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1. Introduction

Let  be a bounded domain of R" (n > 2), with C®°-boundary 99 (¢ > 0).
Consider the following problem:
@) { Au=gf(u) inQ,

u=20 on 09,

where [ satisfies the following assumption:

(A) f is a positive, C'-function on R.
By the implicit function theorem, there exist an interval I = (0, E) and a neigh-
bourhood V of 0 in the space C?° (1) such that, for any 3 € I, there exists a unique
solution 4(-, ) € V of the problem P(8). Furthermore, for 8 € I, —A—gf'(u(-, 8))
has a positive first eigenvalue. (For the proof of the above fact, see Appendix.)

Suppose, in addition, that

(B) There are constants C > 0 and 1 < p < 7 such that f(u) < C(1 + ) for
u>0,wheren=(n+2)/(n—2)ifn>2;n=+00if n=2, and
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(C) There exist constants p > 2 and r > 0 such that pF(u) < uf(u) for u > r,
where F(u) = [ f(¢)dt.

Then, by the theorem of Ambrosetti-Rabinowitz, the problem P(f) has at least one
solution %(-, 3), different from %(-, 3) € V, for any 8 € I (see [2], Remark 2.13). We
call u(-, B) a large solution of P() if 4(-, 8) is a solution of P(3) different from the
solution #%(:,3) € V. Here we note that, under condition (B), if u(-,) is a weak
solution of P(f3), then u(-, 5) must be a classical solution of P(8), by “bootstrap”
method.

In the first part of this paper, we study the asymptotic behaviour of large
solutions u(-, 3) as # — 0. We impose the following additional conditions:

(D) F(u) > uf(u)/(p+1) for u> 0;

(E) If n > 3, then either  is convex, or f(u)-u~™" is decreasing on (0, o).
For instance, if f(u) = (1+u)’ or 1+ 4" +w? (1 <7 < p < #), then it is not
necessary that € is convex.

It is known that there exists a unique large solution u(:,8) of P(8) if f(u) =
(1+u)?, 1 <p <7, and Q = B(0,1) (see [5]). For the general case, we choose,
for each # € I, an arbitrary large solution u(-, 8) of P(8) and consider the class
{u(-,B8)|B €I}

The first result is the following:

THEOREM 1. Under the assumptions (A), (B), (C), (D) and (E), for any
compact set K C 2, we have

Jim, min u(z, §) = +o0

where {u(:, B) | B € I} is an arbitrary class of large solutions of P(3).
In Section 2, we split the proof of Theorem 1 into four steps:
(a) éig}) s B oo ey = +005
(b) L) llus Bl g2y = +oo,
(c) Jim 185l B))l s e = +o0,
(d) Ain}) Iréllr} u(-, 8) = +o0, for any compact set K € .
Having obtained Theorem 1, one may ask whether these large solutions u(-, 5)

have large interior oscillation. To study this problem, we assume the following
condition holds:

(B’) there are positive constants ¢i, ¢z and p € (1,7) such that, for u > 0,
auf < flu) < el +uP).
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Then one has the following

THEOREM 2. Suppose that the conditions (A), (B), (C), (D) and (E) hold. Let

{u(-,8) |8 € (1,3)} be an arbitrary class of large solutions of P(8) and B = B(%, R)
€ N be an open ball. Then, for any sequence {B;} with lim;_,, B; = 0, either

lu(, Bl peomy

lim inf =0

imoo [Jul-, Bi)ll Lo ()

or lim;_, o, Osc(u(-, 5;), B) = +o0, where

Osc(u(-, 8), B) = sup u(z, §) — inf u(z, G).
z€B z€B

For instance, let & = B(0,1) and f(u) = 1+ vP; then for 0 < r < 1,
lim; oo Osc(u(-, B;), B(0,7)) = +o0, where u(:, 3;) is a large solution of P(3;) and

limi_,oo ﬁi = 0.

REMARK. In Theorem 2, one may replace B by any smooth subdomain D C
D C , and the result still holds.

For the case where f(0) = 0, for instance f(u) = uP or u"+u? (1 <7 <p < 7),
one can prove, in the same way, the following:

THEOREM 3. Suppose that f is a nonnegative C*-function on R with f(u) =
o(u) as v — 0 and that the conditions (B), (C), (D) and (E) hold. For 8 > 0,
let u(-, B) be an arbitrary nontrivial solution of P(B). Then, for any compact set
Keq,

pl-ilir%) min u(z, B) = +oo.

Suppose, in addition, that the condition (B') holds. Then, for any sequence

{ﬂi} with lim;_, . B; = 0, either

ul:, Pi o0
By _

0
imoo [[u(y Bi)ll Lo ()

or lim;_,o, Osc(u(-, 3;), B) = 400, where u(-,B;) is a nontrivial solution of P(8;)
and B= B(z,R) Cc BC .
REMARK. For the case where f(u) = e*, the result is very delicate (see [7]).

In the second part, we study the asymptotic behaviour of solutions u(-,3) of
P(B)as f — 3. We suppose that

(A’) f is a convex positive Cl-function on R.



296 J.-R. LEE

(F) There exist constants a > 0 and ¢ > 0 such that lim, o, f(u)/u = a and
flu) 2 au+cforu>0.
(For instance, f(u) = vuZ+1or u+e )
The first result of the second part is the following:

THEOREM 4. Under the assumptions (A’) and (F), we have:

(1) P(B) has a solution for B € (0, E), where § = A1(—A)/a and A1(—A) is
the first eigenvalue of —A with zero Dirichlet condition on Q. P(8) has
no solutions for 8 > E

(2) Uniqueness of solution of P(8) for 8 € I =(0,).

(3) For any compact set K C Q, lim;  sminzex u(z, B) = +o0.

(4) {u(,8)/|ul-,B)ll L2y} converges strongly to 1 in H'(Q) as § — 8, where
w1(z) is the first eigenfunction of —A with zero Dirichlet condition on 6.

REMARK. (i) In Theorem 4, it is not necessary that {2 is convex.
(ii) For the case where lim, o |f(%) — (au + ¢)| = 0 for some ¢ < 0, one can

find some results in [6].

Next, for the case where f is concave on (0, o), for instance, f(u) = 2+u—e™%,
we have the following:

THEOREM 5. Let f be a positive concave C-function on Rt with lim, o f'(u)
=a > 0. Then:
(1) P(B) has a unique solution u(-,8) for § € (O,E), where 8 = Ai(=A)/a.
For 8> B, P(8) has no solution.
(2) For any compact set K C Q, limg | smingex u(z, B) = +oo.
(3) {ulB)/llul Bl L2(qy} converges strongly to ¢1 in HY(Y) as 8 — B, where
1 1s the first eigenfunction of —A with zero Dirichlet condition on 5.

Finally, for general “almost linear” functions, for instance f = 2+« + sin u, we
Y, g

have the following:
THEOREM 6. Let f be a positive C2-function on R. Suppose that there are
positive constants a,b,c and d such that, for u > 0,
au+c< f(u)<au+b and |f'(u)| <d
Then:

(1) For < 8= M(—=A)/a, P(B) has at least one solution u(-, 8). For B> j,
P(B) has no solution. There exists an interval (0,8) such that for B €
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(0,6), P(B) has a unique solution. If f(t)/t is strictly decreasing on RY,
then 0 = ,5
(2) For any compact set K C Q, limg  zmingex u(z, 8) = +oo.

(3) {u(-,ﬂ)/“u(-,ﬂ)lle(n)} converges strongly to ¢; in H'(Q) as 8 — B,
where , is the first eigenfunction of —A with zero Dirichlet condition on

onQ.

ACKNOWLEDGEMENTS. I am grateful to Professor H. Brézis for this interesting
problem and some important observations. I also thank Professor Fon-Che Liu for

advice.

2. Proof of Theorem 1

2.1. First we claim that limg_,o |u(-, B)|| oo () = +00
Suppose, by contradiction, that there were a constant C' > 0 and a sequence
{B:} such that
lim §; =0 and sup ”U(‘;ﬂi)”z,m(g) <C.

i—00 i

Since f(u) is a C'-function on R, for ¢ € (1,00)we have £ (u(, Bi))l Lagy < C,
and hence, by the LP-estimate for solutions of P.D.E.,

Jim flu(, B)llwae(e) = lim Gill £ (u(; B:))llLay = 0.
By the Sobolev imbedding theorem, we see that
Jim Jfu-, B0)gr.o gy = O-
This implies again, as above, that
Jim Jfu, B0}l gao gy = 0.

Using the fact that (., 8) is the unique solution of P(3) that belongs to the neigh-
bourhood V of 0 in C%7(2), we conclude that u(-, ) = 4(-, 8) for large n. This
contradicts the definition of a large solution u(-, 3) of P(B).

2.2. Next we prove that limg o [|u(-, B)|| g1(q) = +o0.
Assume first that n = 2. It is known that, for ¢ > 1,

”u”Le(n) < C)|Dul| L2 qy-
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Suppose, by contradiction, that sup; |[Du(-, 8)||z2(q) is bounded by C for some
sequence {£;} with lim;_,o, B; = 0 Then |ju(-, 6;)||z+(q) < C(g) for ¢ > 1. From the
LP-estimate, we deduce that for any g > 1,

(-, B)llw2say < ClAU(:, Bi)llLaa) = CBill £ (ul-, i)l Lacery-
By the condition (B), we see that for ¢ > 1,
luC, B)llwa.eqay < CBi(L+ llu(, Bi)l o)) =0 asfi—0.

By the Sobolev imbedding theorem and the LP-estimate for solutions of P.D.E., we

have
4,13& ||u(',ﬁi)”cl-a(ﬁ) =0,

which implies again, as above, that
Jim Ju(:, Billcz.0 gy = O,

a contradiction.
Assume that n > 2. Using (B) and the Sobolev inequality, we have

0< [ V(e do=p [ fu(z,p)-u(z, ) do
- < cﬂ{/ﬂu(m,ﬂ) dac+/ﬂu(:z:,,6‘)”+1 d:z:}

< cﬂ{( [ vut@ o) az) - (f |Vu(w,ﬂ)|2dx)(p+l)/2} .

This implies that, for all 8 € 1,

1< cﬁ{( /Q Ve, ﬂ)lzdm)_1/2+ ( /ﬂ Vs, ﬂ)|2dz)(p_1)/2}.

Hence, for any sequence {0;} with lim; o 3; = 0, either
li i =0 = 00.
Py -, Billl g2y or 00
Suppose, by contradiction, that

tli)nélo lu(, Bill gy =0
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for some such sequence. Then, by the Sobolev inequality,
}E{.lo flus(- ﬁi)“zﬁn/(n—a)(n) =0.
Now, using (B) and the Hélder inequality, we see that
(R) /Q —Au(z, ;) - u(z, )3 dz = /Q F(ul(z, ) - u(x, 6;) ™ do
<cp; {Lu(zaﬁi)% dx +/Qu(m, ﬂi)m—% dx}

Scﬂi{/nu(x, ﬁi)f—fz dz + [-/Q u(z, ﬂi)(p—-l)-% d:n] &

n—2

NE AN I
X [/{)u(x,ﬂz) dx} }

On the other hand, using the Sobolev inequality, we also see that
(L) / _ Au(w,ﬂ,i) . U(.’I), ﬂi) 2 s
Q
2n 2n__
=/n ( —2)' Vu(z, 5;)|2u(z, 3) 2 1 d

n

— Cn) / IV (u(z, 5;) 3D+ gy
Q

n—2

n

> @) [ Jua, g HF DS i)
o
Set 6(0) = ;2% and 6(1) = (6(0) + 1)-25, note that §(0) > 2, §(1) > 3 and
1 2n
5(1) = [5(5(0) “1)+ 1] e

Combining (R) and (L), we obtain

299

\8(0) n
(*) 1 S C(n’ Q)ﬁi { fﬂ 'Ur(xs ﬂ%) dz + [/ u(m, ﬂi)(p_l)n/2 dz:l 2/ } -
Q

=
o (e, ) ® da] """
From (p — 1)n/2 < 6(0), it follows that
L flu(:, Bi)ll po-1mr2g) = 0.

Then from (), we have

Jim [fu:, 6:)llzscs ) = 0.
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Repeat this process n times to obtain for any & > 0,
lim [ju(, B:)|l Loy =0
1—00

where 6(k + 1) = (6(k) + 1)25. Note that 6(k + 1) = [3(5(k) — 1) + 1]:22.

We also note that 6(k) > k+ 2 for any k > 0. In particular, §(K) > np/2, if
K > (n? - 2n +8)/(2n —4). By the Sobolev inequality and the LP-estimate for
solutions of P.D.E.; we see that

lu(, Bl ooy < CNuls Be)llwa.scrrn(ay
< ClBif (u(:, Bl Lsrrm(e)
< CBill1 +u(, Bi)l| s (@)
< CBi{1 + [lu(, B)ll Lscor oy} — O as i — oo.

This contradicts the fact that
Tim [u(-, Bi)ll Lo () = +00,
and therefore completes the proof of our claim.

2.3. Now we prove that limg o ||Bf(u(-, B))|| 1) = +o0.
Using the Pokhozhaev identity and the condition (D), we see that

% /60 (%(w,ﬂ))z(ﬁz - %) dS;

n—2
=n [ pPu(ep)ds - 252 [ [Vu(z. o) ds
> 27 [ Brtute, p)ute, B da - "3 | Vulo, o) iz

- (55-252) [P as >0

where 7 is the unit outward normal vector at £ € 9. From limg_o [[u(-, )|l g1 () =
400, we deduce that

9 2
lim /a ) (a—::(m, ﬂ)) (fiy - £) dSy = +00.

B—0

To show that limg_.q [, Bf(u(z, B)) dr = 400, we need the following two lem-
mas.
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LEMMA 1 ([3], [4]). Let u be a solution of the problem

—Au=gf(u(z)) in,
u=0 on 09

Suppose that the condition (E) holds. Then there ezist positive constants g, T and
¢, independent of u, such that, for allz € Q. = {z € Q|dist(z, Q) < €}, there ezists
a measurable set I, such that

(1) measure (Iz) > r;

(2) I, CQ—Qpo;

(3) u(z) £ Cul(y), for ally e I,.

LEMMA 2 ([1]). Let u be a solution of the problem

~Au=f(z) inQ,
u=0 on Of).

Let W C Q be o neighbourhood of 9S). Then there exists a constant C > 0 such
that, for allg < n/(n—1) and a € (0,1),

[ullwr.aqe) + I Vullgomany £ CUIFllL @) + 11l Lo urry)-

Now we show that limg_.o [, Bf(u(z, 8)) dz = +00. Suppose, by contradiction,
that there exist a constant Cy > 0 and a sequence {3;} with lim; ., 8; = 0 such
that

sup [ fuf(u(z, ) do < Co,

that is,
ou

<0,
a0 On <G

(zvﬂi) dSz:

sup
i
Let ¢; be the first eigenfunction of —A with zero Dirichlet condition on 8%2:

—Ap1(z) = Mp1(z), p1(z) >0 inQ,
e1(z)=0 on 9.

We see that, for all 4,
Ipi = [ @, B)p(a) do = [ ~aut@ 8p1(@) s

=/s;ﬂif(u(z,ﬂi))Qol(z)dmSrzﬂgg‘;ol(x)'/Qﬂif(u(xaﬂi))dm

< 001;1635(%(-’17) =C.
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This implies that, for all compact sets K C .

sgp/Ku(m,,Bi) dz < rcc}(?{—) = C1(K)

where C(K) = mingex ¢1(z). By Lemma 1, for all ¢ and for all z € 0./, we have

u(e,6) < 2 [

Ed

c c . -
By < 2 [ ulw )iy < S0i@) = 03,
r Qo r
where Qg = I,. (Note that Q € Q.) This implies that
ZEQ5/2
sup "ﬂif(u('aﬁi))”z,m(ne/z) < Cs.
2

Then, by Lemma, 2,
sup || Vu(-, Bi)llco(a) < Co + Cs,

which implies that

ou 2
SI}P/ ('5—(13, ﬁi)) (fiz - £) dSz < Cy,
o0 n

3

a contradiction.
2.4. Finally, we prove that, for any compact set K C {2,

Jim min u(z, ) = +oco.

Set Jg = A1 [, u(x, B)p1(x) da. Tt is clear that Jg = B [, f(u(z, 8))¢1(z) dz.
We claim that limg_,g Jg3 = +00. Otherwise there would be a constant C' and
a sequence {3;} with lim; ., 8; = 0 such that

sqp/)qu(.'z:, Bi)pi(z) dz < C.
As in the proof in 2.3, this implies again that
sup [|8;.f (u(:, B:))ll Lo (n, ) < €

and .thus we see that, for all i,

[ Bistuta, p)) do = | Atz p)) o+ / B:f (u(z, ) de
(7] Qe 2

Q-2

< Billf (s Bl oo, ) * 122l

! B (u(z, B:))or (2) dos < C.

min T N
setotl, v1(z) Jo Qo2
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This means that
sup 18 f (w(-, Bl L2y < C,

a contradiction. Therefore we have limg_,q Jg = +00.

Now let G(z,y) be the Green function of —A with zero Dirichlet condition
on 9. By Hopf’s lemma, for all z € € there exists a constant r(z) such that
G(z,y) > r(z)p1(y) for y € Q. Thus, for any compact set K C €, there exists a
constant 7(K) > 0 such that G(z,y) > 7(K)pi1(y) for z € K, and y € Q. Finally,
for any given compact set K C (2, we choose, for any 8 € I, z(8) € K such that

u(z(6), f) = min u(z, 5).

Then
u(w(8),8) = [ G(a(8),1)8f(uty B))dy
> r(K) [ 81w, 8))er iy
=r(K)J(B) = +o0  asf—0,
that is,

li
S aI:Iéln u(z, B) = +o0

for any compact set K € (.

3. Proof of Theorem 2

Suppose that
Bl e my
lim inf ————=*

1 =co > 0.
imoo flu(, Bi)ll oo gy

We shall prove that
lim Osc(u(-, 5;), B) = 400

In Section 2, we have proved that
},ig}] l[u(:, B) || g2 @y = +o0
From (B’), it follows that

éin%)/,Bu(:lc,ﬂ)’”'"1 dz = +oo.
Q
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By (B’) one sees that

clﬂfnu”"'l dr < /&; |Vu|? dz
~ [ Bfwuds < pes [ (wt )z
Q Q

1/(p+1)
< Bea (/ up+1d2:) +/'u,p+1dm ;
Q Q

_ u@ph)
(8 fuptl da]?
Then c; < |[v(:, B)l| g1(q) < 2c2, for B small.

Suppose, by contradiction, that theré were a constant M > 0 and a subse-
quence of {§;}, still denoted by {8;}, such that, for all ¢, Osc(u(-, 5;),B) < M.
Since [ju(-, B)|| 2y < 2c2, there exists a subsequence of {v(-, 4:)}, still denoted by
{v(-, )}, and a function 7 € H'(f) such that

Vu(-, ;) = V& weakly in L3(9),
v(,5;) -7 strongly in L?(Q2) and almost everywhere,

Let
v(z, ) =

as i — oo. We claim that ¥ # constant a.e. in B. Suppose, by contradiction, that
¥ = constant a.e. in B. Then V7 =0 in B. Let ¢ be the solution of the problem

—Ap =My, >0 in B= B(Z,R),
p=0 on JB.

By Green’s theorem, we have

— /1; o(z)-Av(z, ;) dz = /B Vo(z)-Vu(z, 3;) dz — /B V(z)-0dz=0 asi— oo.
On the other hand, we see that, for all 4,

a1B; [p p(x)u(, B;)F dz

1B: foula, B+ da)

Since Osc(u(-, 8;), B) < M for all i and lim;_,co min 5 u(z, ;) = +00, we have,

for i large,

—/ o(z) - Av(z, B;) dz >
B

2 axu(z, 8;) < maxu(z, 5;) < 2minu(z, 5;).
2 z€) reEB zeB

From the maximum principle, it also follows that

flu(: ﬂi)”z,oo(g) < C”ﬂf(")”z,oo(n) <cf(1+ ”u”iw(n)):
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which implies that there exists a constant c3 > 0 such that, for 8 € (0, 3),
1< C3:8i”u("ﬁi)| i:ol(n)-

Hence we see that, for all i sufficiently large,

1/2
(8 [wrr1ae) " < B ZE 0

— 1/2 ,
< (csBillullfoey) 'ﬂil/z||“||§4p°4‘:(1!)’2/)2 ‘1

< caBil|ull e () - 192

2 P
< caf [— min u(z, m)} )

Co zeB
9 P
< cuf; [— _min U(-’E,ﬂz‘)] Yy
Co zeB(%,R/2)
1
minzeE(s,R/z) p(z) B(%,R/2)

< 67/ Biu(z, B;)F o(x) dz,
B(3,R)

Biu(z, B;)P p(z) dx

which implies that

C_] < C1 fB ﬂiu(ma ﬂl)ptp(:l:) dz

" (B fqule, B d)

< —/ o(z)Av(z,B;)dz -0  asi— oo,
B

0<

a contradiction. Thus 7 # constant a.e. in B. Since

/ﬂiup+1d$—>00
Q

and

u(z, 3;)
[f Byupt? dax] ok

we have Osc(u(-, 5;),B) — +00 as ¢ — o0, a contradiction. This completes the

— U(z) a.e. in B, as i — oo,

proof of Theorem 2.
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4. Proof of Theorem 3

By the theorem of Ambrosetti-Rabinowitz, we see that, for 8 > 0, P(8) has at
least one positive solution u(-,3). Since f(0) = 0 we see that, for 3 > 0, u = 0
is a solution of P(#). By the implicit function theorem, there exist an interval
I = (0,0) and a neighbourhood V of 0 in C%°(Q) such that for 8 € I, P()
has a unique solution v(-, ) that belongs to V. Hence v(-,3) = 0. This implies
that there exists a constant C' > 0 such that if u(-,3) is a nontrivial solution of
P(B) for B € I, then ||u(-, 8)|lc2.c@ > C. Then we can prove, as in 2.1, that
limg_o ||u(", B)|l oo gy = +o0. Following the proof of Theorems 1 and 2, one can
easily complete the proof of Theorem 3.

5. Proof of Theorem 4

We split the proof of Theorem 4 into four subsections.

5.1. First we prove that 3 = A;(—A)/a, where A;(—A) is the first eigenvalue of
—A with zero Dirichlet condition on 8€). Furthermore, we show that the problem
P(3) has no solution.

Consider the problem

—Au = fB(au+b),u>0 in{,
Q®) { u=0 on 0B,

where a and b are two arbitrary positive constants. It is known that, for 8 €
(0,A1(—A)/a), Q(B) has a unique solution, and that for 8 = A (—A)/a, Q(B) has
no solution. Using the assumptions (A’) and (F), one can find a constant b(> c)
such that, for any u > 0,au + ¢ < f(u) < au + b. Now we use the supersolution-
subsolution method to prove 3 > A(-A)/a.

For B € (0,A\(—A)/a),Q(8) has a unique solution, which is obviously a su-
persolution of P(3). On the other hand, 0 is a subsolution of P(8). Therefore
P(B) has a solution u(-, ). Since P(8) does not have a solution for 8 > 3 (see
Appendix), we have 3 > A1(—A)/a. We claim that P(A1(—A)/a) has no solution,
and this implies easily that 3 = A1(—A)/a. Suppose, by contradiction, that w is
a solution of P(A;(—A)/a). If ¢ > 0, we see that w is a positive supersolution of

QM (-4)/a):

Q(Ai(=4)/a)

—Au=)\1(—A)u+c#,u>O in Q,
u=20 on 0.
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Since 0 is a subsolution of Q(A;(—A)/a), we conclude that Q(A;(—A)/a) has a
positive solution. This is absurd by the Fredholm alternative. If ¢ = 0, that is,
f(t) = at for t > 0 we calculate as follows:

/Q/\lw(m)cpl(:):) dx=‘/(;—A<p1(x)-w(z)dz
= [ ~Au@) - er@)do = [ 25w do
Q Q@
ZL%-aw(z)gol(w) d:z:=/s;)\1w(:z;)<p1(z) dz

where A1 = A1 (—A).
This means that

[ Raw(z) - fw@Nei(@)ds=o.

Q

It follows that f(t) = at for t € (0, max,cq w(x)), which contradicts the assumption
f(0) >o0.

5.2. In this subsection, we prove the uniqueness of solution of P(3) for 8 €
0,5).

Suppose, by contradiction, that there exists a solution (-, 3) of P(B) different
from the minimal solution u(-, 8) € V. Then A(8) = A1 (—A—Bf'(v(-, 8))) < 0 (see
Appendix). Let @ be the solution of the problem

-0~ Bf'(v(-,0))0 = A(B)¢ inQ,
>0 in Q,
=0 on 9.

Since 8 < B = A (—A)/a and f'(z) < a for z > 0, we obtain

Bf'(w( B)) + A(B) < Ba+ A(B) < Ba < (-A).

This implies that
{ Af+ (Ba)d >0 in 9,

=0 on 9.

By the maximum principle, 8(z) < 0 for z € 2, a contradiction.

5.3. Now we prove that, for any compact set K C Q,

N . _
ﬂl_'r%ine% u(zx, B) = +oo
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which implies that

imoo Jo© [lul:, Bi)ll 2y

= /\1(—A)/nz7(m)W(:c) dr  for any W e C§°(Q).

W(z)dz = fa /Q ()W () da

Therefore we obtain
Jo Vi(z)VW () dz = M (—A) [, ¥(z)W (z)dz YW € C§(R),
720 ae. in Q, =0 on 99,

2l L2y = 1,
which implies that ¥ is the first eigenfunction of —A with zero Dirichlet condition
on Q. Furthermore
o [lu(, Bl a llu(, B)ll 2 ()
< / Mg(x,ﬂ) dz,
a llu(, Bz g
which implies that

. . Bif (u(z, Bi))
(H) ilgg/ﬂle(m,ﬂ)l w=h Q ||u(',ﬁi)||1,2(n)v(x ) de

= (=) /ﬂ #(z)? dz = M(—A) /Q o1(z)? dz
= [ IVei(o) da.
Q

By (H) and the fact that Vu(-,8;) — Vi(-) weakly in L%(Q) as i — oo, we
conclude that Vu(-, 3;) — V1(-) strongly in L%(Q) as i — co.

6. Proofs of Theorems 5 and 6

6.1. Proof of Theorem 5. Using the supersolution-subsolution method as in
5.1, we see that, for 3 < 8 = A1(—A)/a, P(B) has a minimal solution u(-, 8), and
that for 8 > 3, P() does not have a solution. To prove the uniqueness of solution
of P(B) for 8 < f, we first note that, under our assumptions, f(t)/t is strictly
decreasing on (0,00). Let %(:, ) be the minimal solution of P(8) and u'(:, 3) be
another solution of P(5). Then

{ —Au = gf(1),
—Au' = Bf(u),
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n/ {u, a}d 0

Since ' > % > 0 (see Appendix) and f(t)/t is strictly decreasing on (0, 00), we

which implies

obtain 7 = v, a contradiction.
For B € (0, E), let v(-, ) be the solution of the problem

{ —Au = f(au+ f(0)) inQ,

Qs u=0 on 90.

By Theorem 4 we see that, for any compact set K € (2,

lim min v(z, 8) = +00.
p—p=eK

From the supersolution-subsolution method, it is clear that u(-, 3) > v(-, ). Thus

we have proved (2). Finally, as in the proof of 5.4, one easily can obtain the

conclusion (3).

6.2. Proof of Theorem 6. As usual, by the supersolution-subsolution
method, we know that, for 8 < 3, P(B) has a minimal solution u(-,); and for
B > B, P(A) has no solution. By the implicit function theorem, there exist an
interval I = (0,6) and a neighbourhood V of 0 in C%7(9) such that, for 3 € I,
P(B) has a unique solution w(:, 3) that belongs to V. Let v(-, 8) be a solution of
P(3). By our assumption,

. 2
0< /ﬂ Vo(a, B)* da
< pa [ o(a, ) do+ 5 [ o(zp)do

1/2
S)\l( A)/Iva,@)| dac+>‘1 1/2(/ |Vo(z, 8)|? dz-) ,

which implies, for 8 < %,

/ Vo(z, ) dz < cf.
JQ

Thus
éig}] lo(, Bl g1y = 0,

which implies, by the LP-estimate for solutions of P.D.E., that

Jim [, )l g gy = 0.
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Therefore v(-, ) must be in V for small 8, and completes the proof of uniqueness
of solution of P(@) for small 8. If f(¢)/t is strictly decreasing on R, we prove, as

usual, that P(3) has a unique solution for 3 € (0, ). Finally, one can easily prove
(2) and (3) as usual.

7. Appendix

Here we recall some well-known facts about the problem

—Au=0f(u) inQ,
PA) { u=0 on 99

(see [2], [5])-

THEOREM. Let f be a convez positive C2-function on R with lim,_, f'(x) > 0.
Then:

(1) there ezist a mazimal interval I = (0,0), a neighbourhood V of 0 in
C%7(Q2), and a unigue C*-mapping A from IU{0} into V such that A(8) =
u(-, B) is the unique solution of P(B) belonging to V, and —A—Bf'(u(-, B))
is a bijective mapping from C%°(Q) to C%°(Q);
(2) M(=A-Bf'(u(-,8))) >0 for e I;
(3) u(~, ) >0, and §4(-,8) > 0;
4) g < A1(—A)/a, where a = infiso f(£)/t;
(5) P(8) has no solution for 8 > f;
(6) u(-,0B) is the unique solution such that A (—A — Bf'(u(-, 3))) > 0.
Furthermore, if v(-, B) is another solution of P(3), then v(z, B) > u(z, B) forx € Q.
(Hence we call u(-, ) the minimal solution of P(8).)

PROOF. (1) Let X = {u € C*°(Q) |u=0on 2} and Y = C%°(Q). Define
F:XxR—Y, FfupB)=—-Au—Bf(u).

Since Fy(0,0)v = —Aw for v in X, we have the conclusion (1) by the implicit
function theorem.
(2) Because 8 — u(-, 8) is a C'-mapping on I,

M(B) = A=A — BF (-, 8)))
= inf { / (le(x,ﬂ)F—ﬁf’(u(-,ﬂ>>v2(z>>dz}

lvll 2=1
vEH ()
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is a continuous function on I with A;(0) = A;(—A) > 0. On the other hand, we
note that for g € I, \;(3) # 0. Otherwise, there would be a w # 0 in X such that
—Aw - Bf (u(-, B))w(x) = 0,

which contradicts the fact that —A—8f/(u(-, 8)) is bijective. Therefore we conclude
that A;(8) >0 for B I.
(3) Since u(-, B) is a solution of P(3) and 8 — u(-, 8) is a C'-mapping on I, we

have
(e8) { —A(g—g) — B (u( B) 8 = f(u(,B)) n
g% =0 on 9.

By (2) and the fact that f(z) > 0 on R, we see that du/08 >0 for B € I, x € Q.
If %[;-(z, B) = 0 at some point Z € €2, then

8 (Ou,_ _
e (%(l'a ﬂ)) =0,
i=1,...,n, and the matrix
N A
(3$i3$j (%)(m’ﬂ))

is positive semi-definite. On the other hand, from (#%),
ou ,_ -
—A%(maﬂ) - f(u(ma ﬂ)) > 0,

a contradiction. Thus g—g(x, B) > 0 on Q. From u(-,0) = 0, it follows that u(-, ) >
Ofor gel.

(4) We note that, under our assumptions, for any € > 0 there exists b(e) >0
such that f(z) > (a — &)z + b(¢) for z > 0. Using the supersolution-subsolution
method as in 4.1, we find that 3 < A1(—A)/(a —¢€) for € > 0, which implies the
conclusion (4).

(5) Suppose, by contradiction, that there exist B>pBeand%e C?%?(Q) such
that v is a solution of P(,l?) Since f is convex, we have, for § € I,

@ — A®@ — u(-, B)) — BF' (u(- B)(@ — ul-, B))
= Bf (@) — Bf (u(-, B)) — Bf (u(:, B)) (@ — u(-, B))
> B{f(®) — f(u(-, B)) — f'(u(-, )@ - ul-, 6))}

20,
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which implies, by (2), that ¥(z) > u(z, ) for z € Q and for 8 € I. By (3), L?-
estimate of solution of P.D.E. and the Ascoli-Arzela theorem, we infer that u(-, 3)
converges to a C?-function %(-) as 8 — 3, and that @(-) is a solution of P(3).
Since I = (0, E) is the maximal interval where the property (1) holds, we have
A1(—A — Bf'(u(-,B))) = 0. That is, there exists a W in H! () satisfying

—AW ~ Bf'(@(-,f)W =0 inQ,
W>0 in €,
W=0 on 0.

From (1), it also follows that —A(@ — &) — Bf'(@)(@ — @) > 0. Then we have

0< [(-A@-DW - Fr @@ -DW)ds
= /((6— W) (—AW) - Bf (W - (3 — &) dz = 0,

which implies that

—A(® - %) — Bf' (@)@ — %) =0,

This again yields

~A®® ~ @) = B (@)@ - 8) < Blf @) — f@)] < Bf(®) - B (@) = -A®G — 7).

Hence Bf(ii(z)) = Bf((z)) for z € Q. Letting z — 89, we obtain 8 = 3, a

contradiction.

(6) Suppose that, for # € I, v(-, B) is a solution of P(3) different from u(-, 8) =

A(f). Then, since f is convex, we see that

—A(v — ) = Bf'(w(B)) (v — u) = B[f(v) — f(w) - f'(u)(v—u)] 2 0.

From (2), it follows that v(-, ) > u(-, 8). At the same time, if A\;(A—Bf'(v(-, 3)) >
0, we prove in the same way that u(-, 8) > v(-, 8), a contradiction.

(1]

2l
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