EQUIVARIANT MAPS BETWEEN COHOMOLOGY SPHERES

Marek Izydorek - Waceaw Marzantowicz

Dedicated to Ky Fan

Introduction

Let G be a compact Lie group. Let X be a Hausdorff compact G-space which is a cohomology sphere over a ring \mathcal{R} (cf. Def. 1.1).

In Section 1 we define the Euler class of a locally trivial bundle with X as fiber. Using this definition we show that the main result of [7] still holds if the sphere of an orthogonal representation is replaced by a G-space which is a cohomology sphere over \mathcal{R} (Ths. 1.8, 1.9).

In the second section we consider actions of a finite cyclic group $G=C_{k}$. For this group, and X as above, an index of X has been defined in [1] and [2]. First, with the use of the Euler class we define an index of X (cf. [7] for the case where X is the sphere of an orthogonal representation; see Def. 2.2). Next we prove that this index is equal to that introduced by Borisovich and Izrailevich (Th. 2.3), and consequently we obtain a simple geometrical interpretation of the index defined in [1]. Finally, using our definition of the index (via the Euler class) we compute its value for $X=S(V)$, the sphere of an orthogonal representation V of $G=C_{k}$ (Th. 3.3). This allows us to find for which V this index is different from 0 . From the results of [7] and those quoted above we derive a formula on the degree (modulo k) of a G-equivariant map $f: S(W) \rightarrow S(V)$ between the spheres of representations W and V of $G=C_{k}$ (Prop. 3.11) (cf. [3], [8]).

[^0]The presented material is a part of the authors' preprint [5]. In [6] it is shown that the vanishing of the Euler class of V is the only obstruction to the existence of an equivariant map from the sphere of another representation W of dimension greater than the dimension of V. This is connected with the problem of estimating the G-category of $X([6])$ and consequently can be applied to invariant variational problems.

1. The Euler class of a cohomology sphere

Assume that X is a compact Hausdorff G-space with finitely generated Čech cohomology with coefficients in a ring \mathcal{R}.

We denote by $C X$ the cone over $X, C X=X \times I / X \times\{0\}$, with the natural action of G. Note that $(C X)^{G}=C X^{G}$, with the convention that $C X^{G}=$ $[X, 0]=*$ if $X^{G}=\emptyset$. Also X embeds equivariantly in $C X$. Moreover, $C X$ is G-contractible. The Borel space of X is the orbit space $X_{G}=E G \times_{G} X$ $=(E G \times X) / G$, where $E G$ is the universal space of $G . X_{G},(C X)_{G}$ and $\left((C X)_{G}, X_{G}\right)$ are the total spaces of fibrations over the classifying space $B G$ with fibers $X, C X$ and $(C X, X)$ respectively. Since the fibration $E G \rightarrow B G=E G / G$ is locally trivial, all the above fibrations are locally trivial. We denote $(C X)_{G}$ by $C X_{G}$. We shall use the same letter p to denote the projections of all the above fibrations.

Let $f: X \rightarrow Y$ be a G-equivariant map between two G-spaces X and Y. Clearly, f induces the map $f_{G}=\mathrm{id} \times_{G} f: X_{G} \rightarrow Y_{G}$. The cone map $C f: C X \rightarrow$ $C Y, C f([x, t])=[f(x), t]$, is a G-map which maps $(C X, X)$ into $(C Y, Y)$, and consequently induces a map $C f_{G}:\left(C X_{G}, X_{G}\right) \rightarrow\left(C Y_{G}, Y_{G}\right)$. Moreover, the restrictions of f_{G} and $C f_{G}$ to the fibers X_{b} and $(C X, X)_{b}, b \in B G$, are equal to f and $C f$, respectively.

We shall denote by j the inclusion of $C X_{G}=\left(C X_{G}, \emptyset\right)$ into the pair $\left(C X_{G}, X_{G}\right)$ and by $s_{0}: B G \rightarrow C X_{G}$ the map $s_{0}=[b, *]$. We use the same letters for restrictions of these maps.
1.1. Definition. A G-space X is called m-acyclic over \mathcal{R} if X is pathconnected and $H_{i}(X ; \mathcal{R})=H^{i}(X ; \mathcal{R})=0$ for $1 \leq i \leq m$.

A G-space X is called a cohomology sphere of dimension n over \mathcal{R} if X is path-connected and $H^{*}(X ; \mathcal{R})=H^{*}\left(S^{n} ; \mathcal{R}\right), H_{*}(X ; \mathcal{R})=H_{*}\left(S^{n} ; \mathcal{R}\right)$.
1.2. Definition. Assume that a G-space X is an \mathcal{R}-cohomology sphere of dimension n. A fibration X_{G} is said to be \mathcal{R}-orientable if there exists a cohomology class $\mathcal{U} \in H^{n+1}\left(C X_{G}, X_{G} ; \mathcal{R}\right)$, called the Thom class, such that for every $b \in B G$ the restriction $\mathcal{U}_{\mid b}$ of \mathcal{U} to $H^{n+1}(C X, X ; \mathcal{R})$ is a fixed generator of the module $H^{n+1}(C X, X ; \mathcal{R}) \simeq \mathcal{R}$. We say that X is orientable if the fibration X_{G} is orientable (cf. [9], [10]).
1.3. Proposition. A fibration X_{G} is \mathcal{R}-orientable if the action of G on $H^{n}(X ; \mathcal{R}) \simeq \mathcal{R} \simeq H^{n}(X ; \mathbb{Z}) \otimes \mathcal{R}$ is trivial. This means that X is always orientable if G acts trivially on $H^{n}(X ; \mathbb{Z})$ and is also orientable if G acts nontrivially on $\mathbb{Z}=H^{n}(X ; \mathbb{Z})$ but the characteristic of \mathcal{R} equals 2.
1.4. Corollary. Let $G=C_{k}$ be the cyclic group of order k. If k is odd then every cohomology sphere over \mathbb{Z}, or \mathbb{Z}_{k}, is \mathbb{Z}-orientable, respectively \mathbb{Z}_{k} orientable. Every cohomology sphere is \mathbb{Z}_{2}-orientable.

One can prove Proposition 1.3 by adapting the standard proof for the vector bundle ([9]) and using the following lemma.
1.5. Lemma. Let $G_{0} \subset G$ be the component of identity of G and $\omega: I \rightarrow$ $B G$ a loop at $b \in B G / G_{0}$. Then the automorphism

$$
h_{\mid[\omega]}^{*}: H^{n+1}(C X, X ; \mathcal{R}) \rightarrow H^{n+1}(C X, X ; \mathcal{R})
$$

induced by ω is equal to g^{*}, where $g \in G / G_{0}$ corresponds to $[\omega] \in \pi_{1}\left(B\left(G / G_{0}\right)\right)$ $\simeq G / G_{0}$.
1.6. Definition. Suppose that a G-space X is an \mathcal{R}-orientable cohomology sphere of dimension n over \mathcal{R}. The class

$$
\mathbf{e}(X)=\left(p^{*}\right)^{-1} j^{*}(\mathcal{U}) \in H^{n+1}(B G ; \mathcal{R})
$$

is called the Euler class of X in \mathcal{R}. If V is an orthogonal representation of dimension n then we denote by $\mathbf{e}(V) \in H^{*}(B G ; \mathcal{R})$ the Euler class of its sphere $S(V)$.
1.7. Remark. Since $p s_{0}: B G \rightarrow B G$ is the identity on $B G$, the homomorphism $\left(p^{*}\right)^{-1}: H^{*}\left(C X_{G} ; \mathcal{R}\right) \rightarrow H^{*}(B G ; \mathcal{R})$ is equal to s_{0}^{*}. Consequently, $\mathbf{e}(X)=s_{0}^{*} j^{*}(\mathcal{U})$.

If $X^{G} \neq \emptyset$ then the bundle X_{G} has a section $s(b)=[b, *]$ which shows that $X^{G} \neq \emptyset$ implies $\mathbf{e}(X)=0$ for any coefficient ring \mathcal{R}.

The following theorems can be shown by the same arguments as for the analogous statements of [7].
1.8. Theorem. Let Y be a G-space which is an \mathcal{R}-orientable cohomology sphere of dimension n. Assume that $\mathbf{e}(Y) \neq 0$. Suppose that X is a G-space which is l-acyclic over \mathcal{R}. If $l \geq n$ then there is no G-equivariant map $f: X$ $\rightarrow Y$.

Suppose that $f: X \rightarrow Y$ is a G-map between two cohomology spheres of dimension n over \mathcal{R}. The degree of f in the ring \mathcal{R}, denoted by $\operatorname{deg}_{\mathcal{R}} f$, is defined to be the remainder of $\operatorname{deg} f$ modulo char \mathcal{R}. For example, if $\mathcal{R}=\mathbb{Z}_{k}$ then $\operatorname{deg}_{\mathcal{R}}$ is the remainder of $\operatorname{deg} f$ modulo k.
1.9. Theorem. Suppose that G-spaces X and Y with $X^{G}=Y^{G}=\emptyset$ are \mathcal{R}-orientable cohomology spheres of dimension n. Then for every G-equivariant map $f: X \rightarrow Y, \operatorname{deg}_{\mathcal{R}} f \cdot \mathbf{e}(X)=\mathbf{e}(Y)$ in $H^{*}(B G ; \mathcal{R})$.
1.10. Remark. One can get rid of the \mathcal{R}-orientability assumption but then we have to work with a local coefficient system on $B G$ given by the action of $\pi_{1}\left(B\left(G / G_{0}\right)\right)=G / G_{0}$ on $H^{*}(X ; \mathcal{R})$.

2. Equality of indices for the cyclic group

From now on we assume that $G=C_{k}$ is a cyclic group of order $k>1$, and all representations considered are \mathbb{Z}_{k}-orientable.

Using the Euler class and periodicity of cohomology of C_{k} we define a numerical index (in \mathbb{Z}_{k}) of a cohomology sphere. Next we show that this index is equal to another one defined earlier by Borisovich and Izrailevich. As a matter of fact this is a simple exercise in algebraic topology, but requires a little background on the cohomology of cyclic groups, which we include for the convenience of the reader. On the other hand, this fact gives a geometric interpretation of the index, allows us to derive an explicit formula for it in the case when X is the sphere of an orthogonal representation, and allows extending the definition of the index to the case of a finite group with periodic cohomology.

First we recall some facts on the cohomology groups of C_{k} with coefficients in \mathbb{Z}_{k} (cf. [4]). It is known that $H^{i}\left(C_{k} ; \mathbb{Z}_{k}\right)=\mathbb{Z}_{k}$ for $i \geq 0$. Moreover, there is a periodicity

$$
H^{q}\left(C_{k} ; \mathbb{Z}_{k}\right)=H^{q+2}\left(C_{k} ; \mathbb{Z}_{k}\right), \quad q \geq 0
$$

given by multiplication by an element $u \in H^{2}\left(C_{k} ; \mathbb{Z}_{k}\right)$ if $k \neq 2$ and $u \in$ $H^{1}\left(C_{2} ; \mathbb{Z}_{2}\right)$ if $k=2$. The element u is defined as follows. Let V^{1} be the onedimensional (complex if $k \neq 2$ and real if $k=2$) representation of C_{k} given by the inclusion $C_{k} \subset S^{1}$ (resp. $C_{2}=S^{0}=\{-1,1\} \subset \mathbb{R}$). Take $u=\mathbf{e}\left(V^{1}\right) \in$ $H^{2}\left(C_{k} ; \mathbb{Z}\right)=H^{2}\left(C_{k} ; \mathbb{Z}_{k}\right)=\mathbb{Z}_{k}\left(\right.$ resp. $\left.\mathbf{e}\left(V^{1}\right) \in H^{1}\left(C_{2} ; \mathbb{Z}\right)=H^{1}\left(C_{2} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}\right)$. Note that $\mathbf{e}\left(\left(V^{1}\right)^{k}\right)=k \cdot \mathbf{e}(V)=0$, and $m \cdot \mathbf{e}\left(V^{1}\right) \neq 0$ if $0<m<k$, which means that u is a generator of $H^{2}\left(C_{k} ; \mathbb{Z}_{k}\right)\left(\right.$ resp. $\left.H^{1}\left(C_{2} ; \mathbb{Z}_{2}\right)\right)$.

Let X be a G-space which is a \mathbb{Z}_{k}-orientable cohomology sphere of dimension n over \mathbb{Z}_{k}. We make the following choice of generators. Let $\delta_{0} \in H^{0}\left(X ; \mathbb{Z}_{k}\right)$ be the generator given by $\delta_{0}=c^{*}(1)$, where $c: X \rightarrow *$ is the map to the point. Denote by $\widetilde{\delta}_{0}$ the corresponding generator of $H^{0}\left(B G ; H^{0}\left(X ; \mathbb{Z}_{k}\right)\right) \simeq$ $H^{0}\left(X ; \mathbb{Z}_{k}\right)$. Since X is orientable, there exists a generator $\mu \in H^{n}\left(X ; \mathbb{Z}_{k}\right)$ such that $g^{*}(\mu)=\mu$ for every $g \in G$. We denote by $\widetilde{\mu}$ the corresponding generator of $H^{0}\left(B G ; H^{n}\left(X ; \mathbb{Z}_{k}\right)\right) \simeq H^{n}\left(X ; \mathbb{Z}_{k}\right) \simeq \mathbb{Z}_{k}$. We can assume that $\widetilde{\delta}_{0}=\widetilde{\mu}$.

Next, let $\nu \in H^{1}\left(B G ; \mathbb{Z}_{k}\right)$ be an element such that $u \delta_{0}=\beta(\nu)$, where β : $H^{1}\left(B G ; \mathbb{Z}_{k}\right) \rightarrow H^{2}\left(B G ; \mathbb{Z}_{k}\right)$ is the Bockstein homomorphism. Since β is an
isomorphism, ν is a generator. Finally, let ξ_{i} be a generator of $H^{i}\left(B G ; \mathbb{Z}_{k}\right)$ defined by

$$
\xi_{i}= \begin{cases}u^{i} \delta_{0} & \text { if } i=2 n \\ u^{i} \nu & \text { if } i=2 n+1, n \geq 0\end{cases}
$$

We can now formulate the definitions of both the indices mentioned above.
First note that the Borel-Serre spectral sequence of X_{G} with coefficients in \mathbb{Z}_{k} exists and converges to $H^{*}\left(X_{G} ; \mathbb{Z}_{k}\right)$ since X is orientable. We have $E_{2}^{p, q}\left(X_{G}\right)=$ $H^{p}\left(B G ; H^{q}\left(X ; \mathbb{Z}_{k}\right)\right)$ and therefore

$$
E^{p, q}(X)= \begin{cases}\mathbb{Z}_{k} & \text { if } q=0, n \\ 0 & \text { otherwise }\end{cases}
$$

Consequently, d_{n+1} is the only nontrivial differential of this sequence. Let $\alpha: H^{n}\left(X ; \mathbb{Z}_{k}\right) \rightarrow H^{0}\left(X ; \mathbb{Z}_{k}\right)$ be the composition of the following functorial homomorphisms:

$$
H^{n}\left(X ; \mathbb{Z}_{k}\right) \simeq E_{2}^{p, n} \simeq E_{n+1}^{0, n} \xrightarrow{d_{n+1}} E_{n+1}^{n+1,0} \simeq E_{2}^{n+1,0} \simeq H^{0}\left(X ; \mathbb{Z}_{k}\right)
$$

where the first (resp. last) homomorphism is given by $\mu \mapsto \widetilde{\nu}$ (resp. $\xi_{n+1} \mapsto \delta_{0}$).
The following definition is a simplified version of that of [1] since we assume $X^{G}=\emptyset$. If $X^{G} \neq \emptyset$ one has to use the relative cohomology of the pair $\left(X, X^{G}\right)$.
2.1. Definition. Let $G=C_{k}$ be a cyclic group. Let X be a G-space which is a \mathbb{Z}_{k}-orientable cohomology sphere of dimension n over \mathbb{Z}_{k}. The number (modulo $k) \operatorname{ind}(X) \in \mathbb{Z}_{k}$ is defined by

$$
\alpha(\mu)=\operatorname{ind}(X) \cdot \delta_{0}
$$

where α, ν, δ_{0} are as above.
2.2. Definition. Let $G=C_{k}$ be a cyclic group. Let X be a G-space which is a \mathbb{Z}_{k}-orientable cohomology sphere of dimension n over \mathbb{Z}_{k}. The number (modulo $k) \operatorname{Ind}(X) \in \mathbb{Z}_{k}$ is defined by

$$
\mathbf{e}(X)=\operatorname{Ind}(X) \cdot \xi_{n+1} \in H^{n+1}\left(B G ; \mathbb{Z}_{k}\right)
$$

Our aim is to show the following theorem:
2.3. Theorem. Suppose that X is a cohomology sphere of dimension n over \mathbb{Z}_{k} equipped with an orientation preserving action of the cyclic group C_{k}. Assume that $X^{G}=\emptyset$. Then both $\operatorname{Ind}(X)$ and $\operatorname{ind}(X)$ are well defined and are equal.

Proof. We refer the reader to Switzer's book ([10]). First note that the isomorphism $H^{n}\left(X ; \mathbb{Z}_{k}\right) \rightarrow H^{0}\left(B G ; H^{n}\left(X ; \mathbb{Z}_{k}\right)\right)$ maps μ onto $\widetilde{\mu}$, by its definition. Set $\widetilde{\mathbf{e}}(X)=d_{n+1}(\widetilde{\mu})$. We have $\widetilde{\mathbf{e}}(X)=\operatorname{ind}(X) \cdot \xi_{n+1}$, since the homomorphism $H^{n+1}\left(B G ; H^{0}\left(X ; \mathbb{Z}_{k}\right)\right) \rightarrow H^{0}\left(B G ; H^{0}\left(X ; \mathbb{Z}_{k}\right)\right)$ maps ξ_{n+1} onto δ_{0} by its definition. On the other hand, $d_{n+1}=\Psi$, where $\Psi=\left(p^{*}\right)^{-1} j^{*} \Phi$, and $\Phi(z)=p^{*}(z) \cup \mathcal{U}$ is the Thom isomorphism (see [10], Ex. 15.31). This gives

$$
\begin{aligned}
d_{n+1}(\widetilde{\mu}) & =\left(p^{*}\right)^{-1} j^{*}(\widetilde{\mu}) \cup\left(p^{*}\right)^{-1} j^{*}(\mathcal{U})=\widetilde{\mu} \cup \mathbf{e}(X)=\widetilde{\mu} \cdot \operatorname{Ind}(X) \cdot \xi_{n+1} \\
& =\operatorname{Ind}(X) \cdot \xi_{n+1} \widetilde{\delta}_{0}=\operatorname{Ind}(X) \cdot \xi_{n+1}
\end{aligned}
$$

since $\widetilde{\delta}_{0}=\widetilde{\mu}$ and this is a ring generator of $H^{0}\left(B G ; \mathbb{Z}_{k}\right) \simeq \mathbb{Z}_{k}$, and $s_{0}^{0} j^{0} p^{0}=\mathrm{id}$ on $H^{0}\left(B G ; \mathbb{Z}_{k}\right)$. This proves the theorem.

The problem of equality of the two indices was posed to the authors by H. Steinlein.

3. Computations of the Euler class and degree of C_{k}-equivariant maps

First we will derive the Euler class of any orthogonal \mathbb{Z}_{k}-orientable representation of C_{k}.

Note that V^{1} can be considered as a 2-dimensional real orthogonal representation of C_{k}. Denote by $V^{i}, 1 \leq i \leq k / 2$, its i th tensor power (over \mathbb{C}) and by V^{0} the 1-dimensional (real) trivial representation of G. If $k=2 m$, then for $i=m=k / 2$, we denote by $V_{\mathbb{R}}^{m}$ the 1-dimensional real representation of C_{k} given by the epimorphism $C_{k} \rightarrow C_{2} \simeq\{-1,1\}=\mathbb{O}(1)$.

Since a representation $(V, \varrho: G \rightarrow G L(V))$ is \mathbb{Z}_{k}-orientable iff the map $\operatorname{sgn} \operatorname{det} \varrho: G \rightarrow\{-1,1\}$ is trivial modulo k, we have the following
3.1. Fact. Every real orthogonal representation of C_{k} is of the form

$$
V=\left\{\begin{array}{cl}
\bigoplus_{0 \leq i \leq(k-1) / 2} l_{i} V^{i} & \text { if } k \text { is odd } \\
\bigoplus_{0 \leq i \leq m-1} l_{i} V^{i} \oplus l_{m} V_{\mathbb{R}}^{m} & \text { if } k=2 m
\end{array}\right.
$$

Moreover, for $k=2 m, k \neq 2, V$ is orientable iff $V=\bigoplus_{i=1}^{m} l_{i} V^{i}$ (note that $V^{m}=2 V_{\mathbb{R}}^{m}$, and every representation $V=l_{0} V^{0} \oplus l_{i} V_{\mathbb{R}}^{i}$ of C_{2} is \mathbb{Z}_{2}-orientable. Every orthogonal representation of C_{k} with k odd is \mathbb{Z}_{k}-orientable.

As a consequence we get
3.2. Corollary. Every orientable orthogonal representation V of C_{k}, $k \neq 2$, can be written as

$$
V=\bigoplus_{0 \leq i \leq[k / 2]} m_{i} V^{i}
$$

In particular, if $V^{G}=\{0\}$ then $\operatorname{dim}_{\mathbb{R}} V$ is even and V admits a complex structure.

Using the facts that $\mathbf{e}(V \oplus W)=\mathbf{e}(V) \cdot \mathbf{e}(W)(c f .[3])$ and $e\left(V^{i}\right)=i \cdot \mathbf{e}(V)=$ $i \cdot u \in H^{2}\left(C_{k} ; \mathbb{Z}_{k}\right)$ (cf. e.g. [7]), we get the following theorem:
3.3. Theorem. Let $V=\bigoplus_{\leq i \leq[k / 2]} m_{i} V^{i}$ be an orientable orthogonal representation of C_{k}. Set $r=\sum m_{i}$. Then $\mathbf{e}(V)=\prod i^{m_{i}} \cdot u^{r}$. The last means that $\mathbf{e}(V) \neq 0$ iff the integer $\mathbf{h}(V)=\prod i^{m_{i}}$ is not divisible by k (with the convention that $0^{0}=1$ and $0^{r}=0$ for $\left.r>0\right)$. In particular, $\mathbf{e}(V)=0$ if $m_{0} \neq 0$.

Now we turn to the derivation of $\operatorname{deg}_{\mathbb{Z}_{k}} f$ of a C_{k}-equivariant map. Let W, V be a pair of \mathbb{Z}_{k}-orientable orthogonal representations of $G=C_{k}$ such that $n=\operatorname{dim} W=\operatorname{dim} V$ and $n_{1}=\operatorname{dim} W^{G}=\operatorname{dim} V^{G}$. Denote by $W_{\perp}^{G}, V_{\perp}^{G}$ the orthogonal complements of W^{G}, V^{G} in W, V respectively. The following relative analogue of Theorem 1.9 holds for equivariant maps of spheres of orthogonal representations of G.

For any G-equivariant map $f: S(W) \rightarrow S(V)$ we have

$$
\begin{equation*}
\operatorname{deg}_{\mathbb{Z}_{k}} f \cdot \mathbf{e}\left(W_{\perp}^{G}\right)=\operatorname{deg}_{\mathbb{Z}_{k}} f^{G} \cdot \mathbf{e}\left(V_{\perp}^{G}\right) \tag{3.4}
\end{equation*}
$$

(cf. [3], 4.28, for $G=\mathbb{Z}_{p}, p$ prime, and [7] for any compact Lie group).
Theorem 3.3 and (3.4) lead to the following theorem.
3.5. Theorem. Let W and V be \mathbb{Z}_{k}-orientable orthogonal representations of a cyclic group $G=C_{k}$. Assume that $\operatorname{dim} W=\operatorname{dim} V$ and $\operatorname{dim} W^{G}=\operatorname{dim} V^{G}$. Let $V_{\perp}^{G}=\bigoplus_{1 \leq i \leq[k / 2]} m_{i} V^{i}$ and $W_{\perp}^{G}=\bigoplus_{1 \leq i \leq[k / 2]} m_{i}^{\prime} V^{i}$. Then for any G equivariant map $f: S(W) \rightarrow S(V)$,

$$
\operatorname{deg}_{\mathbb{Z}_{k}} f \cdot\left(\prod i^{m_{i}^{\prime}}\right)=\operatorname{deg}_{\mathbb{Z}_{k}} f^{G} \cdot\left(\prod i^{m_{i}}\right)
$$

In particular, if $\prod i^{m_{i}^{\prime}} \not \equiv 0(\bmod k)$ then $\operatorname{deg}_{\mathbb{Z}_{k}} f$ is uniquely determined by $\operatorname{deg}_{\mathbb{Z}_{k}} f^{G}, V_{\perp}^{G}$, and W_{\perp}^{G} via the formula

$$
\operatorname{deg}_{\mathbb{Z}_{k}} f=\operatorname{deg}_{\mathbb{Z}_{k}} f^{G} \cdot\left(\prod i^{m_{i}}\right) \cdot\left(\prod i^{m_{i}^{\prime}}\right)^{-1}
$$

3.6. Corollary. Suppose that $\operatorname{dim} W^{G}=\operatorname{dim} V^{G}=0$. Then the degree modulo k of any C_{k}-equivariant map $f: S(W) \rightarrow S(V)$ is equal to ($\Pi i^{m_{i}}$). $\left(\prod i^{m_{i}^{\prime}}\right)^{-1}$ and thus depends on W and V only.

Note that in the special case $W=\bigoplus_{i=1}^{n} V^{t_{i}}, V=\bigoplus_{i=1}^{n} V^{s_{i}},\left(t_{i}, k\right)=$ $\left(s_{i}, k\right)=1$, Corollary 3.6 gives 4.12 of [3].
3.7. Problem. Theorem 3.5 and Corollary 3.6 give some necessary condition on W and V for the existence of a G-equivariant map $f: S(W) \rightarrow S(V)$ (cf. [7] for such a condition for $G=T^{k}, \mathbb{Z}_{p}^{k}, p$ prime). It is natural to ask whether it is also a sufficient condition.

To end this section we describe $\mathbf{e}(V)$ and $\operatorname{deg}_{\mathbb{Z}_{k}} f$ of a representation of C_{k} and a C_{k}-map respectively.

First we recall the description of the cohomology groups of $C_{k}, k=p^{r}$, with coefficients in the ring $\mathbb{Z}_{p^{l}}$. It is known that (cf. [12], 15.7)

$$
H^{0}(G ; A)=A / k A, \quad H^{1}(G ; A)=\operatorname{Hom}(G ; A)
$$

if $|G|=k$ and A is a trivial G-module. Since $G=C_{p^{r}}$ is cyclic, it is 2-periodic. Altogether, the above gives

$$
H^{0}\left(C_{p^{r}} ; \mathbb{Z}_{p^{l}}\right)=\left\{\begin{array}{ll}
\mathbb{Z}_{p^{r}} & \text { if } r \leq l \\
\mathbb{Z}_{p^{l}} & \text { if } r>l
\end{array}\right\}=H^{1}\left(C_{p^{r}} ; \mathbb{Z}_{p^{l}}\right)
$$

and consequently, for $n \geq 0$,

$$
H^{2 n}\left(C_{p^{r}} ; \mathbb{Z}_{p^{l}}\right)=H^{2 n+1}\left(C_{p^{r}} ; \mathbb{Z}_{p^{l}}\right)= \begin{cases}\mathbb{Z}_{p^{r}} & \text { if } r \leq l \\ \mathbb{Z}_{p^{l}} & \text { if } r>l\end{cases}
$$

For $l \leq r$, let $C_{p^{l}} \subset C_{p^{r}}$ be the canonical embedding. Then the restriction homomorphism

$$
\operatorname{res}^{*}: H^{i}\left(C_{p^{r}} ; \mathbb{Z}_{p^{r}}\right) \simeq \mathbb{Z}_{p^{r}} \rightarrow \mathbb{Z}_{p^{l}}=H^{i}\left(C_{p^{l}} ; \mathbb{Z}_{p^{l}}\right)
$$

is the quotient map $\mathbb{Z}_{p^{r}} \rightarrow \mathbb{Z}_{p^{r}} / p^{l} \mathbb{Z}_{p^{r}} \simeq \mathbb{Z}_{p^{l}}$. Furthermore, for $l \leq r$ the homomorphism $H^{*}\left(C_{p^{r}} ; \mathbb{Z}_{p^{l}}\right) \rightarrow H^{*}\left(C_{p^{r}} ; \mathbb{Z}_{p^{r}}\right)$ is induced by the embedding $\mathbb{Z}_{p^{l}} \subset \mathbb{Z}_{p^{r}}$ given by multiplication by p^{r-l}. Let $k=p_{1}^{r_{1}} \ldots p_{N}^{r_{N}}$. We have $H^{i}\left(C_{k} ; \mathbb{Z}_{k}\right)=$ $\mathbb{Z}_{k}=\bigoplus_{j=1}^{N} \mathbb{Z}_{p_{j}^{r_{j}}}$, thus its p-torsion, for $p \in\left\{p_{1}, \ldots, p_{N}\right\}$, is equal to

$$
H^{i}\left(C_{k} ; \mathbb{Z}_{k}\right)_{(p)} \simeq \mathbb{Z}_{p^{r}} \simeq H^{i}\left(C_{p^{r}} ; \mathbb{Z}_{k}\right) \simeq H^{i}\left(C_{p^{r}} ; \mathbb{Z}_{p^{r}}\right)
$$

The functoriality of the Euler class and the above yield
3.8. Proposition. Let V be an orthogonal representation of a cyclic group $C_{k}, k=p_{1}^{r_{1}} \ldots p_{N}^{r_{N}}$. Let $H=C_{p^{r}}, p \in\left\{p_{1}, \ldots, p_{N}\right\}$, be its maximal p-subgroup. Then $\operatorname{res}_{H}^{*}(\mathbf{e}(V))=\mathbf{e}\left(\operatorname{res}_{H} V\right)$, and consequently $\mathbf{e}(V) \neq 0$ iff there exists $p \mid k$ such that $\mathbf{e}\left(\operatorname{res}_{H} V\right) \neq 0$ in $H^{*}\left(B H ; \mathbb{Z}_{p^{r}}\right)$.

Let V be an orthogonal representation of C_{k} and p a prime dividing k. Assume that p is odd. For simplicity we use the same symbol V for the restriction of V to $H=C_{p^{r}} \subset C_{k}$. Expanding V into irreducible factors with respect to H, we have

$$
V=\bigoplus_{0 \leq i \leq\left[p^{r} / 2\right]} l_{i} V^{i}, \quad l_{i} \in \mathbb{N} \cup\{0\} .
$$

From Theorem 3.3 we have

$$
\mathbf{h}(V)=\prod_{0 \leq i \leq\left[p^{r} / 2\right]} i^{l_{i}} \in \mathbb{Z}_{p^{r}} .
$$

For $1 \leq \alpha \leq r-1$, we set $\mathcal{A}_{\alpha}=\left\{i \in \mathbb{Z}_{p^{r}}: i \equiv p^{\alpha}\left(\bmod p^{r}\right)\right.$ and $i \not \equiv p^{\alpha+1}$ $\left.\left(\bmod p^{r}\right)\right\}$, and $\mathcal{A}_{0}=\{0\}, \mathcal{A}=\left\{i \in \mathbb{Z}_{p^{r}}:(p, i)=1\right\}$. Note also that $\prod_{i \in \mathcal{A}} i^{l_{i}}$ is an invertible element of $\mathbb{Z}_{p^{r}}$. Writing $\mathbf{h}(V)$ as the product

$$
\mathbf{h}(V)=\prod_{i \in \mathcal{A}} i^{l_{i}} \cdot \prod_{i \in \mathcal{A}_{0}} i^{l_{i}} \cdot \prod_{i \in \mathcal{A}_{1}} i^{l_{i}} \cdot \ldots \cdot \prod_{i \in \mathcal{A}_{r-1}} i^{l_{i}}
$$

and observing that for $i \in \mathcal{A}_{\alpha}$ we have $i^{l_{i}}=p^{\alpha l_{i}} c$, where $c \in \mathbb{Z}_{p^{r}}^{*}$, we get the following proposition.
3.9. Proposition. Let $V=\bigoplus_{0 \leq i \leq\left[p^{r} / 2\right]} l_{i} V_{i}$ be an orthogonal representation of a cyclic group $C_{p^{r}}, p$ odd. Then $\mathbf{e}(V) \neq 0$ in $H^{*}\left(B C_{p^{r}} ; \mathbb{Z}_{p^{r}}\right)$ if p^{r} does not divide $\prod_{i \in \mathcal{A}_{0}} i^{l_{i}} \cdot \prod_{i \in \mathcal{A}_{1}} i^{l_{i}} \cdot \ldots \cdot \prod_{i \in \mathcal{A}_{r-1}} i^{l_{i}}$, or equivalently if

$$
\begin{equation*}
l_{0} r+\sum_{i \in \mathcal{A}_{1}} l_{i}+2 \sum_{i \in \mathcal{A}_{2}} l_{i}+\ldots+(r-1) \sum_{i \in \mathcal{A}_{r-1}} l_{i}<r \tag{+}
\end{equation*}
$$

We are left with the case $k=2$. Every orthogonal representation of C_{2} is isomorphic to $m_{0} V^{0} \oplus m_{1} V^{1}$, where V^{1} is the one-dimensional nontrivial real representation of $C_{2} \subset\{-1,1\}=\mathbb{O}(1)$. Also $\mathbf{h}(V)=1$ iff $m_{0}=0$. Note also that the statement of Proposition 3.9 still holds if $p=2$ but V is orientable over $\mathbb{Z}_{p^{r}}$ (or equivalently over \mathbb{Z} if $r>1$). Obviously, $l_{0} \neq 0$ yields $\mathbf{e}(V)=0$.

From Proposition 3.9 it follows that the Euler class $\mathbf{e}(V)$ (or equivalently $\mathbf{h}(V)$, cf. Theorem 3.3) is uniquely determined by all its p-torsions. Moreover, we can write down a more explicit formula for the modulo k number $\mathbf{h}(V)$. As follows from the Chinese remainder theorem, $\mathbf{h}(V) \in \mathbb{Z}_{k}$ is uniquely given by $\left\{\mathbf{h}(V)_{(p)}\right\}, p \mid k$, as the solution of the system of congruences

$$
\begin{equation*}
x \equiv \mathbf{h}(V)_{(p)}\left(\bmod p^{r}\right) \tag{*}
\end{equation*}
$$

(cf. [11], IV, 3a). For $p_{j} \mid k, 1 \leq j \leq N$, let $q_{j}=k / p_{j}^{r_{j}}$, and $\left\{q_{j}\right\}^{-1}$ be the inverse of q_{j} in $\mathbb{Z}_{p_{j}{ }_{j}} \subset \mathbb{Z}_{k}$. Then the unique (modulo k) solution $x_{0}=\mathbf{h}(V)$ of $(*)$ is given by the formula

$$
\begin{equation*}
x_{0}=\sum_{j=1}^{N} q_{j}\left\{q_{j}\right\}^{-1} \mathbf{h}(V)_{\left(p_{j}\right)} . \tag{3.10}
\end{equation*}
$$

Analogously, we can describe $\operatorname{deg}_{\mathbb{Z}_{k}} f$ by its p-torsions, $\left\{\operatorname{deg}_{\mathbb{Z}_{k}} f_{(p)}\right\}, p \mid k$. For $k=p_{1}^{r_{1}} \ldots p_{N}^{r_{N}}$, let $J_{1}=\left\{1 \leq j \leq N: \mathbf{e}\left(W_{\perp}^{G}\right)_{\left(p_{j}\right)} \neq 0\right\}$ and $J_{2}=\{1 \leq j \leq N$: $\left.\mathbf{e}\left(W_{\perp}^{G}\right)_{\left(p_{j}\right)}=0\right\}$. Combining 3.3, 3.5 and 3.9 we get the following statement.
3.11. Proposition. Let W and V be \mathbb{Z}_{k}-orientable orthogonal representations of a cyclic group $G=C_{k}$, where $k=p_{1}^{r_{1}} \ldots p_{N}^{r_{N}}$. Assume that $\operatorname{dim} W=$ $\operatorname{dim} V$ and $\operatorname{dim} W^{G}=\operatorname{dim} V^{G}$. Then for any G-equivariant map $f: S(W) \rightarrow$ $S(V), \operatorname{deg}_{\mathbb{Z}_{k}} f$ is uniquely determined by $\operatorname{deg}_{\mathbb{Z}_{k}} f^{G}$, up to the ideal $I=$ $\left(\prod_{j \in J_{2}} p_{j}^{r_{j}}\right) \mathbb{Z}_{k}$, by the formula

$$
\operatorname{deg}_{\mathbb{Z}_{k}} f=\sum_{j \in J_{1}} q_{j}\left\{q_{j}\right\}^{-1} \operatorname{deg}_{\mathbb{Z}_{k}} f_{\left(p_{j}\right)}^{G} \mathbf{h}\left(V_{\perp}^{G}\right)_{\left(p_{j}\right)} \cdot \mathbf{h}\left(W_{\perp}^{G}\right)_{\left(p_{j}\right)}^{-1} .
$$

3.12. Remark. Using the relative Euler class of a pair (X, Y) of $\mathbb{Z}_{k^{-}}$ cohomology spheres one can extend our results to the relative case. In particular, if $W \subsetneq V$ is a pair of orthogonal, \mathbb{Z}_{k}-orientable representations of C_{k} then $\operatorname{Ind}(S(V), S(W))=\operatorname{ind}(S(V), S(W))=\mathbf{e}(S(V), S(W))$ is equal to $\mathbf{e}\left(S\left(W_{\perp}^{G}\right)\right) \in H^{*}\left(C_{k} ; \mathbb{Z}_{k}\right)$.
3.13. Remark. The formula of Proposition 3.11 has been shown by Shchelokova [8] for G-equivariant maps of \mathbb{Z}_{k}-cohomology spheres. In her formulas the index $\operatorname{ind}(X)$ appears instead of the Euler classes. We wish to emphasize that in all our formulas the coefficients $\mathbf{h}(V)$ are explicitly given by the representations, which is not the case in [8].

References

[1] Yu. A. Borisovich and Ya. A. Izrailevich, Computation of the degree of equivariant mappings of spheres by the spectral sequence method, Voronezh. Gos. Univ. Trudy Mat. Fak. 10 (1973), 1-12. (Russian)
[2] Yu. G. Borisovich, Ya. A. Izrailevich and E. Shchelokova, On the method of A. Borel spectral sequence in the theory of equivariant mappings, Uspekhi Mat. Nauk 32 (1977), no. 1, 161-162. (Russian)
[3] T. том Dieck, Transformation Groups, de Gruyter Stud. Math. 8, de Gruyter, 1987.
[4] P. Hilton and S. Stammbach, A Course in Homological Algebra, Graduate Texts in Math., vol. 4, Springer-Verlag, 1971.
[5] M. Izydorek and W. Marzantowicz, Equivariant maps between cohomology spheres, preprint, Forschungsschwerpunkt Geometrie, Univ. Heidelberg, Heft Nr. 70 (1990).
[6] , Borsuk-Ulam property for the cyclic group (to appear).
[7] W. Marzantowicz, Borsuk-Ulam theorem for any compact Lie group, J. London Math. Soc. 49 (1994), 195-208.
[8] E. Shchelokova, The problem of computing the degree of equivariant mappings, Sibirsk. Mat. Zh. 19 (1978), 426-435. (Russian)
[9] E. Spanier, Algebraic Topology, McGraw-Hill, 1966.
[10] R. Switzer, Algebraic Topology-Homotopy and Homology, Grundlehren Math. Wiss., vol. 212, Springer-Verlag, 1975.
[11] I. Vinogradov, Elements of Number Theory, Dover, 1954.
[12] E. Weiss, Cohomology of Groups, Academic Press, 1969.

Marek Izydorek

Institute of Mathematics
Technical University of Gdańsk
80-952 Gdańsk, POLAND

Waceaw Marzantowicz
Institute of Mathematics
University of Gdańsk
80-952 Gdańsk, POLAND

[^0]: 1991 Mathematics Subject Classification. Primary 55M35, 55R25; Secondary 55N91, 55M20.

