2 ∈ X. Then it follows that for any x ∈ C, 〈u( · ), x〉 ∈ X. If
C is closed and convex, we also know that µ-AC(u, C) is nonempty [23].
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We give two results which are used in Sections 3, 4 and 5.

Lemma 2.2 [34]. Let µ be an invariant submean on X. Then

lim
s

f(s) ≤ µ(f) ≤ lim
s

f(s)

for every f ∈ X, where lims f(s) = sups inft≥s f(t) and lims f(s) =
infs supt≥s f(t).

Lemma 2.3. Let u be a bounded function from S into H with the property
that ‖u( · ) − y‖2 ∈ X for all y ∈ H. Then for any mean µ on X, the µ-
asymptotic center µ-AC(u, H) of u in H consists of a single point u(µ). If µ

is an invariant mean on X, then u(µ) ∈
⋂

s clco{u(t) : t ≥ s}.

Proof. Since, for each y ∈ H and t ∈ S,

‖u(µ)− y‖2 = ‖u(t)− y‖2 − ‖u(t)− u(µ)‖2 − 2〈u(t)− u(µ), u(µ)− y〉,

we have

0 ≤ ‖u(µ)− y‖2

= µt‖u(t)− y‖2 − µt‖u(t)− u(µ)‖2 − 2µt〈u(t)− u(µ), u(µ)− y〉
= µt‖u(t)− y‖2 − µt‖u(t)− u(µ)‖2 − 2〈u(µ)− u(µ), u(µ)− y〉
= µt‖u(t)− y‖2 − µt‖u(t)− u(µ)‖2.

This implies that µ-AC(u, H) consists of a single point u(µ).
Assume u(µ) 6∈

⋂
s∈S clco{u(t) : t ≥ s}. Then u(µ) 6∈ clco{u(t) : t ≥ s} for

some s ∈ S. By the separation theorem, there exists a y0 in H such that

〈u(µ), y0〉 < inf{〈z, y0〉 : z ∈ clco{u(t) : t ≥ s}}.

As

〈u(µ), y0〉 < inf{〈z, y0〉 : z ∈ clco{u(t) : t ≥ s}}
≤ inf

t∈S
〈u(s + t), y0〉 ≤ µt〈u(s + t), y0〉 = µt〈u(t), y0〉 = 〈u(µ), y0〉,

we have a contradiction. Therefore u(µ) ∈
⋂

s∈S clco{u(t) : t ≥ s}.

3. Almost nonexpansive curves

In this section, we introduce the notion of an almost nonexpansive curve over
a commutative semigroup and prove some results for such curves.

Let u be a function from S into H. Then u is said to be an almost nonex-
pansive curve if there exists a real-valued function ε( · , · ) on S × S such that

‖u(s + h)− u(t + h)‖2 ≤ ‖u(s)− u(t)‖2 + ε(s, t)
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for every s, t and h in S and lims,t→∞ ε(s, t) = 0, where lims,t→∞ ε(s, t) = 0
means that, for any δ > 0, there exists s0 ∈ S such that ε(s, t) ≤ δ for every
s, t ∈ S with s, t ≥ s0. In the case when ε(s, t) = 0 for every s, t ∈ S, u is said
to be a nonexpansive curve.

Remark 3.1. Let u be a bounded function from S to H such that

‖u(s + h)− u(t + h)‖ ≤ ‖u(s)− u(t)‖+ ε1(s, t)

for every s, t and h in S and lims,t→∞ ε1(s, t) = 0. Then it is obvious that u is
an almost nonexpansive curve with ε(s, t) = 4(supr∈S ‖u(r)‖)ε1(s, t) + ε1(s, t)2.

We give some examples of almost nonexpansive curves.

Example 3.2. Consider the initial value problem

(∗) du

dt
(t) + Au(t) 3 f(t), t > 0, u(0) = x,

where A is a maximal monotone operator in H, f ∈ L1(0,∞;H) and x ∈ cl D(A).
Then it is well known that (∗) has a unique integral solution u(t); see [4, 5].
We also know that if v(t) is another integral solution of (∗) corresponding to
g ∈ L1(0,∞;H) and y ∈ cl D(A), then

‖u(t2)− v(t2)‖ ≤ ‖u(t1)− v(t1)‖+
∫ t2

t1

‖f(θ)− g(θ)‖ dθ,

whenever 0 ≤ t1 ≤ t2 < ∞. Putting v(t) = u(t − r + s), g(t) = f(t − r + s),
t1 = r and t2 = r + h, we get

‖u(r + h)− u(s + h)‖ ≤ ‖u(r)− u(s)‖+
∫ r+h

r

‖f(θ − r + s)− f(θ)‖ dθ

≤ ‖u(r)− u(s)‖+
∫ ∞

r

‖f(θ − r + s)‖ dθ +
∫ ∞

r

‖f(θ)‖ dθ

= ‖u(r)− u(s)‖+
∫ ∞

s

‖f(τ)‖ dτ +
∫ ∞

r

‖f(θ)‖ dθ.

So put ε1(r, s) =
∫∞

s
‖f(τ)‖ dτ +

∫∞
r
‖f(θ)‖ dθ, and ε(r, s) = 4(supt∈S ‖u(t)‖)×

ε1(r, s) + ε1(r, s)2. If A−1(0) 6= ∅, by Remark 3.1, u is a bounded almost nonex-
pansive curve from R+ to H.

Example 3.3. Let S be a commutative semitopological semigroup with
identity, i.e. a commutative semigroup with a Hausdorff topology such that
for each t ∈ S, the mapping s 7→ s + t from S to S is continuous, and let
T = {T (s) : s ∈ S} be a family of nonexpansive mappings from C into itself
such that T (s + t) = T (s)T (t) for all s, t ∈ S and s 7→ T (s)x is continuous for
each x ∈ C. Such a family T = {T (s) : s ∈ S} is called a nonexpansive semi-
group on C. We denote by Fix(T ) the set of common fixed points of T (s), s ∈ S.
Assume that 〈T ( · )x, y〉 ∈ X for all x ∈ C and y ∈ H. Then for any mean µ on



310 O. Kada — W. Takahashi

X, we define a unique element T (µ)x of C such that 〈T (µ)x, y〉 = µt〈T (t)x, y〉
for all y ∈ H. A continuous function u : S → C is said to be an almost orbit of
T = {T (s) : s ∈ S} if

lim
t

sup
s∈S

‖u(s + t)− T (s)u(t)‖ = 0.

If u is a bounded almost orbit of T , then we have

‖u(s + h)− u(t + h)‖
≤ ‖u(s + h)− T (h)u(s)‖+ ‖u(t + h)− T (h)u(t)‖+ ‖T (h)u(s)− T (h)u(t)‖.

So, putting ε1(s, t) = suph∈S ‖u(s+h)−T (h)u(s)‖+suph∈S ‖u(t+h)−T (h)u(t)‖,
and ε(s, t) = 4(supr∈S ‖u(r)‖)ε1(s, t)+ ε1(s, t)2, by Remark 3.1, we see that u is
an almost nonexpansive curve from S into C.

Example 3.4. Let u : Z+ → R be the function given by u(n) = 1/n and
ε1(n, m) = 1/n + 1/m. Then by Remark 3.1, u is an almost nonexpansive
curve from Z+ to R. More generally, let u(n1, . . . , nk) = 1/(n1 . . . nk) and
ε1((n1, . . . , nk), (m1, . . . , mk)) = 1/(n1 . . . nk) + 1/(m1 . . .mk), where (n1, . . .

. . . , nk) and (m1, . . . , mk) are elements of (Z+)k. Then u is an almost nonex-
pansive curve from (Z+)k to R.

Example 3.5. Let u : R+ → R2 be the function given by u(s) = (cos s +
1/(s + 1), sin s) and ε1(s, t) = 3(1/(s + 1) + 1/(t + 1)). Then u is an almost
nonexpansive curve from R+ to R2. More generally, put

u(s1, . . . , sk) =
(

cos
( k∑

i=1

si

)
+ 1/

k∏
i=1

(si + 1), sin
( k∑

i=1

si

))
.

Then u is an almost nonexpansive curve from (R+)k to R2 with ε1((si), (ti)) =
3(1/

∏k
i=1(si + 1) + 1/

∏k
i=1(ti + 1)).

Let u be a function from S to H. Then we denote by F1(u) and F (u) the
subsets of H defined by q ∈ F1(u) if and only if ‖u(t)− q‖ ≤ ‖u(s)− q‖ for every
t, s ∈ S with t ≥ s, and q ∈ F (u) if and only if lims→∞ ‖u(s)− q‖ exists.

Let u be an almost nonexpansive curve from S to H with ε( · , · ) such that
ε(s, · ) ∈ X for all s ∈ S. Let µ be an invariant mean on X and put ε(s) =
µtε(s, t), s ∈ S. Then lims→∞ ε(s) = 0. In fact, for any δ > 0, there exists s0

such that for any s, t ≥ s0, ε(s, t) ≤ δ. Then for any s ≥ s0, ε(s) = µtε(s, t) =
µtε(s, s0 + t) ≤ δ. This implies lims→∞ ε(s) = 0. So, for an almost nonexpansive
curve u from S to H with ε( · , · ) and an invariant mean µ on X, we denote
by Fµ(u) the subset of H given by q ∈ Fµ(u) if and only if ‖u(t) − q‖2 ≤
‖u(s)− q‖2 + ε(s) for every t, s ∈ S with t ≥ s, where ε(s) = µtε(s, t).
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Lemma 3.6. Let u be an almost nonexpansive curve from S to H with ε( · , · )
such that ‖u( · )− y‖2 and ε(s, · ) are in X for all y ∈ H and s ∈ S. Let µ be an
invariant mean on X. Then:

(i) F (u), F1(u) and Fµ(u) are closed convex subsets of H;
(ii) F1(u) ⊂ Fµ(u) ⊂ F (u). In particular, u(µ) ∈ Fµ(u).

Proof. (i) We use the methods of [31] and [32]. Let {qn} ⊂ F (u) and
qn → q. Then, from

| ‖u(s)− q‖ − ‖u(t)− q‖ |
≤ | ‖u(s)− q‖ − ‖u(s)− qn‖|+ | ‖u(s)− qn‖ − ‖u(t)− qn‖ |

+ | ‖u(t)− qn‖ − ‖u(t)− q‖ |
≤ 2‖q − qn‖+ | ‖u(s)− qn‖ − ‖u(t)− qn‖ |,

it follows that {‖u(s)− q‖ : s ∈ S} is a Cauchy net. So, we have q ∈ F (u). This
implies F (u) is closed. Let q1, q2 ∈ F (u). Then, from

‖u(s)−(1/2)(q1+q2)‖2 = (1/2)‖u(s)−q1‖2+(1/2)‖u(s)−q2‖2−(1/4)‖q1−q2‖2,

we have (1/2)(q1 + q2) ∈ F (u) and hence F (u) is convex. Let s ∈ S. Then,
putting

Fs = {q ∈ H : ∀t ≥ s, ‖u(t)− q‖2 ≤ ‖u(s)− q‖2 + ε(s)},

we have

Fs = {q ∈ H : ∀t ≥ s, 2〈u(s)− u(t), q〉 ≤ ‖u(s)‖2 − ‖u(t)‖2 + ε(s)}.

This implies Fs is closed and convex. Since Fµ(u) =
⋂

s∈S Fs, Fµ(u) is closed
and convex. Similarly, F (u) and F1(u) are closed and convex.

(ii) For any s, t, a ∈ S, we have

2〈u(s)− u(t + s), u(a)− u(µ)〉
= ‖u(s)− u(µ)‖2 − ‖u(t + s)− u(µ)‖2 + ‖u(t + s)− u(a)‖2 − ‖u(s)− u(a)‖2,

and hence

0 = 2〈u(s)− u(t + s), u(µ)− u(µ)〉 = ‖u(s)− u(µ)‖2 − ‖u(t + s)− u(µ)‖2

+ µa‖u(t + s)− u(a)‖2 − µa‖u(s)− u(a)‖2.

On the other hand, since ‖u(t + s) − u(t + a)‖2 ≤ ‖u(s) − u(a)‖2 + ε(s, a), we
have

µa‖u(t + s)− u(a)‖2 = µa‖u(t + s)− u(t + a)‖2 ≤ µa(‖u(s)− u(a)‖2 + ε(s, a))

= µa(‖u(s)− u(a)‖2 + ε(s).

Therefore,

‖u(t+s)−u(µ)‖2−‖u(s)−u(µ)‖2 = µa‖u(t+s)−u(a)‖2−µa‖u(s)−u(a)‖2 ≤ ε(s),
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and hence ‖u(t + s)− u(µ)‖2 ≤ ‖u(s)− u(µ)‖2 + ε(s). So, u(µ) ∈ Fµ(u).
Let q ∈ Fµ(u). Since lims→∞ ε(s) = 0, for any ε > 0 there exists s0 such that

for any s ≥ s0 and t ∈ S,

‖u(t + s)− q‖2 ≤ ‖u(s)− q‖2 + ε.

So, we get
lim

t
‖u(t)− q‖2 ≤ ‖u(s)− q‖2 + ε,

and hence
lim

t
‖u(t)− q‖2 ≤ lim

s
‖u(s)− q‖2 + ε.

Since ε > 0 is arbitrary, limt ‖u(t)− q‖2 must exist. So, Fµ(u) ⊂ F (u).

The following lemma is a modification of [36].

Lemma 3.7. Let µ be an invariant mean on X, and let u be a bounded
almost nonexpansive curve from S to H with ε( · , · ) such that ‖u( · )− y‖2 and
ε(s, · ) are in X for all y ∈ H and s ∈ S. Then

lim -AC(u, H) = µ-AC(u, H) = {u(µ)},

where lim-AC(u, H) = {x ∈ H : lims ‖u(s) − x‖2 = infy∈H lims ‖u(s) − y‖2}.
Consequently, if µ and λ are invariant means on X, then u(µ) = u(λ).

Proof. As in the proof of Lemma 2.3, for any t ∈ S and y ∈ H,

(∗) 0 ≤ ‖u(µ)− y‖2 = µt‖u(t)− y‖2 − µt‖u(t)− u(µ)‖2.

This implies µ-AC(u, H) = {u(µ)}. Since u(µ) ∈ F (u), by Lemma 2.2 we have
µt‖u(t) − u(µ)‖2 = limt ‖u(t) − u(µ)‖2 and µt‖u(t) − y‖2 ≤ limt ‖u(t) − y‖2.
Then from (∗) we get

0 ≤ ‖u(µ)− y‖2 ≤ lim
t
‖u(t)− y‖2 − lim

t
‖u(t)− u(µ)‖2.

Therefore lim-AC(u, H) = {u(µ)}. So, the first assertion follows. From this, it
is obvious that u(µ) = u(λ).

The following theorem is an extension of Baillon [1], Baillon and Brezis [3],
Moroşanu [24] and Rouhani [32].

Theorem 3.8. Let u be an almost nonexpansive curve from S to H with
ε( · , · ) such that ‖u( · ) − y‖2 and ε(s, · ) are in X for all y ∈ H and s ∈ S,
and let µ be an invariant mean on X. Let P be the metric projection of H onto
Fµ(u). Then Pu(s) converges strongly to u(µ), which is the µ-asymptotic center
of u in H.

Proof. Let ε > 0. Then there exists s0 ∈ S such that for any s ≥ s0, ε(s) =
µtε(s, t) ≤ ε. Put ϕ(s) = ‖u(s)−Pu(s)‖2 for all s ∈ S. Then, for any s ≥ s0, we
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have

ϕ(t + s) = ‖u(t + s)− Pu(t + s)‖2 ≤ ‖u(t + s)− Pu(s)‖2

≤ ‖u(s)− Pu(s)‖2 + ε(s) ≤ ϕ(s) + ε,

and hence
lim

t
ϕ(t) = lim

t
ϕ(t + s) ≤ ϕ(s) + ε.

So, we have
lim

t
ϕ(t) = lim

s
ϕ(s) + ε.

Since ε > 0 is arbitrary, we get limt ϕ(t) ≤ lims ϕ(s). This implies that lims ϕ(s)
exists. Since P is the metric projection of H onto Fµ(u), we have, for any t, s ∈ S,

〈u(t + s)− Pu(t + s), Pu(s)− Pu(t + s)〉 ≤ 0.

Hence, from

‖Pu(t + s)− Pu(s)‖2 + ‖u(t + s)− Pu(t + s)‖2 − ‖u(t + s)− Pu(s)‖2

= 2〈u(t + s)− Pu(t + s), Pu(s)− Pu(t + s)〉,

we have

‖Pu(t + s)− Pu(s)‖2 ≤ ‖u(t + s)− Pu(s)‖2 − ‖u(t + s)− Pu(t + s)‖2

≤ ‖u(s)− Pu(s)‖2 + ε(s)− ‖u(t + s)− Pu(t + s)‖2

= ϕ(s)− ϕ(t + s) + ε(s).

This implies Pu(s) is a Cauchy net. Let q be a point of H such that Pu(s) → q.

Then we show q = u(µ). Since u(µ) ∈ Fµ(u), we have, for any s ∈ S,

〈u(s)− Pu(s), u(µ)− Pu(s)〉 ≤ 0.

Then we obtain

〈u(s)− Pu(s), u(µ)〉 − 〈u(s)− Pu(s), q〉 ≤ 〈u(s)− Pu(s), Pu(s)− q〉
≤ K‖Pu(s)− q‖,

where K = sups∈S ‖u(s)− Pu(s)‖. So, we have

〈u(µ)− q, u(µ)〉 − 〈u(µ)− q, q〉 ≤ K‖q − q‖ = 0.

This implies 〈u(µ) − q, u(µ) − q〉 ≤ 0 and hence q = u(µ). Therefore Pu(s)
converges strongly to u(µ).

Remark 3.9. Let P be the metric projection of H onto F (u). Then there
is an example that Pu(s) does not converge; see Rouhani [32, Example 3.5].

From Theorem 3.8, we obtain the following two results.
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Corollary 3.10 [32]. Let {x(n) : n ∈ Z+} be a bounded nonexpansive
sequence in H. Then, for P being the metric projection of H onto F1(x( · )),
Px(n) converges strongly to the (lim-)asymptotic center of {x(n)}.

Proof. Take S = Z+, u = x( · ) and X = l∞(Z+). Then Fµ(x( · )) =
F1(x( · )), and by Lemma 3.7, µ-asymptotic center = lim-asymptotic center. So,
Corollary 3.10 is obvious from Theorem 3.8.

Corollary 3.11. Let u : S → C be a bounded almost orbit of a nonexpan-
sive semigroup T = {T (s) : s ∈ S} on C, let µ be an invariant mean on l∞(S),
and assume

⋂
s∈S clco{u(t) : t ≥ s} ⊂ C. Let P be the metric projection of H

onto Fµ(u). Then Fix(T ) 6= ∅, and Pu(s) converges strongly to u(µ), which is
the µ-asymptotic center of u in C and also a point of Fix(T ).

Proof. By Theorem 3.8 and Example 3.3, it is obvious that Pu(s) converges
strongly to u(µ), which is an element of C by Lemma 2.3 and the assumption.
Next, we show µ-AC(u, C) is T (t)-invariant for all t ∈ S. Let y ∈ AC(u, C). For
any ε > 0, there exists s0 such that for any s ≥ s0 and t ∈ S,

‖u(t + s)− T (t)u(s)‖ ≤ ε.

Then we have

‖u(t+ s)−T (t)y‖ ≤ ‖u(t+ s)−T (t)u(s)‖+‖T (t)u(s)−T (t)y‖ ≤ ε+‖u(s)−y‖.

Putting K = 2 sups∈S ‖u(s)− y‖, we have

‖u(t + s)− T (t)y‖2 ≤ ‖u(s)− y‖2 + Kε + ε2,

and hence

µs‖u(s)− T (t)y‖2 = µs‖u(t + s)− T (t)y‖2 ≤ µs‖u(s)− y‖2 + Kε + ε2.

Since ε > 0 is arbitrary, we get

µs‖u(s)− T (t)y‖2 ≤ µs‖u(s)− y‖2.

Thus T (t)y ∈ µ-AC(u, C). This implies µ-AC(u, C) is T (t)-invariant for all
t ∈ S. Since µ-AC(u, C) consists of one point u(µ), we have u(µ) = T (t)u(µ) for
all t ∈ S. Therefore Fix(T ) 6= ∅.

4. Nonlinear ergodic theorems

In this section, we prove nonlinear ergodic theorems for almost nonexpansive
curves. Let u be a bounded function from S to H. We define W (u) = the set
of all weak limit points of subnets of the net {u(s) : s ∈ S}. As in the proof of
Bruck [9, Lemma 1.2], we have the following.
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Lemma 4.1. Let E be a reflexive Banach space and let u be a bounded func-
tion from S to E. Then clcoW (u) =

⋂
t∈S clco{u(s) : s ≥ t}.

Using Lemma 4.1, we have the following.

Lemma 4.2. Let u be a bounded function from S to H. Then F (u) is
orthogonal to clcoW (u), i.e. for any p1, p2 ∈ F (u) and q1, q2 ∈ clcoW (u),

〈p1 − p2, q1 − q2〉 = 0.

In particular, F (u) ∩ clcoW (u) consists of at most one point.

Proof. We use the method of Brezis [6] and Rouhani [31]. It is sufficient to
give the proof for q1, q2 ∈ W (u). Let u(sα) ⇀ q1 and u(tβ) ⇀ q2. For any s ∈ S,

‖u(s)− p2‖2 = ‖u(s)− p1‖2 + ‖p1 − p2‖2 + 〈u(s)− p1, p1 − p2〉.

So, we get

lim
s
‖u(s)− p2‖2 = lim

s
‖u(s)− p1‖2 + ‖p1 − p2‖2 + 〈q1 − p1, p1 − p2〉

and

lim
s
‖u(s)− p2‖2 = lim

s
‖u(s)− p1‖2 + ‖p1 − p2‖2 + 〈q2 − p1, p1 − p2〉.

Therefore, we get 〈p1 − p2, q1 − q2〉 = 0.

Using Lemmas 4.1 and 4.2, we have the following.

Theorem 4.3. Let u be an almost nonexpansive curve from S to H with
ε( · , · ) such that ‖u( · )− y‖2 and ε(s, · ) are in X for all y ∈ H and s ∈ S, and
let µ be an invariant mean on X. Then

F (u) ∩
⋂
s∈S

clco{u(t) : t ≥ s} = {u(µ)}.

Proof. By Lemma 2.3, u(µ) ∈
⋂

s∈S clco{u(t) : t ≥ s} and by Lemma 3.6,
u(µ) ∈ F (u). Thus, by Lemmas 4.1 and 4.2, the proof is complete.

Let {µα : α ∈ A} be a net of means on X. Then {µα : α ∈ A} is said to be
asymptotically invariant on X (cf. [30]) if for any s ∈ S and f ∈ X,

µα(f)− µα(rsf) → 0.

Let {µα : α ∈ A} be a net of continuous linear functionals on X. Then {µα :
α ∈ A} is said to be strongly regular on X (cf. [16]) if the following conditions
are satisfied:

(a) supα ‖µα‖ < ∞;
(b) limα µα(1) = 1;
(c) limα ‖µα − r∗sµα‖ = 0 for every s ∈ S.
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We give some examples of asymptotically invariant nets and strongly regular
nets; see Hirano, Kido and Takahashi [16] and Takahashi [35].

Example 4.4. (i) Let S = Z+ and X = l∞(Z+) (= Cb(Z+)). Put µn(f) =
(1/n)

∑n−1
k=0 f(k) for f ∈ X. Then {µn : n ∈ Z+ \ {0}} is an asymptotically

invariant and strongly regular net.
(ii) Let S = Z+ and X = l∞(Z+) (= Cb(Z+)). Put µs(f) = (1 − s) ×∑∞

k=0 skf(k) for f ∈ X. Then {µs : s ∈ (0, 1)} is an asymptotically invariant
and strongly regular net.

(iii) Let S = Z+ × Z+ and X = l∞(Z+ × Z+) (= Cb(Z+ × Z+)). Put
µn(f) = (1/n2)

∑n−1
i,j=0 f(i, j) for f ∈ X. Then {µn : n ∈ Z+ \ {0}} is an

asymptotically invariant and strongly regular net.
(iv) Let S = R+ and X = Mb(R+), or X = Cb(R+). Put µs(f) = (1/s) ×∫ s

0
f(t) dt for f ∈ X. Then {µs : s ∈ R+ \ {0}} is an asymptotically invariant

and strongly regular net.
(v) Let S = R+ and X = Mb(R+), or X = Cb(R+). Put µs(f) =

s
∫∞
0

e−stf(t) dt for f ∈ X. Then {µs : s ∈ R+ \ {0}} is an asymptotically
invariant and strongly regular net.

(vi) Let S = Z+ and X = l∞(Z+) (= Cb(Z+)). Put µn(f) =∑∞
m=0 qn,mf(m) for f ∈ X, where {qn,m}n,m∈Z+ is a strongly regular matrix.

Then {µn : n ∈ Z+} is a strongly regular net. Here {qn,m}n,m∈Z+ is called a
strongly regular matrix [21] if it satisfies the following conditions:

(a) supn∈Z+

∑∞
m=0 |qn,m| < ∞;

(b) limn→∞
∑∞

m=0 qn,m = 1;
(c) limn→∞

∑∞
m=0 |qn,m+1 − qn,m| = 0.

(vii) Let S = R+ and X = Mb(R+), or Cb(R+). Put µs(f) =∫∞
0

Q(s, t)u(t) dt for f ∈ X, where Q( · , · ) is a strongly regular kernel. Then
{µs : s ∈ R+} is a strongly regular net. Here a function Q : R+ × R+ → R is
called a strongly regular kernel if it satisfies the following conditions:

(a) sups∈R+

∫∞
0
|Q(s, t)| dt < ∞;

(b) lims→∞
∫∞
0

Q(s, t) dt = 1;
(c) lims→∞

∫∞
0
|Q(s, t + h)−Q(s, t)| dt = 0 for every h ∈ R+.

Now we prove a generalized mean convergence theorem for almost nonexpan-
sive curves.

Theorem 4.5. Let u be an almost nonexpansive curve from S to H with
ε( · , · ) such that ‖u( · )− y‖2 and ε(s, · ) are in X for all y ∈ H and s ∈ S, and
let {µα : α ∈ A} be an asymptotically invariant net of means on X. Then for
any s ∈ S, u(r∗sµα) converges weakly to x0 ∈ F (u) ∩

⋂
s∈S clco{u(t) : t ≥ s},

where x0 = u(µ) is the µ-asymptotic center of u in H for any invariant mean
µ on X.
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Proof. By Lemma 3.7, we know that if λ and µ are invariant means on X,
then u(µ) = u(λ). Let s ∈ S and assume that u(r∗sµα) does not converge weakly
to u(µ). Then there exists a subnet {u(r∗sµαβ

) : β ∈ B} of {u(r∗sµα) : a ∈ A}
such that for any subnet {u(r∗sµαβγ

) : γ ∈ Γ} of {u(r∗sµαβ
) : β ∈ B},

u(r∗sµαβγ
) 6⇀ u(µ).

Since {r∗sµαβ
: β ∈ B} ⊂ B(X∗), where B(X∗) is the closed unit ball of X∗,

there exists a subnet {r∗sµαβγ
: γ ∈ Γ} of {r∗sµαβ

: β ∈ B} such that

r∗sµαβγ

w∗

→ λ.

Then λ is an invariant mean on X. Indeed, since it is obvious that µ is a mean,
we show that λ is invariant. For simplicity, put {αβγ

: γ ∈ Γ} = {αβ : β ∈ B} =
{α : α ∈ A}. For any t ∈ S, f ∈ X and ε > 0, there exists α ∈ A such that

|r∗sµα(rtf)− λ(rtf)| ≤ ε, |r∗sµα(f)− λ(f)| ≤ ε,

and
|µα(rsf)− r∗t µα(rsf)| ≤ ε.

Then

|λ(rtf)− λ(f)|
≤ |λ(rtf)− r∗sµα(rtf)|+ |r∗t µα(rsf)− µα(rsf)|+ |r∗sµα(f)− λ(f)| ≤ 3ε.

Since ε > 0, f ∈ X and t ∈ S are arbitrary, this implies λ is an invariant mean
on X. Since r∗sµαβγ

w∗

→ λ, for any y ∈ H,

〈u(r∗sµαβγ
), y〉 = (r∗sµαβγ

)t〈u(t), y〉 → λt〈u(t), y〉 = 〈u(λ), y〉,

which implies u(r∗sµαβγ
) ⇀ u(λ) = u(µ) by Lemma 3.7. This is a contradic-

tion. Therefore u(r∗sµα) converges weakly to u(µ), where {u(µ)} = F (u) ∩⋂
s∈S clco{u(t) : t ≥ s} = µ-AC(u, H) by Theorem 4.3 and Lemma 3.7.

As a direct consequence of Theorem 4.5, we have the following.

Corollary 4.6. Let u : R+ → C be a bounded almost orbit of a nonex-
pansive semigroup T = {T (t) : t ∈ R+} on C, and assume

⋂
s∈S clco{u(t) :

t ≥ s} ⊂ C. Then Fix(T ) 6= ∅, and for an asymptotically invariant net
{µα : α ∈ A} on Mb(R+), where Mb(R+) is the set of all bounded Lebesgue
measurable functions on R+, for any s ∈ S, u(r∗sµα) converges weakly to x0 ∈
Fix(T )∩

⋂
s∈S clco{u(t) : t ≥ s}, which is the µ-asymptotic center of u in C for

any invariant mean µ on Mb(R+).

Proof. Take S = R+ and X = Mb(R+) in Theorem 4.5. Then as u is
continuous, ε( · , · ) ∈ Mb(R+ × R+) by Example 3.3, and u(µ) ∈ Fix(T ) by
Corollary 3.11. So the assertion follows.
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When {µα : α ∈ A} is a strongly regular net, the convergence is uniform. For
the proof, we use the method of Hirano, Kido and Takahashi [16, Theorem 2].

Theorem 4.7. Let u be an almost nonexpansive curve from S to H with
ε( · , · ) such that ‖u( · )− y‖2 and ε(s, · ) are in X for all y ∈ H and s ∈ S, and
let {µα : α ∈ A} be a strongly regular net of continuous linear functionals on X.

Then u(r∗sµα) converges weakly to y0 ∈ F (u)∩
⋂

s∈S clco{u(t) : t ≥ s} uniformly
in s ∈ S, which is the unique point of the µ-asymptotic center of u in H, where
µ is any invariant mean on X.

For the proof, we show the following lemma, which is a partial extension of
Hirano, Kido and Takahashi [16, Theorem 1]. See also Oka [26, Lemma 9].

Lemma 4.8. Let {λα : α ∈ A} be a net of means on X such that for any
s ∈ S, limα ‖λα − r∗sλα‖ = 0, and let u be an almost nonexpansive curve from
S to H with ε( · , · ) such that ‖u( · ) − y‖2 and ε(s, · ) are in X for all y ∈ H

and s ∈ S. Let λ be an invariant mean on X. Then u(r∗sλα) converges weakly
to u(λ) uniformly in s ∈ S.

Proof. We prove that for any net {sβ : β ∈ B} ⊂ S, u(r∗sβ
λα) ⇀ u(λ).

Assume this does not hold. Then there exists a subnet {β′}×{α′} of B×A such
that for any subnet {β′′} × {α′′}, u(r∗sβ′′λα′′) 6⇀ u(λ). Since {r∗sβ′λα′}(β′,α′) is
bounded, there exists a subnet {β′′} × {α′′} of {β′} × {α′} such that

r∗sβ′′λα′′
w∗

→ µ.

Then µ is an invariant mean. Indeed, put {β′′} × {α′′} = {β′} × {α′} = B × A

for simplicity. For any s ∈ S, f ∈ X and ε > 0, there exists (β, α) ∈ B×A such
that

|r∗sβ
λα(f)− µ(f)| ≤ ε, |r∗sβ

λα(rsf)− µ(rsf)| ≤ ε,

and

‖λα − r∗sλα‖ ≤ ε.

Then we obtain

|µ(rsf)− µ(f)| ≤ |µ(rsf)− r∗sβ
λα(rsf)|+ |r∗sλα(rsβ

f)− λα(rsβ
f)|

+ |r∗sβ
λα(f)− µ(f)|

≤ ε + ‖r∗sλα − λα‖‖f‖+ ε ≤ (2 + ‖f‖)ε.

As ε > 0 is arbitrary, for any s ∈ S and f ∈ X, we have µ(rsf) = µ(f), and
hence µ is an invariant mean on X.

Since r∗sβ′′λα′′
w∗

→ µ, for any z ∈ H,

〈u(rsβ′′λα′′), z〉 = (rsβ′′λα′′)t〈u(t), z〉 → µt〈u(t), z〉 = 〈u(µ), z〉,
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and hence u(rsβ′′λα′′) ⇀ u(µ) = u(λ) by Lemma 3.7. This is a contradiction.
This completes the proof.

Proof of Theorem 4.7. By Day [12] or Namioka [25], we know that there
exists a net {λβ : β ∈ B} of finite means such that for any s ∈ S, we have
limβ ‖λβ − r∗sλβ‖ = 0. Then clearly limβ ‖λβ − r∗sλβ‖X∗ = 0, so that for any
y ∈ H and ε > 0, by Lemma 4.8 there exists β ∈ B such that

sup
t∈S

|〈u(r∗t λβ)− u(µ), y〉| ≤ ε.

Put λβ =
∑n

i=1 aiδ(ti), where a1, . . . , an ≥ 0 with
∑n

i=1 ai = 1 and δ(t)(f) =
f(t) for all f ∈ X. Then since {µα} is strongly regular, there exists α0 ∈ A such
that for any α ≥ α0,

|1− µα(1)| ≤ ε and ‖µα − r∗ti
µα‖ ≤ ε for all i ∈ {1, . . . , n}.

Therefore, for any s ∈ S and α ≥ α0,

〈u(r∗sµα)− u(µ), y〉

≤
∣∣∣∣(µα)t〈u(t + s), y〉 − (µα)t

〈∑
i

aiu(ti + t + s), y
〉∣∣∣∣

+
∣∣∣∣(µα)t

〈 ∑
i

aiu(ti + t + s), y
〉
− µα〈u(µ), y〉

∣∣∣∣ + |µα〈u(µ), y〉 − 〈u(µ), y〉|

≤
∑

i

ai|(µα)t〈u(t + s)− u(ti + t + s), y〉|

+ ‖µα‖ sup
t∈S

∣∣∣∣〈∑
i

aiu(ti + t + s)− u(µ), y
〉∣∣∣∣ + |〈u(µ), y〉(µα(1)− 1)|

≤
∑

i

ai|(µα − r∗ti
µα)t〈u(t + s), y〉|

+ ‖µα‖ sup
t∈S

|〈u(r∗t+sλβ)− u(µ), y〉|+ |〈u(µ), y〉|ε

≤
∑

i

ai‖µα − r∗ti
µα‖K‖y‖+ Lε + |〈u(µ), y〉|ε ≤ (K‖y‖+ L + |〈u(µ), y〉|)ε,

where K = supt∈S ‖u(t)‖ and L = supα∈A ‖µα‖. As ε > 0, s ∈ S and y ∈ H are
arbitrary, this implies u(r∗sµα) ⇀ u(µ) uniformly in s ∈ S.

As direct consequences of Theorem 4.7, we have the following:

Corollary 4.9 (Rouhani [31]). Let {x(n) : n ∈ Z+} be a bounded almost
nonexpansive sequence in H. Then (1/n)

∑n−1
i=0 x(i + k) converges weakly to the

(lim-)asymptotic center of x( · ) in H as n →∞, uniformly in k ∈ Z+.
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Corollary 4.10 (Rouhani [31]). Let {u(t) : t ∈ R+} be a bounded con-
tinuous almost nonexpansive curve in H. Then (1/s)

∫ s

0
u(t + h) dt converges

weakly to the the (lim-)asymptotic center of u( · ) in H as s →∞, uniformly in
h ∈ R+.

Corollary 4.11. Let T = {T (s) : s ∈ S} be a nonexpansive semigroup on
C and assume {T (s)x0 : s ∈ S} is bounded and

⋂
s∈S clco{T (t)x0 : t ≥ s} ⊂ C

for some x0 ∈ C. Then Fix(T ) 6= ∅, and for a strongly regular net {µα : α ∈ A}
on X, for each x ∈ C, the net {T (r∗sµα)x : α ∈ A} converges weakly to a point
y0 ∈ Fix(T ) uniformly in s ∈ S, where y0 = T (µ)x0 for any invariant mean µ

on X.

Proof. By Corollary 3.11, taking u = T ( · )x, we obtain u(µ) = T (µ)x ∈
Fix(T ).

From Example 4.4, we also get the following corollaries.

Corollary 4.12. Let C be a closed convex subset of a Hilbert space and let
T be a nonexpansive mapping of C into itself. Then:

(i) (Baillon [1]) Assume that {T ix0 : i ∈ Z+} is bounded for some x0 ∈ C.
Then for each x ∈ C, (1/n)

∑n−1
i=0 T i+kx converges weakly to some point

of Fix(T ) as n →∞, uniformly in k ∈ Z+.

(ii) (Rodé [30]) For each x ∈ C, (1 − r)
∑∞

i=0 rkT i+kx converges weakly to
some point of Fix(T ) as r ↑ 1, uniformly in k ∈ Z+.

(iii) (Brezis and Browder [7]) Let {qn,m}n,m∈Z+ be a strongly regular matrix.
Then for any x ∈ C,

∑∞
m=0 qn,mTm+kx converges weakly to some point

of Fix(T ) as n →∞, uniformly in k ∈ Z+.

Corollary 4.13 (Hirano, Kido and Takahashi [16]). Let C be a closed
convex subset a Hilbert space, let T and S be nonexpansive mappings of C into
itself with TS = ST and assume {SiT jx0 : i, j ∈ Z+} is bounded for some
x0 ∈ C. Then for any x ∈ C, (1/n2)

∑n−1
i,j=0 Si+kT j+hx converges weakly to an

element of Fix(T ) ∩ Fix(S) as n →∞, uniformly in k, h ∈ Z+.

Corollary 4.14. Let C be a closed convex subset of a Hilbert space and let
T = {T (s) : s ∈ S} be a nonexpansive semigroup on C. Then:

(i) (Baillon [2], Miyadera and Kobayashi [22]) Let u : R+ → C be a bounded
almost orbit of T = {T (t) : t ∈ R+}. Then (1/λ)

∫ λ

0
u(t + h) dt con-

verges weakly to some point of Fix(T ) as λ →∞, uniformly in h ∈ R+.

In particular, let A−1(0) 6= ∅, and let u be a solution of (∗) in Example
3.2. Then (1/λ)

∫ λ

0
u(t+h) dt converges weakly to some point of A−1(0)

as λ →∞, uniformly in h ∈ R+.
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(ii) (Hirano, Kido and Takahashi [16]) Let u be a bounded almost orbit of
T = {T (t) : t ∈ R+}. Then r

∫∞
0

e−rtu(t + h) dt converges weakly to
some point of Fix(T ) as r ↓ 0, uniformly in h ∈ R+.

(iii) (Reich [29]) Let u : R+ → C be a bounded almost orbit of T =
{T (t) : t ∈ R+}, and let Q( · , · ) be a strongly regular kernel. Then∫ s

0
Q(s, t)u(t+h) dt converges weakly to some point of Fix(T ) as s →∞,

uniformly in h ∈ R+.

Proof. We only prove (i). The proofs of (ii) and (iii) are similar. Take
S = R+, X = Mb(R+) and µλ(f) = (1/λ)

∫ λ

0
u(t + h) dt for f ∈ Mb(R+).

Then, as in the proof of Corollary 4.6, we get the first assertion. As A−1(0) =
Fix(T ), A−1(0) 6= ∅ means that lims ‖u(s) − y‖ exists for y ∈ Fix(T ), and this
implies u is bounded. So, the second assertion follows.

5. Weak asymptotic regularity

In this section, we give an extension of Bruck [9, 10] and Takahashi and Park
[37]. See also Browder and Petryshyn [8], Opial [27], Lau [18] and Oka [26].

Theorem 5.1. Let u be a bounded almost nonexpansive curve from S to H.
Then the following are equivalent:

(i) w-lims u(s) = y for some y ∈ H;
(ii) w-lims(u(s + t)− u(s)) = 0 uniformly in t ∈ S;
(iii) w-lims(u(s + t)− u(s)) = 0 for all t ∈ S;
(iv) F (u) = H.

In this case, y = u(µ) for any invariant mean µ on l∞(S), which is the µ-
asymptotic center of u in H.

Proof. (i)⇒(ii)⇒(iii) is evident. We prove (iii)⇒(i). Let λ be an invariant
mean on l∞(S) and let {λα : α ∈ A} be a net of finite means on S such that for
any s ∈ S, limα ‖λα − r∗sλα‖ = 0; see Day [12] or Namioka [25]. Let z ∈ H and
ε > 0. Then by Lemma 4.8, there exists α such that for any s ∈ S,

|〈u(r∗sλα)− u(λ), z〉| ≤ ε.

Put λα =
∑n

i=1 aiδ(ti), where a1, . . . , an ≥ 0 with
∑n

i=1 ai = 1. Then by (iii),
there exists s0 such that for any s ≥ s0 and i ∈ {1, . . . , n},

|〈u(s)− u(s + ti), z〉| ≤ ε.
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Therefore, for any s ≥ s0,

|〈u(s)− u(λ), z〉| ≤ |〈u(s)− u(r∗sλα), z〉|+ |〈u(r∗sλα)− u(λ), z〉|

=
∣∣∣∣〈u(s)−

∑
i

aiu(ti + s), z
〉∣∣∣∣ + ε

≤
∑

i

ai|〈u(s)− u(ti + s), z〉|+ ε ≤ 2ε.

As ε > 0 and z ∈ H are arbitrary, this implies w-lims u(s) = u(λ).
Next we prove (ii)⇒(iv). Let λ be an invariant mean on l∞(S) and let z ∈ H.

Then, for any t, s ∈ S with t ≥ s,

| ‖u(t)− z‖2 − ‖u(s)− z‖2|
≤ | ‖u(t)− u(λ)‖2 − ‖u(s)− u(λ)‖2|+ 2|〈u(t)− u(s), z − u(λ)〉|.

So, using u(λ) ∈ F (u) and (ii), it follows that {‖u(s)− z‖2 : s ∈ S} is a Cauchy
net, and hence z ∈ F (u). Therefore F (u) = H.

Finally, we prove (iv)⇒(i). Assume u(s) does not converge weakly to u(µ).
Then there exists a subnet {u(sα)} of {u(s)} such that no subnet {u(sαβ

)}
converges weakly to u(µ). As {u(sα)} is bounded, there exists a subnet {u(sαβ

)}
which converges weakly to some point y0. From Lemma 4.1, Theorem 4.3 and
(iv), y0 = u(µ). This is a contradiction.

As direct consequences of Theorem 5.1, we have the following results.

Corollary 5.2 (Oka [26]). Let u : S → C be a bounded almost orbit of a
nonexpansive semigroup T = {T (s) : s ∈ S}, and assume that

⋂
s∈S clco{u(t) :

t ≥ s} ⊂ C. Then the following are equivalent:

(i) w-lims u(s) = y for some y ∈ H;
(ii) w-lims(u(s + t)− u(s)) = 0 uniformly in t ∈ S;
(iii) w-lims(u(s + t)− u(s)) = 0 for all t ∈ S;
(iv) W (u) ⊂ Fix(T );
(v) W (u) ⊂ F (u);
(vi) F (u) = H.

In this case, y = u(µ), for any invariant mean µ on l∞(S).

Proof. As Fix(T ) ⊂ F (u), (iv)⇒(v) is evident, and from Lemma 4.2,
(v)⇒(i) follows. By Theorem 5.1 and by Corollary 3.11, y = u(µ) ∈ Fix(T ).
So, (i)⇒(iv) follows.

Corollary 5.3 (Pazy [28], Bruck [9, 10]). Let T be a nonexpansive mapping
from C into itself, and assume Fix(T ) 6= ∅ and

⋂
s∈S clco{T (t)x : t ≥ s} ⊂ C.

Then for any x ∈ C, the following are equivalent:
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(i) w-limn Tnx = y for some y ∈ H;
(ii) w-limn(Tn+kx− Tnx) = 0 uniformly in k ∈ Z+;
(iii) w-limn(Tn+1x− Tnx) = 0;
(iv) ωw(x) ⊂ Fix(T );
(v) ωw(x) ⊂ F (T );
(vi) F (T ) = H;

here ωw(x) is the set of all weak limit points of subsequences of {Tnx : n ∈ Z+},
and F (T ) = {q ∈ H : ∃ limn→∞ ‖Tnx − q‖}. In this case, y is an element of
Fix(T ).
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