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1. Introduction
In this paper we consider the classical Dirichlet problem for equations of
prescribed curvature of the form

(1.1) Flu] = f(&) = ¥(z,u)

in domains {2 in Euclidean n-space, R"®, where & = (x1,...,%,) denotes the
principal curvatures of the graph of u over §2, ¥ is a prescribed positive function
on 2 x R and f is a symmetric function of the form

(1.2) f(s) =Sk = %,

where 0 € | < k < n and S denotes the k-th order elementary symmetric

function,
(1.3) Sk = Zﬁilh‘,iz oo R,

the sum being taken over all increasing k-tuples 41, 42,... ,4 C {1,... yn}. Tak-
ing So = 1, we may write S o = Si. The mean, scalar, Gauss and harmonic
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curvatures correspond respectively to the special cases [ = 0, £k = 1,2,n and
Il =n—1, k =n. The classical Dirichlet problem for the prescribed mean and
Gauss curvature equations has been extensively studied (see for example [1], [4],
[6] and [13]). For the mean curvatures of intermediate order, that is, the cases
f = 8k, 1 < k < n, the first breakthroughs were due to Caffarelli, Nirenberg
and Spruck [3] and Ivochkina [7] and [8] for the case of convex domains and
zero boundary values. Ivochkina [9] extended her approach to embrace general
boundary values and domains subject to natural geometric restrictions. While
her work dealt specifically with the cases f = Sk, that of Caffarelli, Nirenberg
and Spruck treated more general curvatures but still excluded the quotients Sy ;
for I > 1. These cases were however included in the weak or viscosity solu-
tion approach of Trudinger [17] who established existence theorems for Lipschitz
solutions. The solution and gradient bounds of Trudinger [15]-[17] lead to an
improvement of the classical existence theorems of Ivochkina [9] for the higher
order mean curvatures.

In this paper we extend the classical theory to the case of quotients of mean
curvatures, that is, to the cases f = Sk, | > 0. As with [3], (8] and [9], the
essence of our work lies in the derivation of second derivative estimates at the
boundary for prospective solutions. For the mixed tangential-normal derivatives
we follow the approach of Ivochkina [8], utilizing a fundamental inequality for
quotients of elementary symmetric functions that we established in [11]. For the
double normal derivatives we adapt a technique of Trudinger [18] from the case
of Hessian equations.

In order to formulate our main existence theorem, we introduce some termi-
nology from [17]. For a general continuous symmetric function f in (1.1), let us

define its admissible set by
(1.4) A(f)={keR*|f(k+n) > f(k) V3 20, i=1,...,n}

and call a function u € C%(Q) admissible for the operator F in § if the principal
curvatures & = (k1,...,kn) of the graph of u belong to A(f) at every point
(z,u(z)), z € Q. The operator F will be degenerate elliptic with respect to an
admissible function. When f = Sk, we have A(f) = Tk, where T'; is the open

cone in R™ with vertex at the origin, given by
(1.5) Fk={ﬂ€Rn[Sj(h‘,)>0,j=1,...,k}.

Clearly Ty C T for j < k and T, is the positive cone {x € R*|k; > 0, i =
1,...,n}. For k = 1,...,n— 1, we say that the domain Q with boundary
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0 € C? is k-convez (uniformly k-convez) if the principal curvatures of 8, &’ =
(K1s-- 16p_1), satisfy S;(k’) 20 (> 0) for j = 1,... ,k, that is, k" € Tx(I').
We then have the following existence theorem for the classical Dirichlet problem.

THEOREM 1.1. Let 0<I<k<mn, 0<a<]1. Assume that

(i) Q is a bounded (k — 1)-conver domain in R™, with boundary 0Q € C42;
(i) ¥ € C2*(Q xR), 8¥/02>0, ¥ >0 on Q x R;
(iil) ¥(z,0) < Sk (k") on ON.
Then, provided there ezists any bounded admissible subsolution of equation (1.1)

in Q, there erists a unique admissible solution u € C**(Q) satisfying u = 0 on

on.

The existence of a bounded subsolution (which can be taken in the viscos-
ity sense of [17]) can be replaced by conditions guaranteeing a priori solution
bounds, for example (from [17]),

(1.6) sup (s, o)(@)k_l < (Z) / (’l‘)

More general conditions involving quermassintegrals are provided in [15], [16]
and [19].

For convenience we have expressed the smoothness conditions in Theorem 1.1
in terms of Holder spaces (see [4] for definitions and notation). A minimal
assumption for our proof would be 8Q € C3! and ¥ € C!(Q x R) with resulting
solution u € C%%(Q) for all a < 1.

The uniqueness of the solution in Theorem 1.1 follows from a comparison
principle (see [3], [8] and [17]). Namely, if u,v € C°(Q) N C?(Q) satisfy u < v
on 99, Flu] > F[v] in Q and u is admissible with respect to F, then it follows
that v < v in 2. If in addition F is elliptic with respect to u (which is implied
by Flu] > 0 in our case f(k) = Sk(x)), then we can relax Flu] > FJ[u].

The hypotheses of Theorem 1.1 imply that €2 is uniformly k-convex. The
case k = n is omitted from Theorem 1.1, as condition (iii) implies ¥ = 0 on 95,
We may embrace this case by assuming the existence of a subsolution satisfying
the boundary condition (as done by Caffarelli, Nirenberg and Spruck [3]).

THEOREM 1.2. Let 0 <1l < k <n, 0 <a < 1. Assume that hypothesis (ii)
of Theorem 1.1 holds with hypotheses (i) and (iii) replaced by:

(i)’ Q is uniformly k-convez, k < n, and uniformly convez for k = n, with
o0 e Che.
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Then, provided there ezists an admissible subsolution ug € C%(Q), with up =0
on 85, there ezists a unique admissible solution u € C4*(Q) of equation (1.1),

satisfying u = 0 on 05},

The proofs of the above theorems utilize the method of continuity which
reduces the problem of existence to that of e priori estimates for a related
family of problems in the Holder space C%(Q) for some & > 0 (see [4]). For the
curvature quotients, the new estimates needed in this paper are those of second
derivatives of prospective solutions on the boundary of the domain Q. Our
assumption of the existence of a bounded subsolution uy automatically ensures,

by the comparison principle, a solution bound,

(1.7 ug —supug < u <0,
a0

which also implies a boundary gradient estimate in the case of Theorem 1.2. Es-
timates for the first and second derivatives of solutions in terms of their boundary
values are provided by Caffarelli, Nirenberg and Spruck [3] for more general equa-
tions, while the boundary gradient estimate for Theorem 1.1, under condition
(iii), is given in Trudinger [17]. Note that condition (iii) is the natural extension
of the Serrin condition for the mean curvature case [13]. The Holder bounds for
second derivatives follow from the Krylov theory (see [10], [4] and [14]).

In the following section, we list some of the basic properties of elementary
symmetric functions and their quotients, to be used in this paper. In Section 3,
we derive the mixed tangential-normal boundary estimates for second deriva-
tives, while the double normal derivative estimation is treated in Section 4,
thereby completing the estimation of the second derivatives on the boundary.
These estimations are carried out for the more general degenerate case, ¥ > 0
(although we need to assume some smoothness of ¥1l/m), Finally, in Section 5,
we complete the proofs of Theorems 1.1, 1.2 and derive related results. In fur-
ther investigations, we consider the extension of our existence theorems to the
degenerate case, as well as to the Dirichlet problem for general boundary values.

2. Preliminaries

In this section we list some properties of elementary symmetric functions and
the associated curvature operators, which we shall use. Defining for any fixed
s-tuple {41,...,is} € {1,...,n}, A€R"

(2.1) Skiir...ta(A) = Skln, =--=x,, =0,



PRESCRIBED CURVATURE QUOTIENT EQUATIONS 311

we have for A € T,
(2.2) Sty ..is ()\) >0

for all {i1,...,is} C{1,...,n}, I+ s < k. In particular,

0Sy
a_)\i = Sk—l;z >0

(2.3)
for A € I'y. Introducing the normalized functions

1 Tk
Sk, Okl =

® o

we also have on I', the Newton-Maclaurin inequalities

(2.4) op = k>1>0,

(2.5) (0e)YED < (oy,6) 0 —2)
provided k > r,l > s. In particular, it follows that

(2.6) ask:l — .SlSk-_—l;i - SkSl—l;i

Y 57
_ S1iSk—1;i — Sk;iSi—1,4
S7
n(k — 1) S;iSk—1
Z %n—1 sz 0

on I'x. Inequality (2.6) implies that the operator (1.1) will be elliptic whenever
the principal curvatures x € T'x. From (2.6), we also have the formula

(2.7) Z (n— k+ 1) —l+1)S’“Sl !
so that by (2.5),
l 1 =~ DSk,
. - = < = < Sk_11.
(2.8) (1 k_)sk 1,1_n_k+1i=1 o, < Sk-1y

We also need the concavity of the functions (Si,;)/**~% on I'y. Taking account
of homogeneity, we can express this by the inequality

< 89Sk, (A
(29)  mS s < S 2N ey,
i=1 t
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for all A, u € T'. Inequalities (2.5) and (2.9) are proved, for example, in [5] and
[12]. The essential new inequality we need for our work is established by us in
[11]. For any fixed r =1,... ,n, we have

(2.10) 63’“ ‘()‘) ZEBT A2 < C(k, 1, )Z 05k ‘(’\)
iF#ErT

for A € 'y, I > 0, where C is a constant depending on k,[,n. Note that (2.10) is
not valid for [ = 0. In this case, we obtain

0Sk(A)
OAr

08k (,\)

(2.11) A2 < A.8k(\) + C(k, )Z

iF#Er
provided k£ > 1; inequality (2.11) improves a key inequality of Ivochkina [8].
Following Ivochkina [8], we extend the cones I'; to symmetric matrices. Namely,
for p € R™, let us define

(2.12) Tx(p) = {r € 8™ |A(p,r) € T4},
where A = (A1,...,A,) denotes the eigenvalues of the matrix
poOp
2.13 I————r
(219 (- &%)
Writing
Sk
(214) Sk(p1 'I") = Sk(A): Sk,l = Ea
it then follows that the matrix
08k [0Sk,
. L= ! ]
(2.15) B [ Brs; ] >

on I'x(p) and moreover, from (2.9), S,i’/lm is concave with respect to r, and

0Sk,1

Sij, m=k—l,

(216)  mlSkealer ) " [Sualp, I/ < 3B

for all ,s € T'x(p). Furthermore, by [9], we see that T'x1(0) C T'x(p) and
(217 Ska(p,r) > | B ————=5,(0,7)
for all r € I'x11(0). Note that the operator F' is given by

Flu] = Sk (%) = (14 |Duf?)~™/28(Du, D*u)

in this notation.
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3. Mixed second derivative boundary estimates

Our approach to the estimation of the mixed tangential-normal second deriva-
tives, on the boundary, follows that of Ivochkina [8], which employs the same
auxiliary function as in the uniformly elliptic case, Trudinger [14]. It will be

convenient for our calculations to write equation (1.1) in the form

(3.1) Flu} = F(Du, D*u) = f()\) = ¥(z, u, Du),
where A = (A1,...,As) denotes the eigenvalues (in decreasing order) of the
matrix
D
(3.2) C=(I-v®v)D, v= -

1+ |Dul?’

and f and ¥ are given by
(3.3) FO) =8N, ¥(z,2,0) = Uz, 2)(1+ [p") kD72,

Fixing a point y on the boundary 89 of the domain Q, we choose the coordinate
axes so that the z, axis is directed along the inner normal at y. Let £ be a C?
vector field in some neighbourhood N of y which is tangential on A N 612, and
consider the function

n—1

(3.4) w = Deu — % > (Dsu - D,u(y))?.

s=1
If u € C3(M'N Q) is an admissible solution of equation (3.1), then we show that
w satisfies an elliptic differential inequality of the form

(3.5) F¥Dijw ~ U D;w < C(|D¥| + F¥ + F D;wD;w),

with coefficients F*, ¥ given by
oF

T j

(3.6) FY= (Du,D%u), ¥'= a—‘I’(z, u, Du)
op;

and constant C' depending on n, |€|; and |Dulo, where D denotes the gradient in
R?"+1(z, z,p). To derive (3.5) we use the same coordinate system as [8], which
corresponds to the projection of principal curvature directions of the graph of u
onto R™. Fixing a point y € NN, we choose a basis of eigenvectors 7y, . .. »Tn
of the matrix (3.2) at y, corresponding to the eigenvalues A = (A1,...,\,) and
orthonormal with respect to the inner product given by the matrix

(3.7) A=1I+4Du® Du.
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Using a subscript « to denote differentiation with respect to 7o, = 1,... ,n, so
that

U = 72 Dju, Yoo = Ao = ToTd Diju,
we then obtain, by differentiation of equation (3.1),
(3.8) Dy Flu] = FDyju+ F*Dyu
= faT,iTg;Dijku - 2fa)\aTng;DiuDjku

= fa(Dku)aa - zfa)‘aua(Dku)a
= DV

where

_9of
W

Formula (3.8) agrees with formula (4.7) in [8] (for the case f(X) = Sk())) but
the proof in [8] appears incomplete (see also [21]). Observe that the right hand

— (1 n _ i_
To=(7l...,7"), a=1,...,n, F*=D,.F.

fa

side of (3.8) is independent of our choice of 7, when the eigenvalue A, is not

simple. Using (3.8) we now calculate

(3.9) FUD, 0 = F9¢,Dyijpu+ 2F9 (D) Djru + DyuF D&y,
— (Dou — Dyu(y))F” Dyjsu — FYDisuDjsu
=2forataWa — 2faratiaDru(ér) o
+ 2fa(ék)a(Drw)a + Drufa(br)ac — fa(Dsu)s
+ & Dy ¥ — (Dsu — Dyu(y)) D, ¥

where summation over s is only taken from 1 to n— 1 (all other repeated indices

are summed from 1 to n). As with the uniformly elliptic case the term
FDjuDjsu = fo(Dsu)?

is the key element to control other terms on the right hand side of (3.9). Letting

[72] denote the inverse matrix to [75], we write
(310) (Dsu)a = T;Disu = n:’\a

so that

n—1 n—1
(3.11) > falDsuw)2 = fuXd D (0%
s=1 s=1
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Now we reason similarly to [8]. Suppose for all @ = 1,... ,n we have
n—1

(3-12) > om)? =
s=1

where ¢ is any positive number satisfying
(3.13) £ < [2nl(1 + MZ)™=D/21=1 My = |Dulo.

Then we clearly have the estimate

n—1
1
(3.14) D fadi S 5 ) fa(Dauli
s=1
On the other hand, if (3.12) is not true, then
n—1
(3.15) D (P <e
s5=1
for some -y, which implies (see [8])
n—1
> () > 6
s=1

for all a # 7y where
§ = [2(n — D1 + MP)(—1/2] 7

and hence

n—1

(3.16) D fadl lz Z 2 (Dsu)2.

a#y s=1,a#y

At this point we use, for the first time in this argument, our particular form of
f so that by (2.10) we conclude, in both cases, ‘

n—1
(3.17) Z faAi < CZ fa(Dsu)?x,
s=1

where C is a constant depending on n and M;. Substituting (3.17) into (3.9)
and using Cauchy’s inequality, we thus obtain

(3.18) FDjw— V' Diw < C(|5\Iz| +) fat f,,wz)

< C(|D¥| + F¥ + F D;wD;w)
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as asserted. The inequality (3.18) can be simplified further for

(n—k+1)(k-1)
Do fa> -

Sk—1,1

> c¥l-l/m m=k—1, c=ck,l),
by (2.8), (2.5) and hence
(3.19) Fi Djjw — V' Dw < C(F* + FY D;wDj;w),

where C depends also on |13\Ill/ ™|o. But then setting

(3.20) W=1—e " —blz —y[?
we obtain
(3.21) FiDiw < U'D;w

for constants a, b depending on n, [¢|2, [D¥L/™|y and |Dulo provided diam A is
sufficiently small in terms of the same quantities.

REMARK. The precise form of the first derivative term in (3.21) is crucial
for our subsequent barrier argument. If we replace the quotient Si; by Sk then

a similar argument, using (2.11), yields
(3.22) FD;w < C|Di|

for some constant C, (as in [8]).

Barrier construction. Now let us assume that 99 is uniformly k-convex
for k < n (uniformly convex for k = n), with u = 0 on 9. Fixing £ and N as
above we select a function g € C%2(N N Q) satisfying

(3.23) g<@w omdNNQ), gy =uwy),

(3.24) F9D;;g>0 inNNQ.

By virtue of (2.16), (3.24) follows if D?g € I't(Du) and hence by (2.17), if
D?%g € T'x41(0) if k < n. Accordingly we can construct g, similarly to Ivochkina
8], of the form

(3.25) 9(z) = —aglz — y|® + (2% — 1)



PRESCRIBED CURVATURE QUOTIENT EQUATIONS 317

for appropriate constants ag, bp and ¢y, where d(z) = dist (z, Q). Having fixed

g, we then consider as a barrier

(3.26) w* =Au+g

for a further constant A to be chosen. With ¥ now given by (3.3), we then have
(3.27) FYDyw" — ¥Dyw* > m¥(z,u)(1+ |Du|?>)™?" (A - Du-Dg) >0

for A > maxynq |Dul|Dg|. By the maximum principle we then conclude w* < @
in A N, and hence

(3.28) D,i(y) < Dpw*(y),

yielding an estimate for D;pu(y), 2=1,...,n — 1, as required.

THEOREM 3.1. Let Q2 be a uniformly k-convexr domain in R™ for k < n
(uniformly convex if k = n), with boundary 8Q € C>!. Let ¥ be a non-negative
function in  x R, with ¥/™ € COL(Q x R). Then if u € C3(Q) N C2(Q) is
an admissible solution of equation (3.1) satisfying u = 0 on 0Q, we have, at any
point y € 052, the estimate

(3.29) |Dinu(y)| < C, i=1...,n—1,

with constant C depending on n, 8Q, |D¥Y™|y and |Dul.

The above argument establishes the case [ > 0 in Theorem 3.1. The case
I = 0 is covered by Ivochkina [9] and is simpler in that w* already furnishes a
barrier for inequality (3.22) when A = 0. Moreover, it is then possible to allow
u to take on arbitrary boundary values ¢ € C>1(89).

4. Normal second derivative boundary estimates

To complete the estimation of second derivatives of solutions of equation
(1.1) on the boundary 8, we need to estimate the double normal derivative
Dy,u in terms of the other second derivatives. Our argument below, which is
adapted from the case of Hessian equations [18], is new even for the case [ = 0 [9].
We will utilize the same barrier construction as for the estimation of the mixed
derivatives in the previous section and this will have the effect of restricting our
argument to the case of zero boundary values when ! > 0. Suppose thus that
u € C3(Q2) is an admissible solution of equation (1.1) in 2, satisfying u = 0 on
oN, with 9Q € C*4, uniformly k-convex for k < n (uniformly convex if k = n).
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Letting -y denote the unit, outer normal vector field on 952, we have, with respect
to a principal coordinate system at any point y € 9 ([4], §14.6),

(4.1) Djju = (Dyu)kibij, i,7 <n, Dyu=—Dypu,

where k' = (k},... ,%,_,) denotes the principal curvatures of 9% at y. Conse-
quently, the matrix C in (3.2) is given by

C,'J' = Diju = (Dvu)nﬁ,:j, 3,7 <n,
(42) Cin=Cpn; = %D,-nu, i< n,

— 1
Con = ;EDnn'u',

where

v=1/1+|Dul2 = }/1+ (D,u)2.

Note that by the maximum principle D,u > 0 on 9. Furthermore, if 4 is the
solution of the mean curvature equation

IR V()
(4.3) Si(k)=n ((l)q,)

(%)
satisfying ug = 0 on 91, we have by (2.5) and the comparison principle, u < ug

in 2, whence
(4.4) Dyu 2> Dyup 2 x>0

for some positive constant x depending on n, 2, and ¥ (provided ¥ # 0). Setting

D.u D.u
4.5 =" = Z ,
(4.5) Uy v V1+ (Dyu)?

we then have the formulae
)
(4.6) Sk(x) =U—3V,'y° 18k—1(K") Dt + V5 Si(x')

n—1
1 _ .
- FU!; 2 Z Sk_g;,;(li,)(D,'nu)2
i=1
= Ak-Drmu + Bk.,

so that equation (1.1) may be written as

_ ApDpnu+ By

= =T,
AlD'n,n.u + Bl

4.7 Fly]
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Since u is admissible, we must have
(4.8) A — AT >0
(with strict inequality if ¥ > 0), and a bound for D,,,,u will follow if the quantity,
(4.9) - =G (k) -0

is bounded away from zero. Note that (4.8) provides a complementary estimate
to (4.4) when ¥ > 0, namely

o k=)
4.10 2| =— =V,
(4.10) o= (Sk—l:t—l(ﬂ’))

Following the idea in [18], we let y € 89 be a point in A where the quantity
Yy — ¥ is minimized. It follows that the function

(4.11) 9= Du—v3(y)¥
is also minimized at y, since, by the concavity of v with respect to D,u,

(4.12) Dyu(z) = Dyu(y) = v*(y)(v(z) - 15(y))
> o%(y)(¥(z) — U(y)).

Now observe that in (3.4) we can replace that vector field ¢ by any extension
of 7y in C3(N), with the differential inequalities (3.5), (3.21) continuing to hold.
Accordingly, by the same barrier construction, we obtain the one-sided estimate

(4.13) Dpnu(y) < C

with positive constant C' depending on n, 89, |[D¥/™|; and |Dulp. Note that
unlike estimate (3.9), C depends additionally on second derivatives of ¥1/™ and
fourth derivatives of local representations of ). To estimate D,,,u on all of o0,
we must pass from (4.13) to an estimate from below in (4.8). We consider first
the case ¥ > ¥y > 0, which implies the ellipticity of F at y and hence from
(4.7),

OF  AyB — ABy

B~ SRR 2%

(4.14)

for some positive constant 6o, depending on n, ¥o, 8¢, |Dulg, |D¥|g. Conse-
quently,

(4.15) AyB; — A;B > 30
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for a further such positive constant 6o, and hence, multiplying by ¥,
Ap(B,Y — By) + By (A — AT) > 30\110.
Therefore if
1-
(4.16) Bi(Ar — A7) < 560\110,

we have
1-
Ak(Bl\I’ — Bk) > 560‘1’0,

so that by (4.7),

1 -

1
— > — — >
(4.17) A — AT > C(B;\Il Br) 2 5 kaowo,

where C is the constant in (4.13). Combining (4.16), (4.17), we thus have a lower
bound for the quantity Ax — A; ¥ when ¥ is positive on d§). For the degenerate

case, ¥ > 0, we use (4.4), which provides a lower bound for

1 X k-t /
< = —2— .
(4.18) v < ‘I’o B (m) Sk—l,l—l(ﬁ )

From a lower bound for Ay — A;'¥ at its minimum y, we thus infer from equation
(4.4) an upper bound for Dy yu on 9. From (4.1) and Theorem 3.1, we then
conclude an estimate for D?u on the boundary Q. Note that by considering a
conical function in place of ¥ in (4.3) the constant 7 can be shown to depend
only on Q and |¥/™|,.

THEOREM 4.1. Let © be a uniformly k-convezr domain in R™ (uniformly
convez if k = n), with boundary 8Q € C>'. Let ¥ be a non-negative function in
0 x R, with ¥/m™ ¢ CLL(Q x R). Then if u € C3(Q) N C%(Q) is an admissible
solution of equation (3.1) satisfying u =0 on OQ, we have the estimate

(4.19) max |D%u| < C,
an

where the constant C depends on n, 8Q, |¥Y/™|, and |Dulo.

REMARKS. (i) We can still carry out the above proof with the sum in (3.4)
taken from s = 1 to n. This method can be extended to more general functions
f than the quotient (1.2) (see [18]).
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(ii) As for the mixed tangential-normal derivatives, the case | = 0 is covered
by Ivochkina [9]. But our approach yields an alternative proof, which also ex-
tends to embrace non-zero boundary values ¢ € C31(99) when ¥ is positive on
00 x R. In this case, the quantity to be minimized on 5 is

1+ |8g)?
(4.20) Ak = %S[e_1(a¢, 02¢ + Dyuay),

where 0 is the tangential gradient in Q. An estimate for D,u then follows
by further replacement of Dgu in (3.4). Indeed, our calculations in Section 3
show that a differential inequality of the form (3.5) will continue to hold for any
function w given by

(4.21) w = g(z, Du) — g 2(D8u — D,u(y))?,
s=1

where g € C2(N xR™), provided K is a sufficiently large constant. If g is concave
in Du, then we can take K = 1 as before.

(iii) It is possible to weaken the geometric conditions in Theorem 4.1 to £
being uniformly (k — 1)-convex, by more elaborate barrier considerations.

5. Completion of existence proofs

To apply the method of continuity to the proofs of Theorems 1.1 and 1.2, we
need to designate a suitable family of problems. For Theorem 1.1, we may select
any admissible function g € C**(%Q2), with the same boundary values, such that

(5.1) 0<Flg]<V¥.

Such a function is readily constructed as a multiple of a function go € C41(0)
if ¥ < n. Then we consider the problems

{ Flul =t¥ + (1-t)F[g] inQ,

(52) u=0 on 9N

for 0 < t < 1. The same family may also serve for Theorem 1.2 or we may replace
g by ug. Clearly all our preceding estimates are independent of the parameter
t. The same is true of the remaining first and second derivative estimates ([3],
[10], [17]), so that under the hypotheses of Theorem 1.1 or 1.2, we conclude an
a priori estimate of the form

(5.3) |ul2,0 < C
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with constant C depending on n, €, ug, and ¥, and hence the unique solvability
of the Dirichlet problems (5.2) in the class of admissible functions v € C*<(2).

As mentioned in the introduction, the condition (1.6) may be replaced by
conditions involving quermassintegrals, namely, for [ > 1,

(5.4) ! sup (s, 0) / H,_,(0E) < 12X f Hy_1(9E)
l zen 8E k  JsE

for every (k — 1)-convex set E C € and some positive constant x > 0, [19]. Here
the boundary mean curvatures Hp,(OF) are given by

(5.5) Hp(BE) = Sm(p1s - - Pn—1), m=0,...,n—1,

where p1,... , a1 are the principal curvatures of E. The case I = 0 is treated
in [16].
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