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Introduction

Let G be a compact Lie group. Let X be a Hausdorff compact G-space which
is a cohomology sphere over a ring R (cf. Def. 1.1).

In Section 1 we define the Euler class of a locally trivial bundle with X as
fiber. Using this definition we show that the main result of [7] still holds if
the sphere of an orthogonal representation is replaced by a G-space which is a
cohomology sphere over R (Ths. 1.8, 1.9).

In the second section we consider actions of a finite cyclic group G = Ck.

For this group, and X as above, an index of X has been defined in [1] and [2].
First, with the use of the Euler class we define an index of X (cf. [7] for the case
where X is the sphere of an orthogonal representation; see Def. 2.2). Next we
prove that this index is equal to that introduced by Borisovich and Izrailevich
(Th. 2.3), and consequently we obtain a simple geometrical interpretation of the
index defined in [1]. Finally, using our definition of the index (via the Euler class)
we compute its value for X = S(V ), the sphere of an orthogonal representation
V of G = Ck (Th. 3.3). This allows us to find for which V this index is different
from 0. From the results of [7] and those quoted above we derive a formula on
the degree (modulo k) of a G-equivariant map f : S(W ) → S(V ) between the
spheres of representations W and V of G = Ck (Prop. 3.11) (cf. [3], [8]).
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The presented material is a part of the authors’ preprint [5]. In [6] it is
shown that the vanishing of the Euler class of V is the only obstruction to the
existence of an equivariant map from the sphere of another representation W of
dimension greater than the dimension of V. This is connected with the problem
of estimating the G-category of X ([6]) and consequently can be applied to
invariant variational problems.

1. The Euler class of a cohomology sphere

Assume that X is a compact Hausdorff G-space with finitely generated Čech
cohomology with coefficients in a ring R.

We denote by CX the cone over X, CX = X × I/X × {0}, with the nat-
ural action of G. Note that (CX)G = CXG, with the convention that CXG =
[X, 0] = ∗ if XG = ∅. Also X embeds equivariantly in CX. Moreover, CX

is G-contractible. The Borel space of X is the orbit space XG = EG ×G X

= (EG × X)/G, where EG is the universal space of G. XG, (CX)G and
((CX)G, XG) are the total spaces of fibrations over the classifying space BG with
fibers X, CX and (CX,X) respectively. Since the fibration EG → BG = EG/G

is locally trivial, all the above fibrations are locally trivial. We denote (CX)G by
CXG. We shall use the same letter p to denote the projections of all the above
fibrations.

Let f : X → Y be a G-equivariant map between two G-spaces X and Y .
Clearly, f induces the map fG = id×Gf : XG → YG. The cone map Cf : CX →
CY, Cf([x, t]) = [f(x), t], is a G-map which maps (CX,X) into (CY, Y ), and
consequently induces a map CfG : (CXG, XG) → (CYG, YG). Moreover, the
restrictions of fG and CfG to the fibers Xb and (CX,X)b, b ∈ BG, are equal to
f and Cf , respectively.

We shall denote by j the inclusion of CXG = (CXG, ∅) into the pair
(CXG, XG) and by s0 : BG → CXG the map s0 = [b, ∗]. We use the same
letters for restrictions of these maps.

1.1. Definition. A G-space X is called m-acyclic over R if X is path-
connected and Hi(X;R) = Hi(X;R) = 0 for 1 ≤ i ≤ m.

A G-space X is called a cohomology sphere of dimension n over R if X is
path-connected and H∗(X;R) = H∗(Sn;R), H∗(X;R) = H∗(Sn;R).

1.2. Definition. Assume that a G-space X is an R-cohomology sphere of
dimension n. A fibration XG is said to be R-orientable if there exists a cohomol-
ogy class U ∈ Hn+1(CXG, XG;R), called the Thom class, such that for every
b ∈ BG the restriction U|b of U to Hn+1(CX,X;R) is a fixed generator of the
module Hn+1(CX,X;R) ' R. We say that X is orientable if the fibration XG

is orientable (cf. [9], [10]).
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1.3. Proposition. A fibration XG is R-orientable if the action of G on
Hn(X;R) ' R ' Hn(X; Z) ⊗ R is trivial. This means that X is always ori-
entable if G acts trivially on Hn(X; Z) and is also orientable if G acts nontriv-
ially on Z = Hn(X; Z) but the characteristic of R equals 2.

1.4. Corollary. Let G = Ck be the cyclic group of order k. If k is odd
then every cohomology sphere over Z, or Zk, is Z-orientable, respectively Zk-
orientable. Every cohomology sphere is Z2-orientable.

One can prove Proposition 1.3 by adapting the standard proof for the vector
bundle ([9]) and using the following lemma.

1.5. Lemma. Let G0 ⊂ G be the component of identity of G and ω : I →
BG a loop at b ∈ BG/G0. Then the automorphism

h∗|[ω] : Hn+1(CX,X;R) → Hn+1(CX,X;R)

induced by ω is equal to g∗, where g ∈ G/G0 corresponds to [ω] ∈ π1(B(G/G0))
' G/G0. �

1.6. Definition. Suppose that a G-space X is an R-orientable cohomology
sphere of dimension n over R. The class

e(X) = (p∗)−1j∗(U) ∈ Hn+1(BG;R)

is called the Euler class of X in R. If V is an orthogonal representation of
dimension n then we denote by e(V ) ∈ H∗(BG;R) the Euler class of its sphere
S(V ).

1.7. Remark. Since ps0 : BG → BG is the identity on BG, the homo-
morphism (p∗)−1 : H∗(CXG;R) → H∗(BG;R) is equal to s∗0. Consequently,
e(X) = s∗0j

∗(U).
If XG 6= ∅ then the bundle XG has a section s(b) = [b, ∗] which shows that

XG 6= ∅ implies e(X) = 0 for any coefficient ring R.

The following theorems can be shown by the same arguments as for the
analogous statements of [7].

1.8. Theorem. Let Y be a G-space which is an R-orientable cohomology
sphere of dimension n. Assume that e(Y ) 6= 0. Suppose that X is a G-space
which is l-acyclic over R. If l ≥ n then there is no G-equivariant map f : X

→ Y. �

Suppose that f : X → Y is a G-map between two cohomology spheres of
dimension n over R. The degree of f in the ring R, denoted by degR f, is defined
to be the remainder of deg f modulo charR. For example, if R = Zk then degR
is the remainder of deg f modulo k.
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1.9. Theorem. Suppose that G-spaces X and Y with XG = Y G = ∅ are
R-orientable cohomology spheres of dimension n. Then for every G-equivariant
map f : X → Y , degR f · e(X) = e(Y ) in H∗(BG;R). �

1.10. Remark. One can get rid of the R-orientability assumption but then
we have to work with a local coefficient system on BG given by the action of
π1(B(G/G0)) = G/G0 on H∗(X;R).

2. Equality of indices for the cyclic group

From now on we assume that G = Ck is a cyclic group of order k > 1, and
all representations considered are Zk-orientable.

Using the Euler class and periodicity of cohomology of Ck we define a nu-
merical index (in Zk) of a cohomology sphere. Next we show that this index is
equal to another one defined earlier by Borisovich and Izrailevich. As a matter
of fact this is a simple exercise in algebraic topology, but requires a little back-
ground on the cohomology of cyclic groups, which we include for the convenience
of the reader. On the other hand, this fact gives a geometric interpretation of
the index, allows us to derive an explicit formula for it in the case when X is
the sphere of an orthogonal representation, and allows extending the definition
of the index to the case of a finite group with periodic cohomology.

First we recall some facts on the cohomology groups of Ck with coefficients
in Zk (cf. [4]). It is known that Hi(Ck; Zk) = Zk for i ≥ 0. Moreover, there is a
periodicity

Hq(Ck; Zk) = Hq+2(Ck; Zk), q ≥ 0,

given by multiplication by an element u ∈ H2(Ck; Zk) if k 6= 2 and u ∈
H1(C2; Z2) if k = 2. The element u is defined as follows. Let V 1 be the one-
dimensional (complex if k 6= 2 and real if k = 2) representation of Ck given
by the inclusion Ck ⊂ S1 (resp. C2 = S0 = {−1, 1} ⊂ R). Take u = e(V 1) ∈
H2(Ck; Z) = H2(Ck; Zk) = Zk (resp. e(V 1) ∈ H1(C2; Z) = H1(C2; Z2) = Z2).
Note that e((V 1)k) = k ·e(V ) = 0, and m ·e(V 1) 6= 0 if 0 < m < k, which means
that u is a generator of H2(Ck; Zk) (resp. H1(C2; Z2)).

Let X be a G-space which is a Zk-orientable cohomology sphere of dimen-
sion n over Zk. We make the following choice of generators. Let δ0 ∈ H0(X; Zk)
be the generator given by δ0 = c∗(1), where c : X → ∗ is the map to the
point. Denote by δ̃0 the corresponding generator of H0(BG;H0(X; Zk)) '
H0(X; Zk). Since X is orientable, there exists a generator µ ∈ Hn(X; Zk) such
that g∗(µ) = µ for every g ∈ G. We denote by µ̃ the corresponding generator of
H0(BG;Hn(X; Zk)) ' Hn(X; Zk) ' Zk. We can assume that δ̃0 = µ̃.

Next, let ν ∈ H1(BG; Zk) be an element such that uδ0 = β(ν), where β :
H1(BG; Zk) → H2(BG; Zk) is the Bockstein homomorphism. Since β is an
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isomorphism, ν is a generator. Finally, let ξi be a generator of Hi(BG; Zk)
defined by

ξi =

{
uiδ0 if i = 2n,

uiν if i = 2n + 1, n ≥ 0.

We can now formulate the definitions of both the indices mentioned above.
First note that the Borel–Serre spectral sequence of XG with coefficients in Zk

exists and converges to H∗(XG; Zk) since X is orientable. We have Ep,q
2 (XG) =

Hp(BG;Hq(X; Zk)) and therefore

Ep,q(X) =

{
Zk if q = 0, n,

0 otherwise.

Consequently, dn+1 is the only nontrivial differential of this sequence. Let
α : Hn(X; Zk) → H0(X; Zk) be the composition of the following functorial
homomorphisms:

Hn(X; Zk) ' Ep,n
2 ' E0,n

n+1

dn+1−→ En+1,0
n+1 ' En+1,0

2 ' H0(X; Zk),

where the first (resp. last) homomorphism is given by µ 7→ ν̃ (resp. ξn+1 7→ δ0).
The following definition is a simplified version of that of [1] since we assume

XG = ∅. If XG 6= ∅ one has to use the relative cohomology of the pair (X, XG).

2.1. Definition. Let G = Ck be a cyclic group. Let X be a G-space which
is a Zk-orientable cohomology sphere of dimension n over Zk. The number
(modulo k) ind(X) ∈ Zk is defined by

α(µ) = ind(X) · δ0,

where α, ν, δ0 are as above.

2.2. Definition. Let G = Ck be a cyclic group. Let X be a G-space which
is a Zk-orientable cohomology sphere of dimension n over Zk. The number
(modulo k) Ind(X) ∈ Zk is defined by

e(X) = Ind(X) · ξn+1 ∈ Hn+1(BG; Zk).

Our aim is to show the following theorem:

2.3. Theorem. Suppose that X is a cohomology sphere of dimension n

over Zk equipped with an orientation preserving action of the cyclic group Ck.
Assume that XG = ∅. Then both Ind(X) and ind(X) are well defined and are
equal.
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Proof. We refer the reader to Switzer’s book ([10]). First note that the iso-
morphism Hn(X; Zk) → H0(BG;Hn(X; Zk)) maps µ onto µ̃, by its definition.
Set ẽ(X) = dn+1(µ̃). We have ẽ(X) = ind(X) · ξn+1, since the homomorphism
Hn+1(BG;H0(X; Zk)) → H0(BG;H0(X; Zk)) maps ξn+1 onto δ0 by its defini-
tion. On the other hand, dn+1 = Ψ, where Ψ = (p∗)−1

j∗Φ, and Φ(z) = p∗(z)∪U
is the Thom isomorphism (see [10], Ex. 15.31). This gives

dn+1(µ̃) = (p∗)−1
j∗(µ̃) ∪ (p∗)−1

j∗(U) = µ̃ ∪ e(X) = µ̃ · Ind(X) · ξn+1

= Ind(X) · ξn+1δ̃0 = Ind(X) · ξn+1

since δ̃0 = µ̃ and this is a ring generator of H0(BG; Zk) ' Zk, and s0
0j

0p0 = id
on H0(BG; Zk). This proves the theorem. �

The problem of equality of the two indices was posed to the authors by
H. Steinlein.

3. Computations of the Euler class
and degree of Ck-equivariant maps

First we will derive the Euler class of any orthogonal Zk-orientable represen-
tation of Ck.

Note that V 1 can be considered as a 2-dimensional real orthogonal repre-
sentation of Ck. Denote by V i, 1 ≤ i ≤ k/2, its ith tensor power (over C) and
by V 0 the 1-dimensional (real) trivial representation of G. If k = 2m, then for
i = m = k/2, we denote by V m

R the 1-dimensional real representation of Ck given
by the epimorphism Ck → C2 ' {−1, 1} = O(1).

Since a representation (V, % : G → GL(V )) is Zk-orientable iff the map
sgn det % : G → {−1, 1} is trivial modulo k, we have the following

3.1. Fact. Every real orthogonal representation of Ck is of the form

V =


⊕

0≤i≤(k−1)/2

liV
i if k is odd,

⊕
0≤i≤m−1

liV
i ⊕ lmV m

R if k = 2m.

Moreover, for k = 2m, k 6= 2, V is orientable iff V =
⊕m

i=1 liV
i (note that

V m = 2V m
R ), and every representation V = l0V

0 ⊕ liV
i

R of C2 is Z2-orientable.
Every orthogonal representation of Ck with k odd is Zk-orientable.

As a consequence we get

3.2. Corollary. Every orientable orthogonal representation V of Ck,
k 6= 2, can be written as

V =
⊕

0≤i≤[k/2]

miV
i.
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In particular, if V G = {0} then dimR V is even and V admits a complex struc-
ture. �

Using the facts that e(V ⊕W ) = e(V ) · e(W ) (cf. [3]) and e(V i) = i · e(V ) =
i · u ∈ H2(Ck; Zk) (cf. e.g. [7]), we get the following theorem:

3.3. Theorem. Let V =
⊕

≤i≤[k/2] miV
i be an orientable orthogonal rep-

resentation of Ck. Set r =
∑

mi. Then e(V ) =
∏

imi · ur. The last means that
e(V ) 6= 0 iff the integer h(V ) =

∏
imi is not divisible by k (with the convention

that 00 = 1 and 0r = 0 for r > 0). In particular, e(V ) = 0 if m0 6= 0. �

Now we turn to the derivation of degZk
f of a Ck-equivariant map. Let

W, V be a pair of Zk-orientable orthogonal representations of G = Ck such
that n = dim W = dim V and n1 = dim WG = dim V G. Denote by WG

⊥ , V G
⊥ the

orthogonal complements of WG, V G in W, V respectively. The following relative
analogue of Theorem 1.9 holds for equivariant maps of spheres of orthogonal
representations of G.

For any G-equivariant map f : S(W ) → S(V ) we have

(3.4) degZk
f · e(WG

⊥ ) = degZk
fG · e(V G

⊥ )

(cf. [3], 4.28, for G = Zp, p prime, and [7] for any compact Lie group).
Theorem 3.3 and (3.4) lead to the following theorem.

3.5. Theorem. Let W and V be Zk-orientable orthogonal representations
of a cyclic group G = Ck. Assume that dim W = dim V and dim WG = dim V G.

Let V G
⊥ =

⊕
1≤i≤[k/2] miV

i and WG
⊥ =

⊕
1≤i≤[k/2] m

′
iV

i. Then for any G-
equivariant map f : S(W ) → S(V ),

degZk
f ·

( ∏
im

′
i

)
= degZk

fG ·
( ∏

imi

)
.

In particular, if
∏

im
′
i 6≡ 0 (mod k) then degZk

f is uniquely determined by
degZk

fG, V G
⊥ , and WG

⊥ via the formula

degZk
f = degZk

fG ·
( ∏

imi

)
·
( ∏

im
′
i

)−1

.

�

3.6. Corollary. Suppose that dim WG = dim V G = 0. Then the degree
modulo k of any Ck-equivariant map f : S(W ) → S(V ) is equal to (

∏
imi) ·

(
∏

im
′
i)
−1

and thus depends on W and V only.

Note that in the special case W =
⊕n

i=1 V ti , V =
⊕n

i=1 V si , (ti, k) =
(si, k) = 1, Corollary 3.6 gives 4.12 of [3].
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3.7. Problem. Theorem 3.5 and Corollary 3.6 give some necessary condi-
tion on W and V for the existence of a G-equivariant map f : S(W ) → S(V ) (cf.
[7] for such a condition for G = T k, Zk

p, p prime). It is natural to ask whether it
is also a sufficient condition.

To end this section we describe e(V ) and degZk
f of a representation of Ck

and a Ck-map respectively.
First we recall the description of the cohomology groups of Ck, k = pr, with

coefficients in the ring Zpl . It is known that (cf. [12], 15.7)

H0(G;A) = A/kA, H1(G;A) = Hom(G;A)

if |G| = k and A is a trivial G-module. Since G = Cpr is cyclic, it is 2-periodic.
Altogether, the above gives

H0(Cpr ; Zpl) =
{

Zpr if r ≤ l

Zpl if r > l

}
= H1(Cpr ; Zpl),

and consequently, for n ≥ 0,

H2n(Cpr ; Zpl) = H2n+1(Cpr ; Zpl) =
{

Zpr if r ≤ l,

Zpl if r > l.

For l ≤ r, let Cpl ⊂ Cpr be the canonical embedding. Then the restriction
homomorphism

res∗ : Hi(Cpr ; Zpr ) ' Zpr → Zpl = Hi(Cpl ; Zpl)

is the quotient map Zpr → Zpr/plZpr ' Zpl . Furthermore, for l ≤ r the homo-
morphism H∗(Cpr ; Zpl) → H∗(Cpr ; Zpr ) is induced by the embedding Zpl ⊂ Zpr

given by multiplication by pr−l. Let k = pr1
1 . . . prN

N . We have Hi(Ck; Zk) =
Zk =

⊕N
j=1 Z

p
rj
j

, thus its p-torsion, for p ∈ {p1, . . . , pN}, is equal to

Hi(Ck; Zk)(p) ' Zpr ' Hi(Cpr ; Zk) ' Hi(Cpr ; Zpr ).

The functoriality of the Euler class and the above yield

3.8. Proposition. Let V be an orthogonal representation of a cyclic group
Ck, k = pr1

1 . . . prN

N . Let H = Cpr , p ∈ {p1, . . . , pN}, be its maximal p-subgroup.
Then res∗H(e(V )) = e(resH V ), and consequently e(V ) 6= 0 iff there exists p | k
such that e(resH V ) 6= 0 in H∗(BH; Zpr ).

Let V be an orthogonal representation of Ck and p a prime dividing k.
Assume that p is odd. For simplicity we use the same symbol V for the restriction
of V to H = Cpr ⊂ Ck. Expanding V into irreducible factors with respect to H,
we have

V =
⊕

0≤i≤[pr/2]

liV
i, li ∈ N ∪ {0}.
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From Theorem 3.3 we have

h(V ) =
∏

0≤i≤[pr/2]

ili ∈ Zpr .

For 1 ≤ α ≤ r − 1, we set Aα = {i ∈ Zpr : i ≡ pα (mod pr) and i 6≡ pα+1

(mod pr)}, and A0 = {0}, A = {i ∈ Zpr : (p, i) = 1}. Note also that
∏

i∈A ili is
an invertible element of Zpr . Writing h(V ) as the product

h(V ) =
∏
i∈A

ili ·
∏

i∈A0

ili ·
∏

i∈A1

ili · . . . ·
∏

i∈Ar−1

ili

and observing that for i ∈ Aα we have ili = pαlic, where c ∈ Z∗pr , we get the
following proposition.

3.9. Proposition. Let V =
⊕

0≤i≤[pr/2] liVi be an orthogonal representa-
tion of a cyclic group Cpr , p odd. Then e(V ) 6= 0 in H∗(BCpr ; Zpr ) if pr does
not divide

∏
i∈A0

ili ·
∏

i∈A1
ili · . . . ·

∏
i∈Ar−1

ili , or equivalently if

(+) l0r +
∑
i∈A1

li + 2
∑
i∈A2

li + . . . + (r − 1)
∑

i∈Ar−1

li < r.

We are left with the case k = 2. Every orthogonal representation of C2 is
isomorphic to m0V

0 ⊕ m1V
1, where V 1 is the one-dimensional nontrivial real

representation of C2 ⊂ {−1, 1} = O(1). Also h(V ) = 1 iff m0 = 0. Note also
that the statement of Proposition 3.9 still holds if p = 2 but V is orientable over
Zpr (or equivalently over Z if r > 1). Obviously, l0 6= 0 yields e(V ) = 0.

From Proposition 3.9 it follows that the Euler class e(V ) (or equivalently
h(V ), cf. Theorem 3.3) is uniquely determined by all its p-torsions. Moreover,
we can write down a more explicit formula for the modulo k number h(V ). As
follows from the Chinese remainder theorem, h(V ) ∈ Zk is uniquely given by
{h(V )(p)}, p | k, as the solution of the system of congruences

(∗) x ≡ h(V )(p) (mod pr)

(cf. [11], IV, 3a). For pj | k, 1 ≤ j ≤ N , let qj = k/p
rj

j , and {qj}−1 be the inverse
of qj in Z

p
rj
j
⊂ Zk. Then the unique (modulo k) solution x0 = h(V ) of (∗) is

given by the formula

(3.10) x0 =
N∑

j=1

qj{qj}−1h(V )(pj).

Analogously, we can describe degZk
f by its p-torsions, {degZk

f(p)}, p | k. For
k = pr1

1 . . . prN

N , let J1 = {1 ≤ j ≤ N : e(WG
⊥ )(pj) 6= 0} and J2 = {1 ≤ j ≤ N :

e(WG
⊥ )(pj) = 0}. Combining 3.3, 3.5 and 3.9 we get the following statement.
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3.11. Proposition. Let W and V be Zk-orientable orthogonal representa-
tions of a cyclic group G = Ck, where k = pr1

1 . . . prN

N . Assume that dim W =
dim V and dim WG = dim V G. Then for any G-equivariant map f : S(W ) →
S(V ), degZk

f is uniquely determined by degZk
fG, up to the ideal I =

(
∏

j∈J2
p

rj

j )Zk, by the formula

degZk
f =

∑
j∈J1

qj{qj}−1 degZk
fG
(pj)

h(V G
⊥ )(pj) · h(WG

⊥ )−1
(pj)

.

3.12. Remark. Using the relative Euler class of a pair (X, Y ) of Zk-
cohomology spheres one can extend our results to the relative case. In par-
ticular, if W ( V is a pair of orthogonal, Zk-orientable representations of
Ck then Ind(S(V ), S(W )) = ind(S(V ), S(W )) = e(S(V ), S(W )) is equal to
e(S(WG

⊥ )) ∈ H∗(Ck; Zk).

3.13. Remark. The formula of Proposition 3.11 has been shown by Shche-
lokova [8] for G-equivariant maps of Zk-cohomology spheres. In her formulas the
index ind(X) appears instead of the Euler classes. We wish to emphasize that in
all our formulas the coefficients h(V ) are explicitly given by the representations,
which is not the case in [8].
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