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Dedicated to Jean Leray

1. Introduction

Sheaf theory was created by Jean Leray during the second world war. It is
one of the most powerful tools of modern mathematics, and we hope to convince
the reader of this fact by applying sheaf theory, together with D-module theory,
to the study of the Penrose transform.

The Penrose correspondence is an integral transformation which interchanges
global sections of line bundles on open subsets U of the complex projective space
PP := P®(C) and holomorphic solutions of some partial differential equations (like
the wave equation) on corresponding open subsets T of the compactified complex
Minkowski space M (see Section 2 below for a more precise statement). This
correspondence has been studied by many authors and generalized in various
directions (let us mention in particular the books [12], [1], [18] and the papers
51, 4], [19], [20], [7]).

In this paper (which is an extended and corrected version of [2], and which
announces the main results of [3]), we will describe a new approach to the Penrose
transform in the language of sheaves and D-modules, in a general geometrical
framework.

In our opinion, this approach has several advantages: first, it allows us to
distinguish between two kinds of problems arising in this correspondence, one
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of a topological nature (sheaves), and the other one of an analytical sort (D-
modules). Moreover, working in derived categories clarifies many problems, and
we will see for instance how some difficulties encountered by many authors are
due to the fact that the Penrose transform of a D-module is, in general, not
concentrated in degree 0.

Let us describe the main features of this paper. Let

Y
(1) o N
X

Z

be a double morphism of complex manifolds, satisfying suitable hypotheses. Our

principal results are the following:

a) We give a general formula which identifies the (generalized) solutions
of a D-module N on Z and the corresponding solutions of the Penrose
transform of A/. This formula is exemplified in Section 5 where we easily
recover the results of [20] on hyperfunction solutions.

b) We give a criterion which ensures that the Penrose transform of a D-
module is concentrated in degree zero. In the particular case of the
twistor correspondence, this shows that the Penrose transform of a line
bundle @ ppyp (k) is concentrated in degree zero if and only if k is neg-
ative.

c) We give (under suitable hypotheses) an equivalence of categories be-
tween coherent D-modules on Z (modulo flat connections) and coherent
D-modules on X with regular singularities along an involutive subman-
ifold V of T*Z (modulo flat connections).

2. The twistor correspondence

Let T be a complex four-dimensional vector space, F = Fy5(T) its five-
dimensional flag manifold of type (1,2), P = Fi(T) the projective three-space,
and M = F,(T) the four-dimensional Grassmannian of two-dimensional vector
subspaces. The manifold M is identified with a conformal compactification of
the complexified Minkowski space M*, and it is possible to consider the family
of massless field equations on M* as a family of differential operators acting
between holomorphic bundles on M. This family, denoted here by (I, is param-
eterized by a half-integer A called helicity, and includes Maxwell’s wave equation,
Dirac-Weyl’s neutrino equations and Einstein linearized zero rest mass equations.
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The Penrose transform is an integral transform associated with the double

fibration
F
2) v N
P M

(where f(Lj1,Ls) = Ly and g(Ly,Ly) =Ly for L; C Ly C T complex subspaces
of dimension 1 and 2) allowing one to find the holomorphic solutions of the
equation [p¢ = 0 on some open subsets /' C M in terms of cohomology classes
of line bundles on ¥ = gf Y(U) c P.

More precisely, recall that for k € Z, the line bundles on P are given by the
—k-th tensor powers Op(k) of the tautological bundle. Set h(k) = —(1 + k/2),
and for z € Z, set Z= fg~'(2z). We then have the following result of Eastwood,
Penrose and Wells [5]:

THEOREM 2.1. Let U C M be an open subset such that
3) U NZ is connected and simply connected for every z € 7.

Then, for k < 0, the natural morphism associated with (2) which maps a 1-form
on U to the integral along the fibers of f of its inverse image by g induces an

isomorphism

P: HY(T; Op(k)) ~ ker(U; Opx))-

3. Correspondence for sheaves and D-modules

Let X be a complex manifold, and denote by dx its complex dimension. We
denote by DP(X) the derived category of the category of bounded complexes
of sheaves of C-vector spaces on X, and refer to [11] for a detailed exposition
of sheaf theory in the framework of derived categories. We make use of the six
classical operations on sheaves, Rf,, f~, Rfi, ', ®, RHom, and we use the
notation D% () = RHom(-,Cx).

From now on, we shall consider a correspondence of complex analytic mani-
folds

Y
4 v N
zZ X
for which we will consider the following hypotheses:

(H.1) f is proper and g is smooth,
(H2) (9,f): Y — Z x X is a closed embedding,.



58 A. D’AgNoLO — P. SCHAPIRA

DEFINITION 3.1. Let H € Ob(DP(Z)). We set

(5) PH = Rfig~(H),
(6) PH = Rf.g'(H),

and we similarly define PF and PF for F € Ob(D"(X)).

(This definition is not the same as that of [2].)
Note that assuming (H.1), we get a natural isomorphism for H € Ob(D®(Z)):

PH ~ PH|2dy — 2dz].

By classical adjunction formulas, such as the Poincaré-Verdier duality for-

mula, one gets:

ProPOSITION 3.2.
(1) The functor P is a right adjoint to P, i.e. for F € Ob(DP(X)) and
H € Ob(D?(Z)) we have an isomorphism:

Home(z)(PF, H) = HOIIlDb(X)(F, ﬁH)

(ii) Assume (H.1). Let F € Ob(DP(X)), H € Ob(D"(Z)). Then we have
the following commutative diagram whose lines are isomorphisms:

RI'.(Z; PD,F ® H) —  RI(X;DzF®PH)

l l

RI'(Z; RHom(PF[2dy — 2dz], H)) — RI(X;RHom(F,PH)).

Let @x denote the sheaf of holomorphic functions on X, Dx the sheaf of
rings of differential operators. Denote by DP(Dx) the derived category of the
category of bounded complexes of left Dx-modules. Following [16] (see also
[13]), we say that a coherent Dx-module M is good if, in a neighborhood of any
compact subset of X, M admits a finite filtration by coherent Dx-submodules
My, (k =1,...,1) such that each quotient My/My_1 can be endowed with a
good filtration. We denote by Modgeoa{Dx ) the full subcategory of Modcon(Px)
consisting of good Dx-modules. This definition ensures that Modgeoa(DPx) is
the smallest thick subcategory of Mod(Dx) containing the modules which can
be endowed with good filtrations on a neighborhood of any compact subset of
X. Note that in the algebraic case, coherent D-modules are good.

Denote by f,, f, and i_l the direct and inverse image functors for D-
modules. (Refer to [9], [14] or see [15] for a detailed exposition on D-modules.)
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DEFINITION 3.3. Let N € Ob(D®(Dz)), M € Ob(D(Dx)). We define the
functors P and E by
EN = i!_.‘l_le
PM =g f~Mldz —dx].

We define similarly PM and PN. We call PN the Penrose transform of N.

PROPOSITION 3.4. Assume (H.1). Then, for N' € Ob(DE,,4(Dz)), M €
Ob(DP(Dx)), the following adjunction formula holds:

RI(X; RHompy (PN, M)) =~ RI(Z; RHomp,, (N, PM)).

By the Cauchy-Kowalevski-Kashiwara theorem applied to g, and the direct
image theorem applied to f (cf. [9], [17]), we get:

PROPOSITION 3.5. Assume (H.1). Let N' € Ob(DE, 4(Dz)). Then there is

a canonical isomorphism

P RHomp,(N,0z) ~ RHomp, (PN, Ox)[dx — dy].

THEOREM 3.6. Assume hypothesis (H.1). Let N € Ob(Dgood(Dz)), and let
F € Ob(D®(X)). Then, setting

A =RI'(Z; RHomp,(N,PD%F ® Oz)),

B =RT(X; RHomp, (PN, D F @ Ox))[dx — dy],
C = RI(Z; RHomp, (N ® PF[2dy — 2dz],05)),

D = RI(X; RHomp, (PN ® F,Ox))[dx — dy],

we have the following commutative diagram whose lines are isomorphisms:
A = B
¢ = D

PROOF. Apply Proposition 3.2 with H = RHomyp,(N,Oyz), then apply
Proposition 3.5. O

REMARK 3.7. The formulation of Proposition 2.2 and Theorem 2.5(i) of
[2] was slightly different from that of Proposition 3.2 and Theorem 3.6, and a
hypothesis was missing: in [2] we should have assumed that f is smooth.
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This result allows us to distinguish between two kind of problems arising in
the Penrose transform:
e to compute the sheaf theoretical Penrose transform of F,

o to compute the D-module Penrose transform of N.

The first problem is of a topological nature, and under reasonable hypotheses
is not very difficult to solve (cf. Section 5 below for an example). The transform
PN is much more difficult to compute. For example, PN is a complex of D-
modules, and it is not necessarily concentrated in degree zero. This does not
affect the formulas as far as we use derived categories, but things may become
rather complicated when computing explicitly cohomology groups.

In the next section we will study the transform PA. We begin here with an

easy corollary of Theorem 3.6.
ForzeX,z€Zand U C X, set £=gf(z), = fg~(2), U = g~ (U).

COROLLARY 3.8. Assume (H.1) and (H.2). Let N € Ob(D}, 4(Dz)). Then

(i) (Germ formula) For z € X one has
RI(F; RHomp, (N, Oz)) ~ RHomp, (PN, Ox):[dx — dy].
(ii) (Holomorphic solutions) Let U C X be an open set such that
(7 U N7 is contractible for every z € 0.
Then
RI(T; RHomp, (N, Oz)) = RI(U; RHomp, (PN, Ox))ldx — dy].

PrOOF. (i) By Theorem 3.6, it is enough to check that PC, ~ Cz, which
follows from hypothesis (H.2) since g is an isomorphism from f~!(z) to Z.

(ii) By Theorem 3.6, it is enough to check that PCy[2dy — 2dz] ~ Cy. By
hypothesis (H.2) there is an isomorphism U NZ ~ f~*(U) N g~'(2), and hence
(7) implies that the fibers of g are topologically trivial on f ~1(U). It remains to
use [11, Remark 3.3.10]. O

Let G be a holomorphic bundle on Z, G* = homp,(G,Oz) its dual, and
consider the locally free Dz-module
DG* =Dz Rog G*.

It is possible to recover G as the sheaf of holomorphic solutions to DG*. In fact,

G ~ RHomyp,(DG", Oz).
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Let us apply the above results to the particular case of the twistor correspondence
described in Section 2. Applying Corollary 3.8 to N' = DG*, G = Op(k), we get
the isomorphisms

RI(Z; Op(k)) ~ RHomp, (PDe(—k), Ox).[1],
Rl"(fj, O]P(k)) =~ RP(U, RHompy (BDP(_k)’ OX))[]-L

where we set Dp(—k) = DOp(—k). Theorem 2.1 appears now as a corollary of
the following result:

THEOREM 3.9. For k < 0, the Penrose transform of the D-module Dp(—k)
is the D-module associated with the operator .

For instance, if ¥ = —2 then PDz(2) is the Dx-module associated with the
Maxwell wave equation. The proof of Theorem 3.9 is implicit in [5]. In fact,
Eastwood et al. work with complexes of locally free @-modules and D-linear
morphisms. This category is equivalent to that of filtered D-modules as proved
by Saito [13]. This shows that these authors indeed use D-module theory.

Note that the authors of [5] not being interested in computing all cohomology
groups, could weaken the topological hypothesis on U and simply assume that
U NZ is connected and simply connected for every z € .

4. Equivalence of D-modules

Let T* X be the cotangent bundle to X with the zero-section removed. As-
suming (H.2), let A = T3(Z x X) N (T*Z x T*X) be the conormal bundle to
Y — Z x X, and consider the diagram:

A T Z x T*X
YN e Y\
Tz X 1z X

where p;, p2 are the projections, and p§ is the composite of p; and the antipodal
map. The manifold A being Lagrangian, p, is smooth on A if and only if p§ is
immersive. We will assume:
(H.3) pa|a is a closed embedding and identifies A with a closed regular in-
volutive submanifold V' of 7*X and p$|a is smooth and surjective on
T*Z.
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Let £x be the sheaf of microdifferential operators of finite order on T*X (cf.
[14], [8], or [15] for a detailed exposition). If M is a coherent Dx-module, we set
EM = Ex ®,-1p, ™M, where 7 denotes the projection from 7" X to X. We
say that M has regular singularities on V, if so has EM. Let us recall that the
notion of regular singularities was introduced in [10]. Denote by Mod gs(vy(Dx)
the thick subcategory of Modgeoa(DPx) whose objects have regular singularities
on V, and by D% S(V) (Dx) the full triangulated subcategory of Dlg’ood (Dx) whose
objects have cohomology groups belonging to Modgrs(v) (Dx).

THEOREM 4.1. Assume (H.1)—(H.3).

(i) Let N € Ob(DE,,a(Dz)). Then PN belongs to Dhsv)(Dx)-

(ii) IfN is concentrated in degree zero (i.e. is a Dz-module), then for j # 0,
H3(PN) has its characteristic variety contained in the zero-section (in
other words, it is a flat holomorphic connection).

(iii) Let G be a holomorphic vector bundle, and recall that DG =Dz @0, G-
Then, X being connected, PDG is concentrated in degree zero if and only
if there exists x € X such that H(%;G) = 0 for every j # dy —dx.

ProorF. One first shows that P “commutes with microlocalization”. More
precisely, denoting by L, f, and f ~1 the direct and inverse image functors on
£-modules, one extends P to the category DP(€z) using the same formula as in
Definition 3.3, and using (H.3) one proves that

P(EM) = EP(M).

To prove (ii), one notices that in view of hypothesis (H.3), the Penrose transform
acting on £z-modules is an exact functor outside the zero-section. Assertion (iii)
is proved using (ii) and the germ formula of Corollary 3.8(i).

NOTATION 4.2. Denote by Modgeod(Dz; Oz) the localization of the abelian
category Modgood(Dz) by the subcategory of modules whose characteristic vari-
ety is contained in the zero-section. Note that the objects of Modgood(Pz; Oz)
are the good Dz-modules but a morphism u of Dz-modules becomes an iso-
morphism in this new category if ker(u) and coker(u) have their characteristic
varieties contained in the zero-section. We similarly define Modgs(v)(Dx; Ox)
by localizing Modgs(vy(Dx)-

Let P° be the functor H%() o P, “zero-th cohomology of the Penrose trans-
form”. This functor is well defined from Modgaoda(Pz) to Modgs(vy(Px), and
sends modules whose characteristic variety is contained in the zero-section to

modules on X with the same property.



CORRESPONDENCE FOR D-MODULES AND PENROSE TRANSFORM 63

THEOREM 4.3. Assume (H.1)-(H.3) and also:

(H.4) f is smooth, g is proper,
(H.5) g has connected and simply connected fibers.

Then the functor
P° : Modgeoa(Pz; Oz) — Modgg(vy(Dx; Ox)
s an equivalence of categories.

In other words, modulo flat connections, every good Dx-module with regular
singularities along V is the Penrose transform of a unique good Dz-module.
Notice that on a simply connected space, the sheaf of holomorphic solutions
of a flat connection is a constant sheaf of finite rank. In this sense one can
say that P° is almost an equivalence of categories between Modgood(Pz) and

Modgs(v)(Dx)-

5. Back to the twistor case

Let us now return to the twistor correspondence (2)

F
©) v N
P M
where F = F15(T), P = Fy(T), and M = F5(T). Hypotheses (H.1), (H.2), (H.4),
and (H.5) are clearly satisfied.

Let us show that hypothesis (H.3) is also satisfied. Choose local coordi-
nates (z1,Z2,Zs3,%4), (21, 22,23) on affine charts of M and P respectively and
denote by (z;£), (2;¢) the associated coordinates on T7*M and T*P respectively.
Here (1, %2, %3,24) corresponds to the two-plane of T generated by the vectors
(21,73,1,0) and (z2,24,0,1) and (z1, 22, 23) corresponds to the line generated
by (1,21,22,23) € T. The submanifold F of P x M is given by the system of

equations
T T 1
z3 Iy 21
A A =0.
1 0 Z2
0 1 z3

On the open set x; # 0 we find the independent equations

{ %] — 29X3 — 234 = O,

1-— 29T1 — 23%9 = 0.
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The fiber of A = T3 (P x M) at (z, ) is given by
Adzl + (—)\1113 - [LrL‘l)d22 + (—)\124 — [.sz)dz;g — }LZQdJIl - [1.23d.’1:2 - /\sz$3 - AZ3d.’L'4

for A, i € C. Then one checks that ps|s is an embedding and V = pz(A) is given
by the equation

Vnrt({z; z1 £ 0}) = {(z;€); &16a = &L}

In particular, one notices that V' is indeed the characteristic variety of the
wave equation. Applying Theorem 4.3, we find that any coherent Dy-module M
with regular singularities on Vis (up to a flat connection) the Penrose transform
of a unique coherent Dp-module.

In order to apply Theorem 4.1, note that for z € M, the set Z is identified
with a projective space P* linearly embedded in IP.

LEMMA 5.1. For z € M one has:
" 0 Jor k <0,
H®(%; Op(k)) = Y

#0 and finite dimensional for k > 0,
HY(%;0p(k)) is infinite dimensional for every k,
Hi(Z;0p(k)) =0 for § #0, 1 and for every k.

Although this result should be well-known to specialists, we give here a proof.

PRrOOF. Choose homogeneous coordinates [tg,21,%2,t3] € P so that Z C P is
given by the equations t; = t3 = 0. For-0 < a < b let Up = {[t]; [t1/to| > b}
and U; = {[t]; [to/t1| > a} with coordinates (z1,%2,Z3) = (t1/to,t2/to,t3/t0)
and (y1,Y2,¥3) = (fo/t1,t2/t1,t3/t1) respectively. This is a Leray covering for
Op(k)|z formed by two sets, and hence the third assertion follows.

Taking (1,2, 23) as coordinates on Uy N Uy, the restriction maps

F(U() n ﬁ; Op(k)) —>P(U0 NnU N Zi; O]p(k)) — F(Ul n .”E\; Ou»(k))
To T
are given by
ro(f(z1, x2,23)) = f(z1, 72, 73),
7‘1(9(?}1, Y2, y3)) = ‘Tllcg(wl_li 9921:1_1, 1:31:1_1)'

Take sections

T(Uo N; Op(k)) 3 f(21,22,33) = I taTi'z5as?,

a€eN3

T(U1 N%;0p(k)) 3 gly1, 42, %3) = 3 ba v u5 vl
BeNS

(10)



CORRESPONDENCE FOR D-MODULES AND PENROSE TRANSFORM 65

The pair (f,g) represents an element of I'(Uy N U1 N Z; Op(k)) if and only if
ro(f) = r1(g), i-e. if and only if
Z o, 27 x93 = Z bg zkPr=Ba~Pagfa gl
aeN3 BeN3
In particular, we get £ — 31 — B2 — B3 > 0 and hence the first assertion follows.
One has
~ F(Uo NU, NT; pr(k))
HY(z; k)) ~ —= = .
(@ Or(R)) ~ S5, Or (R)) + T (U1 T, Op(k))

Take
T(Uo UL NZ; Op(k))  h(z1,22,23) = Y ¢ al'zPal;
YEZXN?
then [h] = 0 in H*(%; Op(k)) if and only if there exist f and g as in (10) such
that h = f + g, i.e. if and only if
Z cyz TPz = Z aq 31?3 + Z bgzy Pr=FaPagfayfa
yEZxN2 aEeN3 BEN3

In particular, we notice that the elements of H'(Z; Op(k)) whose representatives
are given by z7 are different from zero (and different from each other) for k —
v2 — 73 < 71 < 0. The second assertion follows. a

It is then possible to.characterize those line bundles of P whose Penrose

transform is concentrated in degree zero.

PROPOSITION 5.2. The complex PDp(—k) is concentrated in degree zero if
and only if k < 0.

PRrROOF. In view of the previous lemma, this is a consequence of Theo-
rem 4.1(iii). O

This last result explains why many authors restrict their study to the case
of positive helicity (i.e. k < 0).

It would be interesting to prove that if M has simple characteristics on V
(in the sense of [15, Ch. 1, Def. 6.2.2]) then it is the image of a locally free Dp-
module of rank one, i.e. of DpG, for G a line bundle. This would better explain

Penrose’s result.
To conclude, we will show how Theorem 3.6 allows us to easily recover the

results of [20] on hyperfunction solutions.
Let ¢ be a Hermitian form on T of signature (+,+,—, —)}. Let us choose a

basis for T such that
6= 0 il
T \—-il; 0
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where I € M2(C) denotes the identity matrix. For A € M,(C), we have
(A%, I)¢ (IA) =0 iff A is Hermitian.
2
In other words, the local chart
(0% — M,

T3 —Tq X1 +1iTo

1 —1%T2 T3+ T4
($1,$2,$3,$4) = 1 0 s

0 1

identifies the Minkowski space M* = (R%, ¢) with an open subset of the com-
pletely real compact submanifold M of M defined by

M ={L, €M; ¢(v) =0 Vv € Ly}.

Note that M is a conformal compactification of the Minkowski space M*%. Let

us consider

F={(L1, L) €F; ¢(v) =0Vv € Ly},
P= {L1 e P ¢("U) =0Wv e Ll},

and the induced double fibration

F F
v N - v N
P M P M
Recall that M is a complexification of M, that P is a real hypersurface in IP topo-
logically isomorphic to §% x §2, and that g is locally isomorphic to a projection
P x St — P (cf. [19)).
The sheaves Ajp; and By of analytic functions and Sato hyperfunctions re-

spectively are given by

AM = CM ® th
BM = RHO?TE(DI’M[CM, OM).

In order to apply Theorem 3.6 to F' = Dy Cyy, let us calculate PCpy.

Since f~1(M) = N, we have f~!Cp = Cy. Moreover, since g is locally
isomorphic to P x S! — P, we find that PCy = Rg.Cy is concentrated in
degree 0,1 and H7(PCjy) is locally free of rank one for j = 0 or 1. Finally,
since P =~ 52 x S is connected and simply connected, we have H(PCjs) =~ Cp,
Hl (PCM) jad (Cp.
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Now we assume

(11) k<0

so that PDp(—k) is a coherent Dy-module (concentrated in degree zero) by

Proposition 5.2.
Then, as an easy application of Theorem 3.6, we find the following commu-

tative diagram whose lines are isomorphisms:
H'(P;Op(k)) — Homp, (PDp(—k), Ay)

! l
H}(P; Op(k)) — Homp, (PDp(~k), Brr)
This is Theorem 6.1 of [20].
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