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1. Introduction

In what follows, the symbol X stands for a real Banach space with norm ‖ · ‖
and (normalized) duality mapping J. Moreover, “continuous” means “strongly
continuous” and the symbol “→” (“⇀”) means strong (weak) convergence. The
symbol R (R+) stands for the set (−∞,∞) ([0,∞)) and the symbols ∂D, int D,
D denote the strong boundary, interior and closure of the set D, respectively.
An operator T : X ⊃ D(T ) → Y, with Y another real Banach space, is bounded
if it maps bounded subsets of D(T ) onto bounded sets of Y. It is compact if it is
continuous and maps bounded subsets of D(T ) onto relatively compact sets of
Y. It is called demicontinuous (completely continuous) if it is strong-weak (weak-
strong) continuous on D(T ). For a multi-valued operator T : X → 2X and any
set A ⊂ X, we set D(T ) = {x ∈ X : Tx 6= ∅} and TA =

⋃
{Tx : x ∈ A} and we

always assume that D(T ) 6= ∅. An operator T : X ⊃ D(T ) → 2X is accretive if
for every x, y ∈ D(T ) there exists j ∈ J(x− y) such that

(∗) 〈u− v, j〉 ≥ 0 for every u ∈ Tx, v ∈ Ty.
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An accretive operator T is strongly accretive if 0 in the right-hand side of (∗) is
replaced by α‖x − y‖2, where α > 0 is a fixed constant. An accretive operator
T is called m-accretive if R(T + λI) = X for every λ > 0, where I denotes the
identity operator on X.

We denote by Br(0) the open ball of X with center at zero and radius r > 0.

For an m-accretive operator T , the resolvents Jλ : X → D(T ) of T are defined
by Jλ = (I + λT )−1 for all λ ∈ (0,∞) and are nonexpansive mappings (i.e.,
Lipschitz continuous with Lipschitz constant 1). An operator T : X ⊃ D(T ) →
2X is φ-expansive on D ⊂ X if there exists a strictly increasing function φ :
R+ → R+ such that φ(0) = 0 and for every x, y ∈ D(T ) ∩D and every u ∈ Tx,
v ∈ Ty we have

‖u− v‖ ≥ φ(‖x− y‖).
If T is φ-expansive on D(T ), then we say that T is just φ-expansive. A φ-
expansive operator is called c-expansive (c > 0) if we can choose the function φ

so that φ(u) ≡ cu, u ∈ R+. Let B denote the family of all bounded subsets of the
space X. The Kuratowski measure of noncompactness is a function γ : B → R+

defined by

γ(A) = inf{ε > 0 : A can be covered by a finite family of sets of diameter < ε}.

The Kuratowski measure γ has the following properties. We assume that A,B

∈ B.

(i) γ(A) = 0 if and only if Ā is compact;
(ii) γ(co A) = γ(A), where co A denotes the closed convex hull of the set A;
(iii) γ(A ∪B) = max{γ(A), γ(B)};
(iv) γ(tA) = |t|γ(A) for every t ∈ R;
(v) γ(A + B) ≤ γ(A) + γ(B).

Given a continuous operator T : X ⊃ D(T ) → X and k ≥ 0, we say that T

is k-set-contractive if for every bounded A ⊂ D(T ) we have γ(T (A)) ≤ kγ(A).
Naturally, this definition makes sense only if T (A) ∈ B for every bounded A ⊂
D(T ). It is well known that if T1 : X ⊃ D(T1) → X is a k1-set-contraction,
T2 : D(T1) → X a k2-set-contraction and T3 : R(T1) → X a k3-set-contraction,
then T1 +T2 : D(T1) → X is a (k1 +k2)-set-contraction and T3 ◦T1 : D(T1) → X

is a k1k3-set-contraction. Important examples of k-set-contractions with k < 1
are mappings of the type T = S + C : X ⊃ D(T ) → X, where S is a strict
contraction (‖Sx − Sy‖ ≤ k‖x − y‖, x, y ∈ D(T )) and C : D(T ) → X is a
compact map. For convenience, we say that the operator T : X ⊃ D(T ) → X is
a γ-contraction if it is a k-set-contraction with k < 1.

We say that a continuous operator T : X ⊃ D(T ) → X is condensing if
for every nonempty, bounded, noncompact set A ⊂ D(T ) with γ(A) > 0 we
have γ(T (A)) < γ(A). It is obvious that every k-set-contraction with k < 1 is
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condensing, but the converse is not true in general. Nussbaum has shown the
following result (cf. Petryshyn [24]):

Lemma A. Let D ⊂ X be closed, convex and bounded and T : D → D

condensing. Then T has a fixed point in D.

For facts involving accretive operators, and other related concepts, the reader
is referred to Barbu [1], Browder [2], Ciorănescu [5] and Lakshmikantham and
Leela [20]. A survey article on compact perturbations and compact resolvents of
accretive operators can be found in [19].

The purpose of this paper is to initiate the study of p-regular mappings. The
concept of a p-regular mapping is an extension of the concept of an essential
mapping introduced by Granas in [12]. It is also an extension of the concept of a
p-0-epi mapping introduced by Furi, Martelli and Vignoli in [9]. As the authors
of [9] and [21] have pointed out, the study of such mappings allows us to obtain
existence results for various types of operator equations Tx + Cx = 0, involving
set-contractions C, without using any type of degree theory. Other results on
p-0-epi mappings can be found in Furi and Pera [10] and Pera [23]. On the other
hand, alternative results involving sums of two operators can be found in Chang
[3] (T = I and C is nonexpansive), Dugundji and Granas [8] (T = I and C is
a k-set-contraction), and Górniewicz and Kucharski [11], where T is a Vietoris
mapping and CT−1 is a set-contraction.

In Section 2 we introduce the concept of a p-regular mapping and apply
such regularity considerations to inclusions involving multi-valued m-accretive,
L-expansive operators. In Section 3 we show how one may apply the results of
Section 2 in order to obtain alternative results for such inclusions. Theorem 2 of
Section 3 is the main alternative result of the paper involving m-accretive, but
not necessarily L-expansive, operators T. In Section 4 we show the compactness,
or the weak compactness, of the set of solutions of such inclusions and in Section
5 we give an example of a partial differential equation to which our theory can
be applied. Our methods are mainly extensions of the methods used in [9] and
[21].

2. p-Regular mappings and m-accretive operators

Definition 1. Let G ⊂ X be open and bounded and let T : X ⊃ D(T ) →
2X be such that D(T ) ∩ G 6= ∅ and Tx 63 0, x ∈ D(T ) ∩ ∂G. We say that T is
p-regular on G if for every continuous p-set-contraction h : G → X, vanishing
everywhere on ∂G, we have Tx 3 h(x) for at least one x ∈ D(T ) ∩ G. We also
use the term regular for 0-regular operators.

We note that if T is p-regular and q ∈ [0, p), then T is q-regular. Our
definition of p-regularity is more general than the definition of a p-0-epi mapping
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of Martelli [19] and other authors mentioned therein. The operator T is now a
multi-valued operator defined on an arbitrary set.

If the operator T : X ⊃ D(T ) → 2X is L-expansive, then it is easy to see
that Tx ∩ Ty 6= 0 implies that x = y and, naturally, Tx = Ty.

Lemma 1. Let T : X ⊃ D(T ) → 2X be m-accretive and L-expansive. Let G

be open, bounded and such that D(T )∩G 6= ∅. Then for every y0 ∈ T (D(T )∩G)
and every ε ∈ (0, L) the mapping Tx− y0 is (L− ε)-regular on G.

Proof. Since y0 ∈ T (D(T )∩G) and the operator T is L-expansive, we have
T (D(T )∩∂G)−y0 63 0. In fact, we know that y0 = T (x) for some x ∈ D(T )∩G.

If we also have y0 = T (y), for some y ∈ T (D(T ) ∩ ∂G), then x = y, which
contradicts the fact that G ∩ ∂G = ∅.

It is known that T is surjective with a Lipschitz continuous inverse T−1 : X →
D(T ). To see the surjectivity of T, fix p ∈ X and let xn solve Tx + (1/n)x 3 p.

Then {xn} is a bounded sequence. In fact, assuming, without loss of generality,
that ‖xn‖ → ∞, we obtain, for some un ∈ Txn,

lim inf
n→∞

‖un‖
‖xn‖

≤ lim
n→∞

[
1
n

+
‖p‖
‖xn‖

]
= 0.

However, this contradicts

lim inf
n→∞

‖un‖
‖xn‖

≥ L > 0,

which follows from the L-expansiveness of T. Since {xn} is bounded, we have
(1/n)xn → 0 as n →∞. Thus, for some un ∈ Txn,

L‖xn − xm‖ ≤ ‖un − um‖ ≤ ‖(1/n)xn − (1/m)xm‖ → 0 as m,n →∞.

Since xn → (some) x0 ∈ X, un → p and T is closed, we have x0 ∈ D(T ) and
Tx0 = p.

Let ε ∈ (0, L) be given and let h : G → X be a continuous (L − ε)-set-
contraction such that h(x) = 0 for x ∈ ∂G. Choose r > 0 so that

r ≥ ‖T−1(h(x) + y0)‖, x ∈ G.

This is possible because h(G) is bounded and T−1 is Lipschitz continuous, and
thus bounded, with Lipschitz constant 1/L. We define the mapping h1 : X → X

as follows:

h1(x) =

{
T−1(h(x) + y0), x ∈ G,

T−1y0, x 6∈ G.

Since h and T−1 are continuous, it is easy to see that h1 is continuous and such
that its restriction h1 : Br(0) → Br(0) is a γ-contraction (and thus condensing)
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with constant (L− ε)/L. To see the latter, let A ⊂ Br(0). Then A = (A ∩G) ∪
(A ∩ (X \G)). Thus,

γ(h1(A)) = max{γ(h1(A ∩G)), γ(h1(A ∩ (X \G)))}
= max{γ(h1(A ∩G)), γ({T−1y0})}
= γ(T−1(h(A ∩G) + y0))

≤ [(L− ε)/L]γ(A ∩G)

≤ [(L− ε)/L]γ(A).

By Lemma A, there exists a point x ∈ Br(0) such that h1(x) = x. If x 6∈ G, then
x = h1(x) = T−1y0. Since y0 ∈ T (D(T ) ∩ G), we have x = T−1y0 ∈ D(T ) ∩ G,

i.e., a contradiction. It follows that x ∈ G, which implies x = T−1(h(x) + y0).
Thus, x ∈ D(T ) ∩ G and Tx − y0 3 h(x). We have shown that Tx − y0 is
(L− ε)-regular on G. �

Lemma 1 leads to the following proposition which is the essence of the alter-
native results of Section 3.

Proposition 1. Let G ⊂ X be open and bounded. Let T : X ⊃ D(T ) → 2X

be m-accretive and L-expansive with D(T )∩G 6= ∅. Assume that C : D(T ) → X

is a p-set-contraction with constant p ∈ [0, L). Let y0 ∈ X, ε ∈ (0, L − p) and
assume that Tx + tCx− y0 63 0, t ∈ [0, 1], x ∈ D(T ) ∩ ∂G. Then

(i) if y0 6∈ T (D(T )∩G), the operator Tx + Cx− y0 is not p-regular on G;
(ii) if y0 ∈ T (D(T ) ∩G), the operator Tx + Cx− y0 is (L− p− ε)-regular

on G.

Proof. Let y0 6∈ T (D(T )∩G). Then, by our hypothesis, y0 6∈ T (D(T )∩G).
Since T−1 : X → D(T ) is continuous, the set T (D(T ) ∩ G) is closed, being
the image of a closed set in the relative topology of D(T ). Similarly, the set
T (D(T ) ∩G) is open. Thus,

δ = inf{‖Tx− y0‖ : x ∈ D(T ) ∩G} > 0.

We choose % ∈ (0, 1) so that

%‖Cx‖ < δ, x ∈ D(T ) ∩G.

Let us assume that Tx + Cx− y0 is p-regular. Then the set S1, defined by

S1 = {x ∈ D(T ) ∩G : Tx + tCx− y0 3 0 for some t ∈ [0, 1]}

is nonempty and compact. In fact, S1 6= ∅ because y0 ∈ (T +C)(D(T )∩G) (take
t = 1, h ≡ 0 in Definition 1, where T is appropriately replaced by T + C). To
show the compactness of S1, we observe that

TS1 = {u ∈ T (D(T ) ∩G) : u = −tCT−1u + y0 for some t ∈ [0, 1]},
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which implies

γ(TS1) ≤ tγ(CT−1(TS1)) + γ({y0}) ≤ (p/L)γ(TS1).

This says that γ(TS1) = 0, i.e., that TS1 is relatively compact. To show that TS1

is closed, let {un} ⊂ TS1 be such that un → u0 ∈ X. Then un ∈ T (D(T ) ∩G),

un + tnCT−1un − y0 = 0

for some sequence {tn} ⊂ [0, 1], and u0 ∈ T (D(T ) ∩G). Let un ∈ Txn, where
xn ∈ D(T ) ∩ G. Then xn = T−1un → T−1u0 ≡ x ∈ D(T ) ∩G. Since T is
closed, being m-accretive, x ∈ D(T ) and u0 ∈ Tx. Thus, u0 ∈ T (D(T )∩G) and,
assuming that tn → t0 ∈ [0, 1],

u0 + t0CT−1u0 − y0 = 0.

This says that
Tx + t0Cx− y0 3 0,

where x ∈ D(T ) ∩G. However, our assumption implies that x ∈ D(T ) ∩G, i.e.,
u0 ∈ T (D(T )∩G). It follows that u0 ∈ TS1, i.e., TS1 is closed and thus compact.
Since S1 = T−1(TS1), we have the compactness, and thus the closedness, of S1.

By Urysohn’s lemma, there exists a continuous function φ : X → [0, 1] such that

φ(x) =

{
1, x ∈ S1,

0, x ∈ ∂G.

We set
g(x) ≡ (1− %)φ(x)Cx.

We see that g(x) = 0, x ∈ ∂G, and that g is a (1 − %)p-set-contraction. Since
(1− %)p < p, the operator (T + C)x− y0 is (1− %)p-regular. It follows that the
inclusion Tx+Cx−y0 3 g(x) must have a solution, i.e., there exists x ∈ D(T )∩G

such that
Tx + [1− (1− %)φ(x)]Cx− y0 3 0.

Since 0 ≤ 1 − (1 − %)φ(x) ≤ 1, we conclude that x ∈ S1, which implies that
φ(x) = 1. Consequently, Tx + %Cx − y0 3 0, or −%Cx ∈ Tx − y0. However,
%‖Cx‖ < δ yields the desired contradiction. This completes the proof of the fact
that Tx + Cx− y0 is not p-regular whenever y0 6∈ T (D(T ) ∩G).

To show the second part of the theorem, we assume that y0 ∈ T (D(T ) ∩G)
and let h : G → X be an (L − p − ε)-contraction such that h(x) = 0, x ∈ ∂G.

We define the set

S2 = {x ∈ D(T ) ∩G : Tx + tCx− y0 3 h(x) for some t ∈ [0, 1]}

and note that S2 6= ∅ because Tx−y0 is (L−ε)-regular by Lemma 1. Also, from

TS2 = {u ∈ T (D(T ) ∩G) : u = −tCT−1u + y0 − h(T−1u) for some t ∈ [0, 1]}
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and
γ(TS2) ≤ tγ(−CT−1(TS2)) + γ(h(T−1(TS2)))

≤ t(p/L)γ(TS2) + [(L− p− ε)/L]γ(TS2)

≤ [(L− ε)/L]γ(TS2),

we conclude that γ(TS2) = 0, which shows the relative compactness of the set
TS2. Working as before, we can also see that TS2 is closed. Thus, TS2 is compact
and so is S2 = T−1(TS2). Using again Urysohn’s lemma, we construct a function
φ as above and consider the inclusion

Tx− y0 3 −φ(x)Cx + h(x).

This inclusion has a solution x ∈ D(T )∩G because the mapping −φ(x)Cx+h(x)
is (L− ε)-set-contractive. In fact, this mapping is continuous and, for A ⊂ G,

γ(−φ(A)CA + h(A)) ≤ γ(−φ(A)CA) + γ(h(A))

= γ(φ(A)CA) + γ(h(A))

≤ [ max
t∈φ(A)

{t}]γ(CA) + γ(h(A))

≤ γ(CA) + γ(h(A))

< [p + (L− p− ε)]γ(A) = (L− ε)γ(A).

Here we have used Remark 1.4.1 in Lakshmikantham and Leela [20]. Thus, for
some x ∈ D(T ) ∩ G, we have Tx + φ(x)Cx − y0 3 h(x). Again, we must have
x ∈ S2 and φ(x) = 1. Consequently, Tx+Cx−y0 3 h(x), and we have the proof
that Tx + Cx− y0 is (L− p− ε)-regular whenever y0 ∈ T (D(T ) ∩G). �

For compact mappings C, we have the following important corollary.

Corollary 1. Let G ⊂ X be open and bounded. Let T : X ⊃ D(T ) → 2X

be m-accretive and L-expansive with D(T )∩G 6= ∅. Assume that C : D(T ) → X

is compact. Let y0 ∈ X, ε ∈ (0, L) and assume that Tx + tCx − y0 63 0,
t ∈ [0, 1], x ∈ D(T ) ∩ ∂G. Then

(i) if y0 6∈ T (D(T ) ∩G), the operator Tx + Cx− y0 is not regular on G;
(ii) if y0 ∈ T (D(T )∩G), the operator Tx+Cx−y0 is (L−ε)-regular on G.

Proof. Just take p = 0 in Proposition 1. �

3. Alternative results

We are now ready for the first alternative statement involving set-contractive
perturbations of an m-accretive, L-expansive operator T.

Theorem 1. Let G ⊂ X be open and bounded. Let T : X ⊃ D(T ) → 2X

be m-accretive and L-expansive with 0 ∈ T (D(T ) ∩ G). Let C : D(T ) → X be
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p-set-contractive with constant p ∈ [0, L), and let ε ∈ (0, L − p). Then at least
one of the following statements holds:

(i) the inclusion Tx + Cx 3 h(x) has a solution x ∈ D(T ) ∩ G for every
(L−p−ε)-set-contraction h vanishing identically on ∂G. In particular,
there exists x ∈ D(T ) ∩G such that Tx + Cx 3 0;

(ii) there exist x ∈ D(T ) ∩ ∂G and λ ∈ (0, 1] such that Tx + λCx 3 0.

Proof. We assume that Tx + λCx 63 0 for every x ∈ D(T ) ∩ ∂G, λ ∈ (0, 1]
and show (i). We observe that 0 ∈ T (D(T ) ∩ G) and the L-expansiveness of T

preclude T from having another zero in D(T ) ∩ ∂G. Thus, Tx + λCx 6= 0 for
every x ∈ D(T ) ∩ ∂G and every λ ∈ [0, 1]. Since 0 ∈ T (D(T ) ∩ G), we may
apply Proposition 1, with y0 = 0, in order to conclude that the operator T + C

is (L− p− ε)-regular. This completes the proof. �

It should be noted that the above theorem does not follow from the “con-
densing” versions of the results of Chen in [4], whenever C is condensing and
L, p are appropriately chosen. Unfortunately, Chen’s degree theory is not valid
for condensing mappings C as claimed in [4, p. 403]. The reason for this is that
the mapping Qλ ≡ (T + λI)−1 is not generally nonexpansive as Chen claims in
[4, p. 394]. In fact,

Qλ(x) =
(

1
λ

T + I

)−1( 1
λ

x

)
,

which says that Qλ is Lipschitz continuous with Lipschitz constant 1/λ. Thus,
it is not possible to obtain condensing mappings of the type (T + λI)−1C for all
small λ > 0, unless C is a compact operator. Some corrections in the calculations
of Chen [4] are thus in order. For example, the calculations on pages 396–397
there need appropriate adjustments.

The next alternative theorem involves compact perturbations of m-accretive
operators. We denote by co A the convex hull of the set A.

Theorem 2. Let G ⊂ X be open and bounded. Let T : X ⊃ D(T ) → 2X be
m-accretive with 0 ∈ D(T ) ∩G and 0 ∈ T (0). Let T be φ-expansive on ∂G and
C : D(T ) → X compact. Then at least one of the following statements holds:

(i) for every compact function h : G → X vanishing identically on ∂G we
have (T + C − h)(D(T ) ∩G) 3 0;

(ii) there exists x ∈ D(T ) ∩ ∂G and λ ∈ [0, 1] such that Tx + λCx 3 0.

If, moreover, X is uniformly convex and C : D(T ) → X is completely continu-
ous, then (i) can be replaced by

(ia) there exists x ∈ D(T ) ∩ co G such that Tx + Cx 3 h(x), where h :
co G → X is a completely continuous mapping vanishing identically on
∂G.
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Proof. As in the proof of Theorem 1, we may assume that Tx+λCx 63 0 for
every x ∈ D(T ) ∩ ∂G, λ ∈ [0, 1], to show the inclusion (T + C − h)(D(T ) ∩G)
3 0. We show first that the inclusion

Tx + λCx + (1/n)x 3 0

has no solution in D(T )∩ ∂G, for all λ ∈ [0, 1] and all large n. In fact, assuming
that this is not true, we may also assume that there exists a sequence {λn} ⊂ [0, 1]
and a sequence {xn} ⊂ D(T ) ∩ ∂G such that

Txn + λnCxn + (1/n)xn 3 0.

Since {xn} lies in a bounded set, we may assume that Cxn → y ∈ X. We may also
assume that λn → λ0 ∈ [0, 1]. Since T is φ-expansive on ∂G, it follows that {xn}
is a Cauchy sequence. Letting xn → x0 and using the closedness of the operator
T, we deduce that x0 ∈ D(T ) ∩ ∂G and Tx0 + λ0Cx0 3 0. This contradiction
shows that the inclusion (i) has no solution on D(T ) ∩ ∂G for all large n. We
may assume that this happens for all n. Using Corollary 1 (with y0 = 0 and 0 ∈
(T +(1/n)I)(0), we see now the mapping Tx+Cx+(1/n)x is [(1/n)−εn]-regular,
where εn ∈ (0, 1/n). As such it is also regular, i.e., Tx+Cx+(1/n)x 3 h(x) has
a solution xn in D(T )∩G for every n = 1, 2, . . . , where h : G → X is a compact
function vanishing identically on ∂G. Since xn/n → 0 as n →∞, it follows that
0 ∈ R(T + C − h).

The second part of the theorem follows as in Lemma 2 of Kartsatos [17],
or more generally, Lemma 1 of Guan and Kartsatos [13]. In fact, since X is
reflexive, C is also compact and we may assume that xn ⇀ x0 ∈ X. By that
lemma, we have Tx0 + Cx0 3 h(x0). Naturally, x0 ∈ D(T ) ∩ co G. �

4. Compactness of the solution set

It is easy to see that if G ⊂ X is open and bounded and C : G → X is
compact, then the solution set of the equation (I + C)(x) = 0 is compact. It is
thus interesting to see whether the relevant problem for the inclusion Tx+Cx 3 0
has a similar answer. To this end, we give below a lemma in this direction, which
is inspired by the proof of Proposition 1.

Theorem 3. Let G ⊂ X be open and bounded. Let T : X ⊃ D(T ) → 2X be
m-accretive and L-expansive with D(T ) ∩ G 6= ∅. Assume that C : D(T ) → X

is a p-set-contraction with constant p ∈ [0, L). Fix y0 ∈ X and assume that
Tx + tCx − y0 63 0, t ∈ [0, 1], x ∈ D(T ) ∩ ∂G. Then if y0 ∈ T (D(T ) ∩ G), the
solution set
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S ≡ {x ∈ D(T ) ∩G : Tx + Cx− y0 3 0}

is nonempty and compact.

Proof. By the conclusion of Proposition 1, the operator T + C − y0 is
(L− p− ε)-regular for any ε ∈ (0, L− p). In particular, it is regular. Thus, the
equation Tx + Cx− y0 3 0 has at least one solution in D(T )∩G. This says that
S is nonempty. Its compactness follows as in the case of the compactness of the
set S2 in the proof of Proposition 1. �

The next theorem shows the weak compactness of the solution set in The-
orem 2, provided that G is convex, X is uniformly convex and C is completely
continuous.

Theorem 4. Let the assumptions of Theorem 2 be satisfied with X uni-
formly convex, the set G convex and C : D(T ) → X completely continuous.
Assume that Tx + λCx 63 0 for every x ∈ D(T ) ∩ ∂G, λ ∈ [0, 1]. Then the set

S ≡ {x ∈ D(T ) ∩G : Tx + Cx− y0 3 0}

is nonempty and weakly compact.

Proof. The fact that S is nonempty follows from Theorem 2. To show that
S is weakly sequentially compact, assume for convenience that y0 = 0 and let
{xn} ⊂ S. Then, since X is reflexive, there exists a subsequence of {xn}, denoted
again by {xn}, such that

xn ⇀ x0 ∈ co (D(T ) ∩G) ⊂ co (D(T )) ∩ co G = D(T ) ∩G.

(We have used above the fact that D(T ) is convex. This can be found in Barbu
[1, Proposition 3.6] and Ciorănescu [5, Theorem 1.15]. However, the uniform
convexity of X∗ was never used in either one of these two references.) Thus,

Txn + Cxn + (1/n)xn 3 (1/n)xn, n = 1, 2, . . . ,

or

Txn + Cxn + αnxn 3 pn, n = 1, 2, . . . ,

where αn, pn are obviously defined. By Lemma 2 of [17] or Lemma 1 of [13],
we conclude that x0 ∈ D(T ) ∩G and Tx0 + Cx0 3 0. Since, by our assumption,
x0 6∈ D(T ) ∩ ∂G, we see that x0 ∈ D(T ) ∩ G, i.e., x0 ∈ S. We have shown that
S is weakly sequentially compact. By the Eberlein–Shmul’yan theorem, S is
weakly compact and the proof is complete. �
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5. Discussion and example

We consider an application to a partial differential equation from Massabò
and Stuart [20]:

−∆u(x) + q(x)u(x) + b(x, u(x),∇u(x)) = 0, x ∈ Rn,

where n > 2. We make the following assumptions.

(1) q : Rn → R is continuous and

0 < inf
x∈Rn

q(x) ≤ sup
x∈Rn

q(x) < ∞.

(2) b : R2n+1 → R is continuous and satisfies the following two conditions.
(2a) There exist constants p ∈ [1, n/(n − 2)), c ∈ R+ and a continuous

function g ∈ L2(Rn) such that

|b(x, η)| ≤ g(x) + c‖η‖p, (x, η) ∈ Rn × Rn+1,

where ‖η‖ denotes the Euclidean norm of η.

(2b) For every ε > 0 there exist constants p = p(ε) ∈ [1, n/(n − 2)) and
l = l(ε) ≥ 0 such that

|b(x, 0)− b(x, η)| ≤ ε‖η‖p

for every x ∈ Rn with ‖x‖ ≥ l and all η ∈ Rn+1.

The operators T : W 2,2(Rn) → L2(Rn) and C : W 2,2(Rn) → L2(Rn) are defined
by (Tu)(x) ≡ −∆u(x) + q(x)u(x) and (Cu)(x) ≡ b(x, u(x),∇u(x)), respectively.
The operator T is self-adjoint, m-accretive, strongly accretive, and such that
T−1 : L2(Rn) → W 2,2(Rn) is a Q−1-set-contraction. Here,

Q ≡ inf σe(T ) ∈ (0,∞),

where σe(T ) is the essential spectrum of T. As Massabò and Stuart have shown
in [20], the operator C is compact. It follows that the alternative result of
Theorem 1 applies here for a family of appropriate sets G because T is strongly
accretive, and thus L-expansive, on the entire space W 2,2(Rn). In particular,
letting G = Br(0) ⊂ L2(Rn) for some r > 0, we conclude that either there exists
u ∈ W 2,2(Rn) with ‖u‖L2(Rn) = r and λ ∈ (0, 1] such that Tu + λCu = 0, or
there exists u ∈ Br(0) ∩W 2,2(Rn) such that Tu + Cu = 0.

It is possible to have general homotopy results for p-regular mappings in the
spirit of [9]. We exhibit such a property below and then we give an application
of it to the solvability of eigenvalue problems where the eigenvalue λ is not of
multiplicative nature as in the alternative results of Section 3.
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Theorem 5. Let T : X ⊃ D(T ) → 2X be m-accretive and L-expansive. Let
G be open, bounded and such that D(T ) ∩ G 6= ∅. Let 0 ∈ T (D(T ) ∩ G) and
let H : [a, b] × G → X be compact and such that H(0, x) = 0, x ∈ ∂G, where
a, b are constants with a ≤ 0 ≤ b. Assume that Tx + H(t, x) 63 0 for every
(t, x) ∈ [a, b]× (D(T ) ∩ ∂G). Then T + H(λ, ·) is regular for every λ ∈ [a, b].

Proof. Fix λ = λ0 ∈ [a, b] and let h : G → X be compact and such that
h(x) = 0, x ∈ ∂G. We need to show that the inclusion Tx + H(λ0, x) 3 h(x) is
solvable in D(T ) ∩G. To this end, we examine the set

S ≡ {x ∈ D(T ) ∩G : Tx + H(t, x) 3 h(x) for some t ∈ [a, b]}

and its image

TS = {u ∈ T (D(T ) ∩G) : u = −H(t, T−1u) + h(T−1u) for some t ∈ [a, b]}.

As in the proof of Proposition 1, it can be seen that the set S is compact. By
Urysohn’s lemma, there exists a mapping φ : X → [0, 1] such that φ(S) =
{1} and φ(∂G) = {0}. We let φ1(x) ≡ λ0φ(x). We observe that the mapping
H(φ1(x), x) − h(x) is compact and that it vanishes identically on the set ∂G.

Since T is regular, by Lemma 1, the inclusion Tx 3 −H(φ1(x), x) + h(x) is
solvable for some x0 ∈ D(T ) ∩ G. Since we must have x0 ∈ S, we see that
φ1(x0) = λ0, i.e., Tx0 + H(λ0, x0) 3 h(x0). �

Corollary 2. Let T : X ⊃ D(T ) → 2X be m-accretive and L-expansive.
Let G be open, bounded and such that D(T ) ∩ G 6= ∅. Let 0 ∈ T (D(T ) ∩ G)
and let H : [0, 1] × G → X be compact and such that H(0, x) = 0, x ∈ ∂G.

Then there exists ε > 0 such that T +H(λ, ·) is regular for every λ ∈ (−ε, ε). In
particular, for every λ ∈ (−ε, ε) the inclusion Tx + H(λ, x) 3 0 has a solution
x = xλ ∈ D(T ) ∩G.

Proof. By Theorem 5, it suffices to show that there exists ε > 0 such that
Tx+H(λ, x) 63 0 for every (λ, x) ∈ (−ε, ε)×D(T )∩∂G. To this end, assume that
this is not true. Then, for some sequence (λn, xn) ∈ [−1, 1]×D(T )∩∂G, we have
λn → 0 and Txn+H(λn, xn) 3 0. Since {(λn, xn)} is bounded and H is compact,
we may assume that, for some sequence vn ∈ Txn, we have vn → v ∈ X. Then
xn → x0 = T−1v ∈ D(T )∩ ∂G. It follows that Tx0 + H(0, x0) 3 0, i.e., Tx0 3 0.

Since T is L-expansive and 0 ∈ T (D(T ) ∩ G), we have a contradiction. This
completes the proof. �

It would be interesting to see extensions of this theory to problems where
the operator T is a locally defined continuous or demicontinuous operator. The
invariance of domain results of Deimling [6] and Kartsatos [15] would be useful
in this direction. All the results above for m-accretive operators have analogues
for maximal monotone operators T : X ⊃ D(T ) → 2X∗

, where X is now a
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locally uniformly convex reflexive Banach space with locally uniformly convex
dual space X∗. For results in this setting, we cite the papers [7] and [13–14]. In
particular, the results of [14] contain as special cases some results of Kartsatos
in [18] involving ranges of sums for perturbations of m-accretive operators.
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[11] L. Górniewicz and Z. Kucharski, Coincidence of k-set contraction pairs, J. Math.
Anal. Appl. 107 (1985), 1-15.

[12] A. Granas, The theory of compact vector fields and some applications to the theory of

functional spaces, Rozprawy Mat. 30 (1962).

[13] Z. Guan and A. G. Kartsatos, Solvability of nonlinear equations with coercivity

generated by compact perturbations of m-accretive operators in Banach spaces, Houston
J. Math. 21 (1995), 149–188.

[14] , Ranges of perturbed maximal monotone and m-accretive operators in Banach

spaces, Trans. Amer. Math. Soc. (to appear).

[15] , On the eigenvalue problem for perturbations of nonlinear accretive and mono-

tone operators in Banach spaces, Nonlinear Anal. (to appear).

[16] A. G. Kartsatos, Zeros of demicontinuous accretive operators in reflexive Banach

spaces, J. Integral Equations 8 (1985), 175–184.

[17] , On compact perturbations and compact resolvents of nonlinear m-accretive

operators in Banach spaces, Proc. Amer. Math. Soc. 119 (1993), 1189–1199.

[18] , Sets in the ranges of sums for perturbations of nonlinear m-accretive operators
in Banach spaces, Proc. Amer. Math. Soc. 123 (1995), 145–156.

[19] , Recent results involving compact perturbations and compact resolvents of accre-
tive operators in Banach spaces, Proceedings of the First World Congress of Nonlinear

Analysts, Tampa, Florida, 1992, Walter de Gruyter, New York (to appear).

[20] V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract
Spaces, Pergamon Press, Oxford, 1981.



304 Z. Ding — A. G. Kartsatos

[21] M. Martelli, Positive eigenvectors of wedge maps, Ann. Mat. Pura Appl. 145 (1986),

1–32.
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