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1. Introduction

The paper deals with: & controllability problem: for a nonlinear control process
described by a systein of non autonomous ordinary differential equations. Specifi-
cally, given a proximate retract K of R", which consists in a closed subset of R
satisfying a suitable property, we look for feedback controls such that the corre-
sponding dynamies admit trajectories belonging to K, called viable solutions.

Thie paper is organized as follows. I Sections 2 and 3 weé réview several results
concerning both the theory of proximate retracts and the theory of differential
incluisions on proximate retracts; such resulés will be the tools for proving the later
results. In Section 4, in the spitit of [1], [8] and: the réeferences therein, thé required
feedbaick controls are seen as selectors of & set-valved feedback map C(t, z) suitably
defimed By means of the Bouligand tangent map associated to K. Here; a problem:
conneeted with the reguldrity of these feedbaek controls arises; in fact, conditions
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ensuring the existence of continuous selectors (with respect to the state z) of a set-
valued map are very restrictive. On the other hand, such controls allow to consider
classical solutions of the resulting dynamics, i.e. absolutely continuous solutions.
Therefore, one is often obliged to deal with solutions which are only measurable
with respect to both the variables (¢,z). In this case we cannot expect to have
solutions in the classical sense; thus different notions of solutions are in order. We
consider here two generalized notions of solutions for the dynamical system: the
Krasowskii’s and the Filippov’s definitions of solutions for a differential equation
with discontinuous right-hand side.

In Section 5 we give conditions ensuring the existence of viable solutions both
in the case when there exists a continuous feedback control and in the case when
the feedback control is only measurable.

Finally, in Section 6, the approach developed in the previous Sections is applied
to show the existence of periodic solutions which are also viable, and in Section 7,
the existence of viable solutions for implicit control problems is proved.

As in the present paper, the theory of set-valued maps (and the related differ-
ential inclusions) plays an important role in many other controllability problems,
for instance in the case of nonlinear boundary value control problems (see e.g. [5]).

2. Proximate retracts

We recall the notion of a class of subsets of R", the so-called proximate retracts,
introduced in (3] and [9] under the different name “sets with property p” (compare
also [6]).

Let K be a nonempty, closed subset of R™. We define

dist(u, K) = inf{|u — z|; z € K}.

DEFINITION 2.1. A nonempty, closed subset K C R™ is called o prozimate
retract if there erists an open neighbourhood U of K in R™ and a continuous map
r:U — K (called metric retraction) such that the following two conditions are
verified:

(2.1) r(z) ==z forallz € K,
(2.2) [r(u) —u| =dist(u, K)  for allu € U.

Note that any closed, convex subset of R", as well as any C%-submanifold of
R™ is a proximate retract, so the class of such sets is quite large (see [3]).
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Let K be a nonempty, closed subset of R™. We recall from [1] and [3] that the
subset Tk (z) C R", z € K, defined by

1
Tx(z) = {y e R" : lim inf ~dist(z + 7y, K) = 0}

is called the Bouligand tangent cone to K at x.
The following proposition is important:

ProrosITION 2.1. (cf. [1], [3] and [9]). Let K C R™ be a prozimate retract.
Let T : K — R"™ be the Bouligand map defined as follows:

T(z) = Tk (z), for every z € K.

Then T is a lower semicontinuous (l.s.c.) map with closed and convezr values.

Let us remark (comp. [1] and [3]) that for an arbitrary closed set K ¢ R"
Proposition 2.1 is no longer true. We would like to add also that, in general, the
graph I'r of T is not a closed subset of K x R™ (even in the case where K is a
proximate retract).

DEFINITION 2.2. Let K be a prozimate retract and ¢ : [0,a] x K — K be a
set-valued map with compact, nonempty values. We shall say that ¢ is strongly
tangent to K if

(2.3) p(t,x) CTr(x) for all x and almost all (a.0) t;
 is called tangent to K if
(2.4) o, 2)NTk(x) # 0 for all z and a.a.t.

Note that if ¢ = f is a single-valued map then the above two notions coincide.

The construction we present below is very useful.

Let U be a fixed open neighbourhood of K and let r : f — K be a metric
retraction. Assume also that A : R™ — [0,1] is an Uryshon function for K and U,
ie,A(z)=1ifz € K, AMz)=0if z ¢ U and A continuous.

We define @ : [0, a] x R™ — R" to be an extension of ¢ by means of the formula:

5, z) = Mz) - p(t,r(z)) fzxel
A ) ifz ¢ U.

We need the following lemma (compare [3], [6] and [9]).

(2.5)

LEMMA 2.1. Let K C R" be a prozimate retract and ¢ : [0,a] x K — R"™ be a
map strongly tangent to K. If z : [0,a] — R" is an absolutely continuous function
such that £(t) € §(t,z(t)) for a.a. t € [0,a] and z(0) € K then z(t) € K for a.a.
t.€[0,al.
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To prove Lemma 2.1 we consider the absolutely continnous function d : [0,a] —
B defined by
d(t) = dist(z(t), K).
Since d(0) = 0 and d(t) > 0, it is sufficient to show that d is nonincreasing. In fact,
using (2.3) and (2.5), it is easy to show that d(t) < O for a.a. ¢ € [0, a] (see [6] for
details).
We shall use also the notion of Rs-set (comp. [1], [3] and [4])

DEFINITION 2.3. A compact nonempty space A is called an Rg-set provided
there exists a sequence {An} of compact spaces such that:

(2.6) A, DA for every n
(2.7) Anis contractible  for every n
(2.8) A={)An.

n

Observe that in particular any Rs-set is a compact, nonempty and connected
space. One can show that any Rs-set is an acyclic space in the sense of an arbitrary
continuous homology theory. Finally, let us add that the notion of Rs-set was used,
for the first time, in the theory of ordinary differential equations by N. Aronszajn
in 1942 (compare [1], [3] and [4]).

We end this section by formulating the following:

PROPOSITION 2.2. (cf. [3] and [9]). The intersection of a decreasing sequence
of Rs-sets is an Rg-set.

3. Differential inclusions on proximate retracts

By K we will denote a proximate retract. The results presented in this Section
are related to the theory developed in [3], [6] and [9].

DEFINITION 3.1. Let ¢ : [0,a] X K — R" be a set-valued map with compact,
nonempty values. We will say that ¢ is of u.s.c. type (Ls.c.-type) if the following
conditions are satisfied:
(p1) @(t,-) : K — R" is upper semicontinuous (u.s.c.) (resp. lower semicontin-
uous (l.s.c.) for a.a. t € [0,d]).

(¢2) (-, x):[0,a] — R" is measurable for any z € K.

(3)  is integrably bounded, i.e. for any p > O there exists h, € L'([0,a],R)
such that |y| < h,y(t) for a.a. t € [0,a], any x € K such that |z| < p and
y € ¢(t, z).
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Note that if ¢ = f is a single-valued map then the above two notions coincide
and we will say that f is a Carathéodory map.
The following two propositions are immediate:

ProposITION 3.1. If ¢ is, respectively, of the u.s.c. type or of the Ls.c. type,
then so is @.

PROPOSITION 3.2. If ¢ satisfies (p3), then it is locally bounded, i.e. it maps
bounded sets into bounded sets.

For a given map ¢ : [0,a] x K — R" of the u.s.c. type (Ls.c. type) and zo € K
we will consider the following Cauchy problem

{ (t) € p(t,(t)), te€(0,q]

(3.1)
z(0) = zo,
where the solution z : [0,a] — K is an absolutely continuous function such that
z(0) = zp, and &(t) € (¢, z(t)) for a.a. t € [0,qa].
We put
S(p;zg) ={z:[0,a] = K : z is a solution of (3.1)}.
We have the following (compare [3] and [6]):

THEOREM 3.1. Let ¢ : [0,a] x K — R"™ be strongly tangent to K. We have the
following facts:
(a) If ¢ is of the u.s.c. type with convex values, then S(p;zg) is an Rs-set.
(b) If ¢ is of the ls.c. type, then S(p,z0) # 0.

PRrOOF. Consider the extension @ : [0,a] x R" — R" defined in (2.5). Then by
Lemma 2.1 we derive that

S(p;z0) = S(P;2a)  for any zp € K.

Thus (a) follows from a result proved in [4]. On the other hand it is well known, in
view of Proposition 3.1, that S(&;zo) # 0 (see [1]).

At this point the following question arises naturally: does Theorem 3.1 remain
true if ¢ is only tangent to K7

We are able to give a positive answer only in the u.s.c. type case. In fact the
following result holds.

THEOREM 3.2. If ¢ :[0,a] x K — R" is an u.s.c. type map with convex values
and tangent to K, then S(p;xo) is an Rs-set.
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The main idea for the proof of Theorem 3.2 is to use the metric retraction in
order to approximate, for any € > 0, the map ¢ by a strongly tangent, convex-
valued, u.s.c. type map ¢, : [0,a] x U: — R" in such a way that S{yp;zo) =

nneNS(‘Pl/n;xO)'
Here U, is an open neighbourhood of K. Finally, the application of Proposi-
tion 2.2 gives the result. All the details can be found in [6](see also 3] and [9]).

4. Feedback controls

In this Section K C R™ will denote a proximate retract and U C R™ a compact
set. Let f:[0,a] x K x U — R" be a single-valued map.
We will say that f is tangent to K provided that'

(4.1) Ve K Vte[0,a] Ju=ult,z)eU : f(t,z,u) € Tk(x).

Following [1], [8] and [11] we introduce the concept of feedback control as a selector
of a set-valued map. For this we give the following:

DEFINITION 4.1. Let f : [0,a] x K x U — R"™ be a map tangent to K. We
associate to f a set-valued map C = C(f) : [0,a] x K — R™, the so-called feedback
control map, as follows

(4.2) Ct,z)={uelU: f(t,z,u) € Tx(z)}.
We are interested in considering single-valued selectors of C. Therefore we let

C(C(f) ={v:[0,a] x K — R™: v is continuous
and v(t,z) € C(t, z) for any ¢ and z}.

M(C(f)) ={u:]0,a] x K — R™ : u is measurable
and u(t,z) € C(t,z) for any ¢ and z}.

Obviously, we want to know when

C(C(f))#0 and M(C(f)) #0.

In this regard, there are different possible results concerning C(C(f)) and M(C(f)).
We will formulate in the sequel two of the most important results. First, observe
that, in view of the Michael’s Selection Theorem and Proposition 2.1, Theorem 3
in ([1], p.49) can be reformulated as follows:
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THEOREM 4.1. Let f: [0,a] x K x U — R" be a continuous single-valued map
which is affine with respect to the last variable. Assume that

I35y>0:V (t,z) €[0,a] x K, V (¢,2') €[0,a] x K
(4.3) Ju € B such that from |t —t'| <y and |z—2'| <~
it follows thatf(t,z’,u) € Tk (z).
Then C(C(f)) £ 0.

The following example shows that Theorem 4.1 is false if we replace condition
(4.3) by the weaker condition (4.1).

EXAMPLE 4.1. Let f:[0,2] x [0,1] x [0,1] = R be the map defined as follows:
max{l —u,t} -1 fort<1
max{u,2 —t} —1 fort > 1.

f(ts'ra’u')={

Then f satisfies (4.1). Moreover, the feedback map C = C(f) associated with f is
defined as follows
{0} forz=0and¢<1

C(t,z) =14 {1} forr=0andt>1
[0,1] for (z=0and t=1) or z > 0.

Observe that C = C(f) is convex, closed-valued, but it is not ls.c.
Furthermore, from Corollary 1.Q ([10], p. 171), we derive the following:

THEOREM 4.2. Assume that f : [0,a]x K xU — R"™ is a locally bounded (single-
valued) map tangent to K. Assume further that f is measurable with respect to the
first variable and continuous with respect to the pair (x,u). Then M(C(f)) # 0.

Now, given a Carathéodory map f : [0,a] x K x U — R" tangent to K and
given v € C(C(f)) and u € M(C(f)) we define the maps

fU:]0,a] x K - R" and fu:l0,a] x K - R"

as follows
(4.3bis) fi(t,x) = f(t,z,v(t,x)) foranytandz
(4.4) fult,z) = f(t,z,u(t,x)) for anyt and z.

Clearly, the map f¥ has the same regularity properties as f, but this is no longer
true for f,. Hence, if we consider the Cauchy problem

{ T = fu(ta m)

SE(O) = Zo,
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we cannot expect, in general, that it possesses classical solutions, i.e. absolutely
continuous solutions z = z(t). This is the reason why we will consider in the
sequel two regularizations of f,, called Krasowskii’s regularization and Filippov’s
regularization, respectively.

We define the multivalued maps (compare [1] and [7])

K(f,):[0,a] x K - R"™  Krasowskii's regularization of f,,
F(fy):[0,a] x K— R", Filippov’s regularization of f,,

as follows:

(4.5) K(fu)(t,z) = [ |eonvfu(t, B(z,€)),
e>0

(4.6) F(f)(tz) =) [ ®uvfult, B(z,e) \ N),
e>0u(N)=0

where y stands for the Lebesgue measure, conv for the closed, convex hull and
B(x,¢) for the open ball centered at z with radius e.
We have the following (see [1], [7]):

THEOREM 4.3. (i) If f, is measurable and locally bounded, then K(f,) and
F(f.)) are compact, convez-valued maps, measurable in t and u.s.c. in x.

(i) If f. s tangent to K, then K(f,) is also tangent to K; while for any
t € [0, a] we have

F(fu)t,z)NTk(z) #0 for a.a. z € K.

If we assume more conditions on the Bouligand map 7 : K — R"™ then we get
a stronger version of (ii) for F(f,). In fact, we have the following:

PROPOSITION 4.1. Assume that all the assumptions of Theorem 4.3 are sat-
isfied. Assume further that the Bouligand map T : K — R"™ has a closed graph.
Then F(f,) is tangent to K.

PROOF. Assume to the contrary that
F(fu)(to,%0) N T (z0) =0
for some (ty,zo) € [0,a] x K. By (ii) we can choose a sequence {z,,} C K such that
nlgzc}o Tn =0 and F(fu)(to,2n) NTr(z,) # 0

for any n € N. Let y, € F(fu)(to,2n) N Tk (zyn), n € N; since f, is locally
bounded from (4.6) we get that F(f,) is also locally bounded and thus we can
assume without loss of generality, that lim, ,o.o¥n = Yo-
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Now, by using (i) and the fact that the graph of T is closed, we obtain

Yo € F(fu)(to. o) N Tk (z0)

and this is a contradiction.

5. Control problems on proximate retracts.

Let K C R™ be a proximate retract, U be a compact subset of R™ and f :
[0,a] x K x U — R" be a (single-valued) map satisfying the following conditions:
(f1) f(,z,u):[0,a] —» R is measurable for any (z,u) € K x U,
(f2) f(t,-,): K x U — R" is continuous for a.a. ¢ € [0, al;
(f3) for every p > 0 there exists h, € L'([0, a], R) such that | f (2, z, u)| < hy(t)
for a.a. t € [0,a] and any (z,u) with |z] < pand u € U.
We will refer to f as a Carathéodory map.
In this Section we solve the following:

Control problem. Find a feedback control w = w(t, x) in such a way that the
control system

51) { & = f(t,z, w(t,z))

iL'(O)=.'l:0€K.

has a viable solution z = z(t), i.e. z(t) € K for any t € [0, a].

On the other hand we have already seen that, depending on the regularity of
the feedback control w = w(t,z), the right-hand side of (5.1) can be either single-
valued or set-valued. Therefore we have to distinguish two cases in order to solve
the proposed probleni. The first case can be formulated as follows:

L. Assume that C(C(f)) # 0. Does the control system (5.1), corresponding to a
feedback control v € C(C(f)), admit a viable solution?

The positive answer is based on the properties of the solution map S(f;zo,v)
given by

(5.2) S(f;zo,v) = {z : [0,a] = K : z is a solution of (5.1)}.
Indeed we can prove the following:

THEOREM 5.1. Assume that f : [0,a] x K x U — R" is a Carathéodory map
tangent to K. Then for every v € C(C(f)) the set S(f;zo,v) is an Rs-set and so,
in particular, it is nonempty.
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PRrOOF. Let v € C(C(f)). Consider the map f¥ : [0,a] x K — R" defined in
(4.3bis), we have that S(f;xo,v) = S(f¥;2). On the other hand, f* : [0,a] x K —
R"™ satisfies all the assumptions of Theorem 3.1. This concludes the proof.

Observe that the assumptions of Theorem 5.1, in general do not guarantee that
the set C(C(f)) is nonempty (compare Theorem 4.1 and Example 4.1). Therefore
we are led to consider the second case.

II. Assume that M(C(f)) # 0. Does the control system (5.1), corresponding
to a feedback control u € M(C(f)), admit a viable solution?

First of all observe that, under the assumptions of Theorem 5.1, we have that
M(C(f)) # 0 by Theorem 4.2. Furthermore, as already noticed, in this case we
have to consider solutions of (5.1) in a generalized sense. That is, we consider the
following two Cauchy problems for differential inclusions:

53) { & € K(f.)(t,2)
:L'(O) =g € K,

and

(5.4) { & € F(f.)(t,z)
z(0) = zp € K.

By Krasowskii’s (Filippov’s) solution of (5.1) we mean any solution of (5.3) (resp.

(5.4)).
For a given u € M(C(f)) we let

Sk (f; o, u) = S(K(fu); o)
and
Sr(f;zo,u) = S(F(fu); 20);
thus Sk (f; zo, u) (resp. Sr(f;xo,u)) is the set of all Krasowskii (Filippov) solutions
of (5.1).
Obviously, we have that

Sr(f;wo,u) C Sk (f; %o, u).
We have the following result:

THEOREM 5.2. Assume that f : [0,a] x K x U — R™ is a Carathéodory map
tangent to K. Then M(C(f)) # 0 and for every u € M(C(f)) the set Sk (f;zo,w)
is an Rs-set, and so, in particular, it is nonempty.

PrROOF. The fact that M(C(f)) # @ follows immediately from Theorem 4.2.
Let v € M(C(f)). Consider f, : [0,a] x K — R"™ as defined in (4.4) and its
Krasowskii’s regularization K(f,): [0,a] x K — R".
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By Theorem 4.3 one can easily show that K(f,) is tangent to K and of u.s.c. type.
Hence, we can apply Theorem 3.2 to K(f,) and thus we infer that S(K(f,);zo) is
an Rg-set. Since

Sk (f; 0, u) = S(K(fu); zo)

the proof is completed.
Finally, we are in the position to prove the following:

THEOREM 5.3. Assume that f : [0,a] x K x U — R" is a Carathéodory map
tangent to K. Assume further that the Bouligand map T : K — R"™ has closed
graph. Then M(C(f)) # 0 and for every u € M(C(f)) the set Sp(f;xzo,u) is an
Rgs-set, and so, in particular, it is nonempty.

PRrOOF. The proof of Theorem 5.3 is analogous to that of Theorem 5.2. In fact,
to obtain that F'(f,) is tangent to K we use Proposition 4.1 instead of Theorem 4.3.

REMARK 5.1. It is still an open problem to prove Theorem 5.3 without the
assumption on the closedness of the graph of 7.

6. Periodic control problems

In this Section we will assume that K C R" is a compact proximate retract,
U C R™ a compact set and F': [0,a] x K x U — R" a Carathéodory map tangent
to K. Then we will consider the following periodic control problem

{ z = f(t,z,v(t, x))

(6.1) z(0) =z(a) € K

and we will ask as in the previous Section, for classical, Krasowskii and Filippov
viable solutions of (6.1).
We can state the following:

THEOREM 6.1. Assume that the Euler characteristic x(K) of K is different
from zero. We have the following:
(i) If all the assumptions of Theorem 5.1 are satisfied for every v € C(C(f)),

then there exists a solution of (6.1).

(ii) If all the assumptions of Theorem 5.2 are satisfied for every u € M(C(f)),
then there exists a Krasowskii solution of (6.1).

(iiif) If all the assumptions of Theorem 5.3 are satisfied for every u € M(C(f)),
then there exists a Filippov solution of (6.1).
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For the proof of Theorem 6.1 we need two preliminary lemmas. For this, let
C(]0,a],R™) be the space of continuous functions in the usual supremum norm.
For K C R" we let

C([0,q],K) = {z € C([0,a],R") : z(t) € K for all t € [0,a]}.
We shall consider also the evaluation map
e: C([0,a],K) x [0,1] - K
defined as follows
e(z,X) = z(Aa) for every z € C([0, ], K).
The following fact is well known (see [1], (compare also [3] and [9])).

LEMMA 6.1. Let ¢ : [0,0] x K — R™ be an u.s.c. type map tangent to the
prozimate retract K. Let P : K — C([0,a], K) be defined as follows:

P(z) = S(p;2) for every z € K.
Then P is an u.s.c. map with Rs-values.

The following lemma follows from the Lefschetz fixed point theorem for set-
valued mappings so-called admissible (for details see [3] and the references therein).

LEMMA 6.2. Let K be a compact prozimate retract with x(K) # 0. Assume
that ¥ : K x [0,1] — K is a set-valued map such that

(i) there ezists a metric space X and two u.s.c. mappings ¢1 : K x [0,1] = X
and o : X — K with Rs-values such that i = g 0 ;
(i) the map (-, 0) is the identity on K, i.e. ¥(-,0) = Idg.
Then the map ¥ (-,1) : K — K has a fized point.

Now we are able to prove Theorem 6.1.
PROOF OF THEOREM 6.1. We define the following set-valued maps

P: K — C([0,qa], K); P(z) = S(f"z) for v € C(C(f)).
Py : K — C({0, a], K); Pr(z) = S(K(fu); x) for u € M(C(f)).
Pr :K—»C([O,a],K)? Pr(z) = S(F(fu); ) for u € M(C(f)).

Then from Theorems 4.3, 5.1, 5.2, 5.3 and Lemma 6.1 we obtain that P, Px and
Pr are u.s.c. maps with Rg-values.
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Observe that the single-valued evaluation map
e: C([0,a],K) x [0,1] — K; e(z,A) = z()a)
is continuous. We define
¢3¢K1¢F K X [Oal] — K
as follows:
¥(z,A) = e(P(z), )
Y (z,A) = e(Pr(z), A)
"an(x’ )‘) = e(PF(x)a ’\)1

for every z € K and A € [0, 1].
We have the following three commutative diagrams:

Pp,Py P
K x[0,1] C([0,a], K) x [0, 1]
"an,"/JK,wJ ,/3
K

where P(z,)) = (P(x),\), Px(z,A) = (Px(z), ), Pr(z, ) = (Pr(z), \); ie.,
¢=6013, VK =eof’K, and Yp =eo Pp.
Now observe that ¥(-,0) = ¥x(-,0) = ¢r(-,0) = ldk, ¥(-,1) = P, ¥x(-,1) = Pk
and ¢r(-,1) = Pr.
So, in view of Lemma 6.2, there are zo,z1,Z2 € K such that zo € P(zg), z; €

Py (z1) and z2 € Pr(z2). It means that there are solutions yo € S(f%;x0), 31 €
S(K(fu);z1) and y2 € S(F(fu); z2) such that

yo(a) =zo, wyi(a) =21, and y2(a)=2,.
Fina.lly, we have
%0(0) = yo(a) = o,
¥1(0) = y1(a) = 71,
¥2(0) = y2(a) = z2
and the proof of Theorem 6.1 is completed.
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7. Control problems for implicit equations

In this Section we will show that the method for solving implicit differential
equations developed in [2] can be adapted to deal with implicit control problems.
Given a function

f:l0,a) x KxR" xU — R",
where K is a proximate retract and U C R™ is a compact set, we define a set-valued
function o : [0,a] X K x U — R" associated with f, as follows:

(7.1) ot,z,u)={yeR": y = f(t,z,y,u)} = Fix f(¢,z, -, u).
Obviously, the control problem

(7.2) z = f(t,z(t), £(t), v(t, z))

can be rewritten in the following form:

(7.3) z(t) € o(t, z(t), v(¢, z)).

However, since o may have empty values it is almost never of L.s.c. type and rarely
it is of u.s.c. type. We will present below some situations where the results of
Section 5 can be applied by means of more sophisticated arguments.

ProposITION 7.1. (i) If f : [0,a] x K x R* x U — R" is contractive with
respect to the third variable, i.e., there is k € [0,1] such that for everyt € [0,a], z €
K, y,v € K, u € U we have

|f(t7zyy‘) "-”) - f(t,.’L‘, yl’u)l S kly - ylly

then o : [0,a] x K x U — R" is a single-valued map.
(i) If f: [0,a] x K x R" x U — R" is a bounded map such that there exists
k € [0,1] for which

(f(ta z,Y, U) - f(t7 x,y,7u)> S k|y - yl|2

for every t,x,y,¥',u and < -,- > stands for the inner product in R", then o :
[0,a] x K x U — R" is a single-valued map.

ProoF. Part (i) follows immediately from the Banach contraction principle.
To prove (ii) first observe that, in view of Schauder’s fixed point theorem, the set
Fixf(¢,z,-,u) is nonempty for every ¢, z, u.
Assume now that for given ¢, z,u we have y,y1 € Fixf(¢,z,-,u). Then
(F(t,z,y,0) — Ft,z,y1,0),y —v1) = (¥ —y1,¥ — 11) < kly —w|?

?

so we get
ly—wl <ly—wl
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and this implies that y = y;. The proof is completed.

PROPOSITION 7.2. Assume that f : [0,a] x K x R" x U — R" is continuous.
We have that
(i) If f is nonexpansive in y, i.e.

|f(t,$:yau) _f(tazaylau)l < |y_y1|

for any (t,z,u) € [0,a] x K x U, then o : [0,a] x K xU — R" is u.s.c. with convez

values.
(i) If f is bounded and for every (t,z,u) we have that

dim Fix f(¢,z,-,u) =0,

where dim stands for the topological covering dimension, then o has a l.s.c. selector
J with compact values.

Since f(t,z,-,u) is nonexpansive on R", the set of fixed points is convex and
so the proof of (i) is straightforward. For the proof of (ii) we refer to [2]. Observe
that under the assumption that K and U are C*-manifolds, one can show that the
set of all continuous maps satisfying (ii) is dense in the set of all continuous maps
from [0,a] x K x R" x U into R" (see [2]).

Finally, Proposition 7.1 and 7.2 can be now applied to the control problems
considered in Section 5 (compare [6]).
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