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THE POINCARE-BENDIXSON THEOREMS
FOR TWO-DIMENSIONAL SEMIFLOWS

KRzvszTOF CIESIELSKI!

Dedicated to Jean Leray

1. Introduction

The Poincaré-Bendixson theory plays an important role in the study of qual-
itative behaviour of autonomous differential equations and dynamical systems
on R2. Tt describes very precisely the structure of limit sets in such systems.
Many theorems are named after Poincaré and Bendixson; the most classical one
says that when a semitrajectory is bounded and its limit cycle does not contain
stationary points, then the limit cycle is a periodic trajectory.

After the famous Bendixson work of 1901, many generalizations and improve-
ments of the theory were obtained. The theorems were generalized to 2-manifolds
(either directly or in a slightly changed version); it was proved that under some
regularity assumptions only certain particular situations may occur ((18]). Other
theorems of Poincaré-Bendixson type were proved (especially [10]), sometimes
even for non-2-dimensional phase space (cf. [21]). It was shown that the theo-
rems may be generalized to flows (dynamical systems), without differentiability
assumptions (see [11]).
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The theory of semiflows (semidynamical systems) has been developed since
the publication of the book [1]. Generally, semiflows have a much more com-
plicated structure than flows since the movement is defined only in the positive
direction.

In this paper we prove that the description of limit sets given by the Poincaré-
Bendixson theorems is also true for semiflows. However, this is not a simple gen-
eralization of similar theorems for flows, as all the known proofs of the Poincaré-
Bendixson theorems depend on the uniqueness of negative semi-solutions and
the continuity of movement in both directions. Thus, according to the results
presented in this paper, we see that the characterization of limit sets given by
the Poincaré-Bendixson theorems is not only purely topological and does not
depend on differentiability assumptions, but even depends only on the move-
ment defined for positive values of the time variable ¢. Moreover, in semiflows
there are defined negative semisolutions and negative limit sets given by these
solutions. Of course the points of the phase space do not need have negative
unicity; different solutions through one point may behave in different ways and
give different limit sets. Generally, negative continuations admit complicated
situations which are impossible in the case of flows. Nevertheless, we show that
also in this negative case a suitable “Poincaré-Bendixson type” characterization
of limit sets is true.

The proofs use many topological properties and theorems from the theory of
semiflows. One of the key results is the existence of sections in semiflows ([5]),
which enables us to give a precise description of suitable neighbourhoods of an
element of the phase space. This description leads to some properties of limit sets,
which yield the required characterization. Some methods used in this paper are
not new. In particular, in some places we apply earlier techniques due to Hajek
([11]), Serra and Tarallo ([20]), Ciesielski ([6]), Ciesielski and Omiljanowski ([7]).
Note that if we assume that a semiflow is a flow, then the proof presented here is
another proof of the Poincaré-Bendixson theorems, in some places even simpler
than the known ones, but in some places more complicated as semiflows have a
more complicated structure.

In Section 2 we set up notation and terminology. Section 3 is devoted to the
study of sections on 2-manifolds. Section 4 presents the results on intersections
of sections and limit sets, which lead to main results contained in Section 5. In
this section we prove the Poincaré-Bendixson theorems for semiflows and give
some corollaries describing 2-dimensional semiflows.

For the basic properties of flows and semiflows the reader is referred to [1],
[2], [11] and [17]. Some results and examples particularly interesting from the
point of view of this paper can also be found in (3], [4], [8], [15], [19] and [22].
The theorems in the case of differential equations are fully described for instance
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in [12], [14] and [23]. Further information on topological results used here can
be found in (9], [13], [16] and [24].

2. Preliminaries

Throughout this paper we assume that M is a given 2-manifold (without
boundary); we also admit noncompact manifolds.

By an arc (a Jordan curve) we mean a homeomorphic image of the compact
interval [~1,1] (a unit circle). A homeomorphism ¢ : [~1,1] — T will be called
a parametrization of an arc T. By ab we denote an arc with end-points a,b. A
2-manifold M is called dichotomic if any Jordan curve cuts M into two open
connected domains. For a given set X we denote its interior by Int X and its
closure by C1X.

A semiflow (semidynamical system) on M (which is called a phase space) is
a triplet (M,R,,m) where 7 : Ry x M — M is a continuous function such that
m(0,z) = z and n(t, 7(u, z)) = 7(t + u,z) for any ¢,u,z. Replacing R, by R we
get a definition of a flow (dynamical system).

Assume that (M,R,,7) is a given semiflow.

We denote [ {n(t,z) : t > 0} by 7¥(z) and we set 77(A) = Y{x+(z) : z €
A}. Weput F(t,z) = {y € M : n(t,y) = z} and F(A,A) = UH{F(u,y) : u €
A,y € A} for AC M, A CRy. We write F(A, z) instead of F(A, {z}).

A solution through z is usually defined as a function o : A — M where A
is an interval containing 0 such that o(0) = z and n(t,o(u)) = o(t + u) for
any t, u with u € A, ¢t > 0, t+u € A. If a solution ¢ is maximal (relative
to the property of being a solution, with respect to inclusion), then its image is
called a trajectory through z. Note that in such case [0,00) is contained in the
domain of solution. According to the main results of [15] and [1, Theorem 11.8]
we may assume without loss of generality that any solution can be prolongated
so as to have (—oo, 0] contained in its domain. This is because we can transform
the system by a suitable isomorphism which does not change trajectories (and
therefore their topological properties), but only changes the speed of movemerit
along trajectories. In this paper by a solution (through z) we mean a solution
with a domain equal to R, and consequently trajectories are the images of such
solutions. By a positive (negative) semisolution through 2 we mean the suitable
solution defined on [0, 00) ((—o0,0]); their images are called positive (negative)
semitrgjectories. Note that for any z there is precisely one positive semisolution
through z, however there may exist an infinite number of negative semisolutions
through z.

A set A is positively invariant if 77 (A) = A. A set A is negatively snvariant
if F([0,00),A) = A. We call the set A weakly negatively invariant if for any
z € A there is a negative semisolution ¢ through z with o(—oo, 0] c A.
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A set A is positively (weakly) minimal if it is nonempty, closed and positively
(weakly negatively) invariant and does not contain any proper subset having all
these properties.

We put Lt(z) = {y € M : n(tn,z) — y for some t, — oo} and L7 (z) =
{y € M : o(t,) — y for some t, — —oo}, where o is a negative semisolution
through z, and call them a positive and negative limit set, respectively. Generally
we call all these sets limit sets. Note that for a given point z, different negative
semisolutions can give different negative limit sets. It is known ([1]) that limit
sets in semiflows on manifolds are positively and weakly negatively invariant.

A point z is said to be

stationary if 7(t,z) = z for every t > 0,
periodic if there exists a ¢ > 0 such that #(t,z) = z and z is not

stationary,
eventually periodic if w(t,z) is periodic for some ¢ > 0,
eventually stationaty if (t,z) is stationary for some ¢ > 0.

A solution (semi-solution, trajectory, semi-trajectory) given by a stationary,
periodic or eventually periodic point is called stationary, periodic or eventually
periodic, respectively.

A closed set S containing z is called a A-section (for short: a section) through
z if there is a closed set T such that:

(a) F(\,T)=S,
(b) F([0,2)],T) is a neighbourhood of z,
(¢) Fip, T)NF(»,T)=0for 0 < p<v <2

We will call the set T a bar.

This definition generalizes the classical definition of a section in dynamical
systems. The basic properties of sections in semiflows are established in [5]. In
particular, it is proved there that for any nonstationary point z there exists a
section through z. Note that from the definition and (7] it follows immediately
that a section in a semiflow on a 2-manifold cannot reduce to a one-point set. By
a transversal we mean a section which is simultaneously an arc. A A-transversal
is a transversal which is simultaneously a A-section. When S is a transversal
with end-points a, b, we denote by S° the set S\ {a, b}.

Under our assumptions on solutions it is easy to check that F(t, F'(u,x)) =
F(t +u,z) and F([u,t],z) = n([0,t — u], F(t,z) for any ¢,u,z.

Throughout this paper we assume that (M,R4, ) is a given semiflow on a
9-manifold M. Recall that we assume that any solution is defined on R, as this
involves no loss of generality.
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3. The characterization of sections

THEOREM 3.1. Assume that S is a compact connected A-section. Then S is
an arc or a Jordan curve.

ProOOF. We will show that S has an open base each of whose elements has a
boundary with at most two points. Then from classical theorems characterizing
arcs and Jordan curves ([13, Ch. 47 and 51]) it follows that S must be a Jordan
curve or an arc, as S is a continuum containing more than one point.

Take an z € S and a neighbourhood U of z. Take a vy > 0 such that y < A.
According to [1, Theorem 4.4] we can choose v with F([0,7], z)Un([0,7],z) C U.
The set F'(y,z) is a point or an arc ([7, Theorem 3.4]). Takeay € F(y,z). Using
the Schonflies Theorem we may assume that J = #([0, 27], ) is a diameter of an
open disc D contained in U. The mapping 7(-,y) is one-to-one on [0,2y]. Note
that SN J = {z}, as S is a A-section. Denote the components of D \ J by D,
and D,;. We have:

if z € D; and 7 ([0, 6], 2) C D, then = ([0, 6], z) C D;UJ for i = 1,2. Moreover,
if ©([0,6],z) N J # @, then «([0,6],2) N J = n([a, §], 2) for some .

From the definition of section, suitable continuity properties of semiflows (|1,
4.4, [3, 1.7, 2.9]) and again (7, 3.4] we deduce that there are a u € (0,7) and a
set G homeomorphic to an open disc such that:

F([0,u],z) Un([0,u],z) C D,

F(u,z) C G,

7([0,2u],G) C D,

SNG =0 and SN~x(2u,G) =0,

z € Intw(u, G),

©(2u, G)NJ C 7((0,7), z),

GnJ c F((0,v),z).

Assume that D; N S NInt7w(u,G) # 0 for ¢ = 1,2 (if one of these sets
is empty, the proof is analogous but simpler). Take z;,z> belonging to these
sets, respectively and a y; € G with 7(u,y;) = z; (see Figure 1). Note that
([0, 2u), y;) N J C w((0,7),z). There is an arc Fryz C G such that gz N J is
a one-point set. The set 7(2u, G) is arcwise connected, so there are z;,z; € J
and arcs with 7(2u,y;) z; C 7(2u, G), 7(2u, ;) z N J = {z;} for ¢ = 1,2 (it may
happen that z; = 7(2u, y;) and in this case 7(2u, y;) z; reduces to one point). By
Z1 23 we denote the suitable segment contained in J. Define:

Cy = m(2u,11) 21 UZ1 22 UT(2u, ¥2) 22 C m(2u, G),

C2 =y 7['([0, 25]1 {yla y2})!
C=C,UC,.

The set C is a compact subset of D, z ¢ C and, according to the properties
of G, CNS = {x;,z5}, as S is a section. Take the component X of M \ C with
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ny.x)

FIGURE 1

z € X. From the construction we see that X N S is the required neighbourhood
of z in 8, as the boundary of X NS in S is equal to {z1,z2}.

From the above theorem and [5, Theorem 2.5] we get easily

THEOREM 3.2. For every nonstationary point £ € M there exists a trans-
versal through x.

In order to present the theorem characterizing precisely small neighbour-
hoods given by sections we show the following

LEMMA 3.3. If S is a transversal, then F(A,S) is connected.

PROOF. The set F(),S) is compact ([15, Theorem 3.8]). Suppose it is not
connected, i.e. there are nonempty closed disjoint sets A and B with AUB =
F(\, S). Therefore m(A\, AU B) = S, the sets m(A, A) and (), B) are compact
and closed in S, so there is an z € w(\, A) N 7(A, B), because S is connected.
This gives that F(A\,z) N A # 0 and F(A,z) N B # 0, which is impossible, as
F(),z) is a point or an arc ([7, 3.4]), hence a connected set.
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THEOREM 3.4. For any nonstationary point T there is a A-transversal S
through = with a bar T (F(A,T) = S) such that

(3.4.1) T is an arc,

(3.4.2) F(u,T) is a transversal (through w(A — p,x) for p € [0, A], through any
point of F(u— A, ) for u € [A, 2]),

(3.4.3) F([0,2X],T) is homeomorphic to a square and the boundary of F([0, 2],
T) is equal to T U F(2X, T) U n([0, 2)], {a, b}), where by a,b we denote
the end-points of the arc F(2A,T),

(3.4.4) F([0,2A],T) \ S has two components: F([0,)),T) = n((0,]],S) and
F((A2)],T) = F((0,1],9).

PROOF. Take any transversal S through x (Theorem 3.2). By [5, 1.10] we
can find a A and a T such that F(A,T) = S and F(p,T) is a section required in
(3.4.2) for p € [0,2)]; T is a bar for the A-section S. Let p, g be the end-points
of S. We may choose A with 7([0, A], p) N = ([0, A],q) = 0.

By Theorem 3.1 and Lemma 3.3 we know that F(u,T) is an arc or a Jor-
dan curve. We show that the latter is impossible. Take p,,q, € F(v,S) with
m(v,py) = p, 7(v,q,) = q. Suppose that F(v,S) is a Jordan curve; thus it is
equal to the union of two different arcs with end-points p, and ¢,. The im-
age of each of these arcs under the continuous transformation (v, -) is equal to
Pg =S, so we can find an arc J (which is a transversal) contained in ¢\ {p, ¢}
with F(v, J) not connected. This contradicts Lemma 3.3. On the other hand, if
7(v, S) is a Jordan curve then it is the union of two different arcs with end-points
m(v, p) and 7(v, q). Therefore, by Lemma 3.3, the inverse image of each such arc
by m(v,-) is equal to pg, which is impossible. The contradiction proves (3.4.2)
and (3.4.1), as m(A,S) =T and S is a A-transversal.

Denote F(2X,T) by K. According to [5] we have F([0,2)], T) = ([0, 2}, K);
it is clear that this set is connected.

Now consider the mapping 2 = 7|jg 2 xx and take any 2 € F([0,2)],T).
Note that h=*({2}) = {v} x F(v, z) for some (precisely one) v, so, as above, it
is a compact connected set. It is easily seen that the set F([0,2)],T) \ {2} is
connected. From [24, Cor. IX.2.41] used for the mapping h we conclude that
(3.4.3) is fulfilled.

From (3.4.3), using (5, 1.7] and the ©-Curve Theorem ([13], [16]) we get
(3.4.4) and finish the proof.

4. Intersections of transversals and limit sets

Throughout this section we assume that the 2-manifold M is dichotomic. We
assume that a nonstationary point x € M and a A-transversal S through z are
given, where X is taken as in Theorem 3.4.
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LEMMA 4.1. Assume that o is a solution through = and t is a real number
with o(t) € S. Then [o(t— A, t)Uo(t,t+A)NS = 0. In other words, the points
of S are isolated on o(R) with respect to the time variable t.

This is an immediate consequence of Theorem 3.4.

LEMMA 4.2. Assume that o is a solution through z. Take a t1 < t3 with
o(t;) € S, fori = 1,2 and o(t1,t2) NS = 0. Let ¢ : [~1,1] — S be a
homeomorphism with ¢(s;) = o(t;) for some s1,s2 € [—1,1]. We may as-
sume that s1 < so. Define a Jordan curve T' to be ofti,t2] U p[s1, s2]. Then
M\T has two open components 4t and Q~ such that C1Q7 is positively in-
variant and Q_ is negatively invariant (Figure 2). Moreover, if s; < sz, then
@(s2,1] € QF,0[—1,81) C 27, 0(t2,00) N(s1,82) = b and o(—o0,t1) C Q™. If
81 = 8o then the set SNt (c(t1)) has precisely one element and we may fix the
parametrization © with 9[~1,51) C U™, p(s2,1] C Q.

FIGURE 2

Proor. First assume that §; < s3. Denote by T a bar of the A-transversal
S. Using the Schonflies Theorem we may assume that § = ¢[—1,1] is a segment.
For any s € (s1, s2) there is an open disc U, centred at ¢(s) such that U, NI =@
and U, C Int F([0,2)\],T). Denote by U} the component of U, \ S which is
contained in F([0,)),T) and by U, the other component (cf. Theorem 3.4).
Put Ut = |J{UT : s € (s1,82)} and U™ = | J{U; : s € (s1,82)}. It is easy to
notice that for s # w the sets U and U} are contained in the same component of
M\T and an analogous property holds for U, and U,,. Denote the components
of M\T by Qt and @, let Ut cQt and U~ C Q™.
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We show that C1Q7 is positively invariant. According to the definition of T,
Theorem 3.4 and the construction of U+ we see that 7((0, §), w(s2)) C QF for
6 € (0,A). Now suppose on the contrary that there exists a y € CIQ* and a
up with 7(ug,y) € Q. Thus we may find a u < ug such that m(u,y) € I' and
7((u, o), y) C Q™. We have:

m(u,y) ¢ ¢(s1, 52) (as U c QY),
7r(u,y) ¢ 0’[t1,t2) (as 0'[t1,t2) C F),
m(u,y) # o(t2) = o(s2)  (as 7((0,6), p(s2)) C OF),

so m(u,y) ¢ T', which is a contradiction.

Now 2~ = M\ CIQ* is negatively invariant, which finishes the proof of the
first part of Lemma 4.2.

By the definition of I' we have either ¢(s2,1] C Q* or y(s,, 1] C Q. Sup-
pose that ¢(s2,1] C Q. Consider {w,} C (2, 1], with w, — $5. From Lemma
4.1 it follows that 7(6/2,p(wn)) € QF for large n (with 6 as above); thus
7(e, p(wy)) € T for some k and a € (0,6/2). However, (o, p(wi)) € S, so
m(a, p(wy)) € o(t1,t2) and 7(B, p(wr)) = p(s3) for some B € (a,6/2), which
contradicts Lemma 4.1 as 3 < . We have shown that ¢(ss, 1] c at,

Now we prove that ¢[—1,5,) C Q™. Suppose, on the contrary, that w[-1, 1)
C Qt. Take a v < tp — t; such that (as in Theorem 3.4) 7(v,p[s1,82]) is
a transversal. Then T' U 7([0,4], ¢(s2)) U (v, ¢[s1, s2]) forms a ©-curve and
7([0,7], ¢[s1, 82]) is a neighbourhood of ¢(s;) in CIQ*+. This gives that for
{wn} C [-1, 81) with w, — s;, we have p(wn) € 7((0,7], ¢[s1, s2]) for large n,
which is impossible as v < A.

Now we show that o(t2,00) N ¢(s1,82) = 0. If not, o(t) € p(sy, 82) for some
t > t2 and from the construction of U~ we get o(t—3,t) C U oty C 2 for small
p. However, for t — 8 > t; we have o(t — 8) € ClIQt, as CIOF is positively
invariant.

In order to prove that o(—o0,t;) C 27 it is enough to show that oty —
#,t1) C Q for some u, as Q™ is negatively invariant. But for a small 1 we have
o(t1 — p,t1)NT = @ and the proof follows by the same method as the proof that
wl-1,s1) C Q.

We have shown the theorem for s; < s;. When s; = g5 the proof is similar
but much simpler (o[t1, 2] is equal to a periodic trajectory).

LEMMA 4.3. Assume that ¢ : [-1,1] — S is a parametrization of S and o
15 a solution with o(u;) = p(04),i=1,2,3, and u; < u, a1 < as. Then:

e if o is injective, then uz < uz & ag < a3,
e if o is a solution through an eventually periodic point, then o < az =
ug < uz and us < uz = as < as.



172 K. CIESIELSKI

PROOF. Let us < u3z. By Lemma 4.1 there are ) <tz <...<ipn such that
t, = w1, tr = ug for some integer k € (1,n), us = tn, and o(t;) are the only
points of SNofu1,us). Let o(t;) = ¢(s:), 50 a2 = sk and a3 = s,. Using Lemma
4.2 we obtain sz < s3 (as mH(o(t2)) € C1Q*) and we continue in this fashion
to obtain s < sp. If o is injective we get sx < 3n. Similarly we show that if
g < o3 then ug < us.

LEMMA 4.4. Let o be an injective semisolution with domain [0, 00) or (—00,0]
and let ¢ : [-1,1] — S be a parametrization of S. Set A = {t: o(t) € S} and
define f: A — [-1,1] by f(t) = ¢~ (o(t)). Then f is a monotonic function.

The proof follows directly from Lemma 4.3.
THEOREM 4.5. If A is a limit set, then ANS® has no more than one element.

ProoF. Consider A = L7 (z) for some z and o; for A = L*(2) the proof is
analogous.

Step 1. We show that for any y € AN S° there exists {t.} with t, — —o0,
o(ty) — y and {o(t,)} C S. Let T be a bar of the M-transversal S; we have
F(M\T) = S. Let o(us) — y for un — —oco. Then, by Theorem 3.4, o(u,) €
F([0,2X],T) for large n and we can find a {t,} with |un —tn] < A and o(t,) € S.
We can assume, taking a subsequence if necessary, that o(t,) > peS. Itis
easy to observe that |u, — t,| — 0, so p =y and ¢, — —oo.

Step 2. Suppose that y,7 € S°NA, y = p(a), 7= p(d) andy # 7. Let e < &,
According to Step 1, there are sequences {t.}, {tn} with t, — —00,%, — —00
and o(t,) — y and o(t.) — 7. Let a(tn) = p(oy) and o(t,) = p(Gn). We
can find dls_]omt nelghbourhoods U,U of y,7 such that if o(8) € SNU and

o(B) € SN then B < B. Thus there is an integer mo such that p(ax) < (o)
for any k,n > myp. According to Lemma 4.4, t;x < t, for any k,n > mg. Hence
{t} and {f,} cannot converge to —oo simultaneously. This contradiction shows
that S°N A has at most one element.

THEOREM 4.6. Let A be a limit set. Then for any nonstationary y € A and
t > 0 the set AN F(t,y) has precisely one element.

PRrOOF. According to [1, 5.6, 5.15], A is weakly negatively invariant, so
ANF(t,y) # 0. Suppose that 21,22 € ANF (2, y), 21 # z2. There is an o € (0, ]
with 7([0,a),z1) N 7([0,c),22) = @ and w(@,21) = 7(e, 22) . Now take an
e-transversal R through 7(c,z1) satisfying the conditions from Theorem 3.4.
Then F(8, R) is a transversal and 7(c — 3, 2;) € Int F(]0,€], R) for a sufficiently
small B and i = 1,2. Then m(a—B,2) € F(B, R)°NA as A is positively invariant
([1, 5.4, 5.15]), which contradicts Theorem 4.5.
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THEOREM 4.7. If a limit set A does not contain any stationary point, then
the semidynamical system (A, Ry, 7|, xa) induced on A is a semidynamical 8ys-
tem with negative unicity. Thus, if we define n(t,z) for anyt <0 and z € A in
an obvious way, we get a dynamical system (A, R, w|grxa).

The proof follows immediately from the invariance and weak invariance of A
([1, 5.4, 5.6, 5.15]), Theorem 4.6 and [3, 2.12].
Using Theorem 4.6 we also obtain

COROLLARY 4.8. No limit set A contains a trajectory homeomorphic to the
figure-of-siz” (see [17]), i.e. a nonperiodic but eventually periodic trajectory.

EXAMPLE 4.9. It is possible to construct a semiflow with a limit set A con-
taining a stationary point, without negative unicity in A (see Figure 3; A is
a circle, A = L*(z), y and z are stationary, other points in A are eventually
stationary).

FIGURE 3

REMARK 4.10. Theorem 4.6 is not true in higher dimensions. Put ¥ =
{(z, 1(2),0) : z € R}U{(c, fao(2),0) : = € R} C R?, where f;(z) = max{—z, 0},
f2(z) = min{z,0}, and (¢, f;(z),0)) = (z + ¢, fi(z + t),0), s = 1,2. Now it is
easy to construct a set J homeomorphic to R, J = g(R) C R? x (0,00) and
extend a semiflow 7 to Ry x (Y UJ) so as to get a semiflow on Y UJ c R3 with
o being a solution and L*(p) =Y for any p € J.
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5. The characterization of limit sets
Throughout this section we assume that the 2-manifold M is dichotomic.

LEMMA 5.1. Let A be a limit set. If there is a periodic point x € A then
A =nt(z).

Proor. Consider any p € nt(z) and let o be a periodic solution through
p. Take a Ap-transversal through p with a bar B,, where ), is taken as in
Theorem 3.4. The set o(R) = 7t (z) is compact, so we can find s, ... ,pn € o(R)
with 7+ (z) € {Int F([0,2),,], Bp,) : ¢ = 1,...,n}. Moreover, according to
Theorems 3.4, 4.5 and 4.7, A N Int F([0,2A,,], Bp,) C o(—Ap;, Ap;) for any i.
Thus

AN It F([0,225,], Bp,) :i=1,... ,n} = 7" ()

which means that =% (z) is a component of A. Using [1, 5.5, 5.11, 5.15] we
conclude that A = n+(z), as 7t (z) is compact.

Now we present theorems which are generalizations of the classical Poincaré-

Bendixson theorems.

THEOREM 5.2. If a limit set A is connected and does not contain stationary
points, then A is a single trajectory.

ProOOF.

Step 1. According to Theorem 4.7, the function 7 defines a dynamical system
on A. Let us consider two topologies on A. The topology 7g is induced from the
topology on M. The topology 7 is given by taking for a neighbourhood base at
y € A the family {o(~6,8) : § € (0,A,)} where o is the unique solution through
y with o(R) C A and ), is taken from Theorem 3.4. We prove that 7g = Tr.

By Theorems 3.4, 4.5, 4.6 and 4.7, for any sufficiently small § there is a
euclidean neighbourhood U of y with ¢(—6,6) = UNA. Thus 7 C 7. On
the other hand, transform a small neighbourhood U of y using the Schonflies
Theorem in such way that o(—c,a) is a segment for some a. Take a family
of open balls B, with r € (0,79) for a given sufficiently small ro. Using again
Theorems 3.4, 4.5 and 4.7 we see that B, NA = o(—a;, @) for some a1, a2 > 0.
This gives Tg C Tg-

Step 2. By the assumption and Step 1, A is connected in the topology 7.
For y € A denote by o, the unique solution through y with oy(R) C A. By
Theorem 4.7, {oy(R) : y € A} is a family of pairwise disjoint sets. Clearly, for
any y € A the set o,(R) is open in 7,; thus A = U{oy(R) : y € A} must be a
single trajectory, as A is connected in 7g = 7.

THEOREM 5.3. Assume that the phase space M is equal to R?. If a semitra-
jectory (positive or negative) is bounded, then a limit set A associated with this
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trajectory is a single periodic trajectory provided that it does not contain any
stationary point.

PrOOF. The limit set A is bounded, hence compact and (by [1, 5.5, 5.15])
connected. From the previous theorem we conclude that A is a single trajectorv
given by a solution 0. We only need to show that ¢ is periodic. On account
of Step 1 of the proof of Theorem 5.2 we know that A is compact in 7, and
{o(-n,n) : n € N} is a cover of A. Then ¢(R) = A C o(—k, k) for some &,
which means that o is not injective and contains a periodic trajectory. Applying
Corollary 4.8 we finish the proof.

THEOREM 5.4. If a negative semisolution o through y is contained in any
limit set and o is not periodic, then L7 (y) may only contain stationary points.

PROOF. Assume that 2z € L7 (y) is not stationary. According to Theorems
3.4 and 4.5 there are a A > 0 and a A-section S through z with a bar T such that
F([0,2)],T)NA D p[-A,A] and AN F(A,T) = p(0) for some solution p through
z. However, by Theorem 4.7 7 induces on A a semiflow with negative inicity, so
F([0,2A],T) N A = p[—A, A]. Thus there is a sequence {t,} with o(tn) = —0co
and o(t,) — 2z, s0 o(ta) € F([0,2)],T) for large n. Hence we have o(u,) € S°
for some {un} (Jun —tn| < A,unp — —o0). It is clear that |tn — tn| — 0 and
0(us) — 2. Theorem 4.5 now yields o(u,) = 2, as g(—00, 0] is a subset of a limit
set. This gives that o is periodic.

In the same manner (using positive invariance of limit sets and Corollary 4.8)

we prove

THEOREM 5.5. If y belongs to a limit set and y is not periodic, then Lt(y)
may only contain stationary points.

The following corollary is a simple consequence of the three previous theorems
and Lemma 5.1.

COROLLARY 5.6. Assume that the phase space M is R? and let o semitra-
Jectory (positive or negative) be bounded. Then either the limit set A associated
with this trajectory is a periodic trajectory, or any semitrajectory contained in A
may contain in its limit set only stationary points.

EXAMPLE 5.7. The example presented below shows that (unlike the case of
dynamical systems) Theorem 5.4 does not remain true if we replace the condition
“o(y) CA” by “y € A” (see Figure 4). We have z; € L7 (1),z3 € L (z3) and
so om, Zj,Z3,Zs,... are periodic, all points contained in the annulus between
7+ (z;) and 7t (z;4,) are eventually periodic.
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o)

FIGURE 4

THEOREM 5.8. Ifz € L*(x) (or z € L;(x)) then x is either stationary or
periodic.

PRrROOF. For z € L*(z) we obtain the required condition using Theorem 5.5.

Now let z € L;(x) and suppose that o is neither stationary nor periodic.
Using Theorem 3.4, take a transversal S through z; as in the proof of Theorem
5.4 there is a {u,} C (—00,0) with u, — —00, 0(us) € § and o(un) — z. Put
to =0 (SO O'(t2) = l‘) and #; < 0 with O'(tz) € Sand U(tl,tz)ﬂS= 0. Let pbea
parametrization of S with cp(si) = o(t;),i = 1,2. Now, by Lemma 4.2, o(un) €
1~ (where Q- is defined as in Lemma 4.2) for large n and o(u.) € ¢[-1, 1), s0
o(u,) cannot converge to £ = @(s2)-

THEOREM 5.9. If a compact set A is either positively minimal or weakly
minimal, then it is either a stationary point or a periodic trajectory.

PROOF. By [1, 12.3, 12.9] we get L*(z) = z for any z in A. From Theorem
5.8 we conclude that z is either stationary or periodic and A is either a stationary

point or a periodic trajectory.
The existence of stationary points in flows and semiflows is usually an im-

portant problem. We end with the following

THEOREM 5.10. Assume that M is a plane or a 2-dimensional sphere. If
in the semiflow there exists a nonempty limit set, then at least one point of the

phase space is stationary.
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First we show a useful

LEMMA 5.11. If a positively invariant set B C M 1is homeomorphic to a
closed disc, then B contains a stationary point.

PROOF. For any n the mapping 7['(%,-) : B — B contains a fixed point
T, according to the Brouwer Fixed Point Theorem. We can assume that z,
converges to z € B, as B is compact. We show that z is stationary. Indeed, take
any t > 0. Then for any n there is an integer k,, with k—T;L <t< ﬁnil Hence
% — t, w(%,zn) = W(’zl—",xn) — (¢, :1:),71'(%, Zn) — &, which implies 7 (¢, z) = .

ProOOF oF THEOREM 5.10. Suppose on the contrary that no point of R? is
stationary. Assume that A is a nonempty limit set of z and take a y € A. Asin
the proof of Theorem 5.4 we can find a transversal S through y and a solution
o through z with o(t1),0(t2) € S (for some t; < t3) and o(t1,£) NS = 0.
According to Lemma 4.2 (using the notation from that lemma) and the Jordan
Curve Theorem either 2t or 2~ is a bounded domain enclosed by a Jordan curve.
Denote this region by 2. By Lemma 4.2, there is a semitrajectory contained in
C1Q2 and thus there exists a limit set contained in C1{?, therefore bounded. Using
Theorem 5.3 we find a stationary point or a periodic trajectory contained in M;
in the second case we complete the proof applying Lemma 5.11.

REMARK 5.12. The proof of Lemnma 5.11 remains correct for a set homeo-
morphic to the n-dimensional closed ball, which generalizes an analogous result
for flows (see [2, V.3.7, V.3.8]). Note that the proof given here is simpler than
the proof given in [2].

As an immediate consequence of Theorem 5.10 and the compactness of the
sphere we get

COROLLARY 5.13. For any semiflow on the 2-dimensional sphere, the sphere
contains a stationary point.

REFERENCES

[1] N. P. BHATIA AND O. HAIEK, Local Semi- Dynamical Systems, Lecture Notes in Math.,
vol. 90, Springer-Verlag, 1970.

[2] N. P. BHATIA AND G. P. SzEGO, Stability Theory of Dynamical Systems, Springer-
Verlag, 1970.

[3] K. CiesieLski, Continuity in semidynamical systems, Ann. Polon. Math. 46 (1985),
61-70.

, Kneser type theorems and Baire properties for planar semidynamical systems,
Differential Equations: Stability and Control, Lecture Notes in Pure and Appl. Math.,
vol. 127, Marcel Dekker, 1991, pp. 69-78.

[5] __, Sections in semidynamical systems, Bull. Polish Acad. Sci. Math. 40 (1992),
61-70.

(4]




178

(6}

(8]

9l
(10]

(11]
(12]
13]

(14]
[15]

[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

[24]

K. CIESIELSKI

, Negative Semi-trajectories in Planar Semidynamical Systems, Ph. D. Thesis,
Jagiellonian University, Krakéw, 1986, (Polish).

K. CIESIELSKI AND K. OMILIANOWSKI, Topological description of cuts in semiflows on
2-manifolds, Topology Appl. (to appear).

S. ELAYDI, Semidynamical systems with nonunique global backward extensions, Funkc.
Ekvac. 26 (1983), 173-187.

R. ENGELKING, General Topology, Polish Scientific Publishers, 1986.

F. HaAas, Poincaré-Bendizson type theorems for two-dimensional manifolds different
from the torus, Ann. of Math. 59 (1954), 292-299.

O. HaJEK, Dynamical Systems in the Plane, Academic Press, 1968.

P. HARTMAN, Ordinary Differential Equations, John Wiley and Sons, 1964.

K. KuraTowskl, Topology, vol. II, Academic Press and Polish Scientific Publishers,
1968.

S. LEFSCHETZ, Differential Equations: Geometric Theory, Interscience Publishers, 1957.
R. C. McCANN, Negative escape time in semidynamical systems, Funkc. Ekvac. 20
(1977), 39-47.

M. H. A. NEWMAN, Elemenis of the Topology of Plane Sets of Points, Cambridge
University Press, 1954.

S. H. SAPERSTONE, Semidynamical Systemns in Infinite Dimensional Spaces, Springer-
Verlag, 1981.

A. SCHWARTZ, A generalization of a Poincaré-Bendirson theorem to closed two-dimen-
sional manifolds, Amer. J. Math. 85 (1963), 453—-458.

P. SEIBERT AND P. TULLEY, On dynamical systems in the plane, Arch. Math. (Basel)
18 (1967), 290-292.

E. SERRA AND M. TARALLO, A new proof of the Poincaré-Bendizson Theorem, Riv.
Mat. Pura Appl. 7 (1990), 81-87.

R. SmiTH, Poincaré-Bendizson theory for certain retarded functional differential equa-
tions, Differential Integral Equations 5 (1992), 213-240.

R. SRZEDNICKI, On funnel sections of local semiflows, Bull. Polish Acad. Sci. Math. 34
(1986), 203-209.

F. VERHULST, Nonlinear Differential Equations and Dynamical Systems, Springer-Ver-
lag, 1990.

G. T. WHYBURN, Amer. Math. Soc. Collog. Publ., vol. 28 (1963).

Manuscript received November 28, 1998

KRZYSZTOF CIESIELSKI

Mathematics Institute

Jagiellonian University

Reymonta 4, 30-059 Krakéw, POLAND

E-mail address: ciesiels@im.uj.edu.pl

TMNA : VOLUME 3 — 1994 - N°1



