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1. Introduction

The concepts and results of the Leray—Schauder degree and index theories have
been verv effectively applied to prove global continuation theorems for the existence
of solutions to nonlinear equations in a Banach space. Indeed, the Leray—Schauder
continuation theorem itself is the premier result of this type. In this paper we
use the homotopy index of Conley to prove a global continuation theorem for the
existence of full bounded solutions of ordinary differential equations. This extends
a small parameter result originally proven in [13]. We study parameter dependent
families of ordinary differential equations of the form

dz

(1) i wF(z,t, 1)

where F' is a continuous function of (z,t,x) E E=D xR x[0,1], D c R™ is an
open set and p € [0,1] is a parameter. By a (full) bounded solution of (1) we mean
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a solution z = z(t) satisfying (1) for all ¢ € R and such that
||z]| := sup |z(t)] < oo.
teR

QOur main result is analogous to one of Mawhin for periodic solutions. Mawhin’s
result is intrinsically related to degree theory. Suppose there is a number w > 0
such that F(z,t +w,pu) = F(z,t, ) for all (z,t, 1) € E, and let

1 [
Fy(z) = ;/0 F(z,t,0)dt

denote the average of F(z,t,0).

THEOREM 1 (Mawhin). Suppose: (i) There is a bounded open set Q with Q C D
such that if z = z(t) is an w—periodic solution of (1) for some 0 < u < 1 satisfying
z(t) € Q for all t, then z(t) € Q for all t. (ii) Suppose also that Fo(z) # 0 for all
x € QO and the Brouwer degree dg(Fp,2,0) # 0.

Then for each p € [0,1), (1) has an w-periodic solution with values in 2, and
at = 1 there is an w-periodic solution with values in Q.

For a proof of this (and many other, and more general, results) see [7], or [8].

Herein we study the existence of bounded solutions to (1) under the assumption
that F(z,t,u) is almost periodic in ¢ € R. Condition (i) in Mawhin‘s result is
assumed to hold for all full bounded solutions with values in (2. Condition (ii) is
altered to the assumption that € is an isolating neighborhood for the flow generated
by the (appropriately defined) averaged equation

(2) — = Fo(z)

and that the maximal invariant set in Q has non-trivial Conley (homotopy) index.
Proofs are based upon applying Conley index theory to a family of skew-product
flows associated with (1). Notice that the Conley index cannot be applied directly
to nonautonomous differential equations, since the solutions of such equations do
not define a flow (dynamical system) on the space of initial values; see [11]. For
this reason we use the associated skew product flows. For the properties of the
homotopy index we refer the reader to [2] or [9], and for skew product flows to [10]
or [5]; the use of these in the present context is discussed in [12] and [13]. Our main
result is proven in Section 2, and in Section 3 it is applied to prove the existence

of bounded solutions to differential equations having bound sets.
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We will make use of a weak topology on our families of differential equations.
This topology was studied by Artstein [1] in much greater depth and generality than
will be needed here. Let D C R™ be an open set and f : D x R — R™. Suppose
f satisfies the Carathéodory conditions: for each = € D the function ¢ — f(z,t) is
Lebesgue measurable, and for almost all £ € R (in the sense of Lebesgue measure)
the function z — f(x,t) is continuous on D. Suppose

(C1) For every compact set A C D there exist two locally L' functions m4(t)

and ka(t) such that if z,y € A and t € R then:

(1) |f (=, )] < ma(2),

(2) 1f(2,8) — f(y,1)] < kalt)lz —yl,

(3) for every € > O there exists a p = pa(e) > 0 such that if E C R is me-
asurable, contained in an interval [t,t+1], and with measure less than
p then [pma(t)dt <, and

(4) there exists a number N such that j;t-H ka(s)ds < N, for allt € R.

Given a function f satisfying (C1) one can define an associated set of functions
G on D x R that contains the time translates of f, defined for 7 € R by f,(z,t) =
f(z,7+1) for all (z,t) € D x R. With an appropriate topology on G, one can then
define skew-product flows on R™ x G.

DEFINITION 2. Let f satisfy (C1) and for every compact set A C D ande > 0 let
Na and ppa(e) be given by (C1). The family G = G(f) consists of all Carathéodory
functions g : D x R — R™ satisfying: For every compact A C D there erist two
locally L' functions Mg and K4 4 such that if z,y € A and t € R then

(1) lg(z,t)] < Ma4(t),

(2) lg(z,t)—9(y,t)| < Kag(t)lz—yl, and the functions M4 4 and K 4 , satisfy:

(3) if E C [t,t + 1] and the Lebesgue measure of E is less than 1a(e) then
Jg My q4(s)ds < e and

(4) [FT Kagy(s)ds < N for allt € R.

If g € G(f) then so is g, for any 7 € R. Moreover, for each 2y € D the initial
value problem

dz
Fri g(z,t), z(0) ==z

has a unique solution z(¢; zo, g) defined on a maximal interval of existence I(zo, g) =
(a0, 9), B(z0,9)). Artstein in [1] gives the space G a weak metrizable topology
which we will impose. This is given by
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DEFINITION 3. Let {gx} be a sequence in G. We say {gr} converges (weakly)
to g € G provided for every z € D andt € R the sequence { fot gr(z, s)ds} converges
in R™ to fot g(z, s)ds.

Convergence in G is induced by a metric, which is explicitly given in {1]. The
topological space G is compact and is closed under time translations. A local flow
7 can be defined on D x G by 7(xo,g,t) = (2(¢; Zo, 9), g¢) for t € I(zo,g). The flow
(dynamical svstem) 7 is a skew product flow (see [10] or [5]).

We are not interested in flows on all of D x G however. Instead we take the
closure in G of the time translates of f, the (weak) hull of f, which we denote by
H,(f). Since G is compact and Hy,(f) is closed, it follows that H,,(f) is compact.
The flow 7 is locally invariant on D x H,,(f) and we restrict our attention entirely to
this local flow, which we also denote by =. If f(z,t) is a continuous and uniformly
almost periodic in ¢ € R then the usual hull of f is the closure of the time translates
of f in the topology of uniform convergence on compact sets. We will call this the
strong hull of f, and denote it by Hs(f). Now if {f;,} is a sequence of translates of
the uniformly almost periodic function f(z,t) converging in the weak topology to g,
every subsequence of that sequence has in turn a subsequence converging uniformly
on compact sets to some A in the strong hull; thus this subsequence converges to h
in the weak topology also. Hence for each z € D, g(x,t) = h(z,t) a.e., and in fact
{f:.} converges to h in the strong topology. Thus in the uniform almost periodic
case the topologies are equivalent if we identify the equivalence classes of functions
in H,,(f) with their continuous representatives. Moreover, uniform convergence on
compact sets of a sequence of uniformly almost periodic functions is equivalent to
its uniform convergence on sets of the form K x R, K C D compact [3]. Thus our
weak topology is equivalent in thjs case to this latter topology . Nevertheless, the
weak topology will be useful to us in the study of parameter dependence. Since
the hull of f is essentially independent of these topologies, we will simply denote
it by H(f). Recall that if g € H(f) then g is also uniformly almost periodic and
f € H(g). The space D x H(f) is a locally compact metric space in any of these
topologies.

We will apply the following abstract continuation result regarding the Conley
index; see [2] or [9].

THEOREM 4. Let M be a locally compact metric space and suppose for each
p € [0,1] that 7, is a local flow on M . Suppose: (a) The map p — m, is con-
tinuous in the sense that if {un} C [0,1], {zn} C M, and {t,} C R are sequences
with gn — p, Tn — z, t, — t, and T,(z,t) is defined, then m, (zn,t,) is defined
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for all large n and my,, (Tn,tn) — mu(z,t) as n — 0o. (b) There is a compact set
N in M such that, for each p € [0,1], N is an isolating neighborhood for =,,. Let
I(w)={z € N:7,(z,t) €N for allt e R}.

Then the Conley (homotopy) index h(m,, I(1)) is defined and its value is inde-
pendent of p € [0,1].

Recall that the homotopy index is a homotopy class of compact pointed spaces,
and that if the index of a compact isolated invariant set Iy is not the homotopy
class of 0, the one—point pointed space, then Iy # 0.

2. A Global Continuation Theorem

Let FF: E =D x R x [0,1] = R™ be continuous, D C R™ open, and consider
the parameterized family of differential equations

3 Z—: = pF(z,t, p).

We will always suppose that F(x,, u) is locally Lipschitz continuous in z, uniformly
in ¢ and p. In particular, initial value problems for (3) have unique solutions, and
F(-,-, ) satisfies (C1) for each u € [0,1]. We also assume that F(z,t,u) is almost
periodic in ¢ € R, uniformly with respect.to # and p in compact sets, and that for
each compact subset K C D, F(x,t, u) is continuous in p € [0, 1], uniformly with
respect to (z,t) € K x R. Thus, given € > 0 and compact K C D there exists 6 > 0
such that |F(z,t, u1) — F(z,t, us)| < € whenever (z,t) € K x R and |u; — ps| < 8.
We let H(p) denote H(F(-,-, 1)) and Fp(z) denote the average of F(z,t,0), so that

1 T
Fie) = Jim /0 F(z,1,0)dt.

We relate (3) to the averaged equation

4@ * - R

It follows from our assumptions that initial value problems for (4) have unique
solutions. We will represent a generic g € H(u) as F*(z,t; 1). Consider the family
of differential equations

dz o
(5) = = WF* (2, 1)
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for F* € H(p).
We can now state

THEOREM 5. Suppose: (i) There is a bounded open set Q with Q C D such that
if £ = xz(t) is a solution of (5) for some F* € H(u), 0 < p < 1, with z(t) € Q for
allt € R then z(t) € Q for allt € R. (ii) If z = x(t) is a solution of (4) with
z(t) € Q for all t € R then z(t) € Q for allt € R. Moreover, if Iy denotes the
mazimal invariant set in  for (4) then the Conley index h(lp) # 0.

Then for each 0 < pu < 1, (3) has a full bounded solution with values in Q, and
at =1 (3) has a full bounded solution with values in Q.

PROOF. There are two parts to the proof. In the first part, we show that there
is a po > 0 such that for each 0 < p < g, a skew product flow associated with (3)
has a non-empty invariant set of non-trivial homotopy index. In the second part we
show that these invariant sets of nontrivial indices can be continued for 0 < u < 1.
We can then obtain from these sets bounded solutions to (3) lying in Q for each
0 < p < 1, and a solution in  when p = 1.

Part 1: The proof for small u > 0 was first given in [13]. For coherence we will
include the proof here.
First notice that if z = z(¢) is a solution of (1) for some p > 0 then y(t) = z(¢/u)

is a solution of

(6) % = F(y,t/p, 1),

and z(t) €  for all ¢t € R if and only if y(t) € 2 for all t € R. We will homotopy
(6) for fixed small p > 0 to the equation averaged at p = 0. Let 0 < 4 < 1 and
consider the homotopy ’

™ W (1= N Fola) + VP (5,750

for F* € H(p) := H(F(-,-,1)). Now Q is an isolating neighborhood for Iy in the
flow 3 generated by (4). We claim that there is a value go > 0 such that, for
each 0 < g < pg each member of the family of equations (7) has Q as an isolating
neighborhood. That is, if for some A € [0,1] and F* € H(p), y = y(t) is a solution
of (7) with y(t) € © for all ¢ € R then in fact y(t) € © for all ¢ € R. If this is not
the case, then for each positive integer n € N there is a function y, = y,(t) with
yn(t) € Q for all t € R, and numbers A, € [0,1], pn € (0,77 Y], s, € R, and an
F, € H(u,), such that for all ¢, y,(t) satisfies the differential equation

dyn -
® e (1= A)Fo(Wa) + A (U 117 )
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and yy,(s,) € 0. Let 2,(t) = yn(t+sn); then z, satisfies (8) translated by s,,. Now
both z, and dz,/dt are uniformly bounded on R independently of n € N, so there
is a subsequence of {z,} uniformly convergent on compact subsets of R, to some
z = 2(t) with z(t) € Q and 2(0) € 8Q. We can assume A, — Ao € [0,1]. Now the
key here is that the sequence of functions {F,, (-, -u,'; un)} converges in our weak
topology to Fy(-), ([13], Lemma 4.1). From all of this it follows that z satisfies

& (1= M) Ry(a(t) + Mo Fole(t) = Fo(z(®)
for all t € R. Since z(0) € 8Q and z(t) € Q for all £, this contradicts the hypothesis
that { is an isolating neighborhood for (4), and proves the existence of 0 < pg < 1
satisfying the claim.
We now return to the equation with z = z(t) = y(ut), for fixed 0 < p < po and
consider the homotopy

(9) O — (1~ NuFole) + MaF* (x5 )

for A € [0,1] and F* € H(u). We define a family of skew product flows 7 on
D x H(u) associated with (9) by

wa(zo, F*,t) = (z(t; 2o, AuF™), FYY)

where z(t; o, ApF*) denotes the solution to (9) with z(0) = zy. It follows, essen-
tially from results of Artstein [1], that the family of flows {m»} is continuous in the
sense of Theorem 1. Moreover we have just shown that Q x H(u) is a compact iso-
lating neighborhood for each 7y, A € [0, 1]. Thus the Conley index of the maximal
invariant set in & x H(y) for my is independent of A € [0,1]. Let I(0) denote this
set for mp. Now in this case, A = 0 so (9) becomes the equation

(10) 2 — uFo(a).

The flow determined by (10) is the same as that of (4) except for a change of
independent variable ¢ — p~'t. We denote this flow by 3,. By hypothesis,
h(B,,1(0)) # 0. Let v denote the flow on H(u) given by y(F*,t) = F¥. Then
7o is a product flow on D x H(y) given by

7T0=ﬂp><’)’

1(0) = Ip x H(p).
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It follows ( see [1] or [9]) that

h(mo, I(0)) = h(Bu x ¥, Io x H(p)) = h(By, Lo) A h(y, H(p))

where A denotes the smash product of pointed topological spaces (homotopy types).
By hypothesis, h(8,,Io) # 0, and h(y, H(p)) is of the form of a compact connected
topological space with separated distinguished point (since H(u) has an empty exit
set under the flow v). It follows from a result in [12] that h(m, I(0)) # 0. Hence

Since m; is the skew product flow on D x H(u) generated by the initial value
problems
dz .
i wF*(z,t; 1), z(0) = 29
where F* € H(u), we will denote this flow by ®,, and I(1) by I,. Thus we have

shown that there is a number 0 < ug < 1 such that for 0 < u < pp we have
h((D;u IM) = h’(ﬂ'h I(l)) ?é 6

It follows that there exists (z*, F*) € Q x H(u) such that ®,(z*, F*,t) € Q x H(u)
for all t € R. Thus the solution T = Z(t) to

Y o (@, 50), 3(0) =a*

exists and satisfies Z(1) € Q for all.£ € R. By the almost periodicity of F' and our
remarks following Definition 2 we can take F* € H,(F'), that is F* is in the usual
(strong, in our sense) hull of F, and hence is continuous and uniformly almost
periodic. Now H(F) = H,(F*), and there is a sequence {s,} C R such that
F} (z,t;u) — F(z,t,p) uniformly on compact sets. Let z,(t) = Z(t + s»). Then
{z,} is a uniformly bounded and equicontinuous family of functions on the real line.
It follows that there exists a subsequence which converges uniformly on compact

sets to a solution z = 2(t) of

dz
E - II‘F (.’B 3 t: /1’)
with z(t) € Q for all t € R. By applying again hypothesis (i) we conclude that in
fact z(t) e Q for all t € R.

This completes Part 1 of the proof.



GLOBAL CONTINUATION FOR BOUNDED SOLUTIONS 83

Before proceeding with Part 2 of the proof, we pause for the statement and
proof of a lemma.
Now F(z,t,p) is a function mapping P x R x [0, 1] into R™, almost periodic in
t unifdrmly with respect to z and p in compact sets. For any uy, po, ..., u, € [0,1]
the mapping
(z,t) > (F(z,t, ), F(z,t, u2), ..., F(z,t, pn))
defines an uniformly almost periodic function with range in R*™ (see, e.g., [3]).

We will denote its hull by H{(u1, p, ..., ptn). Note that this is a subset of H(u;) x
H{ps) x -+ - x H(uy), but these sets are not, in general, equal.

LEMMA 6. Let F(z,t, u) satisfy the general conditions assumed at the beginning
of this section. Let {pn} C [0,1] be a sequence converging to some p € [0,1], and let

{(fn,9n)} be a sequence with (fn,gn) € H(tin,p) converging uniformly on compact
sets to some (f,g). Then (f,g) € H(u,p) and f = g.

PROOF. For each n € N let F(un, p) = {(Fr (", s ttn), Fr(-,-, 1)) : 7 € R} be
the set of time translates of (F'(-,-, pn), F(:,+, 1)), so that H(un,p) is the closure
of F(tun, ). First suppose (frn,gn) € F(tin,p) for each n € N. Then there exist
T € R such that

(fr(Z,t, thn), (2,1, 1)) = (F(2, 1 + Ty fhn), Fz,t 4 70, ).

Now for each £ > 0 and compact K C D there exists § > 0 such that |p, —pu| < §
implies

|E(2,t + Ty pin) — Fz,t + T, )| < €
for all (z,t) € K x R. Since yu, — g and F(z,t + 1o, 1) — g(z,t), we conclude
that F(z,t + Tn, un) — g(z,t) also. Hence f = g and since g € H(u) it follows

that (f,9) = (9,9) € H(u,p). Now suppose (fn,9n) € H(pin,p). Let {K,} be
a sequence of compact sets in D with K, C K41 and

For each 7 € N there is a pair (fn,Gn) € F(in, 4) with
I (fn(xa t)7gn(zv t)) - (ﬁﬁ(m’t)agn(w’ t))[ <n7!

for all (z,t) € K,, x R. This implies that (f;,,,ﬁn) — (f,g). But (ﬁ,,@'n) € F(ttn, 1)
and pn, — p implies by the first part of the argument that f = g and (g,9) €
H(p, p). This proves the lemma.
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Part 2 of the proof of Theorem 5:
In this part we will change our notation slightly. Let

G(z,t, ) := F(z,tp~ ), for 0<p<1, and G(z,t,0):= Fy(z).

Fix p* € [0,1). For px € [0,1) and A € [0,1] let us consider the family of

differential equations

(12) (1= NG (. tm) +3G" (5, 1:1)
for (G*(-,-;u), G*(-,; 1*)) € H(u,p*). We claim that 0 < p* < 1 there exist
numbers

0<u =n(p") <p* <rp=1{E) <1,

such that any solutions to (12) with z = z(¢) € Q for all ¢ must satisfy z(t) € Q
for all ¢. If not, there exist p, — p*, Ay — Ao € [0,1], (gn, hn) € H(itn, u*), and

solutions z,, to
dz,

dt
satisfying z,(t) € Q for all ¢, and z,(t,) € 6 for some t,,. Let y,(t) = 2, (¢t + t,),
then

= (1 — M) gn(Zn,t) + Anhn(2n, 1)

dditn = (1~ A)gn(Yn,t +tn) + Anhn(Yn, t +t,).
Since {yn} and {dy,/dt} are uniformly bounded, we may assume that {y,} con-
verges uniformly on compact sets to some y with y(t) € Q for all ¢, and y(0) € 9.
Moreover by hypothesis (G(z,t, 1), G(z,t,u*)) is almost periodic in ¢, uniformly
with respect to z and y, p* in compact sets. It follows that without loss of gen-
erality we may assume that (g,(z,t + t.), hn(z,t + t,)) converges uniformly on
compact sets to some (g*, h*). By the lemma, ¢* = h* and (g*,g*) € H(u*, u*),
and
dy . . .
7 = =29 @, 1) + dog™(1,8) = 9" (,2)
where g* € H(u*). This contradicts hypothesis (i). Thus 11 < p* < vg exist, as
claimed. When p* = 0 the existence of such an interval [0,12(0)) was proven in

Part 1. Fix z € (0,1), and for each p € [0,1) let J(p) = (v1(1), v2(u)); then

{J(w) : pe0,1)}

forms an open cover of [0,%]. Thus it has a finite subcover

{J(“O): J(Nl)? R J(”N)}‘
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We can assume that 0= g < p2 < ... < uyy =7 and

(13) J(p'n) n J(P’n+1) 7é 0

forn=0,1,...,N —1.
We will show that

% — Glat.)

dt
has a full bounded solution with values in 2. Let k¥ € {0,1,...,N } be the least
integer such that z € J(u). If k£ = 0, we are done by Part 1. Assume k > 0. By
(13) there is a number a, € J(fn—1) N J(pn), for n = 1,2,... k. Consider the
following homotopies of families of equations:

‘fl_: = (1= X)G*(z,t; ) + AG*(z, t; &),

2—? = (1= XNG*(z,t; px) + A\G*(z, t; o),

S (1= NG (@, ow) + AG s ar),
% = (1= NG*(,t; pe—1) + AG* (2, t; 1),
e B
5= (1-XG*(z,t; a1) + AG*(x,t;0).

where, letting G*(u) := G*(-, -; ),

(G*(m), G*(ux), G*(ar), G* (pk-1), - . -, G* (1), G*(0))
€ H(ﬁ, My Qkgy folg—1, - - -, 001, 0)

By the preceding argument, none of these homotopies have any solutions in
which assume a value on 9Q. Let

ﬁ:= H(l_‘l‘vﬂ'kyak,"':alao)

We define a finite sequence of 2k + 1 skew product homotopies on the space D x H ,
denoted by the starting point of each homotopy, as 7a[fz], 7a[us], maak], ..., m [aa]-
These are given by

Tx[El (@, (1 £, P2, 0) = (@m0, (L= NF +AF2), (F 12, f2541)),
luel(zo, (F15 £2, -, F24), 8) = (@t 20, (1= N F* +2f%), (F, £2,..., 52+,
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and so on, for g, pk_1,...,01,40 = 0, and o € D and (f1, f2,..., f+1) € H.
Of course, these flows are only defined locally, that is, as long as the solutions of the
defining differential equations exist. We have actually defined a homotopy joining
mo[iz] and 71[0], which could be made explicit by reparameterizing A. Now

QOx H

is a compact isolating neighborhood for each flow in the homotopy, and the results
of [1] show that the continuous dependence conditions of Theorem 4 hold. Thus
if 7(0) is the maximal invariant set in O x H for the flow mo[z] and I(1) is the
maximal invariant set in @ x H for the flow 7;[0] then we have that the Conley
indices of these sets are defined and

h(mo[@l, 1(0)) = h(m1(0], I(1)).

Now
m[0] =8 x5

where (3 is the flow defined by the autonomous equation (4) and ¥ is the flow on H
given by
A’Y‘((fla f21 v 7f2k+1)at) = (ftli ft2a ety 1‘,2k+1)'

Now I(1) = Iy x H, so that, like in Part 1 of this proof,
h(mol], 1(0)) = h(8 x ¥, Io x H) = h(B,Io) A h(¥, H) #0.

Thus I(0) # @. Now, arguing as at the end of Part 1, we can conclude that

Z_:: = fF(z, 1, %)
has a full bounded solution taking values in €. This proves there is a solution to
(3) with values in Q for each 0 < u < 1. To obtain a solution at u = 1 let {u,}
be a sequence in (0, 1) converging to 1, and x, = z,(t) corresponding full bounded
solutions with values in . Standard arguments show that a subsequence of {z,}
will converge to a full bounded solution of (3) with x4 = 1, and this solution will
take all its values in the closed bounded set Q. This proves the theorem.

.

REMARK 1. It is natural to suppose that one could simply use the parameter
in F(z,t,p) to define a homotopy to prove Theorem 5, and avoid introducing the
piecewise linear approach used here. The difficulty is that we don’t seem to have
enough information on how F(z,t,u) (or H(u)) varies with x. By making stronger
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assumptions we can apparently simplify the proof. Recall that if f is an almost
periodic function, then the module of f, Mod (f), is the smallest additive group of
real numbers that contains the Fourier exponents of f (see [3]). If Mod (F(-, -, 1))
is independent of 0 < y1 < 1 then, by applying Theorem 4.5 of [3] one can show that
F*(z,t;u) € H(p) can be followed continuously (in a unique way) as p varies. It
should now be possible to prove the conclusion of Theorem 5 using the homotopy
defined naturally by the skew product flows associated with

dx .
E - ”F (.'L',t, ’1’)

on the space D x H(1).

REMARK 2. If the bounded solution found in Theorem 5 is locally unique then
it will be almost periodic; see [3] for a proof of this.

COROLLARY 7. Let F be as in Theorem 5, except suppose D = R™. Suppose:

(i) There is a number ro > 0 such that if x = x(t) is @ bounded solution of

(4) then ||z|| < ro.

(ii) If I denotes the mazimal compact invariant set for (4) then h(Iy) # 0.
Then either for each p € [0,1] there is a full bounded solution of (3), or else for
each r > rg there is a pair (u, F*) € (0,1] x H(u) such that (5) has a full bounded
solution x with ||z|| = r.

PRrOOF. If for some r > ry there is no pair (u, F*) € (0, 1] satisfying the second
alternative then the hypotheses of Theorem 5 are met with @ = {x € R™ : 2| < r}.

3. An Application

Let F': R™ x R — R be a-continuous function, (z,t) — F(z,t), uniformly
almost periodic in ¢ € R and locally Lipshitz continuous in =, uniformly in . We
will consider the existence of bounded solutions to

(14) 2 P,

Recall that by a bounded solution we mean a function z € C'(R, R™) which solves
(14) at all t € R and such that

2] := sup |(¢)| < oo.
teR
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DEFINITION 8. An open bounded set & C R™ is called a strict bound set for
(14) if for each y € O there exists V;, € C1(R™, R) such that
(i) Qc {zreR™:V,(z) <0}.

(il) Vy(y) =
(iii) For eachy € OQ and F* € H(F) one has V,(y)-F*(y,t) # 0 for allt € R.

Here V,; denotes the gradient of V;, and H (F) is the hull of F', defined in Section
1. Let Fy(z) denote the average of F, that is

Fy(z) = 11m —/ F(z,t)d
We will relate (14) to

(15) = Fy(a).

dt
Let 8 denote the (local) flow in R™ generated by (15). We have

THEOREM 9. Suppose: (i) There is a strict bound set Q@ C R™ for (14); it
follows that Q is also a sirict bound set for (15) and Q is a compact isolating
neighborhood for the associated flow 8. (i) The homotopy index h(ly,B) # 0,
where Iy denotes the mazimal invariant set in Q for (15).

Then (14) has a full bounded solution taking all its values in Q.

ProOF. We apply Theorem 5. Let p € (0,1] and consider the family of equa-

tions

dz "
(16) E - N’F (ZE, t)

for F* € H(F). First, by (i) if y € 09 is fixed then since F(y,t) is continuous in
t € R we have that V(y) - F(y,t) is of one sign for all ¢; to be definite, suppose it
is positive. Then

.17
V) Ra) = V) Jim 7 [ Fw.0at>0

so that we see V,(y) - Fo(y) # 0 for all y € 9Q, and Q is a bound set for (15),
and hence  is a compact isolating neighborhood for the flow 8 generated by (15),
all as claimed. We need only show that if = z(t) is a solution to (14) for some

€ (0,1] and F* € H(F), with z(t) € Q for all t € R, then in fact z(t) € Q for
all t € R; that is, z(¢) assumes no values in 9§2. Suppose this is not the case; then
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there are F* € H(F), po € (0,1], and a solution zo = zo(t) to (14) with p = pg
such that zo(t) € Q for all ¢, and 2o (to) € 692 for some ¢y € R. Let y = o(ty), and
v(t) = Vy(zo(t)). Then v(t) < 0 for all t € R and v(to) = Vy(zo(to)) = V,(y) = 0.
Thus v'(tg) = 0. But since Q is a strict bound set for (14) we must have

v'(to) = Vy(y) - F*(y, to) # 0.
Thus we have a contradiction, and Theorem 5 now implies the conclusion.

REMARK 3. Bound sets have been applied in the study of both periodic and
bounded solutions of ordinary differential equations, generally in connection with
degree theory; see [4], [6]. Bounded solutions can be obtained by first solving the
periodic problem on the intervals [—n,n], n € N, and then obtaining a subsequence
of these solutions convergent to a solution bounded on (—o0,00). The result of
Theorem 9 apparently cannot be obtained in that way, since one can have a bound
set 2 for Fo(x) when the Brouwer degree d(Fp,2,0) = 0, but the homotopy index
of the maximal invariant set in § is not 0, so that the conditions of Theorem 9
would be satisfied. See the examples constructed (for other purposes) in [9], p.
135, or in [13].
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