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A NOTE ON THE CAUCHY PROBLEM
FOR DIFFERENTIAL INCLUSIONS

M. FrIGON - A. GRANAS — Z. GUENNOUN

Dedicated to the memory of Karol Borsuk

In this note, we shall be concerned with the existence of global solutions to the
initial value problem for systems of differential inclusions of the type

) y®)(t) € F(t,y(t),...,y* V() ae te(0,T],
* .
yO () =, i=0,...,k—1,

where F : [0,T] x R¥ — R" is a multifunction with nonempty compact values
satisfying some conditions of measurability, and upper or lower semi-continuity;
t;e[0,T)and r; e R®,i=0,...,k—1.

For k = 1, the above Cauchy problem was treated in our Notes [2,3]. However,
for k > 1, the established results are new even in the case where F is a single valued
Carathéodory or a continuous function.

1. Preliminaries

(a) Generalities _

We denote by C*([0,T],R") the Banach space of functions k-times continuously
differentiable on [0,T] with the norm: |ly|x = max{||yllo, ..., ly*|lo}, where
lyllo = max{|ly(¢)l| : ¢ € [0,T]}. The Banach space of functions y such that
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llyil is Lebesgue integrable on [0,T] is denoted by L([0,T],R™) and is provided
with the usual norm: ||y|lz: = fOT lly(t)||dt. We denote by W*1([0,T],R™) the
class of function y in C*~1([0, T], R®) such that y*~Y is an absolutely continuous
function. By a solution to (%) we shall always mean a solution in the Carathéodory
sense, i.e. a function ¢ in W*1(]0, T],R™), which satisfies (x) almost everywhere.

Let F4, E; be two Banach spaces, X a closed subset of F;, and S a measurable
space (resp. S =1 x R™ where I is a real interval, and A C § is £ ® B measurable
if A belongs to the o-algebra generated by all sets of the form N. x D, where N is
Lebesgue measurable in I, and D is Borel measurable in R"). Let F': X — E5 and
G : S — E; be two multifunctions with nonempty closed values. The function G is
measurable (resp. L® B measurable) if the set {t € S : G(t)NB # @} is measurable
for any closed set B in S. The function F is lower semi-continuous (ls.c.) (resp.
upper semi-continuous (u.s.c.)) if the set {z € X : F(z) N B # 0} is open (resp.
closed) for any open (resp. closed) set B in E,. If F' is Ls.c. and u.s.c. then F is
continuous.

A subset A of L([0,T],R") is decomposable if for all u,v € A and N C [0,T]
measurable the function uxnx + vxje,7p\~ € A-

(b) Two basic types of multivalued maps
In what follows, F : [0,T] x R¥» — R"™ will be a multifunction with nonempty,
compact values. We assign to F' two multivalued operators

F: Cc* ([0, T],R™) — L*([0,T],R"™)
and

N : C*¥ ([0, T],R™) — C([0, T], R™)
by letting:

F(y) ={v € L([0,T],R™) : v(t) € F(t,y(t),--.,y* D (t)) a.e. t € [0,T]},
N(y) ={w € C([0,T],R") : w(t) = /0 v(s)ds with v € F(y) }.

The operator F (resp. N) is called the Niemytzki (resp. the Carathéodory) ope-
rator associated to F.

Using the above terminology we can describe two basic types of multivalued

maps:

DEFINITION 1.1. The multivalued function F is said to be of:

(i) the upper semi-continuous type (u.s.c. type) if its associated Carathéodory
operator N : C*~1([0,T},R™) — C([0,T),R™) is upper semi-continuous
and has nonempty compact and convex values;
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(ii) the lower semi-continuous type (Ls.c. type) if its associated Niemytzki
operator F : C*1([0,T],R*) — L'([0,T],R™) is lower semi-continuous
and has nonempty closed and decomposable values.

Consider the following properties of the map F:

(H1) (i) (t,z)+— F(t,z) is £® B measurable,
(i) z+— F(t,z) is lower semi-continuous for a.e. ¢ € [0, T7;
(H1") (i) t+ F(t,z) is measurable for every v € R*",
(ii) z+ F(t,z) is continuous for a.e. ¢ € [0, T7;
(H1") (i) tw F(t,z) is measurable for every x € R*",
(i) z+~ F(t,z) is upper semi-continuous for a.e. ¢ € [0,77];
(H2) for each r > 0, there exists a function k. € L*(0,T) such that
IFE z)|| < he(t) ae. te(0,T), and for every z € R*® with lz|l < r.

We formulate two results describing the two classes of multivalued maps intro-
duced above.

PROPOSITION 1.2. (cf. [4]) If F' has compact convex values and satisfies (H1"),
(H2), then F is of the u.s.c. type.

PROPOSITION 1.3. (cf. [2]) If F satisfies (H2) and either (H1) or (HY), then F
is of the Ls.c. type.

REMARK 1.4. Assume that a single valued function f:[0,T] x Rk» — Rn
is a Carathéodory function, that is: (i) the map t — f(¢, z) is measurable for all
z € R*"; (ii) the map = — f(t,z) is continuous for a.e. t ¢ [0, T7]; (iii) for each
r > 0, there exists a function A, € L!(0,T) such that If & z)| < h.(t) for ae.
t € (0,T), and for every z € R*" with ||z < r. Then by letting F(t,z) = {f(¢,2)},
we obtain a multifunction F' of the u.s.c. and the ls.c. type.

(c) The existence principles
Givent; € [0,T) and r; € R*, i = 0,...,k — 1, we consider the Cauchy problem ()
and the associated family of problems:
) y®(t) € AF(t,y(t),...,y* V() ae. te [0, 7],
A .
y®(t) =r;, i=0,.. k-1,

where A € [0, 1].

The existence principles for the two basic types of differential inclusions are

collected together in the following theorem and proved in a slightly less general
form in [2] and [4].
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THEOREM 1.5. Let F be a multifunction of the u.s.c. type or of the Ls.c. type.
Suppose there exists a constant M such that for any A in [0,1] and any solution
y to (%)), we have ||y|lk—1 < M. Then (x) has a solution.

(d) The change of variables formula
In our discussion, we shall need a version of the change of variables formula for the
integral (established in [3]), which relaxes the standard monotonicity assumption.

LEMMA 1.6. Let g : [a,b] — [A,B] and h : [A, B] — R, where g is absolutely
continuous, h is measurable and (h o g)g' is Lebesgue integrable on [a,b]. Then h
is integrable on the interval with end points g(a) and g(b) and

g(b) b
/ h(s)ds = f h(g(8))g' (t)dt.
g(a) a

2. Main result

Consider the following conditions:

(H3) there exists a Borel measurable function « : (||rg—1],00) — (0,00) such
that || F(t,v1,---,9%)|l < a(llyel]) for a.e. t€[0,T] and for all
(1,---,yk) € R¥ with [lysll > llric—all;

(H4) there exists a Borel measurable function a : [||R||,00) — [0,00) such
that |F(t,y1,-.-, %) < a(l(¥1,...,&)ll) for ae. t € [0,T] and for
all (y1,...,u) € R¥ with ||ly1,...,ue)ll > ||Rll, where R = (ro, ..., Tk-1)-

We are able now to formulate our main result:

THEOREM 2.1. Assume that F is of the u.s.c. type or of the ls.c. type and
satisfies the condition (H3). If

T < Ty = / dz
et (@)

the problem (*) has a solution.

PROOF. In view of Theorem 1.5, we need only find a priori bounds on solutions
y to the family of problems (), with X in [0,1].

Fix T < T and let y be a solution to (%) for some A in [0, 1]. Assuming that the
function ¢ — ||ly*~1(t)| takes its maximum at 7 € [0,T] and [[y*~D(r)|| > [[rk-1l,
we obtain the existence of an interval (a,7] (or [r,a)) on which {ly*=V()| >



CAucHY PROBLEM FOR DIFFERENTIAL INCLUSIONS 319

lIrk—1ll and [ly*=D(a)|| = ||rx_1]. Since the function ¢ i ly®=1(t)| is absolutely
continuous on (e, 7] and

ly* DO < ly® @l ace. t € (a7,
by (Hs)l we get
ly* DN < aly® D@l ae. te (e,

Dividing by a(||ly*~1(¢)|)), integrating from a to 7, and applying the change of
variables formula (Lemma 1.6), we get

lly*=1 ()] T (B—1) (4|4 o0
/ Ry O S S
[Ire=all o(z) o o(lly ®ID llre—1il a(z)

It follows that there exists a constant My > ||rx—;|| such that
(2.1) ly®~ Do < Mo

for any solution y to (x) for some A in [0,1].

Taking into account the inequality (2.1) and the initial conditions, it is easy to
show the existence of a constant M such that ||y[s—y < M for any solution y to
(%)x for some A in [0,1]. O

COROLLARY 2.2. Let f : [0,T] x R¥® — R™ be a single valued Carathéodory
function. Assume-there exists a : (Irk=1ll,00) — (0,00) a Borel measurable
function such that ||f(t,y1,...,u)|l < a(llyx]) ae t € [0,T] for all y;, with

lyell > llre—all- I
00
T<Ty= / dr_
lra—ef (@)
then the following problem has a solution
y®) () € f&y@),...,y* V@) ae te [0, 1),
¥y () =, i=0,...,k—1.

COROLLARY 2.3. Let F be a multifunction of the u.s.c. type or of the lLs.c.
type. Assume that the condition (H4) is satisfied. If t; = t, € [0,7] for all
t1=0,...,k—1, and

T < Ty =

/oo dz where R = (r, )
TS = 19 Th—1),
I8l V=2 + a(z)? ’ =

then the problem (%) has a solution.
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PROOF. Set Y = (o, ..., yk—1) € R¥™ and let G : [0, 7] x R¥™ — R¥® be defined
by G(t,Y) = (1, .-, ¥k—1, F(8,Y)). The multifunction G satisfies the condition
(H3) with ao(z) = /22 + (a(z))?. By applying Theorem 2.1 to the problem

Y'(t) € G(t,Y(t)) ae t€[0,T],
Y (to) = R,

we get a solution Y = (yo,...,yk—1). It is clear that yo is a solution to (). o

REMARK 2.6. In general, we cannot replace the condition (H3) by (H4) in The-
orem 2.1. However, when both Theorem 2.1 and Corollary 2.3 apply, Theorem 2.1
furnishes best results in general.

3. Examples

ExXAMPLE 3.1. The problem

{ y"(t) = ¢'(t) +sin(y(¢)) +3 ae. t€[0,T],
y(0)=0, (1) =1,
has a solution on [0, T] for any 1 £ T' < oo. The condition (H3) is satisfied with

a(z) =z + 4, 50 Teo = 00.

EXAMPLE 3.2. The problem

y(O) =1, y’(O) =0,
has a solution on [0,T] for any T < oo. Indeed, the condition (H4) is satisfied
with a(z) =z + L.

{ y'(t) = y(t) —e? a.e. t€[0,T],

ExaMpPLE 3.3. The problem

{ y'(t) =y () -2ly'(®)+2 ae t€[0,T]
y(0) =0,4'(0) =0,

has a solution on [0, T] for any T < 3w /4. The condition (H3) is satisfied with
o(z) = 22 — 22 + 2 and T = 37/4. On the other hand, (H4) is satisfied with

o {? ifo<z<2,
QolT}) =
0 -2 +2, ifzr>2

and
=~ 1.57 < 3n/4 = Too.

7 _/m_d-’”__
7 Jo /72 + (ap(2))?
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