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In this paper, we consider branches of positive solutions of

—Au = Af(u) in D,

u=20 on D,

for A > 0 where D is a domain in R2. We assume that D has a double symmetry
and convex (though the last assumption can be weakened). We prove for rather
general f that the branch of non-trivial positive solutions of (1) forms smooth
curves. This generalizes slightly a result of Kielhofer [16]. Moreover, for a wide
variety of possible non-negative reasonably smooth f’s, we prove that the branch
of non-trivial positive solutions of (1) forms a connected curve. This seems to be the
first result of this type for a true partial differential equation. Previously, results of
this type for rather general f have only been proved for D a ball, where the problem
reduces to an ordinary differential equation. We stress that our assumptions on_f
allow the branch of positive solutions to have many changes of direction. Note that
our assumptions on D are not superfluous to our results. Indeed, we constructed
examples in [6] for rather nice f’s on doubly symmetric star shaped domains where
the branch of non-trivial positive solutions-have true secondary bifurcations and
examples on a star shaped domain with a single line of symmetry where the positive
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solutions are not connected even though, for the same f, the corresponding branch
for D a ball is connected. It is easy to deduce from [4] that this last behaviour
continues to hold for some ‘generic’ smooth domains.

The basic ideas of our proof are to deform D to a ball by using domain variation
techniques and to avoid non-compactness difficulties by proving local uniform (in
D) estimates for small or large solutions or for solutions with A small or large. In
many cases, for this last step, we use ideas from [5]. We can justify this procedure
in many cases. However, there are some cases where we have not succeeded in
doing this. One important case is where f grows exponentially as in the Gelfand
equation, another is the case where f changes sign for positive y (as in the work
of Hess [15] or Dancer [9]). However, our results do cover a wide variety of cases.
It seems that this technique is also useful in other problems. For example, it can
be used for higher dimensional domains close to balls, or for perturbations of our
symmetric domains in two dimensions.

I should like to thank Professor P. Srikanth for some useful conversations.

1. The Main Results

In this section, we prove our main results. We first improve very slightly a result
of Kielhofer. We consider a bounded C® domain D in R? containing (0, 0) such that
D is invariant under the symmetries (z,y) — (2, —y) and (z,y) — (—z,y) and such
that 0D N {(z,y) : > 0, y > 0} = {(z,h(z)) : 0 < = < a} where h is decreasing.
We say that a domain of this type is of type R.

PROPOSITION. Assume that f is Ct, f(0) > 0 and D is of type R. Then
W = {(u,A) € C(D) x (0,00) : u is a non-trivial positive solution of (1)} is a
smooth 1-manifold without boundary (not necessarily connected).

Proor. It suffices to prove that for every (u.A) € W, the map Z which sends
(h,T) to —Ah — Af'(u)h — 7f(u) maps {u € W3P(D) : uw = 0 on 8D} x R onto
L?(D) (where p > 1), because we can then apply a theorem of Amann [2]. Note
that since f(0) > 0, the maximum principle ensures that every positive solution w
has non-zero normal derivative on 8D and hence any solution C? close to w will
also be positive in D. If the equation

—Ah = Af'(u)h in D,
h=0 on 0D,

has only the trivial solution, the ontoness is clear. Thus, it suffices to assume
that (2) has a non-trivial solution. In this case, we will prove that (2) has a one-
dimensional kernel spanned by h. By standard theory, it follows that the map
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h — —Ah — Af'(u)h has range V = {w € LP(D) : [, wh = 0}. Note that this
subspace has codimension 1 in L?(D). Hence our map Z will be onto if Inf (u)?z #0
(since f(u) will not be in V). Hence it suffices to prove that the kernel Y of (2)
is at most one-dimensional and [, f(u)ﬁ £0ifh €Y. We in fact prove that
Jp f(W)p # 0 whenever p is a non-trivial member of ¥. This suffices, because
any linear functional (that is, with codomain R) on a space of dimension more
than one must have a non-trivial kernel. Hence our last result implies that Y is
one-dimensional. Hence it suffices to prove that [, f(u)p#0ifpe Y\ {0}.

To prove this, note that the argument in Step 1 of the proof of Theorem 5 in
[4] shows that every p € Y is even in z and y and, as in part of the proof of Step
2 there, if p € Y\ {0}, the closure of { € D : p(z) = 0} does not intersect 8D.
(In [4], a specific nonlinearity is used but this part of the argument does not use
the form of the nonlinearity.) There is also a slight gap in [4] which is fixed in the
following lemma. Hence g{; has fixed sign on 8D and, by the maximum principle,
is non-zero on dD. Now, as in [16], 7 is a solution of

—Av — A f'(u)v = 2Af(u)

in D (but not satisfying the boundary condition). We multiply this equation by p,
integrate over D and use that p is a solution of (2). We eventually find that

. Ou dp

Now, 72% < 0 on 8D by the Gidas-Ni-Nirenberg theorem [11]. By this and our
earlier comments on gg on 8D, the right hand side is non-zero and hence our claim

follows.

This result has a variant if D is convex but does not have the symmetries. It can
be shown that the branch is locally a smooth curve near (ug, Ag) if any non-trivial
solution A of (2) (for u = ug, A = Ag) has the property that the closure (in D)
of the nodal lines in D intersect 8D in at most two points (for example if 4 is a
second eigenfunction). It is partly based on some unpublished work of C. S. Lin
(in particular a change of origin).

There is a slight gap in the argument above (and also in [4], [8], [10] and [16].)
The estimates for the zero set in [13] and [14] are only proved in the interior of D
and not near the boundary. To overcome this, we need the following lemma.

LEMMA. Assume that the above assumptions hold and h is a non-trivial solution
of (2) vanishing on 8D. Then, Green’s theorem is valid for smooth functions for
any component of {z € D : h(x) = 0}.

PROOF. Assume zop € 0D. Without loss of generality, we may assume that
zo = 0 and that n(xo), the unit normal to &D at o, is e;. Near 0, we can write
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8D as {tes + s(t)e;} where s is C® (since D is C3). We choose a better set of
coordinates. Let w(t) = tez + s(t)e1. Let n(t) = n(w(t)). Then, near zero, we can
use (t,s) — w(t) + sn(t) as a local system of coordinates (as follows easily from
the implicit function theorem). This is a C? change of coordinates. On s = 0, the
derivative of the change of coordinates is diagonal since w'(t) is perpendicular to
n(t). We now see what form our equation takes in the new coordinates. It will be
of the form 52 5
Q5 (t, S)M + bi(t, S)E + C(t, S)h =0

where t; = t, ty = s, A = (a;;) is diagonal on s =0, a;; are C', b; are continuous
and c is continuous. To see this, we use the formula for a change of coordinates in
Saut and Teman ([19], equation (4.10)) which is easily proved directly (most easily
by using the weak form of the equation). Note that the top order coefficients are of
the form (det 77)[(T”)*7”]~! where T" is the derivatives of the change of coordinates.
Hence the top order coefficients are diagonal on s = 0 (since T” is diagonal there).
Note that in the new coordinates the boundary is s = 0 and h is C? on s > 0 by
standard regularity theory applied to (2). We extend A across s = 0 by extending
it to be odd in s. This is reasonable since A = 0 when s = 0. We extend ¢ to be
even in 8,b; to be even in s, by to be odd in s, a;; and a2 to be even in s and
a12 and ag; to be odd in s. Then it is easy to see that the extended h satisfies
(3) in a neighbourhood of (0,0). The coefficients are as regular as before except
that by need not be continuous. In particular, the a;; are C'. We now can obtain
the desired result by applying the results of Hardt and Simon [13] (including the
remarks on p. 505) to estimate Hausdorff measures of zero sets and by then using
the arguments in the proof of Step 1 of Lemma 2 in [8].

REMARKS. 1. The result can be improved to show that the zero sets consist of
curves C' up to the boundary if D has C*° boundary. (We use the ideas in [18].)
Presumably one could prove this under much weaker assumptions on 9D.

2. The above argument is valid in all dimensions with only minor modifications.
In general, the change of variable 7" is not diagonal but has one column orthogonal
to the other columns (when s = 0). This ensures that an;(£,0) =0for 1 < j <n—1
where § = (t1,...,tn—1) locally coordinatizes 8D. Otherwise the proof is as before.

3. The above argument can also be applied for more general second order
elliptic operators, in any dimension, whose top order coefficients are C1. We choose
coordinates so that a,;(0) = 6;; and then use the implicit function theorem to choose
n(t, s) so that the coordinates t + sn(t, s) have similar properties to above (where
t € 8D).

4. Note that the reflection trick is trivial across flat boundaries.
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We now obtain our main result. Assume that a > 0 (possibly +oc0) and that b
is C* on [0,a] and f(y) > 0 on (0,a). We also assume that D is of type R and that
the following two conditions hold:

(i) £(0) > 0or f'(0) = 0 or there is a p > 1 such that 4P /() — g € (0, 00)
asy | 0;

(ii) one of the following holds:
(@) a < oo, f(a)=0, there is an € > 0 such that f'(y) <0 on (a,a — &),
(B) a=o00 and f'(y) — c € (0,00) as y — oo,
(7) a =00, f(y) = C € (0,00) as y — oo and yf'(y) — 0 as y — oo,
(7) a= oo and there exists a ¢ > 1 such that f(y)/y?1 — ¢ € (0, o) as

Yy — 00,

(1) a = oo and there exists a ¢ < 1 such that f'(y)/y7! — c as y — o0.

Note that these conditions are satisfied by a wide variety of f’s.
Let W = {(u,A) : A > 0,(u, ) is a non-trivial positive solution of (1) with
[ulloo < a}-

THEOREM 1. Under the above assumptions, W is a connected manifold.

PROOF. The result is proved by continuing D to the unit ball through a smooth
deformation D; (where D; = D and Dy is the unit ball with centre 0 and where
D; satisfies our earlier assumptions for each t). Note that it is easy to construct
such a deformation. We know that W; is a smooth manifold for each ¢ (by the
proposition). Here W} is the analogue of W when D is replaced by D;. We use a
continuation argument to prove W} is connected. The proof involves a good deal
of checking that certain standard arguments can be done uniformly in ¢. These
are easy, but very tedious, and hence we only emphasize the main points. Most of
the difficulties are caused by the non-compactness of W;. We have to keep careful
control of the non-compact ‘ends’ of the 1 manifold W;.

STEP 1. When ¢ = 0, the Gidas, Ni and Nirenberg theorem ensures that every
solution of (1) in Wy is radially symmetric. Thus they are solutions of an ordinary
differential equation. We prove that Wy is connected by showing that it can be
parametrized by (0, a) in a continuous fashion. Let w(r, s) denote the unique radial
solution of —Au = f(u) satisfying w(0, s) = s and w}(0,s) = 0. Then w is jointly
continuous. Since f(x) > 0 on [0, a], it is easy to see from the ordinary differential
equation that, if 0 < s < a, then w is decreasing in r as long as w is non-negative
and that wj(¥,s) < 0 if ¥ is the first positive zero of w. Note that w must have
such a zero since otherwise 0 < w(r,s) < a on [0,00) and —Aw = f(w) > 0 on R?
and hence w is a bounded subharmonic function on R2. It is well known that this
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implies that w is constant (which must be s). This is impossible since f(s) > 0.
Now 7 is a continuous function of s. It is easy to see by a rescaling of r that

Wo = {(w(Fr, ), (7)?): 0 < s < a}

and hence W is connected since 7 is a continuous function of s and w is a continuous
function of r and s.

STEP 2. Next we prove that the branches are continuous in t locally.

We basically work with the space L>®(R?) x R, where we extend a solution
on D, to R? by extending it to be zero outside D,. More precisely, assume that
to € [0,1] and (ug, o) € Wy,. We only consider the more difficult case where
—A — Mo f'(up)! with Dirichlet boundary conditions on Dy, is not invertible. We
prove that there exist solutions (u?, A*) on D; near (ug, Ag), depending continuously
on t, a complement My to span {hg}, § > 0 and functions vx(-) : (—6,6) — Mp and
&:(?) : (—6,6) — R depending continuously on t and s (jointly) such that v,(0) =
0, ¢:(0) = 0 and (u*+shs+1:(8), A\t +¢:(s)) is a solution of (1) (for domain D;) and
these are the only solutions of (1) (on D;) in a ball with centre (ug, Ag) and of radius
€ in L*°(R?) x R (where ¢ is independent of t). Here hp is the unique normalized
eigenfunction of —A — Ao f/(ug)I (on Dy,) corresponding to a zero eigenvalue and
M is the complement determined by the spectral projection. There are two ways to
prove this result. Firstly, we can use the method of Saut and Teman [19] to reduce
to a problem on a fixed domain depending quite smoothly on ¢ (since D; depends
rather smoothly on ¢). We then mimic the usual proof of the Amann theorem [2]
(which reduces to the contraction mapping theorem). We have extra terms in the
equation due to the ¢ variation but it is easy to see that these are small and satisfy
a small Lipschitz condition (as maps from W22(Dy,) to L?(Dy,)). The details are
very easy but a little tedious. As in [4], it is convenient to work with the equation
where f is truncated for |y| large. The alternative proof which holds for much more
general domain dependence is a variant of the proof of Theorem 3 in [4]. (In fact it
could be used to generalize the result there.) We sketch it briefly. We approximate
ug in the W12 norm by @™ where %" € C§°(D),) and the &™ are uniformly bounded.
The argument in Step 3 of the proof in Theorem 1 in [4] then shows that, if this
approximation is close enough, then for ¢ near ty, —A — Ao f'(%,) on D; has a
unique small eigenvalue A, (t) with corresponding normalized eigenfunction T‘Ln(t)
and no other eigenvalue is small. Let 1, (¢) be the orthogonal complement of Fn ()
(in L2(€:)) and let P, be the orthogonal projection onto ¥, (¢). By the above
comments on the eigenvalues, (—A — Ao f'(%,)I) ™! (considered on Dy) is uniformly
bounded as a map of W, (t) into itself (for the L? norm). As in Step 2 of the proof
of Theorem 3 in [4], one deduces that (—A — Ao f(un)I) ™" is uniformly bounded as
a map of W, (¢)NL*®(D;) into itself (for the L norm). The remainder of the proof
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is a contraction mapping argument rather similar to the proof of Step 3 of Theorem
3 in (4]. We look for solutions of the form (ug + ah,(t) +9n(t, @), ¢n(t,a)). There
are a couple of extra terms in the analogue of equation (12) in [4] but these are
easily seen to be small (with small Lipschitz constant) if n is large. Note that
(u?, A!) is the solution for @ = 0. The parametrization above is slightly different
to the one given in the statement of this step. However, since 1, satisfies a small
Lipchitz condition in e, it is easily seen that they are equivalent.

STEP 3. Nezxt we prove that, if C is a compact connected subset of a component
of Wi, then there are neighbourhoods U,V of C in C(B) x R with U CV such that
any two points of U N W lie in the same component of V N W; for all s near t.

Here B is a ball of large radius containing every D;. This shows that there
are no difficulties semi-locally. To see this, we first note that, if £ > 0 and if s
is close to ¢, then any point of W, N {(u,A) € C(B) X R : ||ulle + |A| < K} is
close to W} in C(B) x R. This follows easily by arguments similar to those in the
proof of Theorem 1(ii) in [4] and Remark 3 after it. By this result, the results of
the previous paragraph, and by a simple compactness argument, we see that there
exist positive numbers &;, i = 1,...,k, neighbourhoods S}, S?, i = 1,...,k, in
E X R, jointly continuous functions Z: : (—§;,6;) — E x R such that the range of
Z! is contained in W, the range of Z} intersects C, Z% is 1 —1 for fixed 7 and s and

k
W,NU, C | JRange(Zi), W,N S} 2 Range(Z})2W.NS} for 1<i<k
i=1

for all s near t. Here E = ((B) as before and U is a neighbourhood of C in
C(B)x R. Now C is a compact proper connected subset of the connected 1 manifold
W, and hence is homeomorphic to an interval [a,b]. Hence we can regard the Z¢ as
parameterized by open subsets P; of R intersecting [a, b] (by using Zio(Z?)~1) where
the open subsets are independent of ¢ and clearly cover [a, b], (since Range(Z%), i =
1,...,k, cover C). Hence we see that ULI Range(Z!) is connected because we can
clearly move between any two points by simply changing from Z¢ to ZJ whenever
the P; intersect. (Recall that the range of Z is connected for fixed s and Range Z¢
exhausts W, N S}.) We now define U = J*_, §? and V = U~ S2 and the result
follows easily.

STEP 4. Let
Ws’t = {(z,)) € Wi : ||z]jc <€ 07 ||Z]o > ac 07 A>T orh < €}

Here a, = €7 ifa = oo and equals a — ¢ if a < 00. Ift € [0,1], we will prove,
in Step 5, that there exist €, § > 0 such that for each s with |s —t| < & each

component of ’VT'E,S intersects ||z]c = € 07 ||Z|loc = Ge 0P A =€ or A = 71,
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Moreover, ezactly two components of WE,S are not compact in L>*°(R?%) x (0, 0c)
(and these are never close to each other). To see that this suffices to complete the
proof, we let A= {s €[0,1] : W, is connected }.

Since A is non-empty, it suffices to prove that Ais open and closed in [0, 1].

Assume W; is connected. The result above implies that, if e, § > 0 are as above,
then any component of W; for |s —t| < § intersects Es,s = {(z,\) €e C(D;) xR :
€ < ||z)loo € @, € £ XA < €71} Thus, to prove that W; is connected for such
s, we only need to prove that, if |s — ¢| < 6 and (u1, A1), (ug,X2) € Wy N Eg,s,
then (u1, A1), (ugz,A2) lie in the same component of Wj. By a simple compactness
argument (cp. the proof of Theorem 1(ii) in [4] ), W, N Ees is close to Wy N §E,t
in the sup norm if s is close to ¢. (Technically we first prove closeness in an L? or
Orlicz norm, then use interior regularity results to prove closeness in the sup norm
on compact sets in the interior. Finally barriers can easily be used to show that
solutions are uniformly small close to the boundary and hence we have the uniform
convergence. Note that barriers are discussed on p. 98-101 of [12].) In particular,
it follows that {u1,A;) and (ug, A2) are close to points of W; N Ee,t if s is close’
to t. Suppose our claim is false. Then there exist ¢, — ¢ and (u?, A7), (uf,A})
in Wy, N ge,tn being in different components of W;_ . By our earlier remarks and
by taking subsequences, we see that we can assume that (u}, A7) — (@1, A;) and
(ug, AR) — (ﬂz,:\\z) in L°(R?) x R as n — oo. Now there is a compact connected
subset C of W, containing (ﬁl,’):l) and (1’22,’)\\2). (This follows easily that W} is a
connected 1-manifold and hence is homeomorphic to R.) Since Cis compact, Step 3
now implies that (u},A}) and (uf, A}) lie in the same component of W} for large
n. This gives the required contradiction. Hence W is connected for s near ¢ and
Alis open.

To prove that A is closed assume by way of contradiction that W is con-
nected, W; is not and s, — t as n — co. Since W; is not connected, we can use
standard results on separating compact sets (as in Whyburn [20]) to show that
W; = K; U K5 where K; and K are closed and disjoint and the two non-compact
(in L®(R?) x (0,00)) components T?, T of W, ; do not both lie in K; (or both lie
in K5). (Technically, we apply separation results to a two point compactification of
W;.) We easily see that K; and K, are a positive distance apart. We may assume
Tt C K;. By our earlier remarks any point of W, for n large will be close to K;
or to K or will lie in one of the two non-compact components of W, ,_. This gives
a separation of W,. (One part of the separation will be the points of W, near
K or near Ty and the other is defined analogously.) This separation contradicts
the connectedness of W, and hence our claim follows. Thus A is closed. This
completes Step 4.
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STEP 5. Thus the proof of the theorem reduces to proving the results on the
structure of W s locally uniformly in s mentioned at the beginning of Step 4.

This basically reduces to checking that a number of standard arguments can be
done locally uniformly in s. We first dispose of the easy cases. It is easy to see that
(—A)~1! is uniformly bounded as a map of L*(D,) into itself uniformly in 5. (We
will meet more complicated cases a little later.) It follows easily by a contraction
mapping argument that, if f(0) > 0, then there is an £ > 0 independent of s such
that {(z,\) € W, : ||z]| < E} is contained in {(@s(A),A) : 0 < A < &} where «
is jointly continuous in s and A. In addition, if f(y) < Ay + ¢ for y < B, then,
uniformly in s, W, N {(z,)) : € < ||z]|ec £ B, A < £} is empty for suitable Z.
(The last statement is valid even if B = oo or if f(0) = 0.) This disposes of all the
solutions with A small except for large solutions when f is superlinear. We return
to this case later. Moreover, if f(0) > 0, it is easy to see that the only solutions
(z, A) with ||z]|cc small have A small (once again uniformly in s).

We now consider the solutions with ||z|| small when f(0) = 0 and f/(0) > 0.
In this case, the first and second eigenvalues A{, A5 of —A on D, (for Dirichlet
boundary conditions) as well as the first (normalized) eigenfunction h§ depend
continuously on s. It follows easily that, for A close to (f/(0))~1A§, (~A—Af'(0)I)~!
is uniformly bounded (in s) as a map of (h)"' into itself for the L2 norm on D,.
We can then argue as in Step 2 of the proof of Theorem 3 in [4] to deduce that this
same operator is uniformly bounded in s as a map of (h§)1 N L>®(D,) into itself for
the L norm. It is now easy to check the usual proof of the Crandall-Rabinowitz
bifurcation theorem [2] holds uniformly in s in the space L°°(D,). More precisely,
one finds that there exist £ > 0 and jointly continuous functions ¢, : (—£,8) —» R
and 9, : (—&,8) — (h§)* N L>*(D,) with ¢5(0) = f'(0)7'A{, 9,(0) = 0 such that
(a(hi+1s()), ¢s(x)) are positive solutions of (1) on D, for 0 < a < & and these are
the only small positive solutions close to (0, (f/(0))~*A{) where what is meant by
close is uniform in s. Moreover, these are the only solutions (z, ) which have ||2(|oo
small. This follows easily because, if Ayy <y 'f(y) < dsy for 0 <y < B (where
A; > 0), a simple comparison argument shows any positive solution (z,)) with
lz|loo < B satisfies AA; < Al < AA,. This argument also shows that, if f’ (0)>0
and if f(y) > 0 for y > 0, then the only positive solutions with A large are large
in the uniform norm. (Once again, if a < oo, this becomes that |[ul . > a — ¢ if
(u, N) € W,.)

Moreover, if f'(y) — ¢ € (0,00) as y — 0o, one can use similar arguments to
show that large solutions occur for A close to (f'(00)) ! A§ and form a one parameter
family bifurcating from infinity parametrized by P,z where P, is the orthogonal
projection onto the span of h{ (and this holds uniformly and continuously in s).
The proof of this is very similar to the case in the previous paragraph except that
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we replace the Crandall-Rabinowitz argument by the argument of the author [7].
One difference is that o € (€71, 00) instead of (0,&). The uniformity in s is easy
to check as in the previous paragraph. In this case, our earlier arguments imply
that there cannot be large solutions for A small. If —Au, = A, f(v,) on D, ,
ltnlloo — 00, An — A a8 n — co and s, — §, let v = (||tn|loc) " un. Then one
easily sees that —Awv, — A, — 0 as n — oo in C(D,,) and a simple limit argument
(similar to those in [4]) easilv implies that A = AJ. Thus large solutions could only
occur for A near \{ or A large. If f/(0) > 0 or f(0) >0, f(y) > py on R where
i > 0 an earlier argument implies that there are no positive solutions for A large.
If /(0) = 0, it.can be proved by a blowing up argument similar to those below
that there can be no non-small positive solutions with A large. We do not give the
details because more complicated cases occur later.

The remaining cases are handled by showing that arguments in [5] can be done
locally uniformly in s. It is assumed that the reader has a copy of [5] available. Note
that blowing up arguments are often easier than those in [5] because the maximum
of a solution always occurs at 0 (by Gidas-Ni-Nirenberg [11]) and thus the maximum
never occurs close to the boundary. This makes it very easy to generalize many of
the results in [5] to our case where the domain is varying. In particular, we never
have to do boundary blow ups.

We consider in some detail the case of large solutions when f(y) ~ y? as y — oo
(that is, f(y) = yPg(y) for large y where g(y) — ¢ € (0,00) as y — 00). Assume
that u,, are positive solutions of —Au, = A,f(u,) on D,, such that ||up|ec — 00
as n — oo. Since f(y) < Ay? + B on R* and since (—A)~! is bounded as a
map of L®(D, ) into itself (uniformly in s), it follows by simple estimations that
there is an 9 > 0 independent of n such that g9 < Ap(||tnlx)?~? for all n. Let
Vn = (||ta)loo) " tin- Then

L p—1F (1tnllootn)

At = Anltnllee) = oy
Now it is easy to check that f(||un]leotn)/(||%n|l50)? —cvh — 0 uniformly as n — oo.
Hence if a subsequence of A, (||unleo)?~! tends to infinity as n tends to infinity, we
can repeat the blowing up argument in [5], p. 441, to obtain a bounded positive
solution of —Awv = vP on R%. (We are using the remark above on why the variation
of the domain does not affect this argument. Note that when we blow up close to
the maximum we are always looking at points close to zero and these points lie
in all the domains.) Such a solution would have to be a bounded superharmonic
function on R? and thus constant. This is easily seen to be impossible and hence
An(|tun]loo)?™t < K; for all n. Thus A, — 0 as n — oo and we can write u, =
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At @Dy where K3 < JJwnlloo < K4 for all n. Now w, satisfies
—Awy, — NP1 f(A 1/ (=, ) = 0 on D,,

and hence, since w, is uniformly bounded, we see much as before that —Aw,, —
cwh, — 0in L*(D,, ) as n — oo. Much as earlier (or as in [4]) we now deduce that
wy, (or at least a subsequence) converges uniformly to a non-trivial non-negative
solution w of —Aw = cw? in Dz, w = 0 on 8D, where 3 is the limit of the
3n. (As before we first prove convergence in L for large r, then uniform conver-
gence on compact subsets of the interior and finally use barriers to obtain uniform
convergence near the boundaryv.) Since (5) has a unique non-negative non-trivial
solution Wz (by [4]), it follows that w, — Ws as n — co. Conversely, we prove
that there are €1,e5 > 0 such that if A < &1, (1) has a unique positive solution of
the form A=Y~V (@, + h(s, \)) where ||h(s, )]0 < €2. Moreover, this solution
depends continuously on s and A. This now follows by standard theory for degree
theory and contraction mappings if we note the following. Firstly, the mapping
h — —Ah — cp(w, )P~ h (with Dirichlet boundary conditions on D,) is invertible
by the proof of Theorem 5 in [4]. Secondly, as earlier, we can prove a uniform
estimate for the inverse in L%°(D,). Thirdly, AP/(P=1) f(A=1/(FP=Dyy — cyp 4 gy, X)
where g-and %%(y, A) are small on bounded y sets if A is small. This justifies our
claim for the large solutions in this case.

Similar arguments imply that when f’(0) = f(0) = 0, there is a unique small
non-trivial positive solution for large A and this holds uniformly in A. Moreover,
since —Awu = f(u) has no non- constant non-negative bounded solution on R2, we
easily see by blowing up arguments similar to those in the proof of Theorem 3 in [4]
that positive solutions of (1) for large A have either sup norm small or large (and
this is uniform in s).

Thus, to complete our proof, we need only study the behaviour of the large
positive solutions of (1) for A large in case (iiy) (or case (iix)) or the positive
solutions with [|u|e near a in case (iia). If f(0) > 0 or if f/(0) > 0 then, since
the boundary of D, changes quite smoothly in s, it is easy to see that subsolutions
methods hold uniformly in s. In particular, in the second case above, the uniform
estimates for the positive solution in the proof of Theorem 2 in [5] hold uniformly
in s and the rest of the proof of Theorem 2 is readily seen to hold uniformly in s.
In case (iiv), it is easily seen that the only difficulty is to prove Step 2 of the proof
of Lemma 1 (in [5]) holds uniformly in s. Note that wo depends on s but depends
quite smoothly upon s. Here w§ is the solution of —Au = 1 on D, with Dirichlet
boundary conditions. Suppose, as before, that v, are positive solutions of (1) on
D, such that A, — 0o and ||ug||coc — 00 as n — 00. The proof there shows that
—A(A 'up — Cwgr) tends to zero in LP(D,,) and thus by W2? estimates as in
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[12] or [17] (including their remarks on the constants) || A\, u, — Cwg*||2,p,0,, — 0.
Here we mean the W?2? norm on D, . Thus by the Sobolev embedding theorem
(including the remarks in [1] or [17] on the dependence of the constants on the
domain), A, lu, —Cwy™ is small in C* on D;, uniformly in n. Hence our estimates
in Lemma 1 in [5] are easily seen to be true if we prove there exist (1,Cy > 0
independent of n such that Cid(x,8D;,) < wy™(z) < Cad(z, 8D;,) for all n. This
follows easily by using barriers and by using solutions on balls as subsolutions.
(Remember that D, is quite smooth and quite smoothly dependent upon s.) The
case where p < 1 is similar (that is, case (iix)). It remains to consider the case
where f(0) = f/(0) = 0. Then, as we commented before, blow up arguments are
easily seen to be valid uniformly in s and it is easy to combine the ideas in the
previous paragraph with the ideas in the proof of Theorem 3 in [5] to show that
argument there is valid uniformly in s. The proof of Theorem 4 in [5] can similarly
be shown to be uniform in s. Indeed our special geometry enables us to simplify
considerably the proof there. Thus we have proved the uniform in s behaviour at
the extremities of W, and the proof of Theorem 1 is complete.

REMARKS. 1. The uniform behaviour (in s) of the extremities of W, can be
proved rather more generally in many cases. Indeed, it is not difficult to generalize
our theorem to arbitrary domains C? close to those in the theorem (for fixed f).
If f satisfies (ii8) and if either f(0) > 0 or f(0) and f'(0) > 0, it can be shown
that Theorem 1 continues to hold for domains close in the sense of [6] to & domain
of type R. Here in the proof it is necessary to replace C(B) by L?(B) for p large
and prove closeness in L? norms. This allows for much more general domains.
Domain variation ideas imply that this result is not true for domains C° close if

f(0)=f'(0) =0.

2. It would be very interesting to prove results of this type in more than 2
dimensions. There are extra difficulties here because an example in [5] shows that,
even for a ball, the connectedness is not so simple a problem. Moreover, critical
Sobolev exponents now have an influence while it is very unclear how to generalize
Proposition 1. However, our techniques do apply to domains C? close to a ball in
R™ (where what is meant by close depends on f) provided that p in Assumpton (1)
satisfies p < (n—2)"1(n+2), the ¢ in Assumption (iir) satisfies ¢ < (n—2)"(n+2)
and the equation —Awu = f(u) has no bounded non constant positive solutions on
R™. Some conditions ensuring that the last condition holds can be found in the
last section of [5]. As in Remark 1 we can allow perturbations of the balls of much
more general type for asymptotically linear f’s, with f(0) > 0 or with £(0) = 0 and
f'(0) > 0.
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3. To generalize our results to the Gelfand equation, we need better estimates

for large solutions for small A while to generalize our results to problems of Hess
type (where we now try to prove that Wy has the same number of components
as when D is a ball), the difficulty is to prove good estimates for the number of
positive solutions for large A (especially the unstable solutions). It seems that this
last problem is much more complicated and it is very unlikely that as simple a

result is true in this case. However, it seems very likely that partial results can be
obtained by our techniques.
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