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0. Introduction

In 1946 S. Eilenberg and D. Montgomery [5] made the important observation
that several results of fixed point theory for single-valued mappings can be carried
over to the case of multivalued acyclic mappings. In 1957 B. O’Neill [13] introduced
a class of continuous non-acyclic mappings for which the images of points consist
of one or m acyclic components (with m fixed) and he proved the Lefschetz fixed
point theorem for such mappings. In the case when components of values are
points, O’Neill’s {1, m}-valued mappings may be considered as symmetric product
mappings which map a space into its symmetric product with respect to the m-th
symmetric group, (for . = 2 it is an equivalent approach). In 1957 C. N. Maxwell
[10] proved the Lefschetz fixed point theorem for symmetric product mappings on
compact polyhedra. Results of B. O'Neill and C. N. Maxwell were generalized
in two directions: i) the enlargement of the class of spaces ([4], [7], [8]) and ii)
the localization, i.e. the fixed point index theory ([4], [9], [14]). Some results
in the Nielsen fixed point theory of symmetric product mappings were obtained
recently ([9], [12], [16]). In 1990 H. Schirmer [15] proved a property of {1, 2}-valued
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mappings which is crucial in the Nielsen theory: the removability of isolated fixed
points of index zero. The proof of this result is based on the homotopy classification
of symmetric product mappings on spheres obtained for symmetric products with
respect to the second symmetric group. Our goal is to get such a classification for
symmetric products with respect to any group of permutations. For this purpose we
introduce the topological degree (which multiplied by a constant is a generalization
of the degree studied by C. N. Maxwell [11] in 1977). An application of the main
result (4.2) of this paper — a condition equivalent to the removability of isolated
fixed points of symmetric product mappings — is the subject of the next paper, now
in preparation.

I wish to thank Professor Lech Gérniewicz who suggested this subject for many
valuable discussions.

1. Symmetric products

Let M be a finite set and G be a subgroup of the group of permutations of M.
Group G acts on the cartesian product X of a space X by the formula: zg = zog
for z € XM, g € G. The orbit space SPH¥ X of this action is called the symmetric
product of X with respect to G. Denote by g (or ¢¥) the projection from XM
onto the orbit space SP¥ X. If (X, d) is a metric space, then the metrics in the
products XM and SPY X are defined by the formulas:

d(z,y) = ma.x{d(:z:(m), y(m)): m € M},
d(g(z),q(y)) = min{d(z,yg) : g € G} for z,y € xM,

For a subset J C M denote by py : X — X7 the projection: py(z) = z|s. In
the case J = {j} it will be denoted also by p; : X¥ — X. If J is a G-invariant
subset of M, then the set G(J) of all permutations of J which are restrictions of
permutations from G to J is a group and p; induces a map p; : SP¥ X — SPé( J)X
such that ; o g = g7 o p; where g5 = qé(J).

By H. we shall denote the singular homology functor with integer coefficients,
and by S* the Euclidean k-sphere. We recall that a space is (k — 1)-connected
(k > 1) if and only if it is pathwise connected and for every ¢ < k its i-th homotopy
group is trivial.

2. Some lemmas

In proving our main result we shall make use of the following lemmas.
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LEMMA 2.1. If X is a (k — 1)-connected compact metric ANR, then q: XM —
SPg X induces an epimorphism of k-th homotopy groups.

Lemma 2.1 will be proved in section 5. Here we use it to deduce

LemMA 2.2. (cf. [6]) If X is a (k — 1)-connected compact metric ANR, then
so it is the space SP¥ X. Furthermore, if k > 1 or my(X ) is abelian then the
homomorphism g. : Hx(X™) — Hy(SP¥ X), induced by the standard projection
g, is onto.

The next lemma follows from the naturality of the Kiinneth homomorphism:

LemMa 2.3. If X; is (k — 1)-connected, ¢; € X; and Y5 [Liear Xi — [Ticar X
maps any point z to the point y such that p;(y) = ¢; for i # j and pi(y) = p;(z),
then 3=;c pr %5 * He([liepr Xi) = Hi([T;cas Xi) is the identity.

3. The trace homomorphism and the group Hy (SPYSF)

Next using Lemma 2.2 we verify the correctness of the following

DEFINITION 3.1. (cf. [11](2), [14](2)) The unique homomorphism
p: Hy(SPYSF) — Hy(S¥)

such that

pog.= Y pj
JEM
is called the trace homomorphism.
Indeed, q. is onto, so u is well defined, if only ker (g.) C ker (ZJ M pj.), Let
T : Hy(SPY¥S*F) — Hy((S*)™) be the transfer homomorphism for which we have

Togy =3 cq 9+ (cf IIL.7.1in [1]). Thus Y ;c s pisoTog = Yiem > geq Pin0gs =
> occ iem Pty = |G| > jem Ps» and our inclusion follows.

Proofs of the next two propositions describing the structure of the group H, k(SPYSk)
are also based on Lemma 2.2.

PROPOSITION 3.2. If G acts transitively on M, then the trace homomorphism

p: H(SPMS*) — Hy(S*) is an isomorphism.

PROOF. Let M = {1,...,n}, 50 € §* and i: 8k - SPYS* be the map
i(z) = gq(z,s0,...,8). Take Y5 (SF)M — (§¥)M from (2.3) with ¢; = sp for
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i,j € M. From the transitivity of the action it follows that i o p; = g o 9. Using
(2.2), we now prove that i, is an inverse of u. In fact:

poi,=pogyo(id x 89X --- X 89)s = ij.o(id X 89 X -+ X 89) = id
JEM

14O JLOQy =140 ij,. =g.0 Z@h;, = G-
JEM JjEM
PRroprosITION 3.3. Let O(G) be the set of all orbits of the G-action on M.
Then (B;) seo(c) : He(SPYS*) = @ coe) He(SPE(5)S*) is an isomorphism.

and

PROOF. Since the symmetric products of S* are (k — 1)-connected, one can use
the Hurewicz isomorphisms and behaviour of homotopy groups with respect to the
cartesian products to write the assertion in the equivalent form:

((z—:,)leo(an*:Hk<SPé‘s’“)~Hk( II SP&J)S’“)
Jeo(a@)

is an isomorphism. Let X = S¥, sy € X,c = (sg,...,50) € XM = rco) X1
From (2.3) take ¢$ : []; X! — [I; X! with ¢; = ps(c) and

¥h : [[ P& X — [ SP&nX
I I

with b7 = g7 o pr(c) for I, J € O(G). Let vy : []; SPé(I)X — SP‘Z;(J)X be the
projection and i7 : X7 — XM be the unique map such that

(e i I#Y,
o1 =
Press=19 44 i I=J,

for I,J € O(G). There is an induced map iy : SP§ ;;X — SP X such that
iy0gqs = goij. A direct calculation shows that ¢§ = (F; o iy o rj)1e0(q) and
9§ =14y 0py. Thus

(Br)1co@)+© Z'LJ‘ orge) = ZipJ. id

and

(z iz 0150) o (Br)ico(@)x © G« = D 85+ 0Py © G
J
= i 0qs0ps-
J
= Zq* Cigr OPJe
J
=go) 95 =a.

J
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4. Topological degree

Let O(G) be the set of all orbits of the G-action on M and 7 be a genera-
tor of HySk. Let Z be the set of integers. For d € Z9(G) Jet g : Hy(S%) —
&) seo(c) Hk (S*) be a homomorphism defined by the formula d(n) = (d(J)n) JEO(G)-

DEFINITION 4.1. The topological degree deg (f) of the symmetric product map
f : 8% — SPYS is defined to be a function d € ZO(©) such that the homomorphism

Hi(S)5H,(SPYSH Y @D HusPL,$H% @ Hy(sh)
JEO(Q) I€0(@)
is equal with d.
We may now formulate the main result of this note.
THEOREM 4.2. Symmetric product maps of the same degree are homotopic.

Proof follows directly from (3.2), (3.3) and the Hurewicz isomorphism theorem.

PROPOSITION 4.3. If G acts transitively on M, f; : S* — S* for i € M and
f = af o(fi)iem, then deg (f) = ;) deg ().

Proof of Proposition 4.3 follows immediately from (3.1).

REMARK. C. N. Maxwell [11] defined a degree Deg for symmetric product maps
with respect to the n-th symmetric group. By definition, Deg = n~'deg. Some
properties of Deg (see (3.2), (3.3), (3.5), (3.8) [11]) may be easily deduced from our
(2.1) and (4.3).

5. Proof of Lemma 2.1

Let zo € X,t0 = (zo,...,79) € XM and f: (I’“,I"“) — (SPé‘;”X,q(tg)) be a map.
We shall define a map F : (I*,7*) — (XM t4) such that f =~ qo F rel(f¥). The
definition of the map F' will be prepared in several steps.

1) For every subset H of G and 6 > 0, we define the sets:
Fix(H) = ([{{zr € XM : 29 =z} : g € H},
Fixs(H) = ﬂ{{z‘ € XM . d(zxg,z) < 26} : g € H}.

The set Fix(H) is homeomorphic to the cartesian product of X. Take er > 0
such that any two maps g,h : I* — SPgX, d(g,h) < ek, are homotopic rel{z €
I* : g(z) = h(z)}. For i = k,...,1 choose £;_; < €;/3 such that, for every
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H C G any subset of Fix(H) whose diameter is less than £;_; is contractible in
a subset of Fix(H) of the diameter less that €;/3. For € > 0 denote by O.(-) the
e-neighbourhood. Choose 0 < 82 < €9/4 such that Fixgs, (H) C O, 4(Fix(H))
for every H C G. Take §; > 0 such that for any z,y € I* with d(z,y) < 6; we
have d(f(x), f(y)) < 82 and choose a positive integer number m > 1 such that

m_I\/_E < 61.

2) We divide I* into cubes with the length (4m — 2)~" of each edge and define
some sets and maps related to this subdivision. Let Ny = {1,...,k}. For every
a € {0,1,...,4m — 2}* and P C Ny, such that {i € Ny : o; = 4m —2} C P we
define the set C'(a, P) as the product Hf=1 C;(a, P) of sets:

[a;/(4m — 2), (o4 + 1)/ (4m — 2)] for i € Ni\P,

Cile, P) = { {/(4m — 2)} for i€ P.

Let P2 = {i € P: o; = s(mod4)}, I? = {i € Ny\P : o; = s(mod4)} for
s =0,1,2,3. The set C(a, P) is called a face or i-face, if I§ = I§ = P§* = (§ and
the set P has (k — i) points. All k-faces having the nonempty intersection form
a set called a white cube. The white cube has form Hle [ﬁ%, %J_r—;], where
0 < p; < m — 1. For every face C(a, P), we define the set S(a, P) as the product
1X, Si(a, P) of sets:

[(a; — 1)/(4m — 2), (o + 1)/ (4m — 2)] for i€ Pg,
Ci(a, P) otherwise.

Si(aaP) = {

Denote by VS(a, P) the set of all vertices of a white cube lying in S(a, P).

We say that the faces C(a, P), C(8, P) are conjugate and write aPg, if a; = §;
fori e ISUIFUPY, (Bi=a;+2o0r f; =) fori € Pi and (8 = a; — 2 or
B;i = a;) for i € F§.

If aPB, then denote by sgs : S(a, P) — S(B,P) the product map HLI 35
where s; is the identity for i € I§ U I U P{* and si(a;/(4m —2)) = B;/(4m —2) for
i € P U Py

Let A={(4p+3)/(4m—2):p=10,1,...,m —2}. We definer: (I \ A)* — I*
as the product map p* induced by a map p: (I \ A) — I, which is defined by the

formula:
(4p + 8)/(dm — 2) for s€10,2], p=0,...,m—1,
p((4p+ 8)/(4m — 2)) = § (4p+2)/(4m — 2) for s€(2,3), p=0,...,m—2,
(4p +4)/(4m — 2) for s€(3,4, p=0,....,m—2.

We shall consider also the second subdivision of I* into the cubes with the length
m~1 of each edge. We define maps L, G; : (I*, 1%y — (I*,I*) by the formulas:
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L =1* G, = (g:)* where, for s € [0,1],

I((4p+2s)/(4m —2)) = (p+8)/m for p=0,....,m~—1;
H(4p—2s8)/(4m—2))=p/m for p=1,...,m—1;

=h

(4p—t+38(2+2t))/(4m —2)
g9:((p+8)/m) = { s(2+1)/(4m —2) for p=10, t€0,1],
(4p—t+s(2+1))/(4m —2) for p=m-1.

or p=1,...,m—2,

One can check the following facts:
(1) The multivalued map G : I* x I — I* defined by G(z, t) = Gi(z) is upper
semi-continuous.
(*) (ii) The map G, is single-valued and homotopic to the identity.
(ili) The map Go maps open cubes of the second subdivision onto open white
cubes and L o Gy is the identity.

3) We shall define a map F on the set of vertices of white cubes. If two such
vertices w,w’ are conjugate as O-faces, then L(w) = L(w/ )- For each w, choose
F(w) € ¢~'(f(L(w)) such that F(w) = F(w') if w,w' are conjugate. In every white
cube choose one of its vertices w and define F(w) as F(w). If v is another vertex
of the same white cube, then there exists g(v) € G such that d(F(w), F(v)g(v)) =
d(f(L(w)), f(L(v))); we define g(w) to be the identity permutation and F(v) =

F(v)g(v). Of course, d(F(w), ), F(v)) < 62 and F(v') = F(v)g(v)~1g(v') for any
conjugate v, v'.

4) Let C*(a) be the sum of all i-faces contained in the face C(a, ) and W; be
the sum of all i-faces. For every face C(a, P) and w € VS(a, P) let Hy(a, P) =
{9(w) " g(8ga(w))[g(w') " 'g(8pa(w’))]"" : BPa, w' € VS(a, P)}. By induction we
shall define a map F : (W;, W; N I*) — (XM t,) such that:

(4) diam(F(C¥(7))) < e,

(4.ii) F(C(e, P)) C Fix(Hy(a, P)),

(4.iii) F(spa(x)) = F(z)g(w)  g(sga(w))
for any face C(v,0), i-face C(a,P), w € VS(a,P), z € C(e, P) and BPa. In
any conjugacy class of O-faces which are not vertices of white cubes choose Zq =
C(a, Ni). Choose w € VS(a, Ni). fw’ € VS(a, Vi) and 8N,a, then d(F(w), F(w'))
< 269 and

d(F(w)g(w) ™ g(spa(w)), F(w')g(w') " g(spe(w'))
= d(F(sga(w)), F(sga(w')) < 265,
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thus F(w) € Fixgs,(Hy(a, Ni)) C 050/4(Fix(Hw(a,Nk)). We choose the value
F(z,) € Fix(H,(a, Ni)) such that d(F(w), F(2,)) < €0/4. On faces conjugate to
2o we define F' by (4.iii). Observe that if v, va € C%(v), then d(F(v1), F(v2)) <
€0/4 + 262 + €0/4 < 0.

For the inductive step let us notice that if C(u, Q) is an (i — 1)-face of an i-
face C(a, P), then VS(e, P) C VS(p,Q) and Hy(a, P) C Hy(g, Q). Denote by
C(a, P) the sum of all (i — 1)-faces of the i-face C(a, P). In any conjugacy class
of i-faces let us choose an element C(a, P). Choose w € VS(«, P). The inductive
assumption implies diam(F(C(e, P)) < i1 and F(C(a, P)) C Fiz(Hy,(a, P).
From the choice of €;_; it follows that there exists an extension of F on C(a, P)
such that (4.ii) holds and diam(F(C(a, P))) < €;/3. On faces conjugate to C(e, P)
we define F by (4.iii). Then diam(F(C*(7))) < €i/3+ €i—1 +€i/3 < &;.

5) Let W = Wy, U = Wi_1, Co(U) be the cone (U x I)/(U x {1}). [Ux {1}] =
Q, U x {0} = U. Since the set Fix(H) is (k — 1)-connected for every H C G, we
extend inductively F : (W, W N I¥) — (XM, o) to a map

F 1 (WU Co(U), Co(U N I*)) = (XM, 1,)
such that:
(5.4) F(Q) =to,
(5.1i) E(Co(C(a,P))) C Fix(Hu(a, P)),
(5.ii)) F((spa(@), 1)) = F((2,1))g(w) " g(3pa(w))
for any i-face C(a, P), i < k—1, (z,t) € Co(C(a, P)), w € VS(a, P) and BPa.
6) For z € (I\A*\W let w(z)=r(z)+ &(z — r(z)) where
fo=inf{¢ >0:r(z) +&(x —x(z)) € I*\ (I\ A)¥}.
We define maps
T : (I*, [*) — (W U Co(U), Co(U N I¥))

and
F i (I*, 1) = (XM, ;)
by the formulas:

0 for £ €I*\ (I\A)¥,
T(x)=4 T for ze W,

(x(z), ||z — r(@)||/lw(z) —x(@)))  for z€ (T\A)\W
F=FoT.

7) We are going to prove that f ~ go F rel(I¥). One can check that the
map g o F o G; is single-valued, so go F =~ go F oGy 2 goFo Gy rel(i"). If
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v is a vertex of the second subdivision, then Go(v) consists of vertices of white
cubes, so go F o Go(v) = f o Lo Go(v) = f(v). From (x) (iii) it follows that
goF oGy = qo F|w oGo maps any cube of the second subdivision into a go F-image
of a white cube having a diameter less than 2¢;/3. Let z be any point from a cube
of the second subdivision and v be a vertex of this cube. Then d(z,v) < §;,d(g o
FoGo(z), f(z)) < d(goFoGo(z),qoF oGo(v))+d(f(v), f(2)) < 2ex/3+62 < ex.
From the choice of € it follows that g o F o Gg =~ f rel(I*).

REMARK. In the case, when G is the n-th symmetric group and k > 1, Lemma
2.1 easily follows from [2] and [3].

Indeed, let X be a connected CW-complex, zo € X, X, be the symmetric
product of X with respect to the n-th symmetric group and X, = U:=1 X be
the infinite symmetric product (see [3] (3.4)). Let s : X — X™ be the inclusion:
s(z) = (z,zo,...,To). From [3] (6.10) it follows that there exists an isomorphism
J : Hg(X) — mp(Xoo) such that the following diagram

m(X™) 2 m(X,)

] Js

m(X) > m(Xeo)

N

Hi(X)
where a, 8 are homomorphisms induced by inclusions, and ¢ is the Hurewicz ho-
momorphism, is commutative. If H;(X) =0, fori =1,...,k—1, then 3 is an

isomorphism (see [2](12.30)). If moreover X is (k — 1)-connected, then ¢ is an
isomorphism, so g4 is an epimorphism.
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