EQUIVARIANT MAPS BETWEEN COHOMOLOGY SPHERES

MAREK IZYDOREK — WACŁAW MARZANTOWICZ

Dedicated to Ky Fan

Introduction

Let G be a compact Lie group. Let X be a Hausdorff compact G-space which is a cohomology sphere over a ring \mathcal{R} (cf. Def. 1.1).

In Section 1 we define the Euler class of a locally trivial bundle with X as fiber. Using this definition we show that the main result of [7] still holds if the sphere of an orthogonal representation is replaced by a G-space which is a cohomology sphere over \mathcal{R} (Ths. 1.8, 1.9).

In the second section we consider actions of a finite cyclic group $G = C_k$. For this group, and X as above, an index of X has been defined in [1] and [2]. First, with the use of the Euler class we define an index of X (cf. [7] for the case where X is the sphere of an orthogonal representation; see Def. 2.2). Next we prove that this index is equal to that introduced by Borisovich and Izrailevich (Th. 2.3), and consequently we obtain a simple geometrical interpretation of the index defined in [1]. Finally, using our definition of the index (via the Euler class) we compute its value for X = S(V), the sphere of an orthogonal representation V of $G = C_k$ (Th. 3.3). This allows us to find for which V this index is different from 0. From the results of [7] and those quoted above we derive a formula on the degree (modulo k) of a G-equivariant map $f : S(W) \to S(V)$ between the spheres of representations W and V of $G = C_k$ (Prop. 3.11) (cf. [3], [8]).

©1995 Juliusz Schauder Center for Nonlinear Studies

279

 ¹⁹⁹¹ Mathematics Subject Classification. Primary 55M
35, 55R 25; Secondary 55N
91, 55M 20.

The presented material is a part of the authors' preprint [5]. In [6] it is shown that the vanishing of the Euler class of V is the only obstruction to the existence of an equivariant map from the sphere of another representation W of dimension greater than the dimension of V. This is connected with the problem of estimating the *G*-category of X ([6]) and consequently can be applied to invariant variational problems.

1. The Euler class of a cohomology sphere

Assume that X is a compact Hausdorff G-space with finitely generated Čech cohomology with coefficients in a ring \mathcal{R} .

We denote by CX the cone over X, $CX = X \times I/X \times \{0\}$, with the natural action of G. Note that $(CX)^G = CX^G$, with the convention that $CX^G = [X,0] = *$ if $X^G = \emptyset$. Also X embeds equivariantly in CX. Moreover, CXis G-contractible. The Borel space of X is the orbit space $X_G = EG \times_G X$ $= (EG \times X)/G$, where EG is the universal space of G. X_G , $(CX)_G$ and $((CX)_G, X_G)$ are the total spaces of fibrations over the classifying space BG with fibers X, CX and (CX, X) respectively. Since the fibration $EG \to BG = EG/G$ is locally trivial, all the above fibrations are locally trivial. We denote $(CX)_G$ by CX_G . We shall use the same letter p to denote the projections of all the above fibrations.

Let $f: X \to Y$ be a *G*-equivariant map between two *G*-spaces *X* and *Y*. Clearly, *f* induces the map $f_G = \operatorname{id} \times_G f: X_G \to Y_G$. The cone map $Cf: CX \to CY, Cf([x,t]) = [f(x),t]$, is a *G*-map which maps (CX, X) into (CY, Y), and consequently induces a map $Cf_G: (CX_G, X_G) \to (CY_G, Y_G)$. Moreover, the restrictions of f_G and Cf_G to the fibers X_b and $(CX, X)_b, b \in BG$, are equal to *f* and Cf, respectively.

We shall denote by j the inclusion of $CX_G = (CX_G, \emptyset)$ into the pair (CX_G, X_G) and by $s_0 : BG \to CX_G$ the map $s_0 = [b, *]$. We use the same letters for restrictions of these maps.

1.1. DEFINITION. A G-space X is called *m*-acyclic over \mathcal{R} if X is pathconnected and $H_i(X;\mathcal{R}) = H^i(X;\mathcal{R}) = 0$ for $1 \leq i \leq m$.

A G-space X is called a *cohomology sphere* of dimension n over \mathcal{R} if X is path-connected and $H^*(X;\mathcal{R}) = H^*(S^n;\mathcal{R}), H_*(X;\mathcal{R}) = H_*(S^n;\mathcal{R}).$

1.2. DEFINITION. Assume that a *G*-space *X* is an *R*-cohomology sphere of dimension *n*. A fibration X_G is said to be *R*-orientable if there exists a cohomology class $\mathcal{U} \in H^{n+1}(CX_G, X_G; \mathcal{R})$, called the *Thom class*, such that for every $b \in BG$ the restriction $\mathcal{U}_{|b}$ of \mathcal{U} to $H^{n+1}(CX, X; \mathcal{R})$ is a fixed generator of the module $H^{n+1}(CX, X; \mathcal{R}) \simeq \mathcal{R}$. We say that *X* is *orientable* if the fibration X_G is orientable (cf. [9], [10]).

1.3. PROPOSITION. A fibration X_G is \mathcal{R} -orientable if the action of G on $H^n(X; \mathcal{R}) \simeq \mathcal{R} \simeq H^n(X; \mathbb{Z}) \otimes \mathcal{R}$ is trivial. This means that X is always orientable if G acts trivially on $H^n(X; \mathbb{Z})$ and is also orientable if G acts nontrivially on $\mathbb{Z} = H^n(X; \mathbb{Z})$ but the characteristic of \mathcal{R} equals 2.

1.4. COROLLARY. Let $G = C_k$ be the cyclic group of order k. If k is odd then every cohomology sphere over \mathbb{Z} , or \mathbb{Z}_k , is \mathbb{Z} -orientable, respectively \mathbb{Z}_k orientable. Every cohomology sphere is \mathbb{Z}_2 -orientable.

One can prove Proposition 1.3 by adapting the standard proof for the vector bundle ([9]) and using the following lemma.

1.5. LEMMA. Let $G_0 \subset G$ be the component of identity of G and $\omega : I \to BG$ a loop at $b \in BG/G_0$. Then the automorphism

$$h^*_{|[\omega]}: H^{n+1}(CX, X; \mathcal{R}) \to H^{n+1}(CX, X; \mathcal{R})$$

induced by ω is equal to g^* , where $g \in G/G_0$ corresponds to $[\omega] \in \pi_1(B(G/G_0))$ $\simeq G/G_0$.

1.6. DEFINITION. Suppose that a G-space X is an \mathcal{R} -orientable cohomology sphere of dimension n over \mathcal{R} . The class

$$\mathbf{e}(X) = (p^*)^{-1} j^*(\mathcal{U}) \in H^{n+1}(BG; \mathcal{R})$$

is called the *Euler class* of X in \mathcal{R} . If V is an orthogonal representation of dimension n then we denote by $\mathbf{e}(V) \in H^*(BG; \mathcal{R})$ the Euler class of its sphere S(V).

1.7. REMARK. Since $ps_0 : BG \to BG$ is the identity on BG, the homomorphism $(p^*)^{-1} : H^*(CX_G; \mathcal{R}) \to H^*(BG; \mathcal{R})$ is equal to s_0^* . Consequently, $\mathbf{e}(X) = s_0^* j^*(\mathcal{U})$.

If $X^G \neq \emptyset$ then the bundle X_G has a section s(b) = [b, *] which shows that $X^G \neq \emptyset$ implies $\mathbf{e}(X) = 0$ for any coefficient ring \mathcal{R} .

The following theorems can be shown by the same arguments as for the analogous statements of [7].

1.8. THEOREM. Let Y be a G-space which is an \mathcal{R} -orientable cohomology sphere of dimension n. Assume that $\mathbf{e}(Y) \neq 0$. Suppose that X is a G-space which is l-acyclic over \mathcal{R} . If $l \geq n$ then there is no G-equivariant map $f : X \to Y$.

Suppose that $f : X \to Y$ is a *G*-map between two cohomology spheres of dimension *n* over \mathcal{R} . The *degree* of *f* in the ring \mathcal{R} , denoted by $\deg_{\mathcal{R}} f$, is defined to be the remainder of deg *f* modulo char \mathcal{R} . For example, if $\mathcal{R} = \mathbb{Z}_k$ then $\deg_{\mathcal{R}}$ is the remainder of deg *f* modulo *k*.

1.9. THEOREM. Suppose that G-spaces X and Y with $X^G = Y^G = \emptyset$ are \mathcal{R} -orientable cohomology spheres of dimension n. Then for every G-equivariant map $f: X \to Y$, $\deg_{\mathcal{R}} f \cdot \mathbf{e}(X) = \mathbf{e}(Y)$ in $H^*(BG; \mathcal{R})$.

1.10. REMARK. One can get rid of the \mathcal{R} -orientability assumption but then we have to work with a local coefficient system on BG given by the action of $\pi_1(B(G/G_0)) = G/G_0$ on $H^*(X; \mathcal{R})$.

2. Equality of indices for the cyclic group

From now on we assume that $G = C_k$ is a cyclic group of order k > 1, and all representations considered are \mathbb{Z}_k -orientable.

Using the Euler class and periodicity of cohomology of C_k we define a numerical index (in \mathbb{Z}_k) of a cohomology sphere. Next we show that this index is equal to another one defined earlier by Borisovich and Izrailevich. As a matter of fact this is a simple exercise in algebraic topology, but requires a little background on the cohomology of cyclic groups, which we include for the convenience of the reader. On the other hand, this fact gives a geometric interpretation of the index, allows us to derive an explicit formula for it in the case when X is the sphere of an orthogonal representation, and allows extending the definition of the index to the case of a finite group with periodic cohomology.

First we recall some facts on the cohomology groups of C_k with coefficients in \mathbb{Z}_k (cf. [4]). It is known that $H^i(C_k; \mathbb{Z}_k) = \mathbb{Z}_k$ for $i \ge 0$. Moreover, there is a periodicity

$$H^q(C_k; \mathbb{Z}_k) = H^{q+2}(C_k; \mathbb{Z}_k), \qquad q \ge 0.$$

given by multiplication by an element $u \in H^2(C_k; \mathbb{Z}_k)$ if $k \neq 2$ and $u \in H^1(C_2; \mathbb{Z}_2)$ if k = 2. The element u is defined as follows. Let V^1 be the onedimensional (complex if $k \neq 2$ and real if k = 2) representation of C_k given by the inclusion $C_k \subset S^1$ (resp. $C_2 = S^0 = \{-1, 1\} \subset \mathbb{R}$). Take $u = \mathbf{e}(V^1) \in$ $H^2(C_k; \mathbb{Z}) = H^2(C_k; \mathbb{Z}_k) = \mathbb{Z}_k$ (resp. $\mathbf{e}(V^1) \in H^1(C_2; \mathbb{Z}) = H^1(C_2; \mathbb{Z}_2) = \mathbb{Z}_2$). Note that $\mathbf{e}((V^1)^k) = k \cdot \mathbf{e}(V) = 0$, and $m \cdot \mathbf{e}(V^1) \neq 0$ if 0 < m < k, which means that u is a generator of $H^2(C_k; \mathbb{Z}_k)$ (resp. $H^1(C_2; \mathbb{Z}_2)$).

Let X be a G-space which is a \mathbb{Z}_k -orientable cohomology sphere of dimension n over \mathbb{Z}_k . We make the following choice of generators. Let $\delta_0 \in H^0(X; \mathbb{Z}_k)$ be the generator given by $\delta_0 = c^*(1)$, where $c : X \to *$ is the map to the point. Denote by $\widetilde{\delta}_0$ the corresponding generator of $H^0(BG; H^0(X; \mathbb{Z}_k)) \simeq$ $H^0(X; \mathbb{Z}_k)$. Since X is orientable, there exists a generator $\mu \in H^n(X; \mathbb{Z}_k)$ such that $g^*(\mu) = \mu$ for every $g \in G$. We denote by $\widetilde{\mu}$ the corresponding generator of $H^0(BG; H^n(X; \mathbb{Z}_k)) \simeq H^n(X; \mathbb{Z}_k) \simeq \mathbb{Z}_k$. We can assume that $\widetilde{\delta}_0 = \widetilde{\mu}$.

Next, let $\nu \in H^1(BG; \mathbb{Z}_k)$ be an element such that $u\delta_0 = \beta(\nu)$, where $\beta : H^1(BG; \mathbb{Z}_k) \to H^2(BG; \mathbb{Z}_k)$ is the Bockstein homomorphism. Since β is an

isomorphism, ν is a generator. Finally, let ξ_i be a generator of $H^i(BG; \mathbb{Z}_k)$ defined by

$$\xi_i = \begin{cases} u^i \delta_0 & \text{if } i = 2n, \\ u^i \nu & \text{if } i = 2n+1, \ n \ge 0 \end{cases}$$

We can now formulate the definitions of both the indices mentioned above.

First note that the Borel–Serre spectral sequence of X_G with coefficients in \mathbb{Z}_k exists and converges to $H^*(X_G; \mathbb{Z}_k)$ since X is orientable. We have $E_2^{p,q}(X_G) = H^p(BG; H^q(X; \mathbb{Z}_k))$ and therefore

$$E^{p,q}(X) = \begin{cases} \mathbb{Z}_k & \text{if } q = 0, n, \\ 0 & \text{otherwise.} \end{cases}$$

Consequently, d_{n+1} is the only nontrivial differential of this sequence. Let $\alpha : H^n(X; \mathbb{Z}_k) \to H^0(X; \mathbb{Z}_k)$ be the composition of the following functorial homomorphisms:

$$H^{n}(X;\mathbb{Z}_{k}) \simeq E_{2}^{p,n} \simeq E_{n+1}^{0,n} \xrightarrow{d_{n+1}} E_{n+1}^{n+1,0} \simeq E_{2}^{n+1,0} \simeq H^{0}(X;\mathbb{Z}_{k}),$$

where the first (resp. last) homomorphism is given by $\mu \mapsto \tilde{\nu}$ (resp. $\xi_{n+1} \mapsto \delta_0$).

The following definition is a simplified version of that of [1] since we assume $X^G = \emptyset$. If $X^G \neq \emptyset$ one has to use the relative cohomology of the pair (X, X^G) .

2.1. DEFINITION. Let $G = C_k$ be a cyclic group. Let X be a G-space which is a \mathbb{Z}_k -orientable cohomology sphere of dimension n over \mathbb{Z}_k . The number (modulo k) ind(X) $\in \mathbb{Z}_k$ is defined by

$$\alpha(\mu) = \operatorname{ind}(X) \cdot \delta_0,$$

where α , ν , δ_0 are as above.

2.2. DEFINITION. Let $G = C_k$ be a cyclic group. Let X be a G-space which is a \mathbb{Z}_k -orientable cohomology sphere of dimension n over \mathbb{Z}_k . The number (modulo k) $\operatorname{Ind}(X) \in \mathbb{Z}_k$ is defined by

$$\mathbf{e}(X) = \mathrm{Ind}(X) \cdot \xi_{n+1} \in H^{n+1}(BG; \mathbb{Z}_k).$$

Our aim is to show the following theorem:

2.3. THEOREM. Suppose that X is a cohomology sphere of dimension n over \mathbb{Z}_k equipped with an orientation preserving action of the cyclic group C_k . Assume that $X^G = \emptyset$. Then both $\operatorname{Ind}(X)$ and $\operatorname{ind}(X)$ are well defined and are equal. PROOF. We refer the reader to Switzer's book ([10]). First note that the isomorphism $H^n(X; \mathbb{Z}_k) \to H^0(BG; H^n(X; \mathbb{Z}_k))$ maps μ onto $\tilde{\mu}$, by its definition. Set $\tilde{\mathbf{e}}(X) = d_{n+1}(\tilde{\mu})$. We have $\tilde{\mathbf{e}}(X) = \operatorname{ind}(X) \cdot \xi_{n+1}$, since the homomorphism $H^{n+1}(BG; H^0(X; \mathbb{Z}_k)) \to H^0(BG; H^0(X; \mathbb{Z}_k))$ maps ξ_{n+1} onto δ_0 by its definition. On the other hand, $d_{n+1} = \Psi$, where $\Psi = (p^*)^{-1}j^*\Phi$, and $\Phi(z) = p^*(z) \cup \mathcal{U}$ is the Thom isomorphism (see [10], Ex. 15.31). This gives

$$d_{n+1}(\widetilde{\mu}) = (p^*)^{-1} j^*(\widetilde{\mu}) \cup (p^*)^{-1} j^*(\mathcal{U}) = \widetilde{\mu} \cup \mathbf{e}(X) = \widetilde{\mu} \cdot \operatorname{Ind}(X) \cdot \xi_{n+1}$$
$$= \operatorname{Ind}(X) \cdot \xi_{n+1} \widetilde{\delta}_0 = \operatorname{Ind}(X) \cdot \xi_{n+1}$$

since $\widetilde{\delta}_0 = \widetilde{\mu}$ and this is a ring generator of $H^0(BG; \mathbb{Z}_k) \simeq \mathbb{Z}_k$, and $s_0^0 j^0 p^0 = \mathrm{id}$ on $H^0(BG; \mathbb{Z}_k)$. This proves the theorem. \Box

The problem of equality of the two indices was posed to the authors by H. Steinlein.

3. Computations of the Euler class and degree of C_k -equivariant maps

First we will derive the Euler class of any orthogonal \mathbb{Z}_k -orientable representation of C_k .

Note that V^1 can be considered as a 2-dimensional real orthogonal representation of C_k . Denote by V^i , $1 \le i \le k/2$, its *i*th tensor power (over \mathbb{C}) and by V^0 the 1-dimensional (real) trivial representation of G. If k = 2m, then for i = m = k/2, we denote by $V_{\mathbb{R}}^m$ the 1-dimensional real representation of C_k given by the epimorphism $C_k \to C_2 \simeq \{-1, 1\} = \mathbb{O}(1)$.

Since a representation $(V, \varrho : G \to GL(V))$ is \mathbb{Z}_k -orientable iff the map sgn det $\varrho : G \to \{-1, 1\}$ is trivial modulo k, we have the following

3.1. FACT. Every real orthogonal representation of C_k is of the form

$$V = \begin{cases} \bigoplus_{0 \le i \le (k-1)/2} l_i V^i & \text{if } k \text{ is odd,} \\ \bigoplus_{0 \le i \le m-1} l_i V^i \oplus l_m V_{\mathbb{R}}^m & \text{if } k = 2m. \end{cases}$$

Moreover, for k = 2m, $k \neq 2$, V is orientable iff $V = \bigoplus_{i=1}^{m} l_i V^i$ (note that $V^m = 2V_{\mathbb{R}}^m$), and every representation $V = l_0 V^0 \oplus l_i V_{\mathbb{R}}^i$ of C_2 is \mathbb{Z}_2 -orientable. Every orthogonal representation of C_k with k odd is \mathbb{Z}_k -orientable.

As a consequence we get

3.2. COROLLARY. Every orientable orthogonal representation V of C_k , $k \neq 2$, can be written as

$$V = \bigoplus_{0 \le i \le [k/2]} m_i V^i.$$

In particular, if $V^G = \{0\}$ then $\dim_{\mathbb{R}} V$ is even and V admits a complex structure.

Using the facts that $\mathbf{e}(V \oplus W) = \mathbf{e}(V) \cdot \mathbf{e}(W)$ (cf. [3]) and $e(V^i) = i \cdot \mathbf{e}(V) = i \cdot u \in H^2(C_k; \mathbb{Z}_k)$ (cf. e.g. [7]), we get the following theorem:

3.3. THEOREM. Let $V = \bigoplus_{\leq i \leq [k/2]} m_i V^i$ be an orientable orthogonal representation of C_k . Set $r = \sum m_i$. Then $\mathbf{e}(V) = \prod i^{m_i} \cdot u^r$. The last means that $\mathbf{e}(V) \neq 0$ iff the integer $\mathbf{h}(V) = \prod i^{m_i}$ is not divisible by k (with the convention that $0^0 = 1$ and $0^r = 0$ for r > 0). In particular, $\mathbf{e}(V) = 0$ if $m_0 \neq 0$.

Now we turn to the derivation of $\deg_{\mathbb{Z}_k} f$ of a C_k -equivariant map. Let W, V be a pair of \mathbb{Z}_k -orientable orthogonal representations of $G = C_k$ such that $n = \dim W = \dim V$ and $n_1 = \dim W^G = \dim V^G$. Denote by W^G_{\perp}, V^G_{\perp} the orthogonal complements of W^G, V^G in W, V respectively. The following relative analogue of Theorem 1.9 holds for equivariant maps of spheres of orthogonal representations of G.

For any G-equivariant map $f: S(W) \to S(V)$ we have

(3.4)
$$\deg_{\mathbb{Z}_k} f \cdot \mathbf{e}(W^G_\perp) = \deg_{\mathbb{Z}_k} f^G \cdot \mathbf{e}(V^G_\perp)$$

(cf. [3], 4.28, for $G = \mathbb{Z}_p$, p prime, and [7] for any compact Lie group).

Theorem 3.3 and (3.4) lead to the following theorem.

3.5. THEOREM. Let W and V be \mathbb{Z}_k -orientable orthogonal representations of a cyclic group $G = C_k$. Assume that dim $W = \dim V$ and dim $W^G = \dim V^G$. Let $V^G_{\perp} = \bigoplus_{1 \leq i \leq \lfloor k/2 \rfloor} m_i V^i$ and $W^G_{\perp} = \bigoplus_{1 \leq i \leq \lfloor k/2 \rfloor} m'_i V^i$. Then for any Gequivariant map $f : S(W) \to S(V)$,

$$\deg_{\mathbb{Z}_k} f \cdot \left(\prod i^{m'_i}\right) = \deg_{\mathbb{Z}_k} f^G \cdot \left(\prod i^{m_i}\right)$$

In particular, if $\prod i^{m'_i} \not\equiv 0 \pmod{k}$ then $\deg_{\mathbb{Z}_k} f$ is uniquely determined by $\deg_{\mathbb{Z}_k} f^G, V^G_{\perp}$, and W^G_{\perp} via the formula

$$\deg_{\mathbb{Z}_k} f = \deg_{\mathbb{Z}_k} f^G \cdot \left(\prod i^{m_i}\right) \cdot \left(\prod i^{m'_i}\right)^{-1}.$$

3.6. COROLLARY. Suppose that dim $W^G = \dim V^G = 0$. Then the degree modulo k of any C_k -equivariant map $f : S(W) \to S(V)$ is equal to $(\prod i^{m_i}) \cdot (\prod i^{m'_i})^{-1}$ and thus depends on W and V only.

Note that in the special case $W = \bigoplus_{i=1}^{n} V^{t_i}$, $V = \bigoplus_{i=1}^{n} V^{s_i}$, $(t_i, k) = (s_i, k) = 1$, Corollary 3.6 gives 4.12 of [3].

3.7. PROBLEM. Theorem 3.5 and Corollary 3.6 give some necessary condition on W and V for the existence of a G-equivariant map $f : S(W) \to S(V)$ (cf. [7] for such a condition for $G = T^k$, \mathbb{Z}_p^k , p prime). It is natural to ask whether it is also a sufficient condition.

To end this section we describe $\mathbf{e}(V)$ and $\deg_{\mathbb{Z}_k} f$ of a representation of C_k and a C_k -map respectively.

First we recall the description of the cohomology groups of C_k , $k = p^r$, with coefficients in the ring \mathbb{Z}_{p^l} . It is known that (cf. [12], 15.7)

$$H^0(G; A) = A/kA, \qquad H^1(G; A) = \operatorname{Hom}(G; A)$$

if |G| = k and A is a trivial G-module. Since $G = C_{p^r}$ is cyclic, it is 2-periodic. Altogether, the above gives

$$H^0(C_{p^r}; \mathbb{Z}_{p^l}) = \left\{ \begin{array}{ll} \mathbb{Z}_{p^r} & \text{if } r \leq l \\ \mathbb{Z}_{p^l} & \text{if } r > l \end{array} \right\} = H^1(C_{p^r}; \mathbb{Z}_{p^l}),$$

and consequently, for $n \ge 0$,

$$H^{2n}(C_{p^r}; \mathbb{Z}_{p^l}) = H^{2n+1}(C_{p^r}; \mathbb{Z}_{p^l}) = \begin{cases} \mathbb{Z}_{p^r} & \text{if } r \le l \\ \mathbb{Z}_{p^l} & \text{if } r > l \end{cases}$$

For $l \leq r$, let $C_{p^l} \subset C_{p^r}$ be the canonical embedding. Then the restriction homomorphism

$$\operatorname{res}^*: H^i(C_{p^r}; \mathbb{Z}_{p^r}) \simeq \mathbb{Z}_{p^r} \to \mathbb{Z}_{p^l} = H^i(C_{p^l}; \mathbb{Z}_{p^l})$$

is the quotient map $\mathbb{Z}_{p^r} \to \mathbb{Z}_{p^r}/p^l \mathbb{Z}_{p^r} \simeq \mathbb{Z}_{p^l}$. Furthermore, for $l \leq r$ the homomorphism $H^*(C_{p^r}; \mathbb{Z}_{p^l}) \to H^*(C_{p^r}; \mathbb{Z}_{p^r})$ is induced by the embedding $\mathbb{Z}_{p^l} \subset \mathbb{Z}_{p^r}$ given by multiplication by p^{r-l} . Let $k = p_1^{r_1} \dots p_N^{r_N}$. We have $H^i(C_k; \mathbb{Z}_k) = \mathbb{Z}_k = \bigoplus_{j=1}^N \mathbb{Z}_{p_j^{r_j}}$, thus its *p*-torsion, for $p \in \{p_1, \dots, p_N\}$, is equal to

$$H^{i}(C_{k};\mathbb{Z}_{k})_{(p)}\simeq\mathbb{Z}_{p^{r}}\simeq H^{i}(C_{p^{r}};\mathbb{Z}_{k})\simeq H^{i}(C_{p^{r}};\mathbb{Z}_{p^{r}}).$$

The functoriality of the Euler class and the above yield

3.8. PROPOSITION. Let V be an orthogonal representation of a cyclic group C_k , $k = p_1^{r_1} \dots p_N^{r_N}$. Let $H = C_{p^r}$, $p \in \{p_1, \dots, p_N\}$, be its maximal p-subgroup. Then $\operatorname{res}_H^*(\mathbf{e}(V)) = \mathbf{e}(\operatorname{res}_H V)$, and consequently $\mathbf{e}(V) \neq 0$ iff there exists $p \mid k$ such that $\mathbf{e}(\operatorname{res}_H V) \neq 0$ in $H^*(BH; \mathbb{Z}_{p^r})$.

Let V be an orthogonal representation of C_k and p a prime dividing k. Assume that p is odd. For simplicity we use the same symbol V for the restriction of V to $H = C_{p^r} \subset C_k$. Expanding V into irreducible factors with respect to H, we have

$$V = \bigoplus_{0 \le i \le [p^r/2]} l_i V^i, \qquad l_i \in \mathbb{N} \cup \{0\}.$$

From Theorem 3.3 we have

$$\mathbf{h}(V) = \prod_{0 \le i \le [p^r/2]} i^{l_i} \in \mathbb{Z}_{p^r}.$$

For $1 \leq \alpha \leq r-1$, we set $\mathcal{A}_{\alpha} = \{i \in \mathbb{Z}_{p^r} : i \equiv p^{\alpha} \pmod{p^r} \text{ and } i \neq p^{\alpha+1} \pmod{p^r}\}$, and $\mathcal{A}_0 = \{0\}$, $\mathcal{A} = \{i \in \mathbb{Z}_{p^r} : (p, i) = 1\}$. Note also that $\prod_{i \in \mathcal{A}} i^{l_i}$ is an invertible element of \mathbb{Z}_{p^r} . Writing $\mathbf{h}(V)$ as the product

$$\mathbf{h}(V) = \prod_{i \in \mathcal{A}} i^{l_i} \cdot \prod_{i \in \mathcal{A}_0} i^{l_i} \cdot \prod_{i \in \mathcal{A}_1} i^{l_i} \cdot \dots \cdot \prod_{i \in \mathcal{A}_{r-1}} i^{l_i}$$

and observing that for $i \in \mathcal{A}_{\alpha}$ we have $i^{l_i} = p^{\alpha l_i} c$, where $c \in \mathbb{Z}_{p^r}^*$, we get the following proposition.

3.9. PROPOSITION. Let $V = \bigoplus_{0 \le i \le [p^r/2]} l_i V_i$ be an orthogonal representation of a cyclic group C_{p^r} , p odd. Then $\mathbf{e}(V) \ne 0$ in $H^*(BC_{p^r}; \mathbb{Z}_{p^r})$ if p^r does not divide $\prod_{i \in \mathcal{A}_0} i^{l_i} \cdot \prod_{i \in \mathcal{A}_1} i^{l_i} \cdot \ldots \cdot \prod_{i \in \mathcal{A}_{r-1}} i^{l_i}$, or equivalently if

(+)
$$l_0 r + \sum_{i \in \mathcal{A}_1} l_i + 2 \sum_{i \in \mathcal{A}_2} l_i + \dots + (r-1) \sum_{i \in \mathcal{A}_{r-1}} l_i < r$$

We are left with the case k = 2. Every orthogonal representation of C_2 is isomorphic to $m_0V^0 \oplus m_1V^1$, where V^1 is the one-dimensional nontrivial real representation of $C_2 \subset \{-1, 1\} = \mathbb{O}(1)$. Also $\mathbf{h}(V) = 1$ iff $m_0 = 0$. Note also that the statement of Proposition 3.9 still holds if p = 2 but V is orientable over \mathbb{Z}_{p^r} (or equivalently over \mathbb{Z} if r > 1). Obviously, $l_0 \neq 0$ yields $\mathbf{e}(V) = 0$.

From Proposition 3.9 it follows that the Euler class $\mathbf{e}(V)$ (or equivalently $\mathbf{h}(V)$, cf. Theorem 3.3) is uniquely determined by all its *p*-torsions. Moreover, we can write down a more explicit formula for the modulo k number $\mathbf{h}(V)$. As follows from the Chinese remainder theorem, $\mathbf{h}(V) \in \mathbb{Z}_k$ is uniquely given by $\{\mathbf{h}(V)_{(p)}\}, p \mid k$, as the solution of the system of congruences

(*)
$$x \equiv \mathbf{h}(V)_{(p)} \pmod{p^r}$$

(cf. [11], IV, 3a). For $p_j | k, 1 \leq j \leq N$, let $q_j = k/p_j^{r_j}$, and $\{q_j\}^{-1}$ be the inverse of q_j in $\mathbb{Z}_{p_j^{r_j}} \subset \mathbb{Z}_k$. Then the unique (modulo k) solution $x_0 = \mathbf{h}(V)$ of (*) is given by the formula

(3.10)
$$x_0 = \sum_{j=1}^N q_j \{q_j\}^{-1} \mathbf{h}(V)_{(p_j)}.$$

Analogously, we can describe $\deg_{\mathbb{Z}_k} f$ by its *p*-torsions, $\{\deg_{\mathbb{Z}_k} f_{(p)}\}, p \mid k$. For $k = p_1^{r_1} \dots p_N^{r_N}$, let $J_1 = \{1 \leq j \leq N : \mathbf{e}(W_{\perp}^G)_{(p_j)} \neq 0\}$ and $J_2 = \{1 \leq j \leq N : \mathbf{e}(W_{\perp}^G)_{(p_j)} = 0\}$. Combining 3.3, 3.5 and 3.9 we get the following statement.

3.11. PROPOSITION. Let W and V be \mathbb{Z}_k -orientable orthogonal representations of a cyclic group $G = C_k$, where $k = p_1^{r_1} \dots p_N^{r_N}$. Assume that dim W =dim V and dim $W^G =$ dim V^G . Then for any G-equivariant map $f : S(W) \rightarrow$ S(V), deg_{Z_k} f is uniquely determined by deg_{Z_k} f^G , up to the ideal I = $(\prod_{j \in J_2} p_j^{r_j})\mathbb{Z}_k$, by the formula

$$\deg_{\mathbb{Z}_k} f = \sum_{j \in J_1} q_j \{q_j\}^{-1} \deg_{\mathbb{Z}_k} f^G_{(p_j)} \mathbf{h}(V^G_{\perp})_{(p_j)} \cdot \mathbf{h}(W^G_{\perp})_{(p_j)}^{-1}$$

3.12. REMARK. Using the relative Euler class of a pair (X, Y) of \mathbb{Z}_k cohomology spheres one can extend our results to the relative case. In particular, if $W \subsetneq V$ is a pair of orthogonal, \mathbb{Z}_k -orientable representations of C_k then $\operatorname{Ind}(S(V), S(W)) = \operatorname{ind}(S(V), S(W)) = \mathbf{e}(S(V), S(W))$ is equal to $\mathbf{e}(S(W_{\perp}^G)) \in H^*(C_k; \mathbb{Z}_k).$

3.13. REMARK. The formula of Proposition 3.11 has been shown by Shchelokova [8] for *G*-equivariant maps of \mathbb{Z}_k -cohomology spheres. In her formulas the index ind(X) appears instead of the Euler classes. We wish to emphasize that in all our formulas the coefficients $\mathbf{h}(V)$ are explicitly given by the representations, which is not the case in [8].

References

- YU. A. BORISOVICH AND YA. A. IZRAILEVICH, Computation of the degree of equivariant mappings of spheres by the spectral sequence method, Voronezh. Gos. Univ. Trudy Mat. Fak. 10 (1973), 1–12. (Russian)
- [2] YU. G. BORISOVICH, YA. A. IZRAILEVICH AND E. SHCHELOKOVA, On the method of A. Borel spectral sequence in the theory of equivariant mappings, Uspekhi Mat. Nauk 32 (1977), no. 1, 161–162. (Russian)
- [3] T. TOM DIECK, Transformation Groups, de Gruyter Stud. Math. 8, de Gruyter, 1987.
- [4] P. HILTON AND S. STAMMBACH, A Course in Homological Algebra, Graduate Texts in Math., vol. 4, Springer-Verlag, 1971.
- M. IZYDOREK AND W. MARZANTOWICZ, Equivariant maps between cohomology spheres, preprint, Forschungsschwerpunkt Geometrie, Univ. Heidelberg, Heft Nr. 70 (1990).
- [6] _____, Borsuk–Ulam property for the cyclic group (to appear).
- [7] W. MARZANTOWICZ, Borsuk-Ulam theorem for any compact Lie group, J. London Math. Soc. 49 (1994), 195–208.
- [8] E. SHCHELOKOVA, The problem of computing the degree of equivariant mappings, Sibirsk. Mat. Zh. 19 (1978), 426–435. (Russian)
- [9] E. SPANIER, Algebraic Topology, McGraw-Hill, 1966.
- [10] R. SWITZER, Algebraic Topology—Homotopy and Homology, Grundlehren Math. Wiss., vol. 212, Springer-Verlag, 1975.

[11] I. VINOGRADOV, Elements of Number Theory, Dover, 1954.

[12] E. WEISS, Cohomology of Groups, Academic Press, 1969.

Manuscript received May 4, 1994

MAREK IZYDOREK Institute of Mathematics Technical University of Gdańsk 80-952 Gdańsk, POLAND

WACLAW MARZANTOWICZ Institute of Mathematics University of Gdańsk 80-952 Gdańsk, POLAND

TMNA : Volume 5 – 1995 – Nº 2