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MORSE THEORY FOR Cl-FUNCTIONALS
AND CONLEY BLOCKS
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Dedicated to Jean Leray

Introduction

Let 2 be an open subset of a Hilbert manifold A of class C?, f a functional
of class C? in a neighborhood of © and K; = K(12) the set of critical points of
fin Q.

If f is a Morse function, i.e. its critical points are nondegenerate (cf. Defi-
nition 1.5) and m(ax, f) denotes the Morse index of x as critical point of f (cf.
Definition 1.4), the Morse polynomial of f is given by

ma(Ky, f) =Y A,

re Ky

IfFQ={zeA|ax f(z) <b} = f°, the classical Morse theory states that
(1) ma(Ks, f) = Pa(f%, %) + (1 + 1)Q(N),
where f° = {z € A : f(z) < c}, Pa(f?, *) is the Poincaré polynomial of (f?, f)
(cf. Section 2) and Q € S, the set of formal series with natural coefficients
(possibly co).

In this paper we introduce an index i, generalizing the Morse polynomial
my to the following cases:

(a) the critical points of f are degenerate;

(b) f and/or A are of class C1.
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366 V. BEnG1 - F. GIANNONI

Morcover, we define a class 55 of closed sets (called Conley blocks) relative
to a vector field ¥ such that (grad f,F) < 0 (more precisely, satisfying the
assumptions (i)-(iv) of Lemma 4.1) and an index I(-, F) : ¥p — §. This index
coincides with Py(f*, f*) whenever {1 = fb. It allows us to write the Morse

relations even if we are under the conditions (a), (b) and
(c) Q is not the strip f2.

Under the generalizations above, the Morse relations (1) become
(2) ix(Kg, f) = (@, F) + (14 X)Q(N).

We notice that i, is a differential invariant, while I is a topological invariant.
In [2] and [6] a formula similar to the formula (2) has been obtained, but in those
cases, i) is replaced by a topological invariant. Such a topological invariant
assumes values which are different from i, and depend on the field of coefficients
chosen for a homology theory.

The utility of (a) is obvious to get existence results for critical points by
Morse theory. Indeed, we cannot a priori assume that they are nondegenerate.
The generalization (b) is needed e.g. in partial differential equations where
the functionals used are often of class C! and not C? (cf. Section 6). The
generalization (c) allows one to apply Morse theory in situations where, usually,
the topological degree is used. Indeed, the a priori bounds which make it possible
to use the topological degree on a ball Bg of a Hilbert space, also allow one to
establish that By € I and to evaluate the index I(Bg, F).

The definition of I takes its inspiration from the Conley index (cf. [7]) and
a generalization given by the first author (cf. [2]).

The class X is sufficiently large to include also the closures of submanifolds
of A (cf. Theorem 3.8(ix)).

In Section 6 we have a typical application of this theory.

The definition of the generalized Morse index was announced in [5] together

with some applications.

1. The Morse index

The main part of Morse theory consists in the “Morse relations”, i.e. in
the relations between two polynomials, the Morse polynomial and the Poincaré
(or Betti) polynomial. The Morse polynomial depends on the critical points
of a function and its definition will be recalled in this section. The Poincaré
polynomial is a topological invariant and its definition will be recalled in Sec-

tion 2.
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Throughout this section A will be a Hilbert manifold of class C*,  an open
subset of A and f a functional of class C! in a neighborhood of Q.

DEFINITION 1.1. A point = € A is called a critical point of f if df(z) = 0.
If = is not a critical point, it is called regular point. The set of critical points of
f will be denoted by K.

a € R is called a critical value of f if there exists ¢ € K such that f(z) = a;

a € R is called a regular velue for f if it is not a critical value.

DEFINITION 1.2. If z is a critical point of f, and f is of class C? in a
neighborhood of z, we define the Hessian form of f at ,

Hf(z): ToA x T, A — R,

as follows: 52
Hf ’ = ara. vty )
@) v] = ggg oo
where T A is the tangent space of A at z and +y,,,,(?, 8) is a smooth function such
that

'Yv,w((],o) =2z, at'Yv,w(OaO) =1 as’)"u,w(oi 0) =w.

REMARK 1.3. Since z is a critical point of f, it is not difficult to see that
the bilinear form HY(z) is well defined (i.e. it depends only on v and w, but not
on Yo,u)-

DEFINITION 1.4. Let z € K be a critical point such that Hf(z) is defined.
The (restricted) Morse indez of z is the maximal dimension of a subspace of
T, A on which HY () is negative definite; it is denoted by m(z, f) (or simply by
m(zx)).

The nullity of z is the dimension of the kernel of HY(z) (i.e. the subspace
consisting of all v such that HY(z)[v, w] = 0 for all w € T::A).

The large Morse indez is the sum of the restricted Morse index and the nullity
and it will be denoted by m*(z, f).

Notice that if f is defined in an infinite-dimensional manifold it is possible
that m(z, f) = oo.

DEFINITION 1.5. Let zg € K be a critical point such that Hf (mo) is defined.
Then zg is called nondegenerate if there exist a splitting H * @& H™ of Ty A and
a constant v > 0 such that

(i) Hf(zo0)[v,v] > v|v|? for all v € HT,
(ii) Hf (zo)[v,v] < —v|u* forallve H™.
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Thus, il L is a selfadjoint operator such that
HY (x0)[v,v] = (Lv,v),

then iy is nondegenerate if and only if L is invertible.

In applications, particularly to partial differential equations, it may be neces-
sary to consider functionals of class C! or/and functionals defined on manifolds
of class (71, In this section we show that sometimes it is possible to define the
Morse index also in this case. In Section 5 the definition of Morse index will

even be extended to more general situations.
First we need a lemma.

LEMMA 1.6. Let A be of class C*, f and Q as above and z € K;(Q) = K;NQ.
Assume that there exists a C'-chart (U,¢) (with € U) such that ¢(z) is a
nondegenerate critical point of f o ¢~ according to Definition 1.5. Then, for
any C'-chart (V,v) (withz € V), foy~! has a second derivative at ¥(x), ¥(z)

is a nondegenerate critical point of foy~! and
m((z), f o ™') = m(g(z), f o ¢7").

PRoOOF. Let U,V be open subsets of the Hilbert space upon which A is
modeled, such that ¢ : U NV — U and Yy:UNV — V are homeomorphisms.
Then, there exists a diffeomorphism 8 : V' — U of class C'.

Let o = ¢(z) and B = 9(z). Denoting by L the Hessian at ¢~'(z) = a for
fo¢~!, we have, for any y € U,

- 1
fod T (y) = Jo ¢ a) + S{Lly — o)y — a) + O(ly - of).
Therefore, since ¢~ o8 =1~"' and 0(B) = a, if z=0"1(y) € V, then
fop(z)=fog ' (6(2))
_ 1
= fod () + S(L(8(2) - 8(8)), () — 6(8)) + O(|6(2) — 8(B)1%).

Since 8 is differentiable at 3,

8(z) — 8(B) = d6(B)(z - B) + O(|z — BI).

Thus, since df(B) is a linear isomorphism,
1
foy™l(2) = foyp™(B) = 5{Lodd(B)[z - B, dO(B)[= — B]) + O(|= ~ B81%).

Therefore foy~! is twice differentiable at 3 and its Hessian is given by [d6(3)]* o
Lodf#(B3). Since df(f) is a linear isomorphism the assertion of Lemma 1.6 follows

immediately. . ]

By virtue of the above lemma, we can give the following definition:
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DEFINITION 1.7. Let A be of class (', f and € as above and z € K;(Q).
We say that z is a nondegenerate critical point if there exists a C'-chart U, ¢)
(with z € U) such that ¢(z) is a nondegenerate critical point of fo¢~! according

to Definition 1.5. In this case, we set
m(z, f) = m(d(x), fo 1),

A function f € C? is called a Morse function if its critical points are all

nondegenerate (and, consequently, isolated).

DEFINITION 1.8. Let f be a Morse function. The Morse polynomial of a set

K < Ky is defined as lollows:

ma(K) = Z A

e
with the convention that A> = 0.
Thus my(K) is a polynomial ¥, axA* whose coefficients ay are integers rep-
resenting the number of critical points in Ky having Morse index k.

REMARK 1.9. By virtue of LLemma 1.6, the Morse polynomial makes sense
alse for functions of class C! whose critical points are non degenerate in the
sense of Definition 1.7. Clearly it is possible that K is an infinite set; in this

case, the Morse polynomial becomes a formal series.

The above remark makes it useful to define the family S of formal series in
one variable A with coefficients in NU {00}.
On S the sum and product are defined in the usual way:

DX+ b =) (ak + bi)AF
and

St bt = 3 (et

E Nj=0
(and we set, as usual, 0- oo = 0).

If P € S we set
ck(P) =ar & P(A) = aprk.
’\.

For the further development of the theory, it is necessary to impose on § an

order structure. We define a relation of total order as follows:

(1.1) Zak/\k < Zbk/\k < IneN:ap =bifor k<n~-1, and a, < by,.
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We deline the notion of limit in S in the following way:
(1.2) R = lim Pn & cx(Pn)——ck(R) for any k € N.
n—o0
If we identify the formal series 3 axA* with the sequence {ax}, then the
topology introduced by (1.2) is equivalent to the product topology on [[;2q Xi,
where X; = NU {00}; hence by Tikhonov’s theorem, S is compact. IfACS, we
denote by A the closure of A, i.e.

Z={'PES|3{Pn}§A:P=nli_.ng°Pn}.
Now, it makes sense to define the infimum and supremum as follows:
DerFINITION 1.10. If A C S, we put
R=infA ifR=minA and R =supA if R =maxA.

We have the following result:
THEOREM 1.11. For any set AC S, inf A and sup A ezist and are unique.

PRrRoOF. The uniqueness is trivial.
Ezistence of the infimum. We set

by = min{co(P)|P € 4}, By = {P € A|co(P) = bg},

b, = min{c,(P)|P € Bn_1}, B, ={P €B._1|cn(P)=bn}.
Since the B,,’s are compact and B,,_; C B, for every n, their intersection is not
empty; R € (Voo Bu is min A.

Eristence of the supremwm: we argue in the same way. a

REMARK 1.12. Notice that the topology induced by this notion of conver-
gence, is not the topology induced by the order relation. Thus, we might have

supA #inf{PeS|VQeS:P2>Q}

For example, take
A={nAe S|neNju{nX’+ A € §|neN}

In this case, we have sup A = coA? + A%, but

inf{P e S|VQeS:P >Q} =00l
However, the inequalities “pass to the limit”: for example

P, > Q for anyn:nlj_ggopnz Q,
and similarly for inf and sup.
REMARK 1.13. If {P,} is a non-decreasing sequence and R = sup{Ps} is

a polynomial, then, for k large, {Px} is constantly equal to R. In fact, by the
definition (1.2), the values c,(R) are achieved by cn(Px) for k sufficiently large.
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2. The Poincaré polynomial

The Poincaré polynomial of a topological pair (X, A) is a topological invariant

which carries the information on the homology of (X, 4).

DEeFINITION 2.1. Given a homology theory H.(:,-, Z2) and a topological pair
(X, A), we set
PA(X,A) =Y dim [H,(X, 4, Zy)] - M.
gEN

Moreover, we set P (X) = Pa(X,0).

The natural numbers dim [H,(X, A, Z,)] are the called Betti numbers (in fact,
sometimes, the Poincaré polynomial is called the Betti polynomial). Notice that
in general the Poincaré polynomial is not a “polynomial” but a formal series in
S (cf. Remark 1.9).

We have chosen the field of coefficients to be Z; in order to avoid orientation
problems. However, the theory which we will develop also works with any other
field K of coefficients. The only difference arises actually in the computation of
Pir(X, A).

In the following, we will encounter the situations where the choice of coeffi-
cients does make a difference.

Many properties of homology can be transferred to the Poincaré polynomial
and the operations and relations in S have a topological interpretation.

THEOREM 2.2. Let (X, A) and (Y, B) be pairs of topological spaces.
(i) If (X, A) and (Y, B) are homotopically equivalent, then P(X,A) =

Pa(Y, B).

(if) f XNY =0, then PA(X UY, AU B) = P(X, A) + P.(Y, B).

(ili) Pa(X xY) =Pa(X) - Pr(Y).

(iv) If (X, A, B) is a topological triple and B is a weak deformation retract
of A then

Pr(X,A) = Pr(X, B);

if A is @ weak deformation retract of X, then
Pi(X,B) = Pr(4, B).

(v) If (X, A, B) is a topological triple then there exists a Q) = Qi (X, A, B)
€ S such that

‘P/\(Xa A) +PA(AaB) = P/\(-X) B) + QA'



372 V. BENcI -— F. GIANNONI
(vi) (Excision property) Let (X, A) be a topological pair; if C C int A, then
Pa(X, A) = Pr(X\C, A\C).

(vii) Let @1 : (X, A) — (Y, B) and p2 : (Y,B) — (Z,C) be two maps such
that (2 0 1). is an isomorphism; then there exists Z) € S such that

P,\(Y, B) = 'P,\(X, A) + Zy

(in particular, this happens e.g. if (X, A) = (Z,C) and @3 0 1 is ho-
motopically equivalent to the identity).

(viii) Let M be a manifold and let N C M be a closed (in M) submanifold
of codimension n. If W is o subset of N' closed in N, then

Pr(M, M\W) = A"Pr (N, N\W)

(in this case, if the coefficient field K is not Zy, we need to assume N
and M to be orientable).

(ix) If z¢ is a single point, then Pr({zo}) = 1.

(x) If B, is an n-dimensional ball, then

Pir(Bn,0B,) = 2™

PROOF. (i)-(iv), (vi}-(vii) and (ix)-(x) are standard results in algebraic
topology (cf. e.g. [9]). A proof of (v) can be found e.g. in [2]. The proof of
(viii) follows from Corollary 8.11.20 of {8} (cf. also the remark below the Corol-
lary) because the manifold A is an A. N. R. (cf. [11]). Moreover, notice that the
Thom Theorem, in this form, holds even if the dimension of the manifold M is
infinite. a

For any a < b € R set
fP={zeA|f(x) <b}, fi={zeA]a< flz)<b}

Now we can state the Morse relations in their simplest form:

THEOREM 2.3. Let A be a smooth manifold, let f € C?*(A,R) be a Morse
function and let a < b be two regular values for f. Then if fb is compact, we

have
Z Am.(a:) — P,\(fb,fa) + (1 + A)Q)\

cEK(f2)
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where K(f%) = K; 0 f? and Q(1) is a polynomial with mleger nonnegalive coef-

Jicicnds.

If f* is not compact, Theorem 2.3 is non longer valid as shown by simple
examples. However, there are assumptions on the pair (A, f) which guarantee
the validity of the Morse relations. The most famous (but not the most general)
condition is the condition of Palais and Smale:

DEFINITION 2.4. We say that f satisfies the Palais-Smale condition in a set
2 C A (P.S. in Q) if any sequence {z,, }ner; C A such that

flzn) S5 ceR and fl(zn) =0

has a subsequence which converges to some z € Q.

Clearly, if f® is compact, then f satisfies P.S. in It however, it is possible
for f to satisfy P.S. even if f° is not locally compact.

Moreover, as we have seen in Remark 1.9, the Morse polynomial also makes
sense for Cl-functions. These remarks make natural the following definition:

DEFINITION 2.5. Let ( be an open set in A. A function f € C1(Q) is called
a generalized Morse function if
(i) the critical points of f are nodegenerate in the sense of Definition 1.5;
(ii) f satisfies P.S. in ©;

(ili) f can be extended to a functions of class C! in a neighborhood of .

The set of generalized Morse function will be denoted by M(£2).

REMARK 2.6. If f € M(Q) and it is bounded in £, then it has a finite

number of critical points.
Now we can generalize Theorem 2.3:

THEOREM 2.7. Let A be a complete manifold of class C* and let f € M(int £2).

Then
Z A P,\(fb,fn) + (1 + /\)QA,
x€K(f?)
where K (f)) = Ky N f! and Q, is a polynomial with integer nonnegative coeffi-

cients.

Clearly Theorem 2.3 is an immediate consequence of Theorem 2.7. The proof
of Theorem 2.7 is quite involved. We will prove it in Section 4 (in a more general
form), using the notion of “Conley block” which will be introduced in the next

section.
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3. The Conley blocks

In this section we will introduce the notion of index pair and Conley block.
They will allow us to prove the Morse relations in a very general context.

Let A be a Hilbert manifold and TA its tangent bundle. Consider a vector
field F': A — T'A and denote by 5(t, z) the solution of the Cauchy problem
G { dn/dt = F(1),

n(0,z) = z.

Assume that (3.1) is well posed and
(3.2) for any x € A, 7(t,x) =z -t is defined for any ¢ € R.
For any set A C A put
Wi(A) = Wi(A, F)=[)n(t, A) = {z € 4,| n(t,z) € A for any ¢ > 0},

<0
W_(A)=W_(A, F)= n n(t, A) = {z-€ A,| n(t,z) € A for any ¢t < 0},
20
G(A) = G(A, F) =W, (A, F)NW_(A,F) = {z € A|n(t,z) € Afor any t € R}.
The set W, (A) is usually called the positively mazimal invariant set relatively
to A (with respect to the flow ) and W_(A) the negatively mazimal invariant
set relative to A. G(A) is called the mazimal invariant sét in A. (We recall that
aset E C A is called positively invariant relative to A if

zc FE and 5([0,t],¢) NA\E # 0 = 3t, € [0,%] : n(t., z) ¢ A).
Moreover for any A C A and T > 0 put
Wi(A)=WI(AF)= (] atA)
te[-T,0]
wT(4) = WI(A,F)= (] n(tA4),
te[0,T)
GT(A) = GT(A, F) = W (A)NWI(A).

REMARK 3.1. It is easy to verify that:
(i) If A is closed, then W, (A), W_(4), G(4), WT(A), WT(A) and GT(A)
are closed.
(i) W4 (WT(A)) = W,(A), for any T > 0 and for any A.
(iii) G(WT(A)) = G(A), for any T > 0 and for any A.
(iv) nr(W{(A4)) = WI(A).
(v) nr(WiT(4)) = GT(4).
(vi) GT(ANWL(GT(4)) = GT(A)\W4(A).
(vii) GT2(GT2(A)) = GTH+T2(A).
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For any closed set A C A, define the following set which we will call the exit

set (relative to A):
T(A)={x € dA|Veu >0, Fe € (O,eq): - ¢ A};
the points in I'(A) are called ezil points with respect to A. Even if A is closed,
I'(A) need not be closed. Thus, it makes sense to define
Y =%p={NCA|T(N) is closed}.

A set A € X is called a Conley block.

Notice that T'(n(t, N)) = n(t,T'(N)) for any t € R.

DEFINITION 3.2. If N € X, we define the indez of N as follows:

I\(N) = IL(N, F) = P,(N,T(N)).

DEFINITION 3.3. A couple (N, E) of closed subsets of A (with E ¢ N) is
called an indez pair (with respect to F) if

(i) E is positively invariant relative to N, i.e.
c€E and z-[0,{|NA\E#0= 3, €[0,t]:x-t. ¢ N.
(ii) F is an exit set for N, i.e.

t€N and z-[0,tjNA\E#0=3t,€[0,t]:2-t. € E.

Clearly, if I'(N) is closed, the topological pair (N,T'(N)) is an index pair of
a particular type. Clearly the Conley blocks are index pairs.

The next theorem gives a simple but very useful method to construct sets
in 3.

THEOREM 3.4. Let g\ and gy be two differentiable functions defined on A.
Set
N={zeAlg(z)<0, j=12}, T ={zedN|g(z)=0}
and suppose that
z € ON and g,(z) =0 = (Vgi(z), F(z)) >0,
x € ON and ga(z) =0 = (Vga(x), F(z)) < 0.
Then (N,T') is a Conley block, N € ¥ and I\(N,F) = P5»(N,T).
PROOF. It is immediate to verify that T'(V) =T and that ' is closed. O

REMARK 3.5. The condition on gy can be weakened as follows:

z € ON and go(z) =0 = %(gz on(t, z)) <0.
s t=0

Theorem 3.4 can be easily generalized.
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TuroREM 3.6. Let g; (i =1,..., k) be functions of class C' on A. Set

.
N=(){zeA|g(z) <0}

i=1

Suppose thal for any x € DA, there exists g; satisfying
gi(x) = 0= (Vgi(z), F(z)) #0.

Then N € % and I\(N) = Py(N,I'(N)).
An interesting application of Theorem 3.4 is the following:

TueorEM 3.7. Let A be an Hilbert space with scalar product (-,-) and let L

be a continuous linear operator satisfying the following assumptions:

(L1) there exist closed subspaces H* and H™ of A such that L(H*) c H*
and H- @ HT = A;

(Ly) there exists v > 0 such that (Lz,z) < —v|z|? for any z € H™ and
(Ly,y) > v|yl* for any y € H*, where | - | is the norm induced by the
scalar product (:,-).

Let
F(z) = —Lz + K(2),

where z=x+y, t€ H, y€ Ht and K : A — A is a map ofclassC,oo’cl such

that there erists p > 0 salisfying

. 14 .

(3.3) K@) < 5lel - if o] = p and [y] < p,
- 14 .

(3.4) K@)l < 5lyl  if lyl=p andfz| <p.

Then, the set Q, = {zx +y € Al|zl,|y| £ p} 45 in T and I(Q,) = A™, where
m=dimH".
PROOF. Set

1 1 1 1
gz +y)= §|$|2 - 502 and gz +y)= §|y|2 - 5[’2-

Then by (3.3) and (3.4), we have

r € 0Q, and g1(z) =0
= (F(z,y), Vai(e)) = { — Lz, 3) + (K (2,),2) 2 Zlal* >0
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and

z € 0Q, and g1(z) =0

= (F‘(.’E, '.'I), ng(-’l:)) = ( I‘ya y) + (I\'(:l?, y)'r y) < “g’ly|2 <.

Set I'= {z +y € Q,||x| = p}. Then, by Theorem 3.4, (Q,,T) is a Conley block
and

I(Q,) =Pr(Q,T)=PrA(B,NH ,dB,NH~) =)™
(cf. Theorem 2.2(x)). 0
The next theorem describes the main properties of the index.

THEOREM 3.8. Let N € . Then:
(i) In(N) = Pa(N, N\W,(N)).
(ii) n(t,N) € £ and Ix(n(t, N)) = I,(N).
(i) WT(N) € and I\(WT(N)) = Ir(N).
(iv) WT(N) € £ and I,(WT(N)) = I,(N).
(v) GT(N) € T and I,(GT(N)) = I,(N).
(vi) If N1, N2 € &, and for some T > 0, GT(N,) C N3 and GT(N,) C N,
then
I(N1) = Ix(Ng).

(vii) If N1, N2 € X are disjoint sets, then Ny UN, € ¥ and
I\(N1 U Ny) = I\(N2) + In(N2).

(viii) Let F1 and F; be two vector fields which satisfy (3.1) and (3.2); if N €
Xp, and F; = F; on a neighborhood of ON, then N € T, and

Ii(N,Fy) = IL(N, ).
(ix) If for some T >0, GT(N) C int N, then
I\(N) = Px(int N, (int N)\W4 (V),

where int N denotes the interior on N whenever N is the closure of an
open subset of A, while if N = c1M and M is a submanifold of A, then
int N denotes the manifold M itself.

(x) Let M € & and N C M be two manifolds in A such that
(1) N is positively invariant relative to M,
(2) GT(M) C M for some T > 0,
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(3) ON = N\N C M = M\M,
(4) Wo(M)CN.
Then N € ©. Moreover, if N has codimension d in M, then

L(M) = X L(N)

(in this case, if the coefficient field K is not Z3, we need to assume N
and M to be orientable).

PROOF. (i) By the definition of I'(N) it is evident that T(N) C N\W,(N).
Then, by Theorem 2.2 (iv) applied to the topological triple (N, N\W,.(N),I'(N)),
it is sufficient to prove that T(NN) is a deformation retract of N\W,(N).

In order to prove this, consider € N\W,(N). By the definition of W, (N)
there exists ¢ > 0 such that n(t,z) ¢ N. Let

r(z) = inf{t € R* | n(t,z) ¢ N}.

We want to prove that 7 is a continuous function. Let 2 € N\W,(N) and
let zx be a sequence in N\W,(N) such that zx — z. We will prove that
7(zk) — ().

Choose any &g > 0; then there exists £ € (0,&9) such that n(7(z) +¢,z) ¢ N.
By the continuity of 7, for k large enough, we have 7(7(x)+¢, ) ¢ N and hence
(k) < 7(x) + €. Since £ can be choosen arbitrarily small, this proves that

7(z) > limsup 7(z4)-
k—oo

Now let 7 = liminfr—oo 7(zx). If 7 = 00, the proof is finished. Now, suppose

T < oo and take a subsequence 7(zy,,) such that
7= lim 7(zg,).
m— 00

Since n(7(zk,, ), Tk, ) € T and I is closed, we have n(r,z) € I', and therefore, by
the definitions of I' and 7(x),

7(x) £ 7 = liminf 7(zx).
k—o0

Thus 7(z) is continuous, and the map z — 7(7(z),z) is a strong retraction
of N\W,(N) on I'(N).
(ii) Since 7(t,-) is a homeomorphism,
I\(N) = PA(N,T(N)) = Pa(n(t, N),n(t, T(N)))
= Pa(n(t, N),T(n(t, T(N)))) = I (n(t, N)).
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(iii) Put ¢ = N\WT(N). Then
(3.5) (WE(N), WENN\WL(N)) = (N\C, (N\W,(N)\C).
Since cIyC C inty N\W,(N), by Theorem 2.2(vi) we have
Pr(N, N\W,.(N)) = PA(N\C, (N\W,(N)\C)
and, by (3.5),
(3.6) PA(N, N\WL(N)) = PA(W](N), W] (N\W,(N)).

Now it is not difficult to prove that WI(N) € . Then using Theorem 3.8(i),
(3.6) and Remark 3.1(ii), we have

L\(N) = PA(N, N\W(N)) = PA(W{(N), W (N)\W4(N)) = L(WI(N)).
(iv) By (iii), (ii) and Remark 3.1(iv), we have
I(N) = LW](N) = Iy(n(T, W (N))) = (WT(N)).
(v) By (iii), (ii) and Remark 3.1(v), we have
I(N) = [(WT(N) = L(n(T, WIT(N))) = Iy (GT(N)).

Notice that, in order to prove the above equality, we have only used the home-
omorphism 7(~7,-) and the excision map. Thus, since GT(N)\W,(GT(N))
= GT(N)\W,.(N), denoting by 1 : W2T(N) — N the inclusion map, we find

that the map
(ion(=T,"))s : Hy(GT(N),GT(N\W,(N)) - H,(N, N\W,(N))

is an isomorphism.
Moreover, using the homotopy H(a,z) = n(--oT, x) shows that the inclusion

3 (GT(N),GT(N)\W4(N)) — (N, N\W4(N))
is homotopically equivalent to the map i o n(—T),-). Therefore
3.7) jo : H(GT(N),GT(N\WL(N)) — H,(N, N\W,(N))

is an isomorphism.
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(vi) By our assumptions,
G*(N,) c GT(N;) C Na.
Thus, we have the embeddings

it 1 (GPT(N2), G*T(N2)\Wy(N2)) — (GT (N1), GT (N1)\W,.(N2))

and

iz : (GT(N1), GT(N1)\W4(N2)) — (N2, N2\W4(N2)).
By (3.7), (i3 0 41)« is an isomorphism. Therefore, by Theorem 2.2(vii), there
exists Z, € S such that

PA(GT (M1), GT(N1)\W4(N3)) = Pa(Na, N2\W,.(N2)) + 25
Since GT (N \W4.(N2) = GT(N;\W4(GT(N3)), using (i) and (v), we have

I(N1) = I(GT (V1)) = PA(GT (W), GT(NI)\WL(GT (V1))
= Py(Na, No\W,(N2)) + 25 = I(N3) + 2.

Arguing in the same way, we also have the existence of 5,\ € S such that
Ir(N1) + Z) = Irn(N3); hence I(N1) = In(N2).

(vii) and (viii) are immediate consequences of the definition of I.

(ix) We define the homotopy

n(t, z) if t < 7(x),

H(t,z) = { n(r(z),x) ift>1(z),

where 7(z) is defined in the proof of (i). If H(2T,z) ¢ T(N), then H(T,z) €
GT(N) C int N, hence H(2T,z) € int N. Therefore K(o,z) = H(20T,x) is
a weak deformation of N onto int N UI'(N) and also a weak deformation of
N\W,(N) onto (int N\W,.(N)) UT(N). Thus, by Theorem 2.2(iv) we have

IN(N) = Pr(N, N\W4(N)) = Px(int N UT(IV), (int N\W4(N)) UT(NV)).

The conclusion follows by the excision property (Theorem 2.2(vi)) on taking
C =T(N).

(x) First of all we have to prove that I'(N) is closed. Let xx be a converging
sequence of exit points with respect to N; by assumption (1) they are also exit
points with respect to M; thus they converge to a point zo which is an exit point
with respect to M and which belongs to N (by (3)). Thus zo € I'(N). Now,
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by (3), N C M, therefore GT(N) C GT(M) and, by (2) and (3), GT(N) C .
Then by (ix),
LM) = PAM M\W, (M) L(N) =PrN, M\W,(N)).
Moreover, by (4), W, (N) = W;(M) and hence I,(N) = PA(N,N\W,. (M)).
Now, by (3), NV is closed in M, and also W, (M) NN is closed in A: thus
we can apply Theorem 2.2(viii) with W = W, (M) to obtain
PAM, M\W (M) = A*Py(N, N\ W, (M)),

and the conclusion follows. O
REMARK 3.9. Let § = G(A) with A € . Then § is an invariant maximal
set in A. If the following condition (introduced in [2]) is satisfied

(C) for every neighborhood B of S, GT(A) C B for some T > 0,

then, by Theorem 3.8(i)), I»(B) (for B € X) is independent of B.
In particular, if A is compact, we have
IN(B) = ) dim Hy(Con S, K) - A¥,
k>0
where Con S is the Conley index of S (cf. [7]).

4. The Morse relations

The theory developed in the previous section concerns general flows. Now
we can apply it to the study of the critical points of a C-functional f and to
Morse theory. To do this it is necessary to construct a vector feld F' such that
(3.1) and (3.2) hold and

Ve e A\Ky, df ()| F'(x)] < 0.
This relation implies that f is decreasing along the orbit flow 7, i.e.

ifont,:l: <0 for any x ¢ K; and t € R.
dt /

If A has a Riemannian structure, f € C);! and V{ is bounded, then the vector
field F' can be obtained by taking
F=-Vf.
If Vf is not bounded, then F can be obtained as follows:
_=Vf
1+|Vf|
However, in applications, particularly to P.D.E., we are interested in functionals
which are merely of class C!. In this case the construction of F is more delicate.

F =

As essentially proved in [12] the following lemma holds:
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LEMMA 4.1. Given f € C1(A), there exists a vector field — F (called a pseu-
do-gradient vector field for f) such that

(i) F e COYA\K}), for any = ¢ Ky,

loc

(ii) |F(z)] € Md(z,K¢), where M is a constant,
(iii) (VF(2), F(a)) <0 ifz ¢ Ky.
Moreover, if f satisfies P.S. and it is bounded on an open set €1, then (iii)

strengthened to
(iv) for any neighborhood U of K;(), there ezists v = v(Q,U) > 0 such

that
vee U,  (Vf(z),F(z)) < v
Moreover, we can construct F' near the critical points by the following lemma:

LEMMA 4.2. Let f € CY(A) and let o be a nondegenerate critical point of
f (in the sense of Definition 1.7). Then there exists a netghborhood U of o and
a vector field F € C*(U) such that

VeelU, (Vf(z),F(z))<-v|Vi)?

where v > 0 is a constant.

PROOF. Let (U, ¢) be a chart as in Definition 1.7 and let L be the Hessian
of fo¢~! at the point ¢(zg) as in the proof of Lemma 1.6. Then we can define
F by the following formula:

F(z) = (d¢~ ()" o L[¢(z) — ¢(zo)],

i.e. F'is L pulled back by ¢~!. It is not difficult to check that F" has the required
properties. 0

As in Section 2 set
fi={zeA|a< f(x) <b},

and, for c € R,

fe={zeA|fz) <c}

THEOREM 4.3 (deformation theorem). Let f € M(A). There exists a pseu-
do-gradient vector field —F such that the Cauchy problem

dn _
7(0,z) = z,
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is well posed, n(t,x) is defined for any x € A and t € R and
. d .
(i) d_t(fon(t,;z:))<0 Joranyx ¢ Ky andt € R.

Moreover, for any neighborhood U of Ky,

(i) #f f is bounded on an open set Q, there exists v = v(U,Q) > 0, such
that

VZeMU, 4 (fon(0,2) = (V/(@).F@)) < -

(iii) if ¢ is the only critical value of f in (a,b), then there ezists T =
T(U,a,b) > 0 such that

GT(fhycu.

PROOF. Let Fi be the vector field given by Lemma 4.1 and let F, be a
vector field which coincides with the vector field given by Lemma 4.2 in an open
neighborhood U of the critical points. Since, by our assumptions, these points
are isolated, we can assume that U is given by the union of local charts. Now
let ¢ be a Lipschitz continuous function which is 0 in A\U and which is 1 in an
open neighborhood V (V' C U) of the critical points.

Then the vector field F' given in every local chart by

F(z) = ¢(z)Fi(x) + (1 - ¢(x)) Fa(x)

has the properties (i) and (ii). Let ns prove (iii).
Let Uy be a neighborhood of the critical points, with closure included in U.

Using a standard argument (cf. e.g. [13]) we see that

I > 0:ze Uy = m(z) e U Vit e [—Tl,Tll,
3> 0:GT(ft c U,
T, > 0:G™2(fh) ¢ fote.

Then the assertion follows by Remark 3.1(vii). O

REMARK 4.4. If f € M(Q) where Q is an open set in A, then the same
result of Theorem 4.3 holds, except that n(¢,z) is defined only for z € {? and
t < 7(z), the exit time from 0.

In the variational case, the strip f? is the simplest set to which we can apply
the theory of Section 1.3.
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FnioRrEM 4.5, Lel £ and F be as above, let a,b € R with a < b and suppose
that « is o regular value of f. Then /e and

I(J2, F) = PAa(f*, ),

Proor. Take g1(x) = - f(x) + a and ga(x) = f(x) —b. Then the conclusion
follows by Theorem 3.4 and Remark 3.5. ;]

Notice that in this theorem it is not necessary that F' satisfies P.S. Moreover,
in this case I,(f?, F) does not depend on F', but only on f: any vector field F
which satisfies (i) of Theorem 4.3 gives the same index.

The next theorem relates the Morse index of a nondegenerate critical point

to the index I:

THEOREM 4.6. Let f € C1(A), let =g be a nondegenerate critical point of f
(in the sense of Definition 1.3) and let F be as in Lemma 4.2. Then there exists
a neighborhood Uy of xy such that Uy € ¥ and

I (Up) = A™E0),

PROOF. Choosing a local chart V for 2y we can assume to work in a Hilbert
space. Let @, C V be the set of Theorem 3.7 “centered” at zg. If we take
p sufficiently small, the assumptions of Theorem 3.7 are satisfied. Thus the

statement of Theorem 4.6 follows. O
In the variational case, we can produce sets in ¥ by intersecting of sets in X.

LEMMA 4.7. Let f and F be as in Theorem 4.3, let N € ¥ and let b be a
reqular value of f. Then NN f*, NN f, € T and there exists Qy = Qx(F) € S
such that

LN NP+ (N N fo) = I(N) + (1+ A)Qa(F).

PROOF. Set
A=Nnf, and B=Nnf

Consider the triple (T'(N), BUT'(N), N). By Theorem 2.2(v), there exists Q € §
such that

Pr(N,BUT(N)) + Pr(BUT(N),T(N)) = PA(N,T(N)) + (1 + A)Q».

Moreover. since b is a regular value for f, it is not difficult to check that I'(B) =
T'(N)N B. and T(4) = (T(N) N A) U f~1(b), so that T'(B) and I'(4) are closed.
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Now set,
Ce = {m(x) |t € [Ue],x € F~1(b)}.
Since b is a regular value, if ¢ is sufficiently small, by Theorem 2.2(iv), we have

Pr(A,T(A4)) = PA(ANC., T(A) N C,).

Moreover, following the proof of Theorem 3.8(i) and using Theorem 2.2(iv) and
2.2(vi) shows that (if £ is sufficiently small)

Pr(N,BNT(N)) =Pr(ANC:, T(A)UC,),
therefore,

Pr(N,BUT(N)) = Pr(A,T'(A)) = I,(A, F).
Moreover, BUT'(N)\(I'(N)\I'(B)) = B and, since b is a regular value,

clpur(m) (C(N\T(B)) C int pur(w) (T(N).
Therefore, by the excision property,
PA(BUT(N),[(N)) = Px(B,T(B)) = In(B, F).
Since Iy(N) = Po(N,T(N)), we get the conclusion. O
COROLLARY 4.8. Let f and F be as in Theorem 4.3, let N € & and let by,

(k=1,...,n) be a sequence of regular values of f; moreover, set by = —o00 and
bpy1 =00. Then NN f,:’:“ € X and there exzists Q) = Q)\(F) € S such that

Y LN N £ = L(N) + (1+ A Qs (F).

k
k=0
PROOF. It is an easy consequence ol Leima 4.7. O
Now we are ready to prove Theorem 2.7 in a more general form:

THEOREM 4.9. Let (2 be an open set in A and let f € M(Q) with Qe ©. If
[ is bounded, then

DA™ = (@, F) + (14 A)Qs.
ze K (§2)

where K (1) = Ky N§}, Qy is a polynomial with integer nonnegative coefficients
and F is given by Theorem 4.3.

(Note that if f € M(Q), then K;(Q) = K(Q2).)

Theorem 2.7 follows from the above theorem and Theorem 4.5 if we take
=

First we need the following lemma.
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LEMMA 4.10. Let Q € © and let f € M(Q). If f is bounded and has only

the critical value ¢ € R, then
In(N) = aml@n) 4o k)

where {z1,..., 2} are the crilical points of f and m(z;) is the Morse indez of
x; (notice that we have only a finite number of critical points by Remark 2.6).

PRroOOF. Let Uy, ..., Uy be disjoint neighborhoods of our critical points taken
according to Theorem 4.6, and let U = U:=1 Uy. By Theorems 3.8(vii) and 4.6,

we have

L) =Y Ia(Un) = Xm0 o A,
h

Moreover, by Theorem 4.3(iii), there exists T so large that GT(Q) C U.
Then, by Theorem 3.8.(vi), I»(Q2) = I(U), from which the conclusion follows.[]

PROOF OF THEOREM 4.9. Since f € M(R) and it is bounded, by Re-
mark 2.6, it has only a finite number of critical values {ci,...,cn}. Now let
{bo, . .., bn+1} be a sequence of numbers such that

—oo=by<c; <b <...< by <p<bpy1 =00

Then, by Corollary 4.8,

Y L@N L) = L@+ (14 1)
k=(}

and the conclusion follows from Lemma 4.10 with Q replaced by @ n ff:*‘. 0

In Theorem 4.9, we have assumed that f is bounded, but this assumption
can be partially removed if we allow both the Morse and Poincaré polynomials
be formal series (in the space S).

THEOREM 4.11. Let Q be an open set in A and let f € M(Q) with Q € &;
if f is bounded from below on Q, then
(4.1) 3 A = L@, F) + (1+2)Qy,

zEK(Q)
where K(2) = K; N Q is a countable set, @) is a formal series in S and F is
given by Theorem 4.3.

ProoF. Since every critical point of f is nondegenerate and f satisfies P.S.
on € and is bounded from below, there exist {bn}ren C R and {ch}ren C R
such that

e every b, is a regular value for f,
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e by <infgf<b <...<by<bpy<...,

e limy_, o, by = 00,

o forany h €N, f"* ' N K;(Q) = f~(cn) N K4(Q),
e for any h € N, f~1(e,) N K ¢(€2) is finite.

Then, by Lemma 4.7 and Corollary 4.8, arguing by induction on k gives, for any
h € N, the existence of Qp, € § such that

42)  ma(f* N K@), ) + I(fon, F) = D(Q, F) + (1+2)Qn (),

where f* = {z € Q| f(z) < b} and f, = {z € Q| f(z) > b}.

Fix k € N. Our goal is to prove (4.1), using (4.2) and considering the
coefficients of any fixed degree of the formal series in (4.1).

If the set My of points of K;(f2) having Morse index k is infinite, taking the
limit in (4.2) as b — oo, gives immediately the proof of (4.1) in degree k, since
the coefficient of degree k of m(f* N K;(52), f) is nondecreasing with respect
to h and tends to oo.

Now suppose that A is finite and let b a regular value such that

(4.3) b> max I
By (4.2), to prove (4.1) (degree k) it is sufficient to prove that
(4.4) the coeflicient of degrée k of I (fp, F') is zero.

Now let ¢ > b be a regular value for f. Then, using the flow 5 and the

excision property as in proving Lemma 4.7 shows that

(4.5) PA(C@) U 5 T@ U L) = Pa(fi, (D@) N f5) U £ (b)).

Since (T'(€2) N f£) U £~1(b) = T'(ff), by (4.5) we have

(4.6) PAT(@) U £, T@) U f*) = Palfs, T(f5))-

Then, by Corollary 4.8 with N = f{, combining (4.3) and (4.6) gives

(4.7) H (T@Quf,r@u ) =o.

Since c is a regular value using the flow and the excision property we also get

(4.8) L(fo, F) = Pa(fs, (C(Q) N fo) U £71(5)) = PA(QLT(R) U f2).
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Now cousider the exact homology sequence
(4.9)
- H (D@ U <, T@ U 1) = He@ T@) U f9) - H(@T@) U f°) -

where i}, and ji are the maps induced by the inclusion maps.
If, by contradiction, (4.4) does not hold, then by (4.8) there exists

ac H,(Q,Ir@Quf), a#o.

Now, denoting by A the support of & and choosing ¢ > maxa f, gives jx(a) =
0. Then, by the exactness of the homology sequence (4.9), there exists § €
Hi(T() U [, T(Q) U f)) such that i}(8) = e, contrary.to (4.7). Thus (4.4) is
proved and the proof of Theorem 4.11 is complete. O

5. Morse theory for degenerate critical points

In this section we introduce an index i, generalizing the Morse polynomial
my when the critical points of f are degenerate. More generally, we define a
Morse polynomial also for an isolated set K of critical points of f.

First of all we shall describe a class F (R) of C!-functionals where the gener-
alized Morse index will be defined.

For any € > 0 and A C A, we put

N.(A) = {z € A | d(z, A) < e},

where d is the distance induced by the Hilbert structure of A. Now consider the
class
M5(@) = {g e M(A) | g(z) = f(x) for = ¢ N(K;(@))},

where M(%2) is defined in Definition 2.5.

Notice that

£1 < €2 = MP (@) c M7 (Q).
We define
FQ) ={feC'(Q)IM5(8)#0 for any € > 0}.

Clearly, if 2 C A is bounded and A is a finite-dimensional manifold, then

F(Q) = CY(Q). In general, we do not know how general this class is; however,

we can prove that many interesting functionals belong to it.

EXAMPLE 5.1. Let f be of class C? in a neighborhood of 1 and satisfy P.S. in
Q. Suppose that, for any degenerate critical point z € Ky (Q), the linear operator
associated with H”(z) is a Fredholm operator (of index 0). Then f € F(R) (cf.

[10]).
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ExAaMpLE 5.2. Let A be a separable Hilbert space and let f, satisfy the
assumptions of Example 5.1 (for instance fy(ax) = é(Lx,:z:), where L: A - A is
a bounded selfadjoint strictly positive operator). Det ¥ € C*(A) be a functional

whose gradient is completely continuous, i.c.
(5.1)  if ry weakly converges to x, then 4/ (i) strongly converges to ¢ (z).

Assume that f(x) = fo(x) + ¥(r) is bounded in © and satislies P.S. in .
Then [ € F(Q).

PROOF. Since A is separable, there cxists a sequence {E,},en of linear
subspaces of A such that E, = span{ey,...,e,}, where {e;};cn is a complete
orthonormal system for' A. Consider the orthogonal projection P, of A on E,

and put
Yn(x) = Y(Fa(x)).

The definition of P, and the assumption (5.1) easily give

sup |}, (x) — ¥'(x)] %+ 0 for any bounded subset B,
zeld

which implies that

sup i (z) — P(z)] — 0 for any bounded subset B.
zeld

Since 4,
{©n }nen of C*°-maps defined on E,, such that

i, + Ey — R, and E, is finite-dimensional, there exists a sequence

WnlE, —@nlenn,) < 1/n.
Now, for any x € A, set
¥n(2) = @n(Pu(@))-
Then for any bounded subset B,
(5.2) Yu(z) "> (x)  in C'(B).

Now, set K = K;(Q), and for any € > 0, let ¢. € C?(A,[0,1]) be a function
such that
e ¢ =0 on A\N(K),
* ¢ =1on N.y(K),
e |#.| is bounded in A.
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Now we define

(6.9 Gen() 1 = fo(z) + Y(z) + e (7) (¥n(z) — ¥(2))
= f(z) + Pe(x)(Yn(z) — '¢(£L‘))

Since f satisfies P.S. and it is bounded on €2, there exists v(¢) > 0 such that
|F'(z)] = v(e) for any = in Q\N,/2(K), so

|9¢..(@)] 2 {f' (@) = [9(2)] | Yu(2) — P(@)] — I¢e ()] [Pr () — ¢ (2)I.

Since f satisfies P.S. and is bounded in §2, K is compact and hence N;(K) is
bounded. Therefore, by (5.2), if n is sufficiently large, there are no critical points
of ge,n in Ne(K)\N¢/2(K) and hence in Q\N/2(K). Moreover, on N/z(K),

Gen = fO + Jn'

Since g, . satisfies the assumptions of Example 5.1 on N/2(K) and it does not
have critical points on dN,/2(Kjy), using the perturbation methods of Marino
and Prodi (cf. [10]), ge,» can be modified to a function ge n such that

® Ge.nlN, 2(k) is @ Morse function,

® G does not have critical points in N (K)\N¢/2(K),

® Go.n = f on Q\N.(K).
Then, for n large, ge,n € M;(ﬁ) and hence f € F(Q). O

REMARK 5.3. Note that f € F(Q) might not satisfy P.S. on . This happens

if K;(2) is not compact. For example, let A be an infinite-dimensional Hilbert

space and f(z) = p(jx|?), where ¢ : Rt — R* and

_{0 ifs<1,
la) = (s—1)? ifs>1

Let . € C?*(Rt,R*) be a function such that ¢f/(0) # 0 and ¢} (s) = 0 if and
only if s = 0 and ¢.(s) = @(s) for any s > 1 +¢, and set g.(z) = @.(|z|?); then
9 € M_Ef(ﬁ) #0.

Another example is the map sin(-) € F(R).

Let f € C1(2). A compact set K C Ky is called an isolated critical set if
there exists an open set w such that K = Ky Nw. The open set w will be called
an isolating set (for K).

Finally, we define the Morse index for an isolated critical set K C K, which
is the main point of this section. Let w be an isolating set for K.
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DEFINITION 5.4. We set

(5.4) ix(K, f) = ix(K, fyw) =sup inf my(Kq@),g),
>0 geEME (W)

where m., inf and sup are given by Definitions 1.8 and 1.10 respectively.

The formal series iy (K, f) is called the (generalized) Morse indez of K.

REMARK 5.5. It is easy to see that the index (5.4) of an isolated critical set

does not depend on the isolating set w.

DEFINITION 5.6. If z € K;(f) is an isolated critical point, we call the
integer i1({z}, f) the multiplicity of x. Analogously it is possible to define the

multiplicity of an isolated critical set.

Note that a critical set K contains at least i1 (K, f) critical points if counted
with multiplicities.

REMARK 5.7. If a critical point = has multiplicity i € N, then every pertur-
bation of f producing nondegenerate critical points has at least h critical points
near z. In fact, by Remark 1.13, for ¢ sufficiently small,

inf - m(IKy(@), )

gEM; (@
is constant.

The next theorem describes the basic properties of the index i, and shows

that it is a generalization of the Morse polynomial.

THEOREM 5.8. Let f € F(Q). Then

(i) If 2y is a nondegenerate critical point of f, then
ia({z}, ) = A6,
(ii) If K1, K2 C K are isolated compact sets, and K1 N Ky = {, then
ir(K1 UKy, f) = ix(K1, f) + ix(K2, f).
(iii) If K is a discrete set, then

K, f) =Y irlx, f).

€K

(iv) If f € M(Q), then

ix(Ky, /) =ma(Kz, f) = ) am@h),
TEKf
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ProOF. Let (U, ¢5) be a local chart for the nondegenerate critical point =
and oz = ¢(z). Putting L = dp3* () o (H/°%-(az)) in Theorem 3.7 gives the
existence of p > 0 such that Q, C Uz, Q, € Zr and

(5.5) INQp, F) = 2™,

Moreover, p can be chosen so small that f satisfies P.S. on Q,, and
(5.6) Kr(@p) = {a}.

Then, for any e > 0, [ € M_E,(Qp) and, by Definition 5.4,

(5.7) ix({z}, f) < AmE).

Moreover, by Theorem 4.9 and (5.5), for any g € M%(Q,), there exists Q4 € §
such that
ma({z},9) = A" + (14 A)Qx-

Therefore, by Definition 5.4,
(5.8) ir({z}, f) 2 A,

and combining (5.7) and (5.8) gives the proof of (i).

(i) and (iii) are simple consequences of Definition 5.4; (iv) follows from (iii)
and (i). O

By Theorem 5.8 it turns out that the multiplicity of a nondegenerate critical
point is one.

Notice that it is possible for a critical point to have multiplicity zero (consider
for example i, ({0}, f) with f: R — R, f(z) = z%).

Of course the index i) has been constructed in such a way that the Morse
relations are still valid. In fact, we have the following theorem.

THEOREM 5.9. Assume f is bounded from below on Q and f € MQ). IfF
is a vector field as in Theorem 4.3, and Qe X, then

ir(Kp, ) = L(Q,F)+ (1 + 1)@y,

where Q) € S.

ProoF. By Definitions 5.4 and 1.10, there are sequences &y — 0+ and g
such that

ge € MF @) and  lim mx(Ky,,g¢) = ia(Ky, f).
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By Theorem 4.11, for any k € N, there exists Q’j\’ € S such that
(5.9) ma(Kgur k) = V@, F) + (1+ A) Q5.

Taking the limit of the coefficients of the above equation, we conclude the

proof. O

If some of the coeflicients of i5(/y, [) are oo, then, by taking the limit in
(5.9), some of the coefficients of @ might not be uniquely determined; never-
theless the Morse relations hold upon applying the usual algebra to co.

The next theorem states some information given by I, for the degenerate

points of C?-functionals.
THEOREM 5.10. Let f satisfy the assumptions of Example 5.1 and suppose
that K¢(Q1) is compact. Then
(1) K, f) = X0 axAF with ay, # 0, then there exists £ € K such that

m(z) < k < m*(z).

(ii) If we set m(K) = infzex m(x) and m*(K) = sup . x m*(x), then

m*(K)

L= Y adk

k=m(K)

PROOF. (i) follows by the perturbation methods of Marino and Prodi (cf.
[10]), and (since the Hessian is a Fredholm map) by the lower semicontinuity of
the strict Morse index and the upper semicontinuity of the large Morse index.
(ii) is a simple consequence of (i). ]

We end this section with a theorem which will be useful when we apply the
Morse theory to P.D.E.

THEOREM 5.11. Let f be a function as in Ezample 5.2, and let zy be an
isolated critical point of f. Let E, = span{ei,...,e,} be a sequence of linear
subspaces of A, where {e;}ien s a complete orthonormal system for A, and set

Vo =z + E,.

Suppose that

(i) flv. is twice differentiable at z,
(ii) for n sufficiently large, xo is a nondegenerate critical point of flv. and

m(zo, flv,) = k.
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Then i(ig) = AF.

PRroOOF. It is not restrictive to suppose that g = 0. Let N be a Conley block
such that Ky NN = {zo}. Such a block can be constructed in the following way:
take a neighborhood V of zy such that Ky NV = {zo}; if € > 0 is sufficiently
small and ¢ = f(zy), take

N =vnG(fet:

(GT(A) is defined in Section 3). Now, let g, » be the function defined by (5.3)
in the proof of Example 5.2 with ¢ small enough such that N¢(xg) € N and n
large enough such that (ii) holds. Then, by the construction of g ., we see that

g is the only critical point of g, in N and
m(-TO:gs,n) =k.

Since N is a Conley block for g, n, by the Morse relations for g.n, we get
Ak = I,(N); then, by the Morse relations for f,

i(wo) = I\(N) = Ak

0

REMARK 5.12. Let A be a Hilbert space. Suppose that f € F(Q), f is
bounded on Q, F is as in Theorem 4.3 and

F=id+4,

where id is the identity on A and ¢ : Q — A is a compact operator.
Assume Q € ¥ and F(z) # 0 for any z € 8S. Then by Theorem 4.9 and the
definitions of iy, I and the topological degree we see that

(510) I—l(ﬁ, F) = deg (ﬁ’ _Fv 0)1

and it is also possible to show that (5.10) can be generalized to situations where
F is not a pseudo-gradient vector field (nonvariational case) by the approach to

Morse inequalities for the nonvariational case.

6. A typical application

In this section we give a simple application of the theory developed in the
previous sections. Such an application has been chosen since it is simple and,
at the same time, some of the results are new and it is not easy to obtain them

using different methods.
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Consider the following problem:

6.1) { —Au — pu+ g(u) =0,

ulagp = 0,
where (2 is an open bounded subset of RY with sufficiently smooth boundary,
p € R, and g € CO(R, R) satisfies the following assumption:

(6.2) lg@s) <ells” +1),  ceR, 9€(0,1].

Let .
G(s) / g(o)de

SO

and [ : H(;‘2(Q) —+ R be the functional of class C! given by

6.3)  flu)= % /Q Va(e)?do~ & /“ W2(z) dz + /Q G(u(z)) dz,

whose critical points are solutions of (6.1).
Notice that the functional f is of class C" even if G is of class C2. In fact, f

is of class ("2 provided that

(6.4) lg'(s)] < e(ls]” =2 + 1),

where p* =2N/(N - 2) and c € R.

This assumption is too restrictive. In fact, using topological degree or the
Lusternik and Schnirelmann theory, it is possible to get existence results with-
out it. So the classical Morse theory is not adequate to study problem (6.1).
However, using the theory developed in this paper, not only is it possible to use
Morse theory, but also it provides betler estimates on the number of solutions

and sometimnes on their qualitative properties.

THEOREM 6.1. Let pu € Jpug, pix+1[, where p; is the j-th eigenvalue of —A.
Then

(a) The problem (6.1) has at least one solution U such that
ix(@) = A* + other terms.

(b) If g is of class C' and (6.4) holds, then
m(T, f) < k < m*(g, f),

where m*(uw, f) is the large Morse index for u.
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REMARK 6.2. The result in (a) can be easily obtained by using topological
degree, but without, the information on the Morse index as in (b). On the other
hand, the “classical” Morse theory cannot be used for two reasons. The first one
is that the functional f is, in general, only of class C'. The second one is that it
is not trivial to evaluate the Poincaré polynomial of the “strips” {a < f(z) < b},
while the evaluation of the Poincaré polynomial of the block is not difficult (under
the assumptions of Theorem 6.1).

The information about the Morse index can be used e.g. to evaluate the
number of the nodal regions of the solutions of (6.1). (We recall that a nodal
region of u is a connected component of Q\u~1(0)).

Suppose that -
d'(s)s? < g(s)s  for any s € R\{0}

(for example g(s) = arctans). By Theorem 6.1(b), the same argument used in
[4] (where the superlinear case —g(s) = s|s|P~2, 2 < p < 2N/(N — 2), has been

studied) shows that the number of nodal regions of % is less than or equal to k.

PrOOF OF THEOREM 6.1. By standard arguments it is possible to prove
that there exists a compact operator K such that F = —L + K is a pseudo-
gradient vector field for f, which satisfies the assumptions of Theorem 3.7 (cf.
e.g. [3] for details). Then (a) follows by Theorem 5.9. (b) follows by Theorem
5.10 and Example 5.2. O

The following theorem concerns the concept of multiplicity introduced in
Section 5.

TuworEM 6.3. Let it € |jig, ppi |, where p; is the j-th eigenvalue of —A.
Suppose that g(0) = 0. Then

(a) If ¢'(0) exists and g'(0) € Jpun, pnt1] with h # k, then the problem (6.1)
has at least 3 solutions if counted with multiplicities.

(b) Moreover, if g is of class C* and (6.4) holds, then there are at least two
solutions w1, uz of (6.1) (or one solution with multiplicity 2) such that

m(uy, [) < k <m*(uy, f)

and
m(ug, f)— 1<k <m*(ug, f) + 1.

Proor. If 0 is not an isolated critical point the conclusion follows, so we can

assume that 0 is isolated. The functional f satisfies the assumptions of Theorem
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5.11 for the critical point u = 0. Let h = m(xo, f|v,) for n sufficiently large.
Then, denoting by I the set of critical points of f, we obtain

i) = A"+ Z(0).
We have to show that Z(1) > 2. By Theorem 5.9 and Theorem 3.7,
(6.5) A+ Z(A) = A+ (14 2)Q(N).

Since h # k, by (6.5) we get (a) since Z(A) must have two terms at least.
Morcover, il ¢'(0) & g, pn41[, then 0 is a nondegenerate critical point of f and
m(0, £} = h. Therefore {b) easily follows from (6.5) and Theorem 5.10. O

REMARK 6.1. Theorem 6.3 illustrates the concept of multiplicity and gen-
eralizes the Theorem of 3 solutions of Amann (cf. [1]). Notice that in Theorem
6.3, it is possible to have only one nontrivial solution of multiplicity 2. Thus, if
we make a minimal assumption to have a multiplicity result, we have to consider
the notion of multiplicity.

H, in the proof of Theorem 6.3 we use the topological degree instead of the
generalized Morse index, we need an assumption assuring that the topological

degree at 0 is different from the topological degree at infinity, i.e. (—~1)* # (—1)*.
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