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1. Introduction

This paper deals with the existence or nonexistence of positive solutions for
nonlinear elliptic equations with the nonlinear term discontinuous in the unknown
function u. The prototype problem is illustrated by the equation:

(1) fu=—-Au+ Z bj(z)Dju = Af(z,u)
j=1
in a domain  of R” with n > 3 and

g(m7’u’)’ U>C,
0, u < c,

@) few={

for some nonnegative smooth function g, monotone in %, and positive constant ¢. We
always assume that u = 0 on 92 (resp. « vanishes at co for {2 unbounded). Observe
that f(z,c) is not specified and indeed it will be our purpose to obtain solutions
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uy such that the measure of the set So(A\) = {x|ux = ¢} is zero. The motivation
for the study of such equations arises from a variety of physical problems, [31]. In
particular, if one considers the mathematical simulation of the electrical discharge
in a gas, moving with a velocity b assumed unaffected by the discharge, then one
obtains system (1), (2) in a subdomain of R3. Such situations arise, e.g., in arc
welding problems, [21]. If the velocity b= (b1,...,b,) =0 and Q is bounded, then
system (1), (2) includes the classical Elenbaas equation, [15]. Related discontinuous
equations arise in vortex studies (see, e.g., [7], [8], [9], [13], [28] and the references
therein).

Unlike the much better known case of continuous f, these problems have re-
ceived relatively small attention. Apart from the above mentioned articles, we refer
to the early results of Douchet, [17], Massabd-Stuart, [27], Nistri, [29], Stuart, [32].
In these papers the important concepts of solutions of type I and type II (precisely
recalled below) were introduced. There is a close connection between discontinuous
problems and multivalued problems obtained by “filling the discontinuity.” For
convenience, we refer to solutions of the multivalued problems as ones of type IIL
The theory of multivalued problems is well developed and we refer in particular
to the paper of Chang, [14], where such topological concepts as the degree are
discussed for multivalued maps. In conclusion we observe that if b= 0, then vari-
ational methods are applicable to (1), (2), and solutions may be found as critical
points of the derivative of a functional. This procedure is the one followed in most
of the above references, but it is clearly not applicable here.

The plan of this paper is as follows:

We consider equation (1) either in R™ or in a smooth bounded domain 2 C R™.
Since the proofs for the case of (1) defined on the whole of R™ usually also hold —
with obvious changes — for the case of a smooth bounded €, our presentation will
deal explicitly with the former case. The situations where this is not the case will
be clearly indicated.

We first employ topological methods — specifically Degree Theory — to obtain
the existence of solutions of type III, whose norm grows at a specified rate in A,
for (1) with f ~ p(z)u” at v = oo and 0 < v < n/(n — 2) for R* — respectively
0 <7 < (n+1)/(n—1) for Q. Some results are also obtained for v < (n+2)/(n—2).
The nonexistence of such solutions is also discussed. Next we use order arguments
to show the existence of solutions of type I for 0 < v < 1. We emphasize that
motivated by the arc-welding problem we wish to show not merely the existence
of solutions but rather existence only for A > A* > 0, for some A* > 0, and such
that:
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(i) S(A1) € S(A2) if Ay < Ag, where S(A) = {z|ux > c}, and
(ii) for any compact K C R™ (resp. C Q), we have K C §()\) for suitably
large A.

We shall show that this occurs only for the sublinear problems (y < 1) but not
for the superlinear case (v > 1), which, heuristically, has the opposite behaviour.
Consequently, superlinear problems appear to be mainly of mathematical interest,
with the linear problem (v = 1) being a borderline case. The existence of type I
solutions for the general superlinear case remains open, although it can be shown in
specific cases using symmetry, e.g. for radial coefficient problems. However, we use
moving plane arguments and the solution norm estimates in A obtained earlier to
show that for suitable conditions on Q, A and the coefficients, the surface Sp()) is
smooth. A brief discussion and comparison with other works concludes the paper.
Our results are specifically illustrated by the following example theorems:

THEOREM A. Let 0 < — div(d), b € L™/? and 0 < p(x) be nontrivial smooth
Junctions in R™ with p € L®°NL?>*/("+2)| and assume g(z,u) = plx)u’. If0<y<1
then there ezists a A* > O such that problem (1), (2) in R™ has a positive type 1
solution ux € Cigh® for X > X*. Furthermore, if Ao < Ay < Ao then there exist
ux,, Ung Such that S(A1) C S(Ag) and for any compact set K, S(\;) D K, and
meas(So(A1)) = 0 if A is large enough. If v =1 the same result holds for 0 < p—A
small enough, with u a simple eigenvalue of fw = pp(z)w, and w > 0.

THEOREM B. Let Q be a locally strictly convex bounded domain of R™, 0 <
~div (b), p > 0 and b, p smooth. Assume V,g-7 < 0 on 8Q and b = § near
00, where i = outward normal. If 1 < v < (n+1)/(n—1), and g is as in
Theorem A, then problem (1), (2) has a positive solution uy € C1*® with Sy(A) a
smooth surface for A small enough. Furthermore, for any compact K C Q we have
K C 8(A) C S(A1) for all small A, Ay with A/A; > 0.

By a locally strictly conver domain @ C R™ we mean that for any z € 89 there
exists a smooth strictly convex domain D such that SNdQ C 8D and SNQ c D
for some sphere S centered at z.

To the best of our knowledge, Theorem A represents the first result for discon-
tinuous nonvariational problems in unbounded domains and Theorem B the first
discontinuous nonvariational superlinear result in a bounded domain. Observe that
in Theorem B, apart from global regularity, only some local assumptions are made
on p and b near 09, and furthermore p is allowed to vanish in subdomains of .
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In conclusion, we observe that the requirement that v — 0 at oo leads to greater
difficulties than if u — C > 0 at oo (see, e.g., [5]).

2. Definitions and assumptions

Let fu be formally defined in R"®, n > 3, by

(3) lu=—-Au+ i bj(z)Dju

J=1

with b; bounded and smooth, and consider the equation

(4) by = )\f(.’L',’LL), A 20,
where @6), €>

_ g :Llﬂ k] C,

fae={ 57 270

with ¢ a positive constant and g(z,£) > 0, smooth monotone increasing in £ > 0.
We denote by E the Hilbert space obtained by completing Cg° in the energy norm,
| - ll1, where ||¢]|? = [|V@|?dz, and recall that Hardy’s inequality implies that
o2 ~ J {IVel® + [e/(1 + |z|?)]¢?} for some & > 0. If B denotes the quadratic
form associated with £, we assume, for ¢, € E, that [B(¢,¢)| < C||d||1||¢|l1 and
l¢ll2 = B(¢, ¢) ~ ||¢||?. Examples of conditions on b for which this structure holds
will be given at the end of the paper. For presentational convenience, we however
always assume div (b) < 0. Following [14], [17], [27], [29], [32] we introduce the
following concepts:

DEFINITION 1. A positive function u € E is called:

(i) a type I solution for (4) if (4) holds weakly a.e., i.e. if meas(Sp(A)) = 0;
(ii) a type II solution for (4) if fu = Af(x,u) weakly a.e. where

f(:r,'u,), u#c,
0, u=c

Flaw ={

-

(iif) a type III solution for (4) if fu € A\f(z,v) weakly a.e. where

ry _ f(il,', 'u')’ U 7é c,
(2,u) = { [0,9(z,c)], u=ce.
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This terminology does not always follow exactly the one given in the previous
papers. We obviously have: (type I solution) — (type II solution) « (type III
solution), but the other reverse implication does not hold in general, see [17], [32].
Since fu =0 a.e. in Sp(A), we observe that any a.e. solution of

(4) fu= f*(z,u)
where f(zu) y
. _ T,u), u#ec,
f (m’ U) B { h(.’l)), u=c,

with h(z) > 0, is a type I solution regardless of the specific h chosen.
We conclude by observing that unless otherwise specified, the symbols C, K,
C;, K; — with various subscripts ¢ — denote constants whose values may vary

within the same proof.

3. Solutions of type III

We now consider the existence or nonexistence of type III solutions, i.e. the
solutions of multivalued problems, and treat superlinear, linear and sublinear non-
linearities separately.

Assume now that there exists a smooth function 0 < p € L N L™/2 guch that
for any & > 0 there exists a K(£) such that for any £ > 0,

(5) g(z, €) — p(x)€] < p(z)[e€” + K (€)].

The same function p(z) appears on both sides of (5) for simplicity. It could be
replaced on the right hand side by another function g(z) satisfying similar growth
and regularity properties. Furthermore, if K(¢) in (5) is replaced by K(e)¢?, with
0 < 6 < v, then the conditions on p given below may be modified in obvious ways
to obtain analogous results. We observe that (5) implies that f(z,£) < C(e,c)¢”
for all £ > 0.

In this section we abuse somewhat notation and denote by f the Nemytskil
operator associated with the multivalued map f Specifically, for any u € L?*/(n—2),
f(u) is defined as follows:

f(u) = {n | n measurable; n(z) = f(z,u(z)) for a.a. z if u(z) # ¢;
0 < n(x) < g(z,c) for a.a. z if u(z) = c}.
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Suitable growth assumptions will be placed on p below, depending on the problem,
in order to obtain that f(u) C L2/ (™+2) for any u € L?"/("~2)_ Therefore, by the
properties of f it is easy to show (see e.g. [25], Théoréme 5.1) that f(u) is a bounded,
closed, convex subset of L?"/("+2)  Since E is continuously embedded in L2"/(n—2)
with embedding ¢ we can consider the Nemytskif operator fi : E — L2/(n+2) which
will be denoted simply by f in the sequel.

Let h € E* and consider the map h — u € E given by B(u, ¢) = h(¢) for all
¢ € E, where we recall that B denotes the quadratic form associated with £. In
particular, if ¢y € E then we set h(¢) = f pY¢; we thus have a map from E to
E given by u = £~!(py). The maps ¢ — (£ + 7p) "1 (p¢p), ¢ — £~(G (%)), and
¢ — £~1(F(¢)) are then defined in the obvious way for any constant 7 > 0. Here
G and F denote the Nemytskil operators associated with the functions g and f
respectively.

LEMMA 1. Let p € LP, where py = 2n/[2n — (v + 1}(n — 2)]. Then £71f :
E — E* ~ F is upper semicontinuous and compact.

PROOF. We only consider the case of R™ since otherwise the result is well known,
in fact E = HY2(Q) if @ C R™ is an open, bounded set. Given u € E, we observe
that

E - [P+ «, Bp* L E,

f ants
Since the embeddings and £-! are continuous, we need only show that f : L2n/(n—2)
— L*/("+2) and ¢-1f : E — E are respectively upper semicontinuous and com-
pact. The upper semicontinuity may be shown by direct calculation or by appealing
to the general results of ([25], Chap. V) which continue to hold even for R™. As
for the compactness, note first that the procedure of [5] fails, since it depends on
the continuity of the Nemytskil operator. Instead, let {u;,} be bounded in E and
Wm € £ [f(um)]. We conclude that B(wm,¢) = (2m,¢) for any ¢ € C3° with
0 £z < Cp(z)u],.

Choose a sequence of nested balls {B;} which exhausts R” and note that for
any given B; we have p € L°(B;), v < (n+2)/(n — 2) and u,, € L2 (»=2(B;),
whence pu}, € L#n+e)/("+2)(B;) for some € > 0. We apply [1, Theorem 6.1] to
B; with j > { and conclude {w,,} is bounded in H 2'%;‘_TE(B,-) and thus compact in
HY“2(B;). By the standard diagonal method we construct a subsequence — also
denoted by {wn,} — which is Cauchy in H»?(B;) for any j. We now show that
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{wm} is Cauchy in E. Let € > 0 be given and 0 < ¢ € C5°(R™), and note

l|wm — wr”% = |[(wm — wr)e + (Wm — wr)(1 — ‘P)”E
<C [”('wm - wr)‘/’”? + || (W — wy)(1 — ‘P)”%]

Direct calculations then show that
”(wm - wT)S"”? < K”wm - w"‘”?ﬂvz(suppq:)
and

(wm —wr)(1 = @) = B((wm — wr)(1 ~ ), (wm — w:)(1 - ®)
< K”wm - w”‘”%ﬂ-z(suppIVgaD + B((wm - 'LUT), (1 - @)z(wm - w,)),

ie.,

1(wm — )1 = Q)7 < K{llwm — well 2 euppiven

+ ”p”LPO(supp(l—tp)) . (”'u"m"z + ”’U,-,-”Z) “(wm - wr)(]- - (P)HE}

Choosing R large and ¢ = 1 if |z| < R and applying Hardy’s inequality then shows
||wm — wr||le < € if m,r are large enough, and the result follows. O

We continue by recalling the following results and indicate briefly the proof.

LEMMA 2. (a) Any nontrivial type III solution of (4) is positive.

(b) Let 0 < u € E be a nontrivial type 11 solution of (4). Then u € CLt®, for
some o > 0, and u — 0 at oco.

(c) The linear problem £*J = upJ has a real positive eigenvalue p with corre-
sponding normalized positive eigenvector J € E, where £* denotes the formal adjoint

of £. The same result holds for £, i.e. fv = upv for some v > Q.

PROOF. (a) Let fu = w € f(z,u) a.e., and observe that w(z) > 0. We then
apply the maximum principle using the coercivity of £ to conclude u > 0. Part (b)
will show that u € C*** and we apply [20, Theorem 8.18] to conclude u > 0.

(b) If ¥y < 1in (5) then f(z,u) < Cp(z)(u+ 1) for some constant C. We recall
the estimate ([20, p. 194])

u(z) < Clllull pansn-2 (8, (z)) + 1Pl Le(By ()]

for some g > n/2 where B;(z) denotes the ball of radius 1 centered at z. It follows
that u € L* and hence u € Ct® for some o (see [20, p. 211]). Since v € E, and

loc
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p € L2 the same estimate shows u — 0 at co. If ¥ > 1, then f(z,u) < Cp(z)u”
implies that u € L* for any large t (see, e.g., [5]). We then repeat the arguments
used for v < 1.

(c) This follows from positive operator arguments and eigencurve considerations.
The procedures given, e.g., in [4] for the bounded domain case still hold since for
T > 0 the map Tw = (£+ 7p) " [pw] defines a continuous compact map in F which
leaves invariant the cone of nonnegative functions. Note that if 0 < ¢ € C§°, with
p¢ not identically zero, then T'¢ > a¢ for some o, by the maximum principle. We
then apply [24, p. 67]. |

LEMMA 3. Assume that (5) holds and 1 < v < n/(n —2) (resp. 1 < v <
(n+1)/(n—1)) if Q=R" (resp. = bounded domain). Furthermore, if 2 =R"
then at infinity |b(z)| ~ |z|~®, a > 1, p € L*(*2) and P € L (-9 where
P(z) = p(x)|z|? and 6 = y(n — 2)/n. We then have:

(i) If u solves fu € TAf(z,u) for some 0 <1 <1 then ||ulle > Co(A,c);
(if) If u solves fu € Af(z,u) + tp(z)J for somet >0 then t + [ulls < C1(),c).

PROOF. (i) If fu € TAf(z,u) we have
<AL gtauyul
{u>c}
Inequality (5) and the Sobolev embedding theorem yield

lull? < Co(A, )llpll oo el 7

with pp = 2n/[2n — (v + 1)(n — 2)] and the first estimate holds.

(ii) If Q is a bounded domain, this follows immediately from the procedures
of Brezis-Turner, [11], taking advantage of the fact that f(z,§) = 0if § < c. If
Q = R™, we may still proceed along the lines of [11]. Specifically, from (5) we have

i / g = / Jéu > A JIp[(1 = &) — K(e)] + / tpJ2.
{u>c}

We conclude that for some constant K,

/ JpK—i—'p,/ quZu/ qu+t/pJ2.
{u>c} {u<c} {u>c}

Observe that ||pJ||z: < ||p|lz2n/es ||| 2nsn—2), Whence pJ € L! and it follows
that ¢, [ pJu, [ pJu” are bounded. If we now proceed analogously to (30, Chapt. 3],

reproduced briefly here for convenience, we find

MWSC/W”H¢/WJ
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Set @ = 2/n and choose a ball B C R™. We have

« u7+1/(1_a)p l-a
©) it <co[| [ 9m7] {] [ e
wrH/a-a)p ey
+[/ - Ja/(l-a>] }“]'

Note that pJ—2/(1=) ¢ L°(B) and v + (1 — a)~! < 2n/(n — 2). The first two
integrals on the right hand side of (6) are thus bounded. To estimate the third

integral we observe that J(z) > Ci|z|>~™ in R"—B by [19, Lemma H'] and applying
Holder’s inequality and Sobolev’s embedding theorem, we obtain

n—2)/n
i < Calll Pl Sar ey sl + 1] + C.
Since @ < 1, the result follows. m|

THEOREM 1. Under the conditions of Lemma 3 the following results hold.

(a) Problem (4) has a positive solution of type III for any A > 0.

(b) If 0 < u is any type III solution of (4) in E then |jully ~ A~V/(r—1) g
A—0.

(c) For any compact set K, S(A) D K as A — 0.

PROOF. (a) This is immediate since the first part of Lemma 3 shows deg(l —
T, B,,0) = 1 for some small r by homotopy to the identity map, where T(u) =
~1(f(u)), deg( ) stands for the topological degree for compact, convex-valued,
upper semicontinuous vector fields (see [12], [16], [22], [25], [26]), and B, is the
ball in E of radius r centered at the origin. The second part of Lemma 3 yields
deg(I — T, Bg,0) = 0 for some large R by homotopy to I —T —t£~1[pJ] for t large.
(b) If 0 < u is any positive solution of type IIT then ||ul|y~" > C/A for some C,
by the proof of the first part of Lemma 3. Setting v = awv in (4) with oo = A=/v=1)
and applying an argument analogous to the one in the second part of Lemma 3 (for
t = 0), replacing ¢ by a suitably large constant shows ||v||¢ < C; and the result.
(c) Let W = {z|u(z) > eA~ ("1}, 1t follows that

KA~20-D <||u||2<)\f plu” -2+ KjJu
<C(C) [/ pu’H-l pu'v+1:|

<C(c)A[IIPIILpo(W)”u”“/H o /WW+I_5]
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for some § > 0, i.e.
KX/ < Ce)M|Ipllpro iy A=/ O 4 A=/ D p]| oy - [|uf 717
< C(O)llpll 7o (wy + €°llpl|o: A2/ D)

with po = 2n/[2n — (v + 1)(n — 2)] and p1 = 2n/[2n — (y + 1 ~ §)(n — 2)]. We
choose € small enough, and conclude (|p|| zo(w) > C2, i.e. meas(W) > Cs with C3
independent of A. Finally, note that p € LP° and it follows that meas(WNB) > C3/2
for -some ball B dependent on p. Hence

fu > CApe" A"/ =Dy (W N B) = Cpe’ A~ 7 1x(W N B)

where y denotes the characteristic function. We conclude that for any ball B; D

B, u > w where
tw = Cpe" A~V 0"y (W N B),
w=0 on 0B

and thus u — oo in Bas A — 0. O

Observe that in form, Theorem 1(a) is identical to the classical superlinear
result for the continuous problem fu = Ag(z,u). We mention briefly that for v < 1,
i.e. for the sublinear case, and 2 bounded, the continuous problem also has a
solution for all A whose existence may be shown in the same way by demonstrating
deg(I — T, Bg — B,,0) =1 (see [4]). This approach fails for f discontinuous since
it is now not clear that deg(l — T, B,,0) = 0 if r is small enough and indeed we
shall show that the sublinear discontinuous problem has no solutions for A small.

Instead, we have

THEOREM 2. Let 0 <~ < 1 4n (5), b€ L™, and p € LP with py = 2n/(n + 2)
(resp. po < 2n/[2n — (v + 1)(n — 2)] if K(e) = 0 in (5)). There ezists a A* > 0
such that

(a) eguation (4) has a positive solution v of type III for A > A* and with f
replaced by f(x,u) + ¢(z), where 0 < ¢ € C§°;
(b) w satisfies ||lull¢ ~ A7) as A — oo;

(¢) for any compact set K, S(A) D K as A — oo.

PROOF. (a) For 0 < ¢, @ and 0 < u € E set h(e, o, z,u) = o f(z,u/a)+ oV ¢~
p(ut)?. For any given €’ > 0 and u in some ball Bp, it follows that

1€ (h(e, 0, u))]le < €
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by choosing € and then o small enough and applying (5). Here, abusing notation,
h denotes the Nemytskil operator associated with the function h. To see this, we

observe:

a’¢ +pleu? + K(e)a], u> ca,

|o[7f(.’1:_, u/a) + a’7¢ _p('u’-‘-)’yl < { a"y¢ + Cp(u"')"l, u < ca,

for some constant C independent of u."We then have
—1p12 —13 p—1 ¥ +yr
Colle7R||Z < B(£™ h,£71h) < K[o||¢|lL + |Ip(u') IILgﬁ(uSca)
+aK()|plizeo + ellpllzes |ull3]]|€~ Al

where p1 = 2n/[2n — (7 + 1)(n — 2)]. We estimate the second term on the right
hand side:

o L PP 1 O 1 P
< Ko [lp]zaa fuf}~°
where p; = 2n/[2n — (v + 1 — 8)(n — 2)], for a small. The continuous problem
(7) tu = p(ut)?

has the property that deg(I — G, Bg — B,,0) = 1, for R, 7 respectively large and
small enough, where G(u) = £~!(p(u*)7). As mentioned earlier, a proof of this fact
may be found in [4] for © bounded. For the case of @ = R"™ we proceed as follows:
If u is a solution of fu = 7p(u*)” with 0 < 7 < 1 then

1
lull? < Klpllzeo Jull7*

whence ||u||¢ is bounded independently of 7. On the other hand, if fu = plut) +tJp
for some ¢ > 0, we apply an extension of Picone’s identity, [3], and obtain

05/ (ZJ;Z*+H)(¢))<P—/ %2@“)

for any ¢ € Cg°, with H =) b32. /4. Since H € L™/2, we observe that there exists
an eigenvalue 6 with positive eigenvector 2 in E such that (ﬁéﬂ 4+ H ) (2) = 6pz.

Letting ¢ approach z yields

050/1)22—(/%2[1)'«[7+th]>.
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It follows that [ z°pu?~! < K. Set 8 = [2n — (n — 2)(1 — 7)]/8 and observe that
28 > 1 and thus 0 < [p?#22? < 9[22 [ pz? < o0o. We conclude

(1-v)/2
28,2 _ 2 Pﬂu
/ pre = f P2 S an

: 1/2 1/2
< (/ pzlﬂz4) (/pzﬂul—'y)
w7 \ .

26-1)/2 2 1— 1/2
< Pl 2l poe K 1122 2 el oty ]

and we obtain ||u||¢ > C for some C independent of , and thus the result.

It follows that deg( — G —£~*h, Br — B, 0) # O for &, o small enough, and thus
we obtain the existence of a solution w € Bg — B, of fw € a" f(z,w/a) + a"¢(z).

(b) Setting u = w/a then gives a solution of fu € A[f(x,u) + #(z)] with A =
a1, Since r < |[w]le < R [lulle ~ AT as A — 0.

(¢) The proof is identical to that given for Theorem 1(c). O

We next consider the case of ¥ = 1 in (5). We recall that fv = ppv, £*J = upJ,
with J,v > 0. Our result in this situation will follow from

THEOREM 3. Let ¢ € L™ be smooth and p be simple. Suppose J1 : Ry — R,
given by

Ji(e) ='/9 J91(z, epv) + p],

has a nondegenerate zero at e; > 0 (i.e. Ji(e1) # 0). Then for all € > 0 sufficiently
small there ezists a solution 0 < u € E of

eueﬂ { (I_E)qu(x, %) +p¢]+pu7 u > c,
(1—€)p¢’ u < C,

with the interval previously defined at u = c such that ||ull; ~ 1/e as € — 0. We
assume here g1 is smooth and |g1| satisfies (5) with 1 <y < (n+2)/(n —2), and
p € LP° with pp = 2n/(n +2).

PROOF. Let

r (?) = (e _ sign(J}(e1)) fgz(s,uz + (e+el)v))’

e

0. (uz) —u (L—l[z(s, uz + (e + €1)v) —O._Iprz(_e,uz + (e +el)v)]) ,



DIsCcONTINUQUS NONLINEARITIES 245

where L™ = (£ — pup)~! is defined on Im(¢ — pp) = (Ker(¢* — pp))+ in E, where
E ~ E* and

( ) { Eg_;__:) [g1 (_’I}, —l(’f:z u) +p¢], u > #_e_cs’
ez(g,u) =
! ¢(1_ C
—pu + %l, u < ;J.L—E
Degree theory arguments (see [4]) then imply that
deg(I — T, B.(0) x (—€',€'),0) =1

for small &/, where 7" is the same as T with %[gl (%, puz + pe + e1)u1) + pg) in
place of 2z, and thus, using 0 < ¢ < 1 as a homotopy parameter,

deg(I — o(T' + (T — T") + €Q.), Be(0) x (—€',€),0) =1
for small £ since
meas([z|uz + (e +e1)v <ec/(u—€)]NB) -0

as £ — 0 for any ball B C R" and fixed &’ by the positivity of v. We thus have the

existence of a nontrivial solution w = us + (e + €1 )v of

, e L2 (o1(e B2 +pg], w> 22,
w — pp(z)w € p
—pw + 220=9) w< gL

Putting u = Lu_—:m then gives

(1-¢)[o(z, ££) +pd] +pu, u>e,
(1 - E)p¢a u < c,

with |[ull ~ 1/e. O

(8) f’u,elt{

- Finally, if ¢ is not simple, we may repeat the procedure projecting z over the
entire (finite dimensional) kernel of L*. The scalars e, e; are now replaced by the
vectors €, €y with dim(€,€1) = dim( ker(L*)),& = (e1,0,...,0) and the matrix
J'(€1) assumed definite. We recall that explicit conditions for 4 to be simple follow
from [24]. We observe that 0 < u by coercivity (see the proof of Lemma 2(a)) and
that Theorem 3 did not require monotonicity nor positivity of g;(x, £). Motivated

by the Elenbaas equation we then have

COROLLARY 1. Let g1(x,£) = p(z)(d—§). Then for 0 < p— X small enough, (4)
with g = p(u+d) has a type I11 solution u such that lulle ~ (u—=X)~1. Purthermore,
given any compact set K then S(A) D K if u— X is small enough.
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PROOF. In this case, by direct calculation (8) becomes

1-e)d+u+¢), u>c,
9 by €
©) wem@{ 0 e
u+d+¢, u>c,
= (1l —
w1-ep@{ Lo
The first result follows by letting A = p(1 — &).
Next, let W = {z | u(z) > e(u— A)~'} with € to be determined below. We have

K= ) < [l < A[ [ durdus [ utdu+ [ puqs]
wn{u>c} J(=W)n{u>c}
< A /2oy 2 + 0l ol s 22
Tzl pa el
< A mraary A = 1) + ol race (A — )2
19l e oo = X))

Choosing & and u— A small enough shows ||p|| ,n/2(w) > C1 > 0 whence meas(W) >
C2 > 0 independent of A. The rest of the proof is analogous to the one given for
Theorem 1{c). Observe that the classical Elenbaas equation corresponds to ¢ = 0,
and that 4 > 0 by Lemma 2(a). a

It is interesting to note that here g; is not the same function g which appears
on the right hand side of (4). Also, the nonlinearity in Theorem 3 is allowed to be
in the full subcritical range: v < (n + 2)/(n — 2), and one may thus obtain some
existence results for fu — Ap(z)u € f(z,u) in this case.

We remark that, unlike the superlinear case, it is not true that all solutions grow
at the rates given in Theorem 2 and Corollary 1 for sublinear and linear problems
respectively. Explicit examples of this statement may be found in [14], [29]. We

do, however, have the following results

THEOREM 4. Let g(x,u)/u > p(z)u’ with 6§ > 0 in (5) and H = Y b2/4 €
L2, Then for any ball B C R™ and € > 0, and for X large enough we have
meas(S(A) N B) < K +¢ if meas(p=0]NB)=K.

PROOF. Let 7 denote the least eigenvalue of (.e_-zzl + H)(2) = 7pz and let z be
the associated eigenvector. We again apply an extension of Picone’s identity, [3],

to p € C§° and obtain

OS/so(e_;e* +H)(qo)—/%2£u.
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Let ¢ — z in E and observe that

22
X ~puftl < ‘r/pz2.
{u>c}p U
Consequently,
c‘S/ p2® < (1/X) /p22
{u>c} -
and the result follows. O

The above result shows that both linear and superlinear problems do not behave
in accordance with our requirements for A large. As for nonexistence results, we
have:

THEOREM 5. If v <1 in (5) and u is a nontrivial solution of (4), then
A2 [C@)llpllgnra] ™

Jfor some positive constant C(c).

PROOF. Observe that fu € Af(x,u) implies in this case £u < AC(c)pu, whence
lull? < AC(S)lpllorallulF

and A > [C(c)||pllznr] " a]

We observe that Theorem 6 thus yields the estimate A* > C(c, y)u.

4. Solutions of type I

We now show that for the linear or sublinear case the earlier procedures yield
the existence of type I solutions with the desired properties. Specifically:

THEOREM 6. (a) Under the conditions of Corollary 1, with ¢ = 0, there erist
solutions of type I for 0 < A* < X < p such that ||ulle — o0, S(A) D K for any
gwen compact K as A — u, and for any given A2 > A" and uy, there ezists for any
A1 > Aa e uy, such that S(A;) D S(A2).

(b) Under the conditions of Theorem 2 with K(e) =M, ¢ =0, for 0 < A* < A
there exist type 1 solutions with the same properties as in part (a) for A — oo.
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PROOF. (a) Let A* < A < p. If the solution « found in Corollary 1 is not of
type I then it is a subsolution to

u+d, u>c,
(10) fu = Ap(z)q €, u=c,
0, u<ec.
Choose a solution of
w+ M, u>c,
bw > A
= 1p(m){M’ u < ¢,

for M and 1/(u— A;) large enough. This is clearly a supersolution to (10) and
w > u for M large. If we express (10) as u = AT (u) with T' : L?*/(»=2) _, [2n/(n—2),
and 7 monotone, and observe that the cone of nonnegative functions in L2"/(n—2)
is strongly minihedral then by [6], [23, Chapt. 6], there exists a solution v to (10)
which is a solution of type I for (4) in this case. Finally, observe that v > u by

construction, whence

=2 [ pord)za [ puuerd) 2 ul
{v>c} {uzc
and we conclude that |||l T co as A — p~. We thus have the existence of type I
solutions uy for all A such that A > u — €. Select a Ag, u), in this set and put

P = {t | for any X € [t, ) there exists a type I solution uy with uy > uy,}.

P is not empty, since we may choose A; near u and use uy, as a subsolution. Let
to = inf {t|t € T}. We claim ¢y < X, for if top > A then choose Ay < &1 <t
and again use uy, as a subsolution. We observe that u;, > wu,, and thus have a
contradiction by using u;, as a subsolution for the cases t > ¢;. We conclude that
given any A1, Ao near y with Ay > Ao, there exist type I solutions uy,,uy, with
uy, 2> Uy, and hence S(A1) D S(A2). Given any compact set K, we observe that
S(X) D K by the second part of Corollary 1 and monotonicity.

(b) The proof for the sublinear result is identical. o

We remark that the procedures of [17], [32] of constructing super and sub-
solutions for the bounded nonlinearity case also hold for R". One can thus obtain
analogous results for this case directly by the order procedures.

It is interesting to note that the earlier growth conditions yield criteria under
which Sp(}) is actually a smooth surface. Specifically:
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THEOREM 7. Let Q be a locally strictly conves bounded domain, ¥V, g9(z, &) <0
and b = 0 near Q. Then there ezists a solution u with So(X) a smooth surface if
A is near oo (sublinear), near O (superlinear) or near u (linear).

Proor. In all the above cases we have shown that for any compact set X C Q2
we have K C S()) in the above situation. We recall that the extension of the
moving plane results of Gidas, Ni and Nirenberg [18] given by Amick and Fraenkel,
(9], shows that under the conditions of Theorem 7 there exists a neighbourhood B,
of 91, independent of u, in which Vu # 0. We choose K = ) — B, and the result
follows. O

5. Conclusions

We first observe that Theorems A and B are merely collections of results from
the previous section. Note that in these cases (¢, £¢) ~ ||¢||2. Indeed, in Theorem A,

div(b
6.t9) = [ 1v0P - T2 57 2 o2

while

(¢, £8) < I8lIF + ClBll /2 l|@ll1 11l omrin2 < [L+ C Bl asa] | 112

The situation in Theorem B is identical. We remark that if, e.g., —div(8) > C >0
then it becomes possible to work with the H'2 norm. The conditions on p(z) may
then be expressed in terms of the M, spaces of Berger and Schechter, [10].

In comparing in detail our results with earlier work, we observe that while
Chang, [14], employed degree theory, he considered only the bounded domain case
and did not distinguish between the various tvpes of solution nor analyzed the prop-
erties of §()). The studies dealing with vortex rings and [8], (9], [28], and/or related
questions, [7], [13], [15] considered variational situations and thus such methods as
Lagrange multipliers and mountain pass arguments were directly applicable. Some
analysis of the behaviour of S()) was given for this case in [7]. The early results,
[17], {29], [32], were primarily based on sub-super solution arguments, considered
only the bounded domain case and did not investigate the properties of S(\). Our
results have been restricted to v < n/(n — 2) in the R™ case — unlike some of the
references above. Some results can also be obtained here for v < (n + 2)/(n — 2)
by employing Theorem 3 as mentioned earlier. The general case remains open,
however, as does the existence of solutions of type I for the general superlinear

case.
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